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Wiener Design of Adaptation Algorithms With
Time-Invariant Gains

Mikael SternagdSenior Member, IEEH ars Lindbom, and Anders Ahlé®enior Member, IEEE

Abstract—A design method is presented that extends least LMS and windowed RLS adaptation provide inadequate
mean squared (LMS) adaptation of time-varying parameters by performance, whereas the use of Kalman algorithms has so
including general linear time-invariant filters that operate on the 5. heen precluded, due to their computational complexity. An

instantaneous gradient vector. The aim is to track time-varying | . f t h (KLMS ted i
parameters of linear regression models in situations where the €@y VEISIOn of our present approac ( ) was reported in

regressors are stationary or have slowly time-varying properties. [24], and it has subsequently been used for rapidly time-varying
The adaptation law is optimized with respect to the steady-state 1S-136 1900-MHz channels. A thorough case study on this
parameter error covariance matrix for time-variations modeled application is found in [27]. See also [17] and [29].

as vector-ARIMA processes. The design method systematically A sequence of measurement vectdrg} of dimension

uses prior information about time-varying parameters to provide 1i d ilabl t the di te ti instant
filtering, prediction, or fixed lag smoothing estimates for arbitrary v X IS assumed avallableé at the discrete ime Instants

lags. The method is based on a transformation of the adaptation £ = 0, 1, 2, .... Itis generated by a linear regression
problem into a Wiener filter design problem. The filter works in
open loop for slow parameter variations, whereas a time-varying Yr = prhe + vy 1)

closed loop has to be considered for fast variations. In the latter

case, the filter design is performed iteratively. The general form of where all terms may be complex valued. The known regression
the solution at each iteration is obtained by a bilateral Diophantine matrix sequencéy; } of dimensionn, x ny, is stationary with
polynomial matrix equation and a spectral factorization. For ,arg mean and a covariance matrix

white gradient noise, the Diophantine equation has a closed-form

solution. Further structural constraints result in very simple R A E * )
design equations. Under certain model assumptions, the Wiener = HPtP
designed adaptation laws reduce to LMS adaptation. Compared . .
witthaIman IOestimators, the channel trackl?ng performgnce that IS gssumed tobe nonsmgular. The eIer.nentﬁ(nflay con-
becomes nearly the same in mobile radio applications, whereas Sist Of filtered known signals, for example, in Laguerre models

the complexity is, in general, much lower. of IR systems or in filtered-X LMS-like adaptation of inverse
Index Terms—Adaptive estimation, adaptive filtering, channel ~filters. Th_e noisev; is assumed to be uncorrelated with and
modeling, least mean squares, tracking. to be stationary.

Our aim is to estimate the time-varying, x 1 parameter
vector A, in an environment with stationary (or slowly time-
varying) statistics of the regressors and the noise. Linear regres-

HEN tracking time-varying parameters of linear regresions (1) with delayed measuremeptaised as regressors are
sion models, least mean squares (LMS) is one of the sitmere excluded. The properties@f could then become highly
plest adaptation laws, whereas Kalman algorithms are the moshstationary wheh, is rapidly time varying.
powerful linear estimators. A third, intermediate, alternative is Without further assumptions, we cannot, fqr < ny,, deter-
proposed here. The integration of the instantaneous gradimihe the sequence of parameters uniquely from a sequence of
vector used in LMS is substituted by general linear time-imneasurementg, = @ihy + vi, y2 = @3ha + vo, ... €VENIN
variant filtering. Well-tuned filters then provide estimates witlthe noise-free case. We would have unknownshs - - - with
an appropriate amount of coupling and inertia, resulting in highore elements than the available measuremgnts. - --. To
performance at low computational complexity. avoid this dilemma, models that represent assumptions on the

We present a novel approach to the design of such adaptatielationship betweeh, andh. for = #£ ¢ must be introduced.
laws that is based on a polynomial matrix approach to WienerModels of time-varying parameters, which are sometimes de-
filtering [1]. notedhypermodel$5], [6], may be deterministic [7], [8], [13],

The difficult problem of accurately tracking time-varying[23], [30], [31] or stochastic [12], [21]. A large variety of pa-
radio channels in 1S-136 TDMA cellular systems was arameter dynamics can be described by linear time-invariant sto-
original motivating application for this work. For such systemghastic hypermodels
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Such models are used here and represent either prior inforrt{atman-based tracking, has focused exclusively on cases with

tion or design assumptions. slowly time-varying dynamics since only then can tools of weak
Define the tracking error vector convergence theory and various methods of averaging [22], [28]
- A R be used.
Potkge = P — Pognge (4) A design methodology that can also handle practically impor-

N ) ) i i i tant classes of problems with fast parameter variations is derived
where/, y; is an estimate ok, obtained at time by fil- o ey formulating the tracking problem in a novel way. In Sec-
tering (¢ = 0), prediction § > 0), or fixed lag Smoothing{ < {jo || ‘the adaptation law is expressed as a stable Wiener filter
0). Tracking performance will be measured by the steady-staff,iaq 1o a signal that can be constructed fegnin Section Iil,
covariance matrix the conditions for open-loop Wiener design are specified, and
(5) the filter is thereafter optimized using the polynomial approach
outlined in [1] and [2]. Section IV introduces constraints that

where the expectation is taken with respeattin (3) andy, in  lead to simpler algorithms, such as the Wiener LMS (WLMS)
(1). structure, which was introduced and derived from a constrained

Among all adaptation laws that perform linear operations dSE optimization problem in [26]. Such schemes in general
yt, the Kalman filter will minimizeP, , , if ¢}, H(g1) and have much lower computationa_l comple>_<it_y than the more gen-
R. in (1) and (3) are known [4], [18]. Kalman estimators ar€ral case (10) but may pay a price for this in performance. Sec-
based on a state-space model of (3), with (1) as the measii@? V summarizes the proposed iterative design process and
ment equation. Kalman-based adaptive filters discussed in tiistrates it with examples.
literature are mostly based on first-order autoregressive paramRemarks on the NotationA superscript asterisk represents
eter models [10], [14], [15], [36] but can, of course, be designédconjugate transpose. For polynomial matrigdg—") and
for more complicated linear models. rational matricesR(¢*) [19], conjugate matriced”.(q) or

The computational complexity of Kalman estimators is refR«(q) (which are denoted by subscript asterisks) are obtained
atively high, due to the on-line Riccati equation update. Thiy conjugating coefficients, transposing and substituting the
may preclude their use in high-speed applications or when tiggward shift operatorg for ¢~'. To simplify notation, the
number of parameters is high. A commonly used alternative @fguments; or ¢~* are often omitted in Section IIl. Scalar

A . . 7 7 %
Pk = lim Pt—|—k|t = lim Eht+k|th:+k|t
t—oo t—oo

much lower complexity is the LMS algorithm [44], [45] polynomialsP(¢~") are denoted by nonboldface capitals.
. The degree of a polynomial matrix is the highest degree of any
e =y — Py heje1 (6) polynomial element. Square polynomial matrideg;—*) will

be called stable if all zeros dkt[P(»~1)] are located ifjz| < 1

hipife = hep—1 + pprer () and marginally stable if these zeros are locateldfir 1. O

or, in shift operator notation

Il. TRANSFORMEDPROBLEM
hosiie = — 1 T(pper) ©) —
tHlt = 7 g1 Pret A. Fictitious Measurement
wherey. is the scalar gain, andg is the prediction error. Consider the signal prediction error (9) and insert (1) de-

Our aim will be to propose design rules for a class of algé-cr'b'”gyt to obtain
rithms that require much lower computational complexity as . o
compared with Kalman tracking, while attaining close to the = (ht - h”t—l) T
same performance. They utilize stochastic hypermodels (3) and

deliver filtering, prediction, and smoothing estimates for arbi- e = Peprhu—1 + pror (11)
trary values ofe. _ _ By adding and subtractirB.,,_; and defining

The class of estimators generalize LMS by substituting a
time-invariant matrix of linear causal transfer operators for the Z,=p0; — R (12)
LMS operatorf;/(1 — ¢~ H)]Lin (8). -

An IR filter matrix My, (¢~ 1) that operates op,e; M = Liltyje—1 + 10 (13)

& =yt — ¥f iltlt—l (C)) fi =Rhe 4 (14
’Alt+k|t — Mi(q V) (@rer) (10) the vectorp,e; in (11) is now reformulated as

is to be designed based on (1) and (3) so that (5) is minimized prer =Rhy — Rhyjy + Zihyje1 + orvn
under various structural constraints and assumptions. An aim —f _ R}
. ) R ) . ft Rhtlt—l' (15)
is to clarify how design assumptions are reflected in the com-
plexity of the resulting algorithm. The signalf; defined in (14) can be regarded as a fictitious mea-

Related work has been presented by Benvergstal. [5], surement, withRA, and#, being the signal and the noise, re-
[6], who used state-space models to perform an interesting arsgectively. In the sequel, the noise termandztﬁm_l will be
ysis of multistep adaptation laws with constant gains. Howeveeferred to as thgradient noiseand thefeedback noiseespec-
that work, as well as most other analyses of LMS, RLS, artively. The matrixZ,, of dimension»;, x n;,, has zero mean by
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Fig. 1. Filter design problem. The vectdr,, is to be estimated from
measurementg, such that the steady-state tracking error covariance matrix
minimized.

definition. This matrix was introduced by Gardner [11] and WaSg. 2. Feedback loop via the feedback nog. ,_, may significantly

referred to as thautocorrelation matrix noise affect the variance of the fictitious measuremgntand causes dependence
with ht‘tfl.

B. Tracking Regarded as Time-Invariant Filtering

By (10) turns out to be a good approximation even for fast parameter
. 1 1 variations in FIR systems with white regressors, and it holds ex-
hyje—1 = ¢ Mu(q™ )(prer). ; ;

| actly in the second-order case for regressors with constant mod-

Substitution of this expression into (15) and use of the resultitdjs [3]. In problems with colored regressors and fast variations,

expression fotp,e, in (10) gives the scrambling byZ, may become less effective. The correla-
) tion properties of the innovation sequence;pthould then be
hepre = Mi(g DT+ ¢ " RML(g™) ™ f investigated after the design has been performed in the way in-
A 1 dicated in Section V by Fig. 6.
= Lilg™) e (16) X Uncorrelatedness of the innovations gf with h,_; and
We may therefore design a time-invariant stable rational matffx—ilt—i—1 Will, in Section lIl, be stated as a design assumption,
Li(g~Y) that operates off, to estimateh, ., x under wh|cth_(_q—1) v_v|II bg optimized by jus_t treatingy in
. (20) as an additive noise with known properties.
Jt =Rhyp_1 +prer = Rhy + 1 (17)

- _ C. Properties of the Gradient Noise
ht+k|t :ﬁk(q l)ft (18) P . - . .

The feedback noisé.h,,—; will not be independentof
(see Fig. 1). This causal filtet,.(¢~*) will be referred toas the j,_,, _, ., due to the outer feedback loop in Fig. 2 This feed-
learning filter. For a givenC, (¢~*), k = 1in (16) gives back could cause instability. Therefore, the gainfafq—!)

1y Y vy 1 1 cannot be allowed to be too large.
M) =T—q Lailg IR Lalg ) (19 gipeethe properties of, depend onC; (¢ 1), a tracking de-

With £5(¢~1) and M, (g 1), My(¢1) can then be obtained ;ign will in genera] reqL_lire a few iterations, as (_)utlined in Sec-
from (16). tion V. After each iteration, we may have to estimate the prop-
As seen by (13) and (14), three terms influence the trackifies ofr: by simulation. However, in [3], three important sce-
performance vig,. The scaled and rotated parameJs, rep- harios are discussed in which an analytical performance eval-
resenting the useful signal, the noisg;, and old tracking er- uation is possible by assuming, ¢, ande; to be mutually

rors via the feedback nois&, /., . independent:

The estimation error follows from (14) and (18) as 1) Slowly Varying Parameters (Vanishing Feedback

. Noise): We then have a true open-loop situation, in which the
higwie = ("1 — Li(gHR)hy — Lx(g7)m  (20)  outer feedback loop in Fig. 2 can be neglected. This will indeed
L ) . _ be the case in many applications of adaptive filtering. When a
whereqh, = h4y. The first right-hand term is fok = 0 \wjener design is performed in a situation with stabié; 1)

usually called théag error. . . and bounded regressors, it can be shown that the impact of
An open-loop W|ene_r design, yielding(¢~*), can now b_e the feedback nois&;h,,—; on the tracking MSE will vanish
performed. Such adesign would be based on the assumption figl, the power of; becomes sufficiently small relative to
the Innovations ofy. are un(_:o_rrelated W'tht—i_lt—i—h t 20 the power ofu,. The feedback noise becomes negligible either
(Possible higher order statistical dependencies due to the o bn the parametefs vary slowly or when the noise level is

feedback loop .in Fig. _2 do not affect an MSE-optimal "ne%gh; Then,;; ~ 1. In [3], we propose negligible feedback
design.) If the innovations of, are furthermore uncorrelatedysise a5 the defining characteristic of the concept of “slow
with the signalh;—_;, such an open-loop design is simplified, 4 iations.”

Although these conditions are not always fulfilled, they hold 2) Independent Consecutive Regression Matridés* and
. . . . . - +
exactly or approxmat(_ely_m many p_ractlcally important C|rcum(—p: are independent far# s, thenzh,,_; is uncorrelated with
stances since the multiplication By in (13) acts as a scrambler;
see, e.g., [3], [26], and [27]. . . . L ,
U latedness holds when the time-variations are slow 1Another case whe# 1,1 vanishes completely is whert is scalar with

ncorrela ] i . dBhstant modulus. Thef, = 0. This is the case e.g., when tracking flat fading

when consecutive regressor matrices are independent. It alsmnels in mobile radio systems using PSK symbol alphabets.
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old estimates. It is white with zero mean, and its covariance caere the polynomial matrix
be derived exactly.

3) FIR Models With White Zero Mean Regressoféhe per- Blg ") =Bo+Big +- 48,4
formance can then be predicted with good accuracy from the

retical expressions valid for arbitrarily fast variationsgf o dimension, x . and degree,s = max(nc +ny, np +
n) IS the stable spectral factor obtained from

Ill. WIENER SOLUTION BB, = CR.C,NN, + DR"*MM,R"'D,. (25)
The transfer operatof (¢ 1) will now be adjusted to min- ) ) ) ) ) )

imize (5) when#(¢g~1) is known and the properties af are The unique solution to the bilateral Diophantine equation
assumed given. Minimization implies that any alternative esti- k .
mator provides a covariance matrix, sgy,, for whichP§ — Py, CORON, = Qb + aDLi (26)
Wi_II _be_ po_sitive semidefinite. A minimizatior_w aP; WiI_I also  provides polynomial matrices
minimize its trace, the sum of componentwise tracking MSEs,
or the mean square deviation (MSD). Q.(¢™H) 2 Qi+ Qg+ + Qﬁ@ g e

A. Main Result Li(q) A LE L g+ + L g
The learning filterC, (¢~1) is designed under the constraints ) ) )

of stability and causality and under the following assumption8f dimensionn;, x n;, with generic degrees
Assumption Al:The sequencéy; } is stationary and known

up to timet with a known nonsingular autocorrelation matrix

R. O nr = max(nc +ny +k, ng) — 1 27)
Assumption A2:The gradient noiss, is stationary with zero )

mean. It has a known rational spectral dengifye’) modeled respectively. The estimation errb{+k|t will be stationary with
by a vector ARMA process finite covariance matrix and zero mean. O

Proof: See Appendix A.

ng = max(nc — k, np — 1),

1

=—— Mg Yy; Eny =1 21 o
1t N(g™1) (s Brag (21) B. Remarks and Generalizations
whereM is ann;, x n;, polynomial matrix of degree.,;, and Solvability of the Equationsior a discussion of multivari-
N is a stable polynomial of degresy. O able Wiener filtering problems solved by Diophantine equations

Assumption A3:The innovation sequenag of the gradient and spectral factorizations, see [1], [2], [35], and [38]. The Dio-
noise is uncorrelated with, _; and Withiltfihfifla i>0. O Pphantine equation (26) is guaranteed to be solvable, and it cor-

Assumption A4:The linear regression coefficients are del€Sponds to a linear system of equations with equal number of

scribed by a stochastic process unknowns and equations.
Under Assumption A4 is assumed stable, ail. has full
hy = H(g Ve, = D(gH1C(g ey (22) rank; thereforeC(z~1)R.C(z) will have full rank on|z| = 1.

Therefore, (25) has full rank opx| = 1, resulting in a stable

wheree, is white, stationary, and zero mean with nonsingulegpectrm factod with a leading matrix3, of full rank. Thus,
covariance matriR. and where B~1in (24) is causal and stable.

DY) =D (¢ D, () =T+ Dyg  +---D, ¢ " Algorithms for solving polynomial matrix spectral factoriza-
@) (DA H ot tions and bilateral Diophantine equations are presented in [20]
Clg')=I+Cig '+ - Cp g™ (23) and [34].

o . . i The learning filters have real-valued coefficients when
are time-invariant. C(¢~!) is assumed stable with full rank oN¢ D, R., M, N and R have real-valued coefficients. Op-
|2] = 1. Du(g™") is a polynomial with zeros on the unit circle,timal learning filters (24) for different lags differ only in Q,,
andD,(q 1) is a stable polynomial matrix. O sincep is unaffected byk.

Assumption A4 implies that, e.g., random walks, integrated | jmiting Cases of High and Low Gradient Noisé:the gra-
random walks and filtered random walk models can be consiglent noise has a spectral peaksat w; described by a zero of
ered but that the marginally stable dynamis(q~*) mustthen  close to the unit circle, all elements.6f** will have a notch
affect all the elements df;. atw; sinceN(e™7«1) = 0.

We are now ready to state the following main result. When the gradient noise is negligibld, ~ 0. Equations (25)

Theorem 1—Optimal Learning FilterUnder Assumptions and (26) are then, fat < 0, solved by
Al-A4, the stable and causal learning filter in (18) minimizing
(5) is given by B~ NCR)?, @, ~¢"'CR/? L. =0

LP =D7'Q.p 'ND,R™ (24) The lag error in (20) then vanishes sintg* ~ ¢*R~1, and

) L ) ) this estimator attain®;, ~ 0 for £ < 0.
2While we assum@{(q—*) to be time invariant, it can, in practice, be allowed R . c . f  Esti f Diff
to be slowly time varying as long as the variations are much slower than thoseRECUrsive - Computation o stimators for Difrerent

of hy. Smoothing Lags:The solution fork = 1 will always be
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Fig. 3. Optimized tracking algorithm with time-invariant gains, realized as in (31)—(34).

required sincéz”t_l appears in (17). When several estimation Corollary 1—Wiener Optimized FilteM;.: The estimator
horizons are of interest, we need to solve (26) for one value (@0) optimized by Theorem 1 is given by
k only. It is shown in Appendix B that solutions for akycan .
then be obtained recursively from one of the solutions. heprye = Mi(pre) = DJPQUR(R L) (35)
Robust Design:The hypermodel (22) is, in practice, never
exactly known, but it may be known to belong to a set of possibtéhere the causal rational matfR(¢ 1) is given by
models. A robust design that minimizes the average of (5) can
then be obtained by averaging the hypermodels in the frequency R 2 B—q¢ 'NQ,|"'ND,. (36)
domain and performing the design for this averaged model. See
[25] for details, [46] for general methods, and [39] for a special- U
ization to fading mobile radio channels parameterized by uncer- Proof: Multiply both sides of (33) from the left bg and
tain Doppler frequencies. then substitute the expression prlht+1|t, which is obtained
from (34) withk = 1, into (32) and (33). We obtain
C. Realizations and Interpretations
The estimator defined by (17), (18), and (24) can be realized

as it stands. We can, however, give one internal signal a specriﬁbs
meaning. From (17), (21), and (22), the spectral densitfy ¢,

Be = qilNngt + NDS(R71<PtEt)-

under A2—A4, given by & = R(Rtoiey). (37)
bp = RD'CR.C,D;'R + MM, The use of this expression in (34) gives (35) and (36). [
' NN, Note thatR—! will always be a right factor of the optimal
—RD!N“188, N"ID 'R (28) M. Our estimator can thus be seen as a generalization of the

LMS-Newton adaptation law [45].

where (25) was used in the last equality. The innovations repreWhile £, must be stableM;. need not be stable since itis a
sentation off; is thus given by block in a feedback loop. In fact, any marginally stable model
denominatorD;; ! is present in all elements g¥4;.. See (A.7)
fi =RD 'N'8¢, o ¢, =B'NDR'f,  (29) in Appendix A.

where the innovation sequeneeis white with zero mean and D. White Gradient Noise
unit covariance matrix. W_heD .has zeroson the unitcircle, (29) By assuming the gradient noigeto be white with zero mean
corresponds to a generalized innovation model [37]. By definingd with a known covariance matii,, both the design and the
the signal implementation is simplified. Since

1
Du(qil)

we obtain the realization of (17), (18), and (24) (see Fig. 3) t_hg feedback noisg is, in such cgses,_assumed to be White_or neg-
ligible, and the noise vectas;v; is white. The last assumption

>

I, =8 'ND,R7'f, (30) e = Ztilt|t—1 + pru

€

€ =y — @;}m_l (31) s true whenever the noisg is white and independent of the
’ regressors. Negligible feedback noise is characteristic of situa-
st =R7'fy = by + R Mppey (32) tions with slow variations. The feedback noise is white under

the restrictive assumption of independent regression matrices,
but it is otherwise not, in general, white for colored regressors.
ilt+k|t :D;1ngt. (34) It will be white for second-order FIR channels with white re-
gressor elements with constant modulus [3], which is a case of
The realization (31)—(34) has good numerical properties, andathctical significance in mobile radio channel tracking, as dis-
involved filters are internally stable. cussed in [27] and Section V.
The optimal tracking filtetM,, can be calculated from (16), For white gradient noise, there exists a closed-form solu-
(19) onceL;, andL; are derived. A compact expression fet;,  tion to the Diophantine equation (26). The solution for one-step
is given by the following corollary. prediction is presented in the following lemma. The iterations

& =p'ND,s, (33)
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yielding filters for arbitrary lags: are presented in Corollary 2  If we are interested in the one-step predictor, then the solution

in Appendix B. (39) fork = 1 directly gives@, (¢ 1) as
Lemma 1: For white gradient noise, with covariance ma-
trix R, let Q. (a7 ") =aq(Bo+Bia " — By +aPyq ") =By + aBy.
R, A R™R, R (38) From (35) and (43)

The solution to the Diophantine equation (26) fo= 1isthen /), = DS_lQlDi By 'R tpe, = DTIQ.8; 'R pyey.
given by u
Thus, we obtain a generalized LMS update equation

Q. (¢ =qaB(a) — D(a)Bo) (39)

2 : 11
Luu(0) =BoB.(0) ~ R, D.(0) (40) et = ol £ o)l R e )
The update (46) is similar to the LMS/Newton law [45] in that
wheref, is the leading coefficient matrix @(g ). U the instantaneous gradient is rotatedRy!. It also contains
Proof: With MM. = R,, andN = 1, (25) becomes leakage [42], [45] whenevel:| < 1. Furthermore, it has a

matrix gain instead of the scalar gain in (7) of LMS. The al-

BB, = CR.C, + DR, D, (41) gorithm reduces to LMS wheR = o2I (white regressors),
a = 1, R, = ¢2I (random walk model with uncorrelated pa-
and withtk = 1 andNV = 1, (26) becomes rameters), and if the elements of the gradient noise are uncorre-
lated and have equal varianBg, = cL. Then,8, andg, from
gCR.C,. =Q B, +¢DLy,. (42) (45) become diagonal and have all diagonal elements equal;
therefore
By substituting (39) and (40) into the right-hand side of (42), 1
the lemma is verified. O (By+aBo)By R = 4l
The implementation of the tracker is also simplified since by some scalap. 0

(39) andN = 1in (36)
IV. Low-COMPLEXITY DESIGNS

R=(B-¢'Q) " D, . . . I
(ﬂ 1 Ql) The design and implementation can be simplified further, at
_ 1 ; . . )
— (8- (B—-DBy)) 'p, = Ly 1 (43) the price of some_pe_rformance degradation, by placing succes
D, sively harder restrictions on the hypermodel and on the learning
filter.
which simplifies the realizations 0¥ (g~*) in (35). By using
(43) in (37), the innovation processes are A. Generalized Wiener LMS
1 This algorithm is obtained by minimizing the trace of the
& =— B 'R oey; o =B R 1ge. (44) tracking covariance matrix (the mean square deviation) for
D, possibly colored gradient noise (21) and for hypermodels in

Example 1—First-Order Models and LMS-Like Algopommon denominator form

rithms: Assume that (22) is a vector of coupled first-order 1

_ -1
autoregressive or random walk parameters o = D(q™Y) Cla er (47)
Dig)=(1-ag )L, C(gH) =1 The structure of the learning filter is constrained to
ilt+k|t = Sk(q_l)R_lft (48)

whereq is a scalar witha| < 1, andR. is given. The gradient
noise is white withR,, known. The spectral factorization, (41)

whereS,, (¢~ 1) is adiagonalstable rational matrix. The design
then becomes ke ) g g

equations for this filter are derived and presented in [25]. They

IR . . consist ofn;, separate polynomial spectral factorizations apd
(Bo+Brq 7) (B + B1a) = Re+(1—ag ")R,(1—-aq) (45) gcalar Diophantine equations.

giving B. Wiener LMS Algorithms (WLMS)
. . ) A further simplification is obtained by minimizing the trace
BoBo + BB =Re + (1 +a”)R, of the tracking covariance matrix fevhite gradient noise with
8.8, = BB = — aR.,. covariance matriR,, and for diagonal hypermodels with equal
o R v elements
These expressions represent a set of coupled second-order equa- Clg™)
ht = ICt. (49)

tions in the elements ¢#, andg,. D(q1)
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The learning filter is restricted to (48) but with all filters on the
diagonal ofS;(¢~!) being equal

v
Et =Yt — ¢4 ht|t—1

Qr(q™)

1901

TABLE |

COMPUTATIONAL COMPLEXITY WHEN TRACKING THE n;, PARAMETERS
OF A COMPLEX LINEAR REGRESSIONMODEL WITH 1, OUTPUTS np

STATES PERPARAMETER. RIGHT-HAND EXAMPLE FOR 16 STATES,
n, =8 np=2,n,=2,r=0,n3 =0,ANDny =2

fAL e = R_lft Method Number of real multiplications Ex.
O
-1 . 2 3 2
k o _ Kalman: n;{4dns, + 8nin 7152
— Q (q_l ) (ht|t—1 +R 1<Pt5t)- (50) h{ D ; D y}
Blg~) + np{2n3(ny +1)
2 2
Compared with the generalized Wiener LMS, this filter structure + np(8n2 + 6ny) + 4ny } + 1202
has reduced ability to handle situations where different elements
of hy have differing dynamical properties, but it is still a useful Wiener: n2{dnp + 2ny + 2} 864
special case. + np{dnp + 2ny + 80y} + 7
The resulting Wiener LMS (WLMS) algorithm can be opti-
mized for a given parameter-drift-to-noise ratio Wiener, n2{2np +2) + {200 + 8} -7 554
v 2R, /(RIR,RY). (51) white 7
The denominator polynomigl(g—1) in (50) minimizing tdP;, is WLMS: nu(dnp +8ny) + 7 224
then obtained from the solution to one scalar polynomial spec-
tral factorization LMS: 8, + 2n, 139

8B, =CC, + DD,.

Then, Qi(¢71) is obtained from scalar versions of (26) or
Lemma 1, where 1 is substituted fBr, and~ for R..

The WLMS algorithm is derived in [26], and design software
can be found on the webpage of [26]. It is applied to the tracking *
of fading mobile radio channels in [27].

C. Computational Complexity

Let us compare the computational demands of the various dis-
cussed algorithms. We assume a complex linear regression (1)
with n,, outputs, complex-valued regressors, apgarameters.
These parameters are described by a vector ARIMA model (22)
with real-valued coefficients and diagonal denomindgg—*)
with diagonal polynomial elements of degreg.

The comparison concerns one-step predichqsm and is

in H. The noisev; is assumed white. The block structure
is used to reduce the number of operations, but the Riccati
update is otherwise performed in the conventional way.
Wiener algorithm fork = 1, implemented as in Fig. 3
or (31)—(34); The gradient noise may be colored and
described by (21). The polynomial matric8é;~!) and
Q.(¢7%) have n;, x n; complex-valued polynomial
elements each. Their degrees are = np + na and

ng = np — 1. We also specialize to white gradient noise,
using (31), (44), and (34).

Wiener LMS algorithm (50) based on (49) wittiq—*) of
degreenp andQ1(¢ ') of degreenp — 1 (generalized
WLMS has similar complexity);

e LMS algorithm (6) and (7) with a real-valued

expressed by the number of real multiplications per step. (Mulable | displays the results. Heredenotes the complexity of

tiplications between complex numbers are counted as four réag operatio®R ~1¢;. Itis zero for white regressors. Itis propor-

multiplications, whereas multiplications or divisions betweentional ton;, when the regressors are moving average processes

real and a complex number are counted as two real multiplices thatR. becomes multidiagonal. For scalar FIR models with

tions.p autoregressively generated inputs, the product can also be up-
We compare the following algorithms. dated with a computational complexity proportionabio [9].

« a Kalman predictor based on a state-space model of (#9r an arbitrary covariance matrix,= 4nj — 2ny,.
with n, = npn; states with each element bf modeled

by np states V. ITERATIVE DESIGN

For slow time-variations, the feedback noise is by our def-
inition negligible; therefore, we may perform a one-shot de-
(52) sign usingn; = ¢:v;. When the noises, is white, the solu-
tion for white gradient noise can be used wil), = Ro? if
Here,F andH are assumed to be real-valued and bIocEW;« = 021 and if p, andv, are independent.
diagonal withn, x np blocks inF and1 x np-blocks  Otherwise, the design can be performed iteratively by using
SThe added complexity in cases whEin * needs to be estimated is not conJONg simulation runs to estimate the covariance function element

sidered here. Inthe Wiener design, this would add to the complexity proportiofBatrices
to n? to become similar to RLS. Sinee, is smaller than the number of states
whenevem p > 1, the complexity would then still be considerably below that

of a Kalman update.

Tr41 = Fap + Gey

hy =Hzy;  y, = oy Hry + vy

N A *
Rnn(J) = E77t77t_j- (53)
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In a model (21) withV = 1, the covariance function of the interferer. A receiver with two diversity branches (multiple an-

gradient noise can be represented by tennas or polarization diversity branches) detects both ugers
P andw? simultaneously. We model the situation by
Mg HM.(¢) = R, (). 54 _ _
(¢ )M.(q) /'72 an(1)a (54) yk Bi(g™Y) BR(g) ul vl
J=—nNhpr = + (56)
] ] ] 2 B2Y(q~Y) B2(¢ 1) w2 V2
Note that only the total covariance function (54) (i) is Y t t t t
needed in the design equation (25). wherey! is the sampled baseband signal at receiver 1S-136
We proceed as follows. systems [33], delay spreads of up to one symbol can be encoun-

1) Perform a one-step predictor design for slow time-variered. To illustrate the tracking performance, we here restrict
ations, i.e., assumg: = v, in the designCi(¢~*). the discussion to symbol-spaced two-tap channels with taps of
Verify that the closed loop of Fig. 2 is stable so that thequal variance. Thus
resulting errorfzﬂt_l is stationary. If not, scale up the as-
sumed covariance function af to decrease the gain of B (g7 =0, + b a7t (57)
Li(g™H).

2) Ob(taln)an estimated gradient noise time series from (L7€ Model (56) and (57) can be expressed in the linear regres-
based on a long simulation & = H(q™')e:, ¢+, and sion form (1), where

v, as well as on the corresponding estimatg,;, = wlowl, w? w?, 0 0 0 0
—1 — B B
Lila ) fe as vt < 0 0 0 0w wi_g ul uf_1>
M =ft —Rhy =5 — R (ht - ht|t—1) . (55) and
ht —_ (blll blll b121 b121 b211 b211 b221 b221)T. (58)
Obtain an esumateR,m( ) of the covariance function G T TR T T T T T
(53) and (54) by using sample averages ajyer Here, the symbols;__ are assumed known. (In reality, the un-
3) Design a new estimatat, (¢~ *). known parts of the received symbol sequences have to be esti-

Repeat steps 2) and 3) until the difference in the estimafegited.) Assuméu,} to be white complex-valued QPSK sym-
ht+1|t becomes small for consecutive estimators. Then, cofols with R = Is, whereas the noise, = [vf v2]7 is white

struct an estimator for the desired lag with variances2I,.

It will be possible to find an initial stable solution under mild The messages are transmitted from moving mobile terminals
conditions. IfH is stable, therC;(w) — 0 ¥Yw when the as- so that the channel ta[bg’t will be time-varying (fading). The
sumed noise power is increasedZif has bounded elements,second-order statistics of fading radio channels can be approxi-
then the small gain theorem [43] will imply that the outer closeghated by autoregressive models, which here are assumed to be
loop of Fig. 2 can be stabilized by assuming a sufficiently higbf second order
noise power in the design df,. See Appendix C. 1 1

The covariance function estimate provides additional infor- — — = — .
mation. If R, (0) does not differ much from the covariance 1 — 2pcos (wp,;T/V2) ' +p%¢  Dlg ’WDJT()SQ)
Tl e e s e o 290 o e disussionof 7], (59 proidsa econa
¢, has low power relative te,v,, i.e., either when the incre- approximation to Rayleigh fading statistics [16] if
mgﬂté?f the parameteks are small or when the noise level is wp,; = 2mue/A  (rad/s)

If tr(Ro (7)) < tr(Ry,(0)) for all j # 0, then the gradient is the maximal Doppler angular frequency at the carrier wave-
noise can be regarded as white so that the design of Section ll|dagth A for mobile numberj moving at velocityv,. The pole
can be used witlR,, = R.,(0). radiusp should then be selected as= 0.999 — 0.1wpT for

Iterative tuning becomes much simpler for the WLMS algaz,7° < 0.10. The sampling time (symbol length is set to
rithm than in the general case. We then have to tune only og€.15 ;s and\ = 16 cm (~1900 MHz), as in 1S-136 sys-
scalar parameter: the noise rafitn (51). This parameter could tems. We investigatep, € [0.02 0.10], corresponding to ve-
alternatively be used as an on-line tuning knob to provide an aficle speeds from 45 to 225 km/h.
propriate balance between tracking ability and noise sensitivity. The discussion is here simplified by assuming the model (59)

It should be emphasized that the design methodology as+be correct and known when designing the tracker. More real-
sumes a good hypermodel. With incorrect models, there is Ric situations with model structure mismatch and estimation
reason to believe that the iterations will minimize the trackingrrors in the estimated Doppler frequencies are discussed in
MSE. However, robustification according to [25], [39],and [46]27].
would alleviate the effect of incorrect models. If the two vehicles have different velocities, corresponding

Example 2—lterative Design and a Comparison to Kalmag wy, ; andwp_ 2 respectively, and if the channels to different

and LMS Tracking: Consider the uplink of a TDMA-based mo-receivers are assumed uncorrelated, an appropriate hypermodel
bile cellular communication system in which two mobile user®2) is given by

transmit at the same frequency in the same time slot [40], [41].
One of the users could represent a strong out-of-cell co-channel D(gYHh = ¢ (60)
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with a diagonal auto-regression matrix TWO RECE‘IVERS, TWO MOBILE USERS, TWO TAPS

D(¢~") =diag[D11(¢"") Dia(q™") /
- Da1(q7") Doa(q™)] (61)

-1 -1
D;j(¢") =D(q", wp,; 1)L (62) w
. . . = GCG
and a block-diagonal covariance matrix ter 9
< "1 KALMAN
. Q
R, = diag[Re11 Re1z Rear Reao] P
T
where
Ois - GCGO
Reij = < #0 9i ) . GCG
gj O—Zjl ) KALMAN
10° : : '
All o, are assumed equal. The receiver is assumedtobes 10 15 R B 25 30

chronized to mobile 1, resulting in zero correlation in the taps
from mobile 1 ¢; = 0). We assume correlation 0.8 in the tap$§ig. 4. Sum of squared four-step channel tap prediction errd?s in

; _ : ; ; Example 2 when the first mobile moves at 45 km/h, whereas the second mobile
from mobile 2 @2 - 0'8) and fix the VelOCIty of mobile 110 45 has velocity 45 km/h (lower curves) and 225 km/h (upper curves). Results for

km/h, whereas the velocity of mobile 2 is varied. The SNR ighe-shot designs assuming = . v, (dashed), full iterative design (solid),

equal for both users. and the Kalman estimator (dash-dotted).
Prediction estimates of the channel taps are required in
equalizers. We here design four-step prediction estimators TABLE 11

o . . . . EADY-STATE SUM OF MEAN SQUARE TRACKING ERRORStrP 4 AND NUMBER
(k - 4) accordlng to the iterative scheme outlined above f OF REAL MULTIPLICATIONS PER TIME STEP IN EXAMPLE 2 OBTAINED BY

the two casesp 1" = 0.02 andwp 27" = 0.10 and for an  OpTIMIZED KALMAN TRACKING, THE GENERAL CONSTANT GAIN ALGORITHM
SNR per channel in the range 10 dB—30 dB. Fig. 4 displays (GCG), WLMS, RLSAND LMS ADAPTATION ALGORITHMS

the tracking MSE #, for two designs: a noniterative design

assuming slow time variations (dashed curves) and the full  sNR{ ,,,7 [ Kam. GCG WLMS RLS LMS
iterative design (solid curves) measured from simulations of 10 010 | 0477 0516 1045 143 158

(60) of length 10000. Only a single iteration was required at
all design points, except at 30 dB in the upper curves.

The performance of the constant-gain tracker is close to that
of the Kalman estimator at all operating points. This perfor-
mance can be well approximated at many, but not all, operating
points by the noniterative design for slow parameter variations.
The exceptions are high vehicle speeds at high SNRs. In tg
upper curve of Fig. 4, the use ¢f = ¢,v; at SNR 30 dB re- [«
sults in instability. A design theory based on slow time-varic |
tions simply cannot handle such situations. However, when ti \
covariance matrix for, is scaled up in the first iteration, our
iterative design is completed successfully. !

In Table I, we compare the tracking MSE for Kalman pre °7
dictors (the Wiener design), which, here, is denoted the genelo 150 200 250  s00 30 400 450 500 550 600
constant gain algorithm (GCG), as well as a robustly designi
WLMS algorithm [26], [27], exponentially windowed RLS, and
an LMS estimator. We also compare their computational cor 4»
plexity, as measured by the number of real-valued multiplici s
tions per step (see Fig. 5 for illustratioh). 2

As illustrated by Fig. 6, the gradient noise is white. Furthet 1
more, there was no significant correlation between the innov ° 3
tions sequence of; (which here equalg;) and old tracking -

30 0.10 0.093 0.142 0.488 0.82  1.00
10 0.02 0.170  0.179  0.247 0.33 0413
30 0.02 0.013 0.017 0.028 0.077 0.115
#mult. | 5396 416 272 1564 132

WIENER DESIGN: RE(h,), RE(h,) AND 4-STEP PREDICTIONS

LMS: RE(h,), RE(h,) AND ESTIMATE

I ¢ : I 1 L I I L

errors, as required by Assumption A3. This is true even at tt3, 150 200 250 300 0 400 450 500 550 600
difficult design point SNR 30 dB andp_ 1" = 0.10 (solid line
for lagst < 0).

Fig. 5. (Top) Tracing performance at SNR 20 dB, wp, .7 = 0.02,
wm, 2T = 0.10 compared with (bottom) LMS tracking.
4The complexities are similar, but not identical, to the ones displayed in the
example in Table I. This is partly due to other conditiohs< 4-step prediction The Kalman predictor is designed based on a state-space real-
and use of:p = 3 in WLMS). In GCG, the diagonal structure & andR,, .__.. . -
and the block-diagonal structure Bf, results in 2x 2 block-diagonaf3 and ization (52) of (60) with 16 complex-valued states. The Wiener

Q.. LMS algorithm (50) is not equipped to handle elementg.of
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0.02 straightforward to design fixed-lag smoothing estimators. A dis-
advantage is that our Wiener design is a steady-state solution,
00151 which could lead to worse transient properties as compared to a
_ : Kalman estimator.
o} One topic under present investigation is to what extent the
E design assumptions for open-loop Wiener design are satisfied
i 001 in problems with both fast variations and colored regressors.
§ Another interesting problem for further research is to gener-
00051 alize the proposed class of algorithms to handle also IIR model
’ structures of output error, AR, and ARX type.
S N ( APPENDIX A
B0 20 00 10 20 830 PROOF OF THEOREM 1

LAG
o 6. Absolut | . i e e 2 at SNR 30 d To prove Theorem 1, the variational approach for the deriva-
1g. ©o. Solute values of correlations In Example a : H : . . -

wp, 2T = 0.10 estimated based on 10000 data. Correlation functions f%lron ‘?f polynomial des'g” equathns fOI’ Wiener filters [1]' [2].’

element (3, 3) of (dash-dotted(n,n;, . ), (solid) E(n.h;, ), and (dotted) [38] is adopted. Consider the filtering problem depicted in

E(hejethiy i) Fig. 1. The estimation errdr,, |, is optimal if and only if no
admissible variatiorg;, subtracted fromh,_;, can improve

with differing dynamics. However, it was, in [27], found to bethe estimate.

robust against variations of the Doppler frequency;if ;7° is Consider the covariance matrix of the so perturbed estimation

set at the high end of its uncertainty range and if integration §§ror

introduced (ARI-modeling). We thus design (50) for a third- P. -E (i _ i Y
order model (49) withC' = 1 andD = D(¢™ !, wp »T)(1 — ¢ (L“’k't £t> (”*""t St)
g~ with D(¢g %, wp, o7’ from (59). =Py +E&E — Bhoynily — Eﬁtﬁf+k|t. (A.1)

From Table Il, it is evident that the GCG Wiener design at- _ _ _
tains nearly the same performance as the Kalman estimatolf & is adjusted so that the cross-terms vanish, then the optimal
much lower complexity. & must be zero, and the covariarieg obtained with the unper-

The GCG algorithm presented here outperforms the simplgfbed estimator is minimal. _ o _
WLMS scheme at the price of a somewhat higher complexity. Derivation of the Design EquationsAll admissible varia-

At wp T = 0.10, this is due to the better tuning of GCG tofions can be represented by

dlffe_rlng tap dynamics. Awbp T = 0.02, the difference is es- ¢ =T(Rh, +n,) = T(RD™Ce, + 1) (A.2)
sentially caused by the ability of GCG to take the tap correlation

for mobile number 2 into account. where7 is a stable and causal rational matrix. Since the signal

Note that the use of RLS would, in this example, gbath & must be stationary, the factér;* in D™! must be canceled
bad performance and a high computational load. by 7. Thus, we require thell = 7,D,, where7; is some

stable and causal rational matrix. With, |, given by (20), the
VI]. CONCLUDING REMARKS first cross-term of (A.1) is expressed as

Within the class of constant gain algorithms presented heFeﬁtmté}*
we can control the level of desigh complexity and computational k 1 1 *
complexity by selecting models for the parametiersand the = B((¢"I-LiR)D™ Cer— Lan,) (T(RD™ Cer + 1))
gradient noisey;. We now use Parsevals formula (cf. [32]) to convert the orthog-

The general constant-gain algorithm is based on linear timgnality requirement 0ﬁt+k|t and¢, into the frequency domain
invariant models of the parameters and of the gradient noiseydfation

the gradient noise is assumed white, we obtain both a simpler . dz

design and a simpler implementation. Finally, the generalized Ehipni& = 5 — Pre—, =0 (A.3)
WLMS and WLMS algorithms of Section IV are the simplest I 1= i

alternatives. where Prrgn which is the cross-spectral density between the

For fast time-varying parameters, the feedback noise conggtimation error and the variational term, is, by Assumptions
bution to the gradient noisg cannot be neglected; therefore, af\2—A4, given by
iterative design has to be performed. An alternative is to assume’ . . MM, _ |
white gradient noise with diagonal covariance maly and (= LR)DTCRCD, — Li—m R ) RT,
use the diagonal elements as tuning knobs. For WLMS, we then i
have only one scalar tuning knob: the parameter drift-to-noise = (2*D~'CR.C.N, — L,RD™'N~'88,)
ratio. 11

Compared with Kalman adaptation laws, a main advantage N DRT (A-4)
with the proposed class of algorithms is their lower computashere we utilized (25) in the last equality. The orthogonality re-
tional complexity. Another advantage is that it becomes mogeiirement is fulfilled for all admissibl& , if and only if the in-
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tegrand is made analytic inside the integration path. For a fornidie output from this filter will be stationary with finite variance

proof of this property, see, e.g., [41, Lemma A1, App. A].  if marginally stable poles ab,D ! = 1/D,, are canceled by
This implies that in every element of the integrand, all poldbe transfer function matrix

in |z| < 1 must be canceled by zeros. We first cancel what can

be canceled directly bg;. Thus, let B— q_’“QkN =D, X, (A.7)

Ly =D7'Q 8 'NDR™ (A.5) for some polynomial matrixX ;. This condition is verified by
] ) ) . right multiplying the left-hand side of (A.7) bg, (which has
where @, is an undetermined causal polynomial matrix. Thgg o only in|z| > 1) and evaluating at the zeros Bf,, which
filter £y, as expressed by (A.5), contains the marginally stablga denoted z; }. We first notice that when (25) and (26) are

polynomial D,, in D = D, D, as a common factor of all el- eyajyated at{z;}, their most right-hand terms vanish when
ements. After eliminating these factors, the stable expressipn # 1. Thus

(24) is obtained. With (A.5) inserted into (A.4), the integrand of

(A.3) becomes pp.=CR.C.NN,; z*CR.C.N.=Q,p,
¢ﬁg*% = D! (*CR.C.N. — Q,8,) DIINCIRT*E- atz = z;. This directly givesBg, — 2 *Q, NB,|.—., = 0.
i i Thus, sincg, () has fullrankorjz| = 1,8—>"*Q, N|._., =
SinceT ,, D; !, andN ! are all assumed to be stable, @id=  0; therefore, (A.7) holds. O
D,T, is required to cancel the marginally stable polynomial
factor D, of D APPENDIX B
RECURSIVE COMPUTATION OF ESTIMATORS WITH
N.(2)7'D.(2)"'RT.(2) = NT'DRT., DIFFERING SMOOTHING LAGS

will have no poles inside or on the unit circle. In order to achieve Corollary 2: Let Q_k_(q_l)ka”d Ly-(q) solve (26) for lagk
orthogonality, it is thus sufficient and necessary to require tha¥ving leading coefficient®g andLg*. Then

D! (szReC*N* - Qkﬂ*) ! = Ly, (A.6) Qk-l—l(q_l) =4 (Qk(q_l) - D(q‘l)Q’a‘) (B.1)
z .
. . o - Lyt1:(2) = ¢Li () + Q5B.(0) (B.2)
where L. (z) is a polynomial matrix inz only. This is (26).
Thus, by the residue theorem constitute the solution to the Diophantine equation (26) for lag
k 4+ 1 and

- 1 1A
Eht+k|t£;< = 2_7TJ j{ Ly D, lN* IRT*dZ =0. 1 1 1 Iy k wy—1
||=1 Qr1(¢)=q Qulq )+ D(¢ )L™ (By)" (B.3)

Unique Solvability of the Diophantine Equatio:he Dio- Li_1.(q) =q 1 (Lk*(Q) _ L’S*(ﬂﬁ)_lﬂ (q)) (B.4)
phantine equation (26) will always have a solution since the in- *
variant polynomials of3, (¢) are all unstable, whereas those of ynstitute the solution to (26) for ldg— 1. 0
D(q~*) are stable or marginally stable [1], [35]. L@¥., L7, be Proof: It follows from (26) thatQ,,; and L. should
one solution pair. Every solution to (26) can then be expressg&isfy
as

k41 _
(@i Lir) = (QF — DX, Lj,, + XB.) ¢"T'CRC.N, = Quy i B, +¢DLitr..  (BS)

where the polynomial matriX is undetermined. Sino@, is Multiplying both sides of (B.5) by~ and using the assumed

required to be a polynomial matrix ' while Ly is required relation (B.1) yields

to be a polynomial matrix ig, X = 0 is the only choice. Con-

sequently, the solution to (26) is unique. The degrees (2@),of ¢"CR.C.N, =(Q,, — DQf)B, + DLy 1.

and L;.. are determined by the requirement that the maximum _ Ak

powers ofg—! andq are covered on both sides of (26). =B, + DLyt = Qo).
Stationarity of the Estimation ErrorThe estimatorC;”" in , , : , )

(24) is stable, and the noisgis assumed to be stationary. ThusThe use of (B.2) reduces this equation to the Diophantine equa

) o . o 1
the last term of (20) will be stationary, with finite variance. Ttlon (fc))r IIEagu];’ti(\;\:whslc(g |3S) :X dd(erlz;t:l)rr;, Vsearti:cisglg?n zﬁ ks(gme),wa
verify stationarity and finite variance of the estimation error©+\4)- =4 . ' Y.

R4+, it remains to be shown that*T — LZPtR)ht has finite :/xlstgrl:‘in—gl(;usb)s:rt]tét((ag ]})k +1in (B.5), multiplying byg, aréj
! 1 . 4).
ﬁrilsa?ecri*neg;r? t::la h:)? :Zzsgﬁp:;m()del contaiigg ") # 1. Remark: Since D is monic and the leading coefficient of
P B, is B35, the leading coefficient matrix of the right-hand side
(ku _ Dngkﬂ_lNDs) D 'Ce, of (B.1) _and of (B:f) will cancel. Np positive powers gfare
presentin@, ., (¢ "), and no negative powers gfare present
=¢"D;' (B— ¢ *QN)B "D, D' Ce;. inLi_1.(q). O
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APPENDIX C

STABILITY OF WIENER ADAPTATION FOR SLOW VARIATIONS

[19]
The effect of the Wiener design when the power of the grat20]
dient noisen, is assumed to become very large relative to the[21]

power of the noise; driving h; can equivalently be represented
by fixing M(g~') and lettingR. — 0 in (21) and (22). The

left-hand side of the Diophantine equation (26) will then vanish,lzz]

therefore, a limiting solution i€, (¢7*) = 0, Li.(¢) = 0.

This solution is unique; see Appendix A. Sin@g(¢~!) — 0
while all other factors in (24) remain bounded for stable models,
L5713 — 0 with a decreasing signal-to-noise ratio.

The small gain theorem (see, e.g., [43]) implies that

if £1(¢g7!) is causal andL,-stable, stability of the outer

time-varying feedback loop of Fig. 2 is preserved if

e (o )], <

If ¢, andZ, are assumed to have bounded elements, (C.1) will

Bt|t71Hp§ v< 1l (C1)

be fulfilled when we perform a Wiener design [that will always

produce a stabl&€, (¢ 1)] if the assumed noise level is suffi- [27]
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(24]

(26]
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