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Wiener Design of Adaptation Algorithms With
Time-Invariant Gains
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Abstract—A design method is presented that extends least
mean squared (LMS) adaptation of time-varying parameters by
including general linear time-invariant filters that operate on the
instantaneous gradient vector. The aim is to track time-varying
parameters of linear regression models in situations where the
regressors are stationary or have slowly time-varying properties.
The adaptation law is optimized with respect to the steady-state
parameter error covariance matrix for time-variations modeled
as vector-ARIMA processes. The design method systematically
uses prior information about time-varying parameters to provide
filtering, prediction, or fixed lag smoothing estimates for arbitrary
lags. The method is based on a transformation of the adaptation
problem into a Wiener filter design problem. The filter works in
open loop for slow parameter variations, whereas a time-varying
closed loop has to be considered for fast variations. In the latter
case, the filter design is performed iteratively. The general form of
the solution at each iteration is obtained by a bilateral Diophantine
polynomial matrix equation and a spectral factorization. For
white gradient noise, the Diophantine equation has a closed-form
solution. Further structural constraints result in very simple
design equations. Under certain model assumptions, the Wiener
designed adaptation laws reduce to LMS adaptation. Compared
with Kalman estimators, the channel tracking performance
becomes nearly the same in mobile radio applications, whereas
the complexity is, in general, much lower.

Index Terms—Adaptive estimation, adaptive filtering, channel
modeling, least mean squares, tracking.

I. INTRODUCTION

WHEN tracking time-varying parameters of linear regres-
sion models, least mean squares (LMS) is one of the sim-

plest adaptation laws, whereas Kalman algorithms are the most
powerful linear estimators. A third, intermediate, alternative is
proposed here. The integration of the instantaneous gradient
vector used in LMS is substituted by general linear time-in-
variant filtering. Well-tuned filters then provide estimates with
an appropriate amount of coupling and inertia, resulting in high
performance at low computational complexity.

We present a novel approach to the design of such adaptation
laws that is based on a polynomial matrix approach to Wiener
filtering [1].

The difficult problem of accurately tracking time-varying
radio channels in IS-136 TDMA cellular systems was an
original motivating application for this work. For such systems,
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LMS and windowed RLS adaptation provide inadequate
performance, whereas the use of Kalman algorithms has so
far been precluded, due to their computational complexity. An
early version of our present approach (KLMS) was reported in
[24], and it has subsequently been used for rapidly time-varying
IS-136 1900–MHz channels. A thorough case study on this
application is found in [27]. See also [17] and [29].

A sequence of measurement vectors of dimension
is assumed available at the discrete time instants

. It is generated by a linear regression

(1)

where all terms may be complex valued. The known regression
matrix sequence of dimension is stationary with
zero mean and a covariance matrix

(2)

that is assumed to be nonsingular. The elements ofmay con-
sist of filtered known signals, for example, in Laguerre models
of IIR systems or in filtered-X LMS-like adaptation of inverse
filters. The noise is assumed to be uncorrelated with and
to be stationary.

Our aim is to estimate the time-varying parameter
vector in an environment with stationary (or slowly time-
varying) statistics of the regressors and the noise. Linear regres-
sions (1) with delayed measurementsused as regressors are
here excluded. The properties of could then become highly
nonstationary when is rapidly time varying.

Without further assumptions, we cannot, for , deter-
mine the sequence of parameters uniquely from a sequence of
measurements , even in
the noise-free case. We would have unknowns with
more elements than the available measurements . To
avoid this dilemma, models that represent assumptions on the
relationship between and for must be introduced.

Models of time-varying parameters, which are sometimes de-
notedhypermodels[5], [6], may be deterministic [7], [8], [13],
[23], [30], [31] or stochastic [12], [21]. A large variety of pa-
rameter dynamics can be described by linear time-invariant sto-
chastic hypermodels

(3)

where
white noise with covariance matrix ;
matrix of stable or marginally stable transfer oper-
ators of dimension ;
backward shift operator .
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Such models are used here and represent either prior informa-
tion or design assumptions.

Define the tracking error vector

(4)

where is an estimate of obtained at time by fil-
tering ( ), prediction ( ), or fixed lag smoothing (
). Tracking performance will be measured by the steady-state

covariance matrix

(5)

where the expectation is taken with respect toin (3) and in
(1).

Among all adaptation laws that perform linear operations on
, the Kalman filter will minimize if and

in (1) and (3) are known [4], [18]. Kalman estimators are
based on a state-space model of (3), with (1) as the measure-
ment equation. Kalman-based adaptive filters discussed in the
literature are mostly based on first-order autoregressive param-
eter models [10], [14], [15], [36] but can, of course, be designed
for more complicated linear models.

The computational complexity of Kalman estimators is rel-
atively high, due to the on-line Riccati equation update. This
may preclude their use in high-speed applications or when the
number of parameters is high. A commonly used alternative of
much lower complexity is the LMS algorithm [44], [45]

(6)

(7)

or, in shift operator notation

(8)

where is the scalar gain, and is the prediction error.
Our aim will be to propose design rules for a class of algo-

rithms that require much lower computational complexity as
compared with Kalman tracking, while attaining close to the
same performance. They utilize stochastic hypermodels (3) and
deliver filtering, prediction, and smoothing estimates for arbi-
trary values of .

The class of estimators generalize LMS by substituting a
time-invariant matrix of linear causal transfer operators for the
LMS operator in (8).

An IIR filter matrix that operates on

(9)

(10)

is to be designed based on (1) and (3) so that (5) is minimized
under various structural constraints and assumptions. An aim
is to clarify how design assumptions are reflected in the com-
plexity of the resulting algorithm.

Related work has been presented by Benvenisteet al. [5],
[6], who used state-space models to perform an interesting anal-
ysis of multistep adaptation laws with constant gains. However,
that work, as well as most other analyses of LMS, RLS, and

Kalman-based tracking, has focused exclusively on cases with
slowly time-varying dynamics since only then can tools of weak
convergence theory and various methods of averaging [22], [28]
be used.

A design methodology that can also handle practically impor-
tant classes of problems with fast parameter variations is derived
here by formulating the tracking problem in a novel way. In Sec-
tion II, the adaptation law is expressed as a stable Wiener filter
applied to a signal that can be constructed from. In Section III,
the conditions for open-loop Wiener design are specified, and
the filter is thereafter optimized using the polynomial approach
outlined in [1] and [2]. Section IV introduces constraints that
lead to simpler algorithms, such as the Wiener LMS (WLMS)
structure, which was introduced and derived from a constrained
MSE optimization problem in [26]. Such schemes in general
have much lower computational complexity than the more gen-
eral case (10) but may pay a price for this in performance. Sec-
tion V summarizes the proposed iterative design process and
illustrates it with examples.

Remarks on the Notation:A superscript asterisk represents
a conjugate transpose. For polynomial matrices and
rational matrices [19], conjugate matrices or

(which are denoted by subscript asterisks) are obtained
by conjugating coefficients, transposing and substituting the
forward shift operator for . To simplify notation, the
arguments or are often omitted in Section III. Scalar
polynomials are denoted by nonboldface capitals.

The degree of a polynomial matrix is the highest degree of any
polynomial element. Square polynomial matrices will
be called stable if all zeros of are located in
and marginally stable if these zeros are located in .

II. TRANSFORMEDPROBLEM

A. Fictitious Measurement

Consider the signal prediction error (9) and insert (1) de-
scribing to obtain

(11)

By adding and subtracting and defining

(12)

(13)

(14)

the vector in (11) is now reformulated as

(15)

The signal defined in (14) can be regarded as a fictitious mea-
surement, with and being the signal and the noise, re-
spectively. In the sequel, the noise termsand will be
referred to as thegradient noiseand thefeedback noise, respec-
tively. The matrix , of dimension , has zero mean by
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Fig. 1. Filter design problem. The vectorh is to be estimated from
measurementsf such that the steady-state tracking error covariance matrix is
minimized.

definition. This matrix was introduced by Gardner [11] and was
referred to as theautocorrelation matrix noise.

B. Tracking Regarded as Time-Invariant Filtering

By (10)

Substitution of this expression into (15) and use of the resulting
expression for in (10) gives

(16)

We may therefore design a time-invariant stable rational matrix
that operates on to estimate

(17)

(18)

(see Fig. 1). This causal filter will be referred to as the
learning filter. For a given , in (16) gives

(19)

With and , can then be obtained
from (16).

As seen by (13) and (14), three terms influence the tracking
performance via . The scaled and rotated parameters rep-
resenting the useful signal, the noise , and old tracking er-
rors via the feedback noise .

The estimation error follows from (14) and (18) as

(20)

where . The first right-hand term is for
usually called thelag error.

An open-loop Wiener design, yielding , can now be
performed. Such a design would be based on the assumption that
the innovations of are uncorrelated with .
(Possible higher order statistical dependencies due to the outer
feedback loop in Fig. 2 do not affect an MSE-optimal linear
design.) If the innovations of are furthermore uncorrelated
with the signal , such an open-loop design is simplified.
Although these conditions are not always fulfilled, they hold
exactly or approximately in many practically important circum-
stances since the multiplication by in (13) acts as a scrambler;
see, e.g., [3], [26], and [27].

Uncorrelatedness holds when the time-variations are slow or
when consecutive regressor matrices are independent. It also

Fig. 2. Feedback loop via the feedback noiseZ ~h may significantly
affect the variance of the fictitious measurementf and causes dependence
with ~h .

turns out to be a good approximation even for fast parameter
variations in FIR systems with white regressors, and it holds ex-
actly in the second-order case for regressors with constant mod-
ulus [3]. In problems with colored regressors and fast variations,
the scrambling by may become less effective. The correla-
tion properties of the innovation sequence ofshould then be
investigated after the design has been performed in the way in-
dicated in Section V by Fig. 6.

Uncorrelatedness of the innovations of with and
will, in Section III, be stated as a design assumption,

under which will be optimized by just treating in
(20) as an additive noise with known properties.

C. Properties of the Gradient Noise

The feedback noise will not be independentof
, due to the outer feedback loop in Fig. 2 This feed-

back could cause instability. Therefore, the gain of
cannot be allowed to be too large.

Since the properties of depend on , a tracking de-
sign will in general require a few iterations, as outlined in Sec-
tion V. After each iteration, we may have to estimate the prop-
erties of by simulation. However, in [3], three important sce-
narios are discussed in which an analytical performance eval-
uation is possible by assuming, , and to be mutually
independent:

1) Slowly Varying Parameters (Vanishing Feedback
Noise): We then have a true open-loop situation, in which the
outer feedback loop in Fig. 2 can be neglected. This will indeed
be the case in many applications of adaptive filtering. When a
Wiener design is performed in a situation with stable
and bounded regressors, it can be shown that the impact of
the feedback noise on the tracking MSE will vanish
when the power of becomes sufficiently small relative to
the power of . The feedback noise becomes negligible either
when the parameters vary slowly or when the noise level is
high.1 Then, . In [3], we propose negligible feedback
noise as the defining characteristic of the concept of “slow
variations.”

2) Independent Consecutive Regression Matrices:If and
are independent for , then is uncorrelated with

1Another case whenZ ~h vanishes completely is when' is scalar with
constant modulus. Then,Z = 0. This is the case e.g., when tracking flat fading
channels in mobile radio systems using PSK symbol alphabets.
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old estimates. It is white with zero mean, and its covariance can
be derived exactly.

3) FIR Models With White Zero Mean Regressors:The per-
formance can then be predicted with good accuracy from theo-
retical expressions valid for arbitrarily fast variations of.

III. W IENER SOLUTION

The transfer operator will now be adjusted to min-
imize (5) when is known and the properties of are
assumed given. Minimization implies that any alternative esti-
mator provides a covariance matrix, say,, for which
will be positive semidefinite. A minimization of will also
minimize its trace, the sum of componentwise tracking MSEs,
or the mean square deviation (MSD).

A. Main Result

The learning filter is designed under the constraints
of stability and causality and under the following assumptions.

Assumption A1:The sequence is stationary and known
up to time with a known nonsingular autocorrelation matrix

.
Assumption A2:The gradient noise is stationary with zero

mean. It has a known rational spectral density modeled
by a vector ARMA process

(21)

where is an polynomial matrix of degree , and
is a stable polynomial of degree .
Assumption A3:The innovation sequence of the gradient

noise is uncorrelated with and with .
Assumption A4:The linear regression coefficients are de-

scribed by a stochastic process

(22)

where is white, stationary, and zero mean with nonsingular
covariance matrix and where

(23)

are time-invariant.2 is assumed stable with full rank on
. is a polynomial with zeros on the unit circle,

and is a stable polynomial matrix.
Assumption A4 implies that, e.g., random walks, integrated

random walks and filtered random walk models can be consid-
ered but that the marginally stable dynamics must then
affect all the elements of .

We are now ready to state the following main result.
Theorem 1—Optimal Learning Filter:Under Assumptions

A1–A4, the stable and causal learning filter in (18) minimizing
(5) is given by

(24)

2While we assumeHHH(q ) to be time invariant, it can, in practice, be allowed
to be slowly time varying as long as the variations are much slower than those
of h .

where the polynomial matrix

of dimension and degree
is the stable spectral factor obtained from

(25)

The unique solution to the bilateral Diophantine equation

(26)

provides polynomial matrices

of dimension with generic degrees

(27)

respectively. The estimation error will be stationary with
finite covariance matrix and zero mean.

Proof: See Appendix A.

B. Remarks and Generalizations

Solvability of the Equations:For a discussion of multivari-
able Wiener filtering problems solved by Diophantine equations
and spectral factorizations, see [1], [2], [35], and [38]. The Dio-
phantine equation (26) is guaranteed to be solvable, and it cor-
responds to a linear system of equations with equal number of
unknowns and equations.

Under Assumption A4, is assumed stable, and has full
rank; therefore, will have full rank on .
Therefore, (25) has full rank on , resulting in a stable
spectral factor with a leading matrix of full rank. Thus,

in (24) is causal and stable.
Algorithms for solving polynomial matrix spectral factoriza-

tions and bilateral Diophantine equations are presented in [20]
and [34].

The learning filters have real-valued coefficients when
and have real-valued coefficients. Op-

timal learning filters (24) for different lags differ only in
since is unaffected by .

Limiting Cases of High and Low Gradient Noise:If the gra-
dient noise has a spectral peak at described by a zero of

close to the unit circle, all elements of will have a notch
at since .

When the gradient noise is negligible, . Equations (25)
and (26) are then, for , solved by

The lag error in (20) then vanishes since , and
this estimator attains for .

Recursive Computation of Estimators for Different
Smoothing Lags:The solution for will always be
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Fig. 3. Optimized tracking algorithm with time-invariant gains, realized as in (31)–(34).

required since appears in (17). When several estimation
horizons are of interest, we need to solve (26) for one value of

only. It is shown in Appendix B that solutions for anycan
then be obtained recursively from one of the solutions.

Robust Design:The hypermodel (22) is, in practice, never
exactly known, but it may be known to belong to a set of possible
models. A robust design that minimizes the average of (5) can
then be obtained by averaging the hypermodels in the frequency
domain and performing the design for this averaged model. See
[25] for details, [46] for general methods, and [39] for a special-
ization to fading mobile radio channels parameterized by uncer-
tain Doppler frequencies.

C. Realizations and Interpretations

The estimator defined by (17), (18), and (24) can be realized
as it stands. We can, however, give one internal signal a special
meaning. From (17), (21), and (22), the spectral density ofis,
under A2–A4, given by

(28)

where (25) was used in the last equality. The innovations repre-
sentation of is thus given by

(29)

where the innovation sequenceis white with zero mean and
unit covariance matrix. When has zeros on the unit circle, (29)
corresponds to a generalized innovation model [37]. By defining
the signal

(30)

we obtain the realization of (17), (18), and (24) (see Fig. 3)

(31)

(32)

(33)

(34)

The realization (31)–(34) has good numerical properties, and all
involved filters are internally stable.

The optimal tracking filter can be calculated from (16),
(19) once and are derived. A compact expression for
is given by the following corollary.

Corollary 1—Wiener Optimized Filter : The estimator
(10) optimized by Theorem 1 is given by

(35)

where the causal rational matrix is given by

(36)

Proof: Multiply both sides of (33) from the left by and
then substitute the expression for , which is obtained
from (34) with , into (32) and (33). We obtain

Thus

(37)

The use of this expression in (34) gives (35) and (36).
Note that will always be a right factor of the optimal

. Our estimator can thus be seen as a generalization of the
LMS-Newton adaptation law [45].

While must be stable, need not be stable since it is a
block in a feedback loop. In fact, any marginally stable model
denominator is present in all elements of . See (A.7)
in Appendix A.

D. White Gradient Noise

By assuming the gradient noiseto be white with zero mean
and with a known covariance matrix , both the design and the
implementation is simplified. Since

the feedback noise is, in such cases, assumed to be white or neg-
ligible, and the noise vector is white. The last assumption
is true whenever the noise is white and independent of the
regressors. Negligible feedback noise is characteristic of situa-
tions with slow variations. The feedback noise is white under
the restrictive assumption of independent regression matrices,
but it is otherwise not, in general, white for colored regressors.
It will be white for second-order FIR channels with white re-
gressor elements with constant modulus [3], which is a case of
practical significance in mobile radio channel tracking, as dis-
cussed in [27] and Section V.

For white gradient noise, there exists a closed-form solu-
tion to the Diophantine equation (26). The solution for one-step
prediction is presented in the following lemma. The iterations
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yielding filters for arbitrary lags are presented in Corollary 2
in Appendix B.

Lemma 1: For white gradient noise with covariance ma-
trix , let

(38)

The solution to the Diophantine equation (26) for is then
given by

(39)

(40)

where is the leading coefficient matrix of .
Proof: With and , (25) becomes

(41)

and with and , (26) becomes

(42)

By substituting (39) and (40) into the right-hand side of (42),
the lemma is verified.

The implementation of the tracker is also simplified since by
(39) and in (36)

(43)

which simplifies the realizations of in (35). By using
(43) in (37), the innovation processes are

(44)

Example 1—First-Order Models and LMS-Like Algo-
rithms: Assume that (22) is a vector of coupled first-order
autoregressive or random walk parameters

where is a scalar with , and is given. The gradient
noise is white with known. The spectral factorization, (41)
then becomes

(45)

giving

These expressions represent a set of coupled second-order equa-
tions in the elements of and .

If we are interested in the one-step predictor, then the solution
(39) for directly gives as

From (35) and (43)

Thus, we obtain a generalized LMS update equation

(46)

The update (46) is similar to the LMS/Newton law [45] in that
the instantaneous gradient is rotated by . It also contains
leakage [42], [45] whenever . Furthermore, it has a
matrix gain instead of the scalar gain in (7) of LMS. The al-
gorithm reduces to LMS when (white regressors),

(random walk model with uncorrelated pa-
rameters), and if the elements of the gradient noise are uncorre-
lated and have equal variance . Then, and from
(45) become diagonal and have all diagonal elements equal;
therefore

for some scalar .

IV. L OW-COMPLEXITY DESIGNS

The design and implementation can be simplified further, at
the price of some performance degradation, by placing succes-
sively harder restrictions on the hypermodel and on the learning
filter.

A. Generalized Wiener LMS

This algorithm is obtained by minimizing the trace of the
tracking covariance matrix (the mean square deviation) for
possibly colored gradient noise (21) and for hypermodels in
common denominator form

(47)

The structure of the learning filter is constrained to

(48)

where is adiagonalstable rational matrix. The design
equations for this filter are derived and presented in [25]. They
consist of separate polynomial spectral factorizations and
scalar Diophantine equations.

B. Wiener LMS Algorithms (WLMS)

A further simplification is obtained by minimizing the trace
of the tracking covariance matrix forwhitegradient noise with
covariance matrix and for diagonal hypermodels with equal
elements

(49)
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The learning filter is restricted to (48) but with all filters on the
diagonal of being equal

(50)

Compared with the generalized Wiener LMS, this filter structure
has reduced ability to handle situations where different elements
of have differing dynamical properties, but it is still a useful
special case.

The resulting Wiener LMS (WLMS) algorithm can be opti-
mized for a given parameter-drift-to-noise ratio

tr tr (51)

The denominator polynomial in (50) minimizing tr is
then obtained from the solution to one scalar polynomial spec-
tral factorization

Then, is obtained from scalar versions of (26) or
Lemma 1, where 1 is substituted for and for .

The WLMS algorithm is derived in [26], and design software
can be found on the webpage of [26]. It is applied to the tracking
of fading mobile radio channels in [27].

C. Computational Complexity

Let us compare the computational demands of the various dis-
cussed algorithms. We assume a complex linear regression (1)
with outputs, complex-valued regressors, andparameters.
These parameters are described by a vector ARIMA model (22)
with real-valued coefficients and diagonal denominator
with diagonal polynomial elements of degree.

The comparison concerns one-step predictors and is
expressed by the number of real multiplications per step. (Mul-
tiplications between complex numbers are counted as four real
multiplications, whereas multiplications or divisions between a
real and a complex number are counted as two real multiplica-
tions.)3

We compare the following algorithms.

• a Kalman predictor based on a state-space model of (22)
with states with each element of modeled
by states

(52)

Here, and are assumed to be real-valued and block
diagonal with blocks in and -blocks

3The added complexity in cases whenR needs to be estimated is not con-
sidered here. In the Wiener design, this would add to the complexity proportional
to n to become similar to RLS. Sincen is smaller than the number of states
whenevern > 1, the complexity would then still be considerably below that
of a Kalman update.

TABLE I
COMPUTATIONAL COMPLEXITY WHEN TRACKING THE n PARAMETERS

OF A COMPLEX LINEAR REGRESSIONMODEL WITH n OUTPUTS, n
STATES PERPARAMETER. RIGHT-HAND EXAMPLE FOR 16 STATES,
n = 8; n = 2; n = 2; r = 0; n = 0, AND n = 2

in . The noise is assumed white. The block structure
is used to reduce the number of operations, but the Riccati
update is otherwise performed in the conventional way.

• Wiener algorithm for , implemented as in Fig. 3
or (31)–(34); The gradient noise may be colored and
described by (21). The polynomial matrices and

have complex-valued polynomial
elements each. Their degrees are and

. We also specialize to white gradient noise,
using (31), (44), and (34).

• Wiener LMS algorithm (50) based on (49) with of
degree and of degree (generalized
WLMS has similar complexity);

• LMS algorithm (6) and (7) with a real-valued.

Table I displays the results. Here,denotes the complexity of
the operation . It is zero for white regressors. It is propor-
tional to when the regressors are moving average processes
so that becomes multidiagonal. For scalar FIR models with
autoregressively generated inputs, the product can also be up-
dated with a computational complexity proportional to [9].
For an arbitrary covariance matrix, .

V. ITERATIVE DESIGN

For slow time-variations, the feedback noise is by our def-
inition negligible; therefore, we may perform a one-shot de-
sign using . When the noise is white, the solu-
tion for white gradient noise can be used with if

and if and are independent.
Otherwise, the design can be performed iteratively by using

long simulation runs to estimate the covariance function element
matrices

(53)
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In a model (21) with , the covariance function of the
gradient noise can be represented by

(54)

Note that only the total covariance function (54) (not) is
needed in the design equation (25).

We proceed as follows.

1) Perform a one-step predictor design for slow time-vari-
ations, i.e., assume in the design .
Verify that the closed loop of Fig. 2 is stable so that the
resulting error is stationary. If not, scale up the as-
sumed covariance function of to decrease the gain of

.
2) Obtain an estimated gradient noise time series from (17)

based on a long simulation of , , and
, as well as on the corresponding estimate

, as

(55)

Obtain an estimate of the covariance function
(53) and (54) by using sample averages over.

3) Design a new estimator .
Repeat steps 2) and 3) until the difference in the estimates

becomes small for consecutive estimators. Then, con-
struct an estimator for the desired lag.

It will be possible to find an initial stable solution under mild
conditions. If is stable, then when the as-
sumed noise power is increased. If has bounded elements,
then the small gain theorem [43] will imply that the outer closed
loop of Fig. 2 can be stabilized by assuming a sufficiently high
noise power in the design of . See Appendix C.

The covariance function estimate provides additional infor-
mation. If does not differ much from the covariance
matrix of , then the time-variations can be regarded as slow,
and step 1) above turns out to be sufficient. This will occur when

has low power relative to , i.e., either when the incre-
ments of the parameters are small or when the noise level is
high [3].

If tr tr for all , then the gradient
noise can be regarded as white so that the design of Section III-D
can be used with .

Iterative tuning becomes much simpler for the WLMS algo-
rithm than in the general case. We then have to tune only one
scalar parameter: the noise ratioin (51). This parameter could
alternatively be used as an on-line tuning knob to provide an ap-
propriate balance between tracking ability and noise sensitivity.

It should be emphasized that the design methodology as-
sumes a good hypermodel. With incorrect models, there is no
reason to believe that the iterations will minimize the tracking
MSE. However, robustification according to [25], [39],and [46]
would alleviate the effect of incorrect models.

Example 2—Iterative Design and a Comparison to Kalman
and LMS Tracking:Consider the uplink of a TDMA-based mo-
bile cellular communication system in which two mobile users
transmit at the same frequency in the same time slot [40], [41].
One of the users could represent a strong out-of-cell co-channel

interferer. A receiver with two diversity branches (multiple an-
tennas or polarization diversity branches) detects both users
and simultaneously. We model the situation by

(56)

where is the sampled baseband signal at receiver. In IS-136
systems [33], delay spreads of up to one symbol can be encoun-
tered. To illustrate the tracking performance, we here restrict
the discussion to symbol-spaced two-tap channels with taps of
equal variance. Thus

(57)

The model (56) and (57) can be expressed in the linear regres-
sion form (1), where

and

(58)

Here, the symbols are assumed known. (In reality, the un-
known parts of the received symbol sequences have to be esti-
mated.) Assume to be white complex-valued QPSK sym-
bols with , whereas the noise is white
with variance .

The messages are transmitted from moving mobile terminals
so that the channel taps will be time-varying (fading). The
second-order statistics of fading radio channels can be approxi-
mated by autoregressive models, which here are assumed to be
of second order

(59)
According to the discussion of [27], (59) provides a reasonable
approximation to Rayleigh fading statistics [16] if

(rad/s)

is the maximal Doppler angular frequency at the carrier wave-
length for mobile number moving at velocity . The pole
radius should then be selected as for

. The sampling time (symbol length) is set to
41.15 s and cm ( 1900 MHz), as in IS-136 sys-
tems. We investigate , corresponding to ve-
hicle speeds from 45 to 225 km/h.

The discussion is here simplified by assuming the model (59)
to be correct and known when designing the tracker. More real-
istic situations with model structure mismatch and estimation
errors in the estimated Doppler frequencies are discussed in
[27].

If the two vehicles have different velocities, corresponding
to and respectively, and if the channels to different
receivers are assumed uncorrelated, an appropriate hypermodel
(22) is given by

(60)



STERNADet al.: WIENER DESIGN OF ADAPTATION ALGORITHMS 1903

with a diagonal auto-regression matrix

diag

(61)

(62)

and a block-diagonal covariance matrix for

where

All are assumed equal. The receiver is assumed to be syn-
chronized to mobile 1, resulting in zero correlation in the taps
from mobile 1 ( ). We assume correlation 0.8 in the taps
from mobile 2 ( ) and fix the velocity of mobile 1 to 45
km/h, whereas the velocity of mobile 2 is varied. The SNR is
equal for both users.

Prediction estimates of the channel taps are required in
equalizers. We here design four-step prediction estimators

according to the iterative scheme outlined above for
the two cases and and for an
SNR per channel in the range 10 dB–30 dB. Fig. 4 displays
the tracking MSE tr for two designs: a noniterative design
assuming slow time variations (dashed curves) and the full
iterative design (solid curves) measured from simulations of
(60) of length 10 000. Only a single iteration was required at
all design points, except at 30 dB in the upper curves.

The performance of the constant-gain tracker is close to that
of the Kalman estimator at all operating points. This perfor-
mance can be well approximated at many, but not all, operating
points by the noniterative design for slow parameter variations.
The exceptions are high vehicle speeds at high SNRs. In the
upper curve of Fig. 4, the use of at SNR 30 dB re-
sults in instability. A design theory based on slow time-varia-
tions simply cannot handle such situations. However, when the
covariance matrix for is scaled up in the first iteration, our
iterative design is completed successfully.

In Table II, we compare the tracking MSE for Kalman pre-
dictors (the Wiener design), which, here, is denoted the general
constant gain algorithm (GCG), as well as a robustly designed
WLMS algorithm [26], [27], exponentially windowed RLS, and
an LMS estimator. We also compare their computational com-
plexity, as measured by the number of real-valued multiplica-
tions per step (see Fig. 5 for illustration).4

As illustrated by Fig. 6, the gradient noise is white. Further-
more, there was no significant correlation between the innova-
tions sequence of (which here equals ) and old tracking
errors, as required by Assumption A3. This is true even at the
difficult design point SNR 30 dB and (solid line
for lags ).

4The complexities are similar, but not identical, to the ones displayed in the
example in Table I. This is partly due to other conditions (k = 4-step prediction
and use ofn = 3 in WLMS). In GCG, the diagonal structure ofDDD andR
and the block-diagonal structure ofR results in 2� 2 block-diagonal��� and
QQQ .

Fig. 4. Sum of squared four-step channel tap prediction errors trP in
Example 2 when the first mobile moves at 45 km/h, whereas the second mobile
has velocity 45 km/h (lower curves) and 225 km/h (upper curves). Results for
one-shot designs assuming� = ' v (dashed), full iterative design (solid),
and the Kalman estimator (dash-dotted).

TABLE II
STEADY-STATE SUM OF MEAN SQUARE TRACKING ERRORStrP AND NUMBER

OF REAL MULTIPLICATIONS PERTIME STEP IN EXAMPLE 2 OBTAINED BY

OPTIMIZED KALMAN TRACKING, THE GENERAL CONSTANT GAIN ALGORITHM

(GCG), WLMS, RLS,AND LMS ADAPTATION ALGORITHMS

Fig. 5. (Top) Tracing performance at SNR= 20 dB, ! T = 0:02,
! T = 0:10 compared with (bottom) LMS tracking.

The Kalman predictor is designed based on a state-space real-
ization (52) of (60) with 16 complex-valued states. The Wiener
LMS algorithm (50) is not equipped to handle elements of
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Fig. 6. Absolute values of correlations in Example 2 at SNR 30 dB,
! T = 0:10 estimated based on 10 000 data. Correlation functions for
element (3, 3) of (dash-dotted)E(� � ), (solid)E(� ~h ), and (dotted)
E(~h ~h ).

with differing dynamics. However, it was, in [27], found to be
robust against variations of the Doppler frequency if is
set at the high end of its uncertainty range and if integration is
introduced (ARI-modeling). We thus design (50) for a third-
order model (49) with and

with from (59).
From Table II, it is evident that the GCG Wiener design at-

tains nearly the same performance as the Kalman estimator at
much lower complexity.

The GCG algorithm presented here outperforms the simpler
WLMS scheme at the price of a somewhat higher complexity.
At , this is due to the better tuning of GCG to
differing tap dynamics. At , the difference is es-
sentially caused by the ability of GCG to take the tap correlation
for mobile number 2 into account.

Note that the use of RLS would, in this example, giveboth
bad performance and a high computational load.

VI. CONCLUDING REMARKS

Within the class of constant gain algorithms presented here,
we can control the level of design complexity and computational
complexity by selecting models for the parametersand the
gradient noise .

The general constant-gain algorithm is based on linear time-
invariant models of the parameters and of the gradient noise. If
the gradient noise is assumed white, we obtain both a simpler
design and a simpler implementation. Finally, the generalized
WLMS and WLMS algorithms of Section IV are the simplest
alternatives.

For fast time-varying parameters, the feedback noise contri-
bution to the gradient noise cannot be neglected; therefore, an
iterative design has to be performed. An alternative is to assume
white gradient noise with diagonal covariance matrix and
use the diagonal elements as tuning knobs. For WLMS, we then
have only one scalar tuning knob: the parameter drift-to-noise
ratio.

Compared with Kalman adaptation laws, a main advantage
with the proposed class of algorithms is their lower computa-
tional complexity. Another advantage is that it becomes more

straightforward to design fixed-lag smoothing estimators. A dis-
advantage is that our Wiener design is a steady-state solution,
which could lead to worse transient properties as compared to a
Kalman estimator.

One topic under present investigation is to what extent the
design assumptions for open-loop Wiener design are satisfied
in problems with both fast variations and colored regressors.

Another interesting problem for further research is to gener-
alize the proposed class of algorithms to handle also IIR model
structures of output error, AR, and ARX type.

APPENDIX A
PROOF OFTHEOREM 1

To prove Theorem 1, the variational approach for the deriva-
tion of polynomial design equations for Wiener filters [1], [2],
[38] is adopted. Consider the filtering problem depicted in
Fig. 1. The estimation error is optimal if and only if no
admissible variation , subtracted from , can improve
the estimate.

Consider the covariance matrix of the so perturbed estimation
error

(A.1)

If is adjusted so that the cross-terms vanish, then the optimal
must be zero, and the covariance obtained with the unper-

turbed estimator is minimal.
Derivation of the Design Equations:All admissible varia-

tions can be represented by

(A.2)

where is a stable and causal rational matrix. Since the signal
must be stationary, the factor in must be canceled

by . Thus, we require that , where is some
stable and causal rational matrix. With given by (20), the
first cross-term of (A.1) is expressed as

We now use Parsevals formula (cf. [32]) to convert the orthog-
onality requirement of and into the frequency domain
relation

(A.3)

where , which is the cross-spectral density between the
estimation error and the variational term, is, by Assumptions
A2–A4, given by

(A.4)

where we utilized (25) in the last equality. The orthogonality re-
quirement is fulfilled for all admissible if and only if the in-
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tegrand is made analytic inside the integration path. For a formal
proof of this property, see, e.g., [41, Lemma A1, App. A].

This implies that in every element of the integrand, all poles
in must be canceled by zeros. We first cancel what can
be canceled directly by . Thus, let

(A.5)

where is an undetermined causal polynomial matrix. The
filter , as expressed by (A.5), contains the marginally stable
polynomial in as a common factor of all el-
ements. After eliminating these factors, the stable expression
(24) is obtained. With (A.5) inserted into (A.4), the integrand of
(A.3) becomes

Since , , and are all assumed to be stable, and
is required to cancel the marginally stable polynomial

factor of

will have no poles inside or on the unit circle. In order to achieve
orthogonality, it is thus sufficient and necessary to require that

(A.6)

where is a polynomial matrix in only. This is (26).
Thus, by the residue theorem

Unique Solvability of the Diophantine Equation:The Dio-
phantine equation (26) will always have a solution since the in-
variant polynomials of are all unstable, whereas those of

are stable or marginally stable [1], [35]. Let be
one solution pair. Every solution to (26) can then be expressed
as

where the polynomial matrix is undetermined. Since is
required to be a polynomial matrix in while is required
to be a polynomial matrix in, is the only choice. Con-
sequently, the solution to (26) is unique. The degrees (27) of
and are determined by the requirement that the maximum
powers of and are covered on both sides of (26).

Stationarity of the Estimation Error:The estimator in
(24) is stable, and the noiseis assumed to be stationary. Thus,
the last term of (20) will be stationary, with finite variance. To
verify stationarity and finite variance of the estimation error

, it remains to be shown that has finite
variance even when the hypermodel contains .
This term can be expressed as

The output from this filter will be stationary with finite variance
if marginally stable poles of are canceled by
the transfer function matrix

(A.7)

for some polynomial matrix . This condition is verified by
right multiplying the left-hand side of (A.7) by (which has
zeros only in ) and evaluating at the zeros of , which
are denoted . We first notice that when (25) and (26) are
evaluated at , their most right-hand terms vanish when

. Thus

at . This directly gives .
Thus, since has full rank on ,
; therefore, (A.7) holds.

APPENDIX B
RECURSIVE COMPUTATION OF ESTIMATORS WITH

DIFFERING SMOOTHING LAGS

Corollary 2: Let and solve (26) for lag
having leading coefficients and . Then

(B.1)

(B.2)

constitute the solution to the Diophantine equation (26) for lag
and

(B.3)

(B.4)

constitute the solution to (26) for lag .
Proof: It follows from (26) that and should

satisfy

(B.5)

Multiplying both sides of (B.5) by and using the assumed
relation (B.1) yields

The use of (B.2) reduces this equation to the Diophantine equa-
tion for lag , which is, by definition, satisfied by ,

. Equations (B.3) and (B.4) are verified in the same way,
with substituted for in (B.5), multiplying by , and
inserting (B.3) and (B.4).

Remark: Since is monic and the leading coefficient of
is , the leading coefficient matrix of the right-hand side

of (B.1) and of (B.4) will cancel. No positive powers ofare
present in , and no negative powers ofare present
in .
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APPENDIX C
STABILITY OF WIENER ADAPTATION FORSLOW VARIATIONS

The effect of the Wiener design when the power of the gra-
dient noise is assumed to become very large relative to the
power of the noise driving can equivalently be represented
by fixing and letting in (21) and (22). The
left-hand side of the Diophantine equation (26) will then vanish;
therefore, a limiting solution is , .
This solution is unique; see Appendix A. Since
while all other factors in (24) remain bounded for stable models,

with a decreasing signal-to-noise ratio.
The small gain theorem (see, e.g., [43]) implies that

if is causal and -stable, stability of the outer
time-varying feedback loop of Fig. 2 is preserved if

(C.1)

If and are assumed to have bounded elements, (C.1) will
be fulfilled when we perform a Wiener design [that will always
produce a stable ] if the assumed noise level is suffi-
ciently high so that .
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