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Deconvolution and Model-Based Restoration of
Clipped Ultrasonic Signals

Tomas Olofsson

Abstract—This paper presents a simple and general approach
for deconvolving ultrasonic signals for which some of the samples
have been clipped at the maximum and minimum saturation levels
of the analog-to-digital converter. Furthermore, it shows how the
deconvolution results can be used to restore the clipped amplitudes.
By using the presented methods, the artifacts that typically arise
when applying standard deconvolution methods on clipped data
can be avoided. The deconvolution problem is stated as maximum
a posteriori estimation of the reflection sequence under an assump-
tion of uncorrelated Gaussian measurement noise and with the
signal clipping explicitly taken into account in the signal generation
model. Apart from the exact solution, two simplified approximate
solutions are considered. The first approximation leads to solving a
quadratic programming problem with inequality constraints and
the second yields a simple closed form linear solution. A compar-
ison under varying noise and clipping distortion conditions shows
that the exact solution consistently yields the best performance,
but the accuracies of both the approximative solutions are almost
as good as the exact solution for low clipping distortion levels. At
larger distortion levels, only the first approximative solution can
compete in accuracy with the exact solution. Signal restoration re-
sults using real ultrasonic data further verify the above conclu-
sions.

Index Terms—Deconvolution, restoration, signal clipping, ultra-
sonic testing.

I. INTRODUCTION

I N ultrasonic testing as well as in many other measurement
applications, the signals are acquired by means of analog-to-

digital (A/D) converters that quantize the signals into a lim-
ited number of equispaced amplitude levels. Since the signal-to-
noise ratio (SNR) partly is determined by the quantization er-
rors, it can be improved by increasing the gain, thereby reducing
the relative influence of the quantization noise. However, since
the dynamic range of ultrasonic signals can often be quite high,
an increase in gain comes at the cost of an increased risk of
having some of the largest amplitudes in the signal clipped at
the saturation levels of the A/D converter. Thus, there is typi-
cally a tradeoff between SNR and the risk of signal clipping.

To some extent, the problem can be treated by using a
so-called distance amplitude correction (DAC). However, the
DAC does not treat the problem of having received echoes from
objects of significantly different sizes. In many applications, the
defects of interest are small and may occur close to relatively
large reflectors. Then, to acquire defect signals with satisfactory
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amplitude resolution, the gain may need to be increased so
much that the signal from the larger object is clipped.

Deconvolution, which is used mainly for improving the res-
olution of the signals, can be particularly useful for revealing
a small defect that has been masked by the echo from a larger
nearby reflector. Standard deconvolution methods, such as the
Wiener filter, are all designed under the assumption of a linear
convolutional signal generation model. Clipping, however, acts
nonlinearly on the signal, and due to this mismatch between the
model and the reality, the results obtained by standard decon-
volution algorithms typically contain artifacts when the signals
have been partly clipped. These artifacts may sometimes com-
pletely dominate the time interval in which the weaker echo oc-
curs, thus rendering useless deconvolution results.

The purpose of this paper is twofold. First, it presents an ap-
proach for solving the problem of the deconvolution of clipped
signals. The approach is based on maximum a posteriori (MAP)
estimation of the so-called reflection sequence under a signal
generation model that explicitly takes the signal clipping into
account. The optimization criterion associated with the MAP
estimation problem unfortunately does not allow for the use of
any simple and fast optimization algorithm. Therefore, suitable
approximations of this criterion are also given, and the validity
of the associated simplified deconvolution algorithms is exam-
ined experimentally. Second, this paper examines the possibility
of restoring the clipped amplitudes by a direct use of the de-
convolution results, leading to a model-based approach for the
restoration of clipped signals.

The two basic problems mentioned above, deconvolution and
restoration of nonlinearly distorted signals, have been treated
earlier in the literature but have only been briefly mentioned in
the literature on ultrasonic testing [1]. In the context of digital
image restoration, deconvolution of images that have been sub-
ject to a nonlinear pointwise distortion, which in that case is due
to the saturation curve of the photographic film, has been treated
in [2] and [3]. There, the problem was formulated as MAP esti-
mation of a signal which is observed as a noise corrupted, point-
wise nonlinearly distorted convolution. Since the models used
in [2] and [3] assumed that the noise was superimposed after the
nonlinearity, these models are not optimally suited for treating
clipped signals.

The deconvolution of clipped signals can also be treated
by first approximately restoring the clipped samples and then
performing deconvolution using any standard method. This
approach was suggested, e.g., in [1]. The basic idea that is
common to a large number of signal restoration algorithms is to
oversample the signal, thereby allowing one to treat the signal
as being bandlimited, and then to find a signal that matches
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either exactly or approximately to the undistorted data while at
the same time fulfilling the bandlimitation restriction. It should
be noted that the problem usually leads to solving equation
systems that are ill-conditioned so when noise is present in the
signal, solutions obtained without any other regularization than
the one that is imposed by the bandlimitation constraints may
sometimes be very poor.

The regularization is typically performed by minimizing the
energy in the restored signal [4], [5]. For the particular problem
of restoring clipped amplitudes, constraints that enforce the so-
lution to exceed the upper and lower clipping limits at the times
of interest can also be added to further improve the results [6].

Although this combination of such so-called bandlimited
restoration and deconvolution will in general improve the de-
convolution results, it has the disadvantage of not fully utilizing
all available information in all steps of the processing. In the
restoration, only the information that the system’s transfer
function is bandlimited is used, whereas in the deconvolution,
the full knowledge about the transfer function is explicitly
utilized. If such information is available, it should be used
throughout all calculations. The method presented in this paper
has this property.

This paper is organized as follows. In Section II, the problem
formulation is presented, the MAP criterion is derived, and the
simplifying approximations and their associated algorithms
are presented. In Section III, the restoration method is given.
The exact and the approximative MAP deconvolution results
are compared quantatively using simulated data in Section IV.
In this section, the restoration method is also illustrated using
real data. Finally, conclusions and a discussion are given in
Section V.

II. MAP DECONVOLUTION OF CLIPPED SIGNALS ASSUMING

GAUSSIAN NOISE SOURCES

In the following, we consider time-discrete signals that are
sampled with a period . The integer will denote the time
index which is related to the continuous time through the rela-
tion . We assume that the acquired ultrasonic signal
is a clipped version of a partially unobserved signal that, in
turn, can be modeled accurately as a noise-corrupted convolu-
tion between the so-called reflection sequence and an im-
pulse response that captures the relevant electroacoustical
and acoustoelectrical properties of the transducer. We write this
as

(1)

where is the noise and denotes the clipping nonlin-
earity

if
if
if .

(2)

and are the upper and lower clipping limits, respectively.
For example, an ordinary 8-bit A/D converter that represents the
amplitudes as signed integers has and .

Let and denote the number of samples in
and , respectively. By using vector notation with

, ,
, and , the model in

(1) can be written as

(3)

where vector is defined as
and is an finite impulse response matrix with elements

. For future use, let denote the
th row vector in .

Let and denote the sets of vector indices for which the
signal is clipped at the upper and lower limits, respectively, and
let denote the set of indices for the remaining nonclipped
components. Furthermore, let us from the (undistorted) vector

construct three vectors , , and that contain only the
components in with indices in the sets given by the respec-
tive subscripts. The composite vector can then be
written as

(4)

where , , and are matrices that consist of the rows
with belonging to the disjoint sets , , and , respectively.
Note that the number of rows in the three matrices is in general
different.

In the following, the noise components in are assumed to
be independent and identically zero-mean Gaussian distributed
with variance , i.e., , where is the identity
matrix. The above variance can often be readily estimated from
a separate signal in which there are no responses from scatterers
present. For instance, in immersion testing, the noise variance
can be directly estimated from a signal in the time interval corre-
sponding to the water path. Furthermore, the reflection sequence
vector is assumed to be zero-mean Gaussian ,
where is the covariance matrix of . This distribution should
reflect our incomplete prior knowledge about the true reflection
sequence. The better informed we are, the better we should be
able to adopt, for instance, the covariance matrix to a given ap-
plication. As a start, we can make the relatively noncommital
assumption that the components in are independent and iden-
tically distributed, leading to , where is a common
scalar variance for all components. A suitable value for can
be obtained by calculating the average of the squared ampli-
tudes of a set of representative signals and dividing this with the
squared norm of impulse response vector . In this way, we will
match the expected signal energy to the average observed signal
energy for this set of signals.

The MAP estimate of is defined as

(5)

where the likelihood can be factorized as

(6)
The probabilities and should be
interpreted as

for (7)
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and

for (8)

respectively.
Let us define and as

and (9)

By using that the components in are independent, we can write
and as

(10)

where denotes the normal cumulative distribution function.
We take as our criterion the negative logarithm of the expres-

sion in (5), and by using (10) and using that and are normal
distributed, we finally obtain

(11)

where all terms that are constant with respect to have been
removed.

It is important to note that the above expression will retain its
simple structure also when the measurement noise and reflec-
tion sequences are non-Gaussian. For instance, if the measure-
ment noise is double sided exponential, the first term should be
replaced by a sum of absolute values of the residuals and the
last two sums in should involve the cumulative distribu-
tion function of the double sided exponential density instead of
the normal density.

No closed-form solution that minimizes exists and iter-
ative methods must be used for the optimization. Unfortunately,
this leads to a relatively slow data processing which limits the
practical use of the method. However, an algorithm that mini-
mizes the criterion in (11) has a value in that it provides a refer-
ence against which other methods can be compared.

More practical methods can be developed by making approx-
imations of that are better suited for efficient optimization
schemes. Of course, many such approximations are possible and
in this paper we restrict our attention to two that are particularly
simple.

A. Approximation I

For decreasing values of , the slope of increases
around and in the limit becomes a step function
which yields

.
(12)

Thus, for small , we should find a good approximation of
the minimizing solution to by solving the optimization
problem

(13)

subject to the constraints

for and for (14)

This quadratic optimization problem with inequality con-
straints can be solved using a number of standard numerical
packages—see, e.g., [7]. At each iteration in the optimization
algorithm, a system of linear equations is solved. For a signal
with only a few clipped samples, the number of unknowns in
this equation system is approximately so each iteration con-
sumes on the order of calculations. However, the number
of iterations is difficult to predict. This number depends not just
on the number of constraints but also on how the constraints
are related. Thus, the overall computation time is difficult to
predict.

B. Approximation II

Although the above approximation simplified the problem
somewhat, finding in (13) still requires iterative algorithms
for which the calculation time can be difficult to predict. We can,
however, obtain a closed-form solution for which the calculation
time is predictable by simply ignoring the clipped components
completely, i.e., we treat these samples as missing data instead
of censored data. One interpretation of the solution obtained in
this way is that we implicitly assume to be large. Then the
approximation can be used. Now the
terms associated with the likelihood of the clipped samples do
not influence the solution and the simplified criterion becomes

(15)

The minimizing solution is given in closed form as

(16)

In practice the solution is obtained by solving a corresponding
system of linear equation so the number of calculations for
this solution is on the order of . Since the solution is obtained
after one iteration, this will consistently yield an overall compu-
tational time that is less than that for the above Approximation
II solution.

Of course, both the Approximation I and II solutions treat
the available data somewhat inconsistently; The noise variance
is only approximated as zero or infinity at the clipped samples,
not at the samples in . We should therefore expect the results
to be less accurate than the exact MAP solution. Furthermore,
since the solution in (16) makes use of less data than the two
other solutions, (16) should be expected to have the worst per-
formance. Thus, this solution is more motivated by its practical
simplicity and less by optimality considerations.
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III. RESTORATION OF THE CLIPPED SAMPLES

The MAP estimation of the clipped sample is somewhat more
complicated than the MAP estimation of . So instead of trying
to find strict MAP estimates of these samples, we use a simpler
approach. It is clear that if we for some reason should know ,
then the optimal restoration of the clipped samples would be
trivial, since then and must be the best
possible approximations of and .
This motivates the straightforward use of the linear estimates

and (17)

Note that it is in general not true that the above simple esti-
mates are the correct MAP estimates of and .

IV. EXPERIMENTS

The purpose of the experiments presented in this section was
twofold: 1) to quantitatively compare the performance of the
different deconvolution algorithms under varying levels of noise
and various levels of clipping distortion and 2) to qualitatively
verify that the clipped amplitudes could be satisfactorily re-
stored using the technique in Section III.

For real ultrasonic signals, we do not have direct access to
the true reflection sequence , which makes a quantitative
comparison practically impossible. Therefore we used simu-
lated signals for those comparisons. For the illustration of the
restoration, real ultrasonic data were used.

The exact MAP estimate defined as the minimizer to (11) was
found by means of a quasi-Newton algorithm and the Approx-
imation I solution defined by (13) and (14) was found using a
standard solver for for quadratic programming with inequality
constraints. The Matlab optimization toolbox implementations
were used to obtain both the above estimates. The solution cor-
responding to Approximation II was calculated using (16).

For comparison, two Wiener filter solutions were also consid-
ered. The first, which we in the following refer to as Wiener I,
was calculated mainly for the purpose of illustrating the model
error artifacts mentioned in the introduction. It was obtained by
means of (16) but with replacing and by and . The
second, refered to as Wiener II, was used as a reference pro-
viding a lower bound on the estimation error. In this solution,

and were replaced, respectively, by and in (16).
Note that the provided lower bound will be somewhat optimistic
since this solution optimally utilized also the information in the
clipped amplitudes.

A. Comparison Between Exact and Approximative MAP
Deconvolution Algorithms

In the simulations, both and were generated as zero-
mean white Gaussian sequences with scalar variances and

, respectively, and thus we had the corresponding covariance
matrix . To obtain realistic simulation models, the
two impulse responses used, and , were measured
from two real ultrasonic transducers. The impulse responses are
shown in Fig. 1.

The simulated signals were clipped at levels and
for varying . These -levels were chosen so that a specified

Fig. 1. The impulse responses h (k) and h (k) used in the simulations.
They were acquired from two different ultrasonic transducers as the immersion
far-field pulse-echo responses from planar reflectors parallel to the transducer
surfaces. Note that the transducer with impulse response h (k) was used in
the final real data experiments.

Fig. 2. (a) Part of a signal used in the simulations obtained using h (k) as the
impulse response. The signal is clipped at the levels indicated by the solid lines.
(b) The corresponding reflection sequence r(k).

fraction of the signal samples was clipped on average. The
levels were determined by, for different , solving the equation

for .
One example of the signals used in the simulation is shown

in Fig. 2 together with its corresponding simulated reflection
sequence. The solid lines indicate the upper and lower clipping
levels.

The result from deconvolving the signal shown in Fig. 2 is
presented in Fig. 3. Note in particular the poor results obtained
from an uncritical use of the Wiener filter (Wiener I). Large os-
cillations occur in this solution due to the clipping. Note that the
errors can be reduced by increasing the noise variance param-
eter , thereby making the solution more robust to the model
errors. However, such a solution would still make no difference
between the clipped and the nonclipped samples, and this must
lead to a nonoptimal solution. Note also the close resemblance
between the exact and the two approximative MAP solutions.

The quantitative comparison was performed by means of
Monte Carlo simulations. During the simulations, the reflec-
tion sequences were of length , having a variance
fixed at , and the noise variance and the fraction of
clipped samples were varied in the ranges and

, respectively. For each combination of and
, signals were generated, each having a length of

samples.
The performance measure used was the normalized mean

squared estimation error, i.e.,

(18)
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Fig. 3. Results obtained from the Wiener I solution and the exact MAP and
two approximate MAP solutions on the signal in Fig. 2. For comparison, the
correct reflection sequence r(k) is shown dashed in each plot.

Note that for the trivial estimate , we have . Thus,
should be interpreted as the worst possible performance

for any sensible approach. In the simulations was straighfor-
wardly estimated as the average

(19)

where the time interval 2 1 2 was chosen to avoid
nonstationary effects at the beginning and the end of the signals.
In these simulations, we had . In total, the calculation of

involved an average over samples for
each combination of and .

The results obtained using impulse response are pre-
sented in Fig. 4. The error and the variance are both given
in dB. The corresponding results for are shown in Fig. 5.

Both Figs. 4 and 5 illustrate once again the poor performance
of the Wiener I solution. Note that the performance for this es-
timator has an optimum for an intermediate noise level. At this
noise level there is a balance between the effects of model errors
and the errors due to the measurement noise.

For small levels of clipping distortion, the different MAP ver-
sions all behave similarily, with the exact MAP solution having
slightly better performance followed, in turn, by the Approx-
imation I and Approximation II solutions. At larger distortion
levels, the difference in performance becomes more prominent.
Since the relative importance of the information contained in the
clipped samples then becomes larger, the optimal treatment of
the information in these samples becomes more vital.

Note that the performance curve of the Approximation I so-
lution is in direct accordance with the assumptions made in the
approximation. For small , i.e., when following the assump-
tions, the difference in performance between the exact MAP and
the Approximation I solutions is very small but this difference
increases as the noise level increases.

Fig. 4. Performance of the different methods at different noise levels and
at different clipping levels. Here the impulse response h (k) was used. The
normalized estimation error was obtained using (19) with N = 50,
N = 300, and L = 50.

Fig. 5. Performance of the different methods at different noise levels and at
different clipping levels. Here the impulse response h (k) was used.

Finally, by comparing the difference between the Wiener II
solution performance and the MAP solution peformance for the
simulations using and , we see that the difference is
smaller for , particularly at large clipping distortion levels.
This is because represents a more narrow-band system so
the corresponding received signal is more redundant. In terms
of information removal, the clipping distortion is of less relative
importance than for the more wide-band signal.

B. Signal Restoration

To qualitatively illustrate the signal restoration performance,
real ultrasonic signals were obtained using the transducer having
the impulse response shown in Fig. 1. The signals were
clipped at two levels and , as shown in Figs. 6 and
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Fig. 6. Example of results from restoring of a real signal clipped at level
c = 25.

Fig. 7. Example of results from restoring of a real signal clipped at level
c = 15.

7. The noise and reflection sequence variances were set to
and , respectively, where the former was estimated

from a signal-free part of the signal and the latter was set to
approximately match to the energy in the signal.

The signals were deconvolved using the exact MAP and the
two approximative MAP solutions and the clipped samples
were restored by applying (17) as described in Section III.
The restoration results are presented along with signals in the
respective figures, and the magnified plots show the intervals
of interest.

The signal restoration results further verify the conclusions
made from the quantitative experiments presented earlier. Only
for a relatively large clipping distortion, the choice of method
seems to be critical. For , all solutions yield similar re-
sults, but for a larger distortion ( ), the difference between
the methods becomes more significant. Again, the exact MAP

solution yields the best results, followed in turn by Approxima-
tion I and II.

V. CONCLUSION AND DISCUSSION

This paper has presented an approach for deconvolving and
restoring ultrasonic signals that have been clipped at the satu-
ration levels of the A/D converter, thus avoiding artifacts that
are generally caused when applying classical deconvolution al-
gorithms to such data. An exact MAP solution and two corre-
sponding approximative solutions have been given for the de-
convolution problem, and the performance of the solutions has
been evaluated using simulated data.

The results show that the exact solution yields the best perfor-
mance in general, but that the difference between the methods is
relatively small at low distortion levels. Thus, for small distor-
tion levels, the Approximation II solution is recommended be-
cause of its computational simplicity. At larger distortion levels
the computationally more intensive, but more accurate, Approx-
imation I solution should be considered. The signal restoration
results obtained with real data further verified the above conclu-
sions.

Note that although ultrasonic testing has been the application
considered in this paper, the same method will be applicable
whenever the signal model in (1) is valid. Furthermore, the ap-
proach can easily be generalized in a number of ways. For in-
stance, assuming non-Gaussian prior distributions for the reflec-
tion sequence will only require the modification of the second
term found in the MAP criterion in (11). This means, for in-
stance, that the so-called sparse deconvolution problem can also
be straightforwardly treated using the approach presented in the
paper. Furthermore, non-Gaussian measurement noise can be
treated by modifying the first and the last terms. Note in par-
ticular that, as long as the samples are independent with
unimodal probability density functions peaking at zero, the two
approximations given in this paper will still be valid.
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