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Parameter Estimation of Human Nerve C-Fibers
Using Matched Filtering and Multiple Hypothesis
Tracking

Bjorn Hammarberg (Hansson)Student Member, IEEEClemens Forster, and Erik Torebjork

Abstract—We describe how multiple-target tracking may be 0r— ‘ i . ‘ *
used to estimate conduction velocity changes and recovery con- mﬁw vt . R oty
stants of human nerve C-fibers. These parameters discriminate erverasgerarirnd] ey i bl - AT Vo
different types of C-fibers and pursuing this may promote new o NN /e - S e et
insights into differential properties of nerve fiber membranes. e "“% ’ sy - » Al

Action potentials (APs) were recorded from C-fibers in the per- L oo S AR e IMPNATA e
oneal nerve of awake human subjects. The APs were detected by a oo A " _% T K A
matched filter constituting a maximum-likelihood constant false- 1 5 Fiaoos it ons o e o]
alarm rate detector. Yo et Feend]

Using the multiple-hypothesis tracking method and Kalman fil- §
tering, the detected APs (targets) in each trace (scan) were asso=
ciated to individual nerve fibers (tracks) by their typical conduc-
tion latencies in response to electrical stimulation. The measure-
ments were one-dimensional (range only) and the APs were spaced
in time with intersecting trajectories. In general, the AP amplitude
of each C-fiber differed for different fibers. Amplitude estimation
was therefore incorporated into the tracking algorithm to improve
the performance.

The target trajectory was modeled as an exponential decay with
three unknowns. These parameters were estimated iteratively by
applying the simplex method on the parameters that enter nonlin-
early and the least squares method on the parameters that enter
linearly.
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Fig. 1. APs of two C-fibers with latencies of about 303 and 360 ms,
respectively. The responses were excited by electrical stimuli delivered at 0.25
Hz into the skin innervation territory of the fibers. Successive responses are
displayed in traces from top to bottom. At trace 13, the left unit was activated in
response to a mechanical stimulus causing a decreased conduction velocity, i.e.,
increased latency. Following this, the conduction velocity recovered gradually
as indicated by the APs returning to the latency prior to the activation. The
right unit did not respond to the mechanical stimulus and, hence, its latency
was retained throughout the recording.

MPROVING signal processing in an application where tra-

ditional tools are inadequate often generates many new chalTo study the C-fibers, action potentials (APs) are recorded
lenges. We will here describe such an application, arising frofrough a thin needle electrode inserted transcutaneously into
the need to examine the stimulus-response characteristicsief peroneal nerve of an awake human subject [1], [2]. Neu-
peripheral unmyelinated (C) fibers in human skin nerves. Kegnal activity is evoked by applying sensory stimuli in the skin
tools for the solution were to be found in a seemingly unrelatetlea innervated by the fiber of interest. One problem, however,
area, namely, radar tracking of multiple targets. is that APs originating from other fibers are also recorded by
the electrode. Their presence obstructs the examination of the

. . . . . stimulus-response characteristics as it is virtually impossible to
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territory of the C-fiber under study. For each impulse, one single
AP is evoked and appears in the recording after a certain latency
(Fig. 1, at 303 ms). To document the response characteristics of
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= above in mind, the matched filter (MF) was the detector

| of choice because it is both simple and robust.

1 | 2) Tracking: The discrimination step is crucial for the suc-

I | cess of this work and it presented an interesting challenge.
We found that a reliable algorithm can be derived by ex-
ploiting the marking phenomenon and tracking the APs

Fig. 2. Sample results from the three steps of the algorithm. (a) Detected ~ Of @ particular C-fiber in the responses to the repetitive

APs. (b) Resulting five tracks after applying the tracking algorithm. (c) Final electrical stimulus; hence, regarding the discrimination

trajectories obtained by estimating the model parameters. problem as a target tracking problem. Due to the vital

importance of this step, the multiple-hypothesis tracking

the C-fiber, a physiological test stimulus (e.g., mechanical, tem-  (MHT) method [12] was selected because it is commonly
perature, or chemical) is applied into the receptive field of the ~ considered as the best tracking algorithm.
fiber. If such a stimulus generates additional APs, the conduc-3) Parameter Estimation:Once the time course of the
tion velocity of the affected fiber decreases and the APs excited latency corresponding to a particular C-fiber unit is
by the repetitive stimuli show a noticeable increase in latency isolated, a parametric model may be fitted to the data.
(Fig. 1, traces 13-40). This change in latency is usedwaerier The current application uses a combination of the
to indicate that the C-unit responded to the applied physiolog-  Nelder-Mead simplex algorithm and the least squares
ical stimulus [4]. In addition, the latency increase provides in- (LS) method.
formation about the number of APs that were generated by therhjs paper is organized as a description of the three main steps
test stimulus [5]. _ of the algorithm. Section Ill describes how the detection is per-
To enhance the efficiency of these experiments, a computg§rmed. Section IV deals with the tracking of the APs using the
supported recording system is used [6] that both emits the repgiy T method and Kalman filtering. Moreover, it presents the la-
itive stimuli and records the responses. Often, several fibers #Rcy model and the incorporation of the AP amplitude into the
co-activated and recorded simultaneously, but due to differenggg:king algorithm. Section V presents the parameter estimation
in conduction velocity of the individual C-fibers, the APs aryiefly. Finally, Section VI illustrates the performance on actual
spaced in time (Fig. 1, at 303 and 360 ms). Using the marki'ﬂ@cordings obtained from awake human subjects.
phenomenon, itis thus possible to identify separate C-fibers and
to examine their characteristic latency responses.
In the human skin nerves, different types of C-fibers exist [7]. Il. TARGET DETECTION
Recently, it has become evident that the latency increase, due i i ) L o )
to a particular number of impulses, and the time course of their®€tecting signals hidden in high levels of noise is a delicate
recovery differ in different classes of C-fibers [8]. This finding id2SK- If the signal is a member of a set of signals with known
intriguing because it may promote new insights into differentigf@Pes and if the color of the noise is known, theatched fil-
properties of membranes in different C-fiber classes in humalfging constitutes a standard signal processing technique for op-
Previously, the analysis of the recorded traces was carried §0t2!ly @nhancing and detecting the signal. With this approach,
manually; a very time consuming task. Therefore, a computr@re actual detection is re_duced toa simple threshold test where
program that detects the APs, discriminates between APs off}-Peaks above a certain detection threshold, here dengted
inating from different C-fibers, and estimates latency shifts ai€ reported as detections of the sought signal. .
recovery constants quantitatively has been developed [9]. To simplify the derivation of the MF, four key assumptions
In this paper, we present the signal processing algorithf§re made.
used in the analysis program with emphasis on the AP discrim-1) Constant AP ShapeAll APs have the samehapeand
ination. A summary has been presented in [10] and a complete  only the amplitude of the APs differ among the units.

technical report regarding this work is available [11]. 2) White NoiseThe noise is uncorrelated.
3) Semi-stationary NoiseThe noise variance may change

from trace to trace, but is constantin each individual trace.
4) “Sparsé RecordingsThe energy of any APs in each trace
Practical applicability was the most important issue con- is negligible compared to the noise energy.
sidered during the development of the signal processipgthough these assumptions do not fully apply in this particular
algorithms. Hencepptimality was not strived for per se asapplication, experience has shown that their influence on the
it often means poor performance if key assumptions becomgerall performance is small.
invalid. Instead, the goal was to create an analysis tool that isthe first two assumptions reduces the MF design to esti-
easy to operate and quickly yields results comparable withgating the AP shape and the noise variance only. The former
manual analysis. This way, valuable time would be saved f@ias done “once and for all” using earlier recordings where sev-

E

II. ALGORITHM OVERVIEW

the benefit of the evaluation work. . eral manually detected APs were aligned and averaged to reduce
The signal processing approach we decided upon analyzesiinfluence of the noise and the background activity. The av-
C-fiber recordings in three steps (see Fig. 2). eraged potential was then low-pass filtered to further reduce the

1) Detection: Signal detection in noise is a problem withdisturbances in the frequency region where no AP energy is ex-
well-known solutions. With the considerations mentionepected.
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The last two assumptions simplifies the noise variance est- MHT
mation. Currently, a novel maximume-likelihood (ML) estimator
is used where the influence of any recorded hum is reduced by
applying a notch filter on the data presented to the estimator.

During analysis, the MF output of each trace is normalized
by its noise variance to yield a measure of the square root of
the instantaneous signal-to-noise ratio (SNHor stationary _ .
noise, this measure is directly proportional to the amplitude of P .
the AP. The benefits of this design is threefold: First, the detector Track " 17| Hypothesis
has a constant false-alarm rate (CFAR). Second, the selection ¢ Sl
the detection threshold is simple and may be set by the operatgm————=
according to the SNR level of the APs being analyzed. Third,| Prediction | 1 1 [
the MF output is a scaled amplitude estimate and can be used t=————=
improve the tracking performance, see below. Track Hypothesis
Gating
IV. TARGET TRACKING 7
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U |
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Finding a reliable algorithm to discriminate the detected APs detections
was a Cha”enge_because _tradltlonal methods were not Su'tap,&'& Block diagram of the MHT algorithm. Data flow is indicated by solid
A pattern matching technique, for example, would have poffes, control flow by dashed lines, and other intimate relations by dotted lines.

performance due to the diminutive differences of the AP sha@@ each trace, the controlling logic iterates over the current track set. The track
urrently selected is fed to the predictor where the expected AP “position” is

in these recordings. Moreover, such a technique would diStgrculated. Agateis formed around the prediction and all detections that fall

gard the Iatency information provided by the exploitation of theutside the gate are discarded. The current track and the gated detections are
marking phenomenon used by the track generator to both create updates of the track and to create

. . . entirely new tracks. The generated tracks are then stored to be used for the
A clustering algorithm, on the other hand, would indeed Uggocessing of the detections in the next trace. From the hypothesis storage, the

this information, but the time dynamics of active C-fibers woulgontrol logic selects all hypotheses associated with the current track. They are
be difficult. if not i ible. to handl updated by the hypothesis generator using the generated tracks and are then
€ drmcult, 1t not iImpossible, 1o handle. stored again. When the track iteration is completedstweesof all hypotheses

An experienced eye, however, easily takes full advantageané calculated and usedpeunehypotheses (and tracks) with a low score. The

the marking phenomenon and exploits the Iatency informati tire process is then repeated for the detections in the next trace. Note that the
HT algorithm does not depend on a particular predictor. The same algorithm

in subsequent traces by forming tracks of APs that belong #y, in principle, be used for any tracking problem. Only the predictor needs to
each other. We decided to mimic this by solving the associe changed.

tion problem as a tracking problem using the MHT method with

Kalman filtering, see below. only the most probable partitioning after each trace, the MHT
Although the tracks may be found using the latency only, tlreethod generates a number of candidate hypotheses to be eval-

AP amplitude is utilized to improve the tracking performanceiated later when more data are received. Thus, the probability

In general, the AP amplitude is different for APs originatingf choosing the correct partitioning of the data into tracks and

from different C-fiber units because the distances between tldse alarms is increased.

recording electrode and the nerve fibers differ. Using the scaledAs Fig. 3 shows, a model of how the AP latencies change

amplitude estimate that the MF provides simplifies the desidfom trace to trace is needed to evaluate the probability of each

and has performed well. hypothesis. Fig. 1 indicates that the latency is either constant or
_ _ (approximately) exponentially decreasing. Both cases may be
A. Tracking Algorithm—MHT modeled by an exponential model. An expedient way to incor-

The performance of the tracking algorithm is of vital imporporate this model in the tracking method is presented next.
tance and, hence, we selected the MHT [13] method because
it is recognized as the theoretically best approach to multitar&’ét
tracking problems. A good presentation of this algorithm and its Fundamental in any tracking system is the track prediction
implementation is found in [12]. For a short introduction, see trend filtering. The two major alternative methods are the Kalman
Appendix . filter [14] and the filter based on interacting multiple models

The MHT method is a Bayesian probabilistic approach to t{gviM) [15]. The IMM method is an extension of the multiple-
tracking problem. For each trace in the recorded data, the desdel (MM) approach to handle model switching and often pro-
tected APs are collected by the tracking system. At a given tieles the best performance. The IMM method is suboptimal,
and with a given set of detected APs, there are several pléowever, and in our application no model switches occur. This
sible ways to combine the APs into tracks. Instead of choosiagggests that the MM method would give the best performance.

e . . . , At present, the Kalman filter is used, but extending this to an

Thls is the SNR in the MF output used in the likelihood test and is almoﬁ}lM-based filterin thod is straiahtf d. if ired
four times larger than the common measure g method Is straightrorward, It required.

As the process under study is a real physical process as-
sumed to be working in continuous time, a model is based on

Prediction Algorithm—Kalman Filter

JaN

SNR,, = (

minimum AP peak-to-peak amplitud¢
noise root-mean-square value
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this assumption. To incorporate such a model in the tracking2) Measurement ModelThe measurement model is simply
process, a discrete-time model is produced by sampling titefined as
continuous-time model [16]. The measurements, however, are A/1 0 0
modeled as a discrete-time process directly. yv(k) = Hx(k) + vo(k), H= <0 0 1) (8)
1) Process Model:From Fig. 1 it seems reasonable to as-

sume that the measured latency, dengt¢d), may be modeled wherey (k) is a 2-D measurement vector containing the mea-

by sured latency and the MF output. The 2-D vecte(k) is the
A measurement noise, modeled as independent zero-mean white-
() =5 () +e(t) (1) noise Gaussian processes with a known cong{@rgovariance
T1(8) Spo + AcmoC=t) ¢ >4 (2) matrix
4 T QJ(&) 0
wheregy () is thetrue but unknown latencyy, is the latency Q:=F (V2(k)v2 (k)) = < 0 q%) : ©)

at steady stated is the latency shift due to stimulationy, is
the recovery coefficient; is the time of excitation, ane(¢) 3) Initiation and Consistencyinitial estimates of the state
is the residual consisting of model and measurement errors. 8yd its covariance matrix need to be found before applying the
selecting the true latenay (#) and its derivativey, () as state Kalman algorithm. In [11], an LS estimate using two measure-
variables, (2) may be written in state space form as an initialents is presented.
value problem with (2) as its solution. Thieterministiccon- Moreover, the model parameters need to be tuned to yield
tinuous-time state space model is then augmented with the pghsistent estimates. It is advisable to check this using the
amplitude and replaced by stochasticcontinuous-time state methods described in [18].
space mode|

V. PARAMETER ESTIMATION

dx.(f) = Ax.(t) dt + Gdw(t), 1>t () Estimating model parameters of a particular model once the

A 0 1 0 data is available is straight-forward, in principle. However, the
A=10 —a 0 (4)  estimation is obstructed somewhat due to the nonlinear data
0 0 0 model used here. In the model (2) the parameteenters non-
A 0 0 linearly, whereas the two parametegsand A enter linearly.
G=|1 0 (5) Ourapproach is an iterative method in which the nonlinear term
0 1 is estimated using the simplex method. For each step in the sim-

plex algorithm, the two linear terms are estimated through the
where x.(¢) is the three-dimensional continuous-time stateS method and the error norm is returned.
vector made up of the latengy (¢), its derivativey, (¢), and
the MF outputv/SNR. The 2-D entitydw(t) is the Wiener VI. RESULTS

increment[17] of a 2-D Wiener processs(t). The matrix A dab h di dinth b
is the state transition matrix, in whick should be as close asd AS s.tateha ove,.t ehrecor nggzare processi. mthrgelsteps y
possible to the true recovery coefficien. etecting the APs in the recorded traces, tracking their latency

Because the latency modeling errors are largest at the start3N9€s, and estimating their latency parameters. This section

the decay and are almost zero at steady state, the incremeRgpents the performance of these steps when applied to real
variance offuw: (t) (the first element oflw(t)) is defined as recordings. The detection and parameter estimation sections are
very brief because they are common methods with well-known

characteristics.
o2 (£)dt 2 B(dw, (1))
—o? (1 I e,ao—,al(t—to)) dt, t>t, (6) A. Matched Filtering

Despite the erroneous assumptions when deriving the MF,
where/; are tuning parameters. This results in a process notg@ expected reduction in detection performance has not been
thatis high at onset and decreases exponentially to its minimuproblem in practice. The MF detector is robust in terms of the
Note that this affects the latency part of the system only. FAIP shape and there is no need for retuning the impulse response
the modeling of the amplitude estimate, a constant incremerf@l different recordings. In addition, it has been incorporated in

varianceo? dt is used. the on-line data acquisition system to facilitate the experiments.
Consequently, the incremental covariance mai{x) dt of
the Wiener incremerdw(¢) is given by B. MHT

2 (4 0 The most critical part of the overall system is the tracking
A(t)dt 2F (dw(t)dw%;)) = <U€10( ) 9 ) dt. (7) of the different C-units. For this application to be useful, the
Tea number of tracking errors has to be small. Some errors are al-

o _ , _ lowed because erroneous assignments may be corrected by the
2The stochastic differential equation (3) may be interpreted as . s .
%.(t) = Ax.(t) + Ge(t), wheree(t) is two-dimensional (2-D) con- Operator prior to the statistical analysis. Below, two examples

tinuous-time white noise. are presented: one simple and one more complex.
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Fig. 5. Result of the current algorithm where several units were recorded with crossing trajesiSiigs, (=~ 4.0= 6.0 dB). (a) Time course and (b) amplitude
information of the detected APs. (c) and (d) Tracking result is included and the activated unit is marked with a thick line. The method handledaoicssiat)
because the amplitudes of the APs differed.

1) A Two Unit Recording:This basic example involves two The latency then slowly recovered to the level before the acti-
well-separated units: one with high amplitude and one with lovation.
amplitude, see Fig. 1. After matched filtering, we obtain the dataAs shown in Fig. 4, the algorithm successfully tracked both
shown in Fig. 4 where each dot represents a MF output abawgts. Note that the track of the low-amplitude unit was not lost
the selected detection thresheld- 5. First, both units were in- despite that APs were missed in some traces.
active and their latencies were constant at about 303 and 360 mé&\Jote also the two high-amplitude AP detections in traces
respectively. At trace 13, the high-amplitude unit was activatd® and 14 not assigned to any track. They probably originated
by a mechanical stimulus and its latency increased dramaticafham the high-amplitude unit, but because they were found in
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the traces directly after the activation of the unit, it is not clear VII. DISCuUSsION

whether they corresponded to the electrical impulses, the me-

chanical stimulus, or some spurious after effects of the mechan/n application of matched filtering and the MHT method to
ical stimulus. Hence, this result is considered as “optimal” or §timate parameters of human nerve C-fiber APs was presented.
least near “optimal’. The objective of the algorithm was to automate the classifica-

If only the high-amplitude unit had been of interest, th#on of recorded APs in order to quantitatively estimate conduc-

tracking would have been simplified by choosing a highéior_‘ Iatenc_y shifts and post-stimulus recovery constants of the

threshold. For example, using = 11, only the x-marked C-fiber units.

APs in the diagrams of Fig. 4 would have been detected andlhe APs were successfully detected by means of an MF con-

processed. stituting a ML-CFAR detector. Even APs with amplitudes of the
To get the best tracking result possible, the Kalman filter sét@me order of magnitude as the peaks of the noise were detected

tings used on this recording were tuned to their “optimal” valu&®rrectly with a reasonably low false-alarm rate.

for this particular unit. By estimating the parameters of the ac- The discrimination between APs originating from different

tive unit's recovery trajectory and using the consistency an&t-fiber units was carried out using the MHT method described

ysis described in [18], the Kalman filter was subjectively tunei@ [12]. Only some minor changes were introduced to adapt the

to give as consistent estimates as possible. The selected par@gthod to the application described. The results corresponded

eters were well with what an experienced physician considers to be a “cor-
rect” result. Two years experience also show that the classifica-
o =0.0375[ms™'] B =0.05[ms ] tioniis in general correct and that the need for operator interven-
2 o 4= 1 @ _ 05 me tion is limited.
0:, =210 [ms™] gy =005 [ms] The estimation of the model parameters was straight-forward
o2 =1077 [ms™] ¥ =1 using an exponential decay model. The combination of the sim-
Bo =3. (10) Plex method and the LS method worked well even for short re-

covery segments.

In principle, a robust Kalman filter setting that is optimal for In spite of the good performance, there are some aspects that

all units is desired. Experience has shown, however, that thi$@uld be improved. In the MF derivation, for example, the noise

2) A Multiunit Recording: This example is more complexiNgs, the color of the noise should have been considered when

and more realistic and involves several C-units with crossing tf& MF impulse response was tuned. Despite this deficiency, the
jectories. Several of the units were inactive during the recordif§F detector has shown to perform well on the real recordings
and one of the units (drawn with a thick line) was strongly actfS Well as to be robust to a wide range of AP shapes.
vated between trace 11 and trace 12, see Fig. 5. Moreover, therEn€ most obvious drawback of the MHT algorithm is its ex-
were two spontaneously active sympathetic C-units that may haustive computational and storage requirements. In the cases
recognized by their more irregular behavior. considered so far, these requirements have, however, not been a
It is evident from Fig. 5 that a good tracking result was Odi_m.iting factor. If they were, the track oriented MHT implemenj
tained for the activated unit as well as for the inactive ones. ition could be used as its computational and storage require-
this example, no parameter estimation was done to tune the@gnts are less demanding.
gorithms. Instead, the algorithm parameters were identical to thel he reason for choosing the MHT method in spite of its com-
ones used in the previous example. plexity is that it .is considered to be one of the best tracking
Moreover, the importance of the amplitude informatioﬁ‘ethOdS rega_rdlng to performance. Other metho_ds have var-
should be obvious as the latency trajectory of the active ulffus shortcomings. For example, the low track maintenance of
crossed the two sympathetic units, but their amplitudes differdl® nearest neighbor association method, and the typical track
Note also the tracker’s ability to discriminate between the twiyvitching behavior of the Joint Probabilistic Data Association
tracks at about 440 ms (traces 20-30) despite their closenessBR{0d are not acceptable, see [19]. o
low SNR levels. Another drawback of the current implementation is its sen-
Note, finally, the lost track between traces 45 and 46 (lateng{fiVity o errors in the model parameterthat represents an a

440 ms). This tracking error may, however, be corrected by tRdori value of the recovery time constant of the latency. It is
operator prior to the parameter estimation reasonable to believe, however, that introducing robust filtering

From the perspective of the researchers carrying out these @g_thods or replacing the Kalr_nan pred|ctor w ith an MM-basgd
periments, this is a really good result. The otherwise manuaq{/edlctorwould make the filtering less sensitive to differences in

task of discriminating the APs is here quickly performed autdhe recovery const.ant. Implementing the MM approach is prob-
matically and reliably. ably the most straight-forward because the number of observa-

tions to initiate the predictor is kept low. Otherwise, some iter-
ative initiation procedure would have to be included.
The parameter estimation residuals, finally, were neither
Fitting an exponential curve to the time course of the laten&aussian nor white due to model errors. Moreover, the esti-
is straight-forward. The LS-simplex method chosen here penated confidence intervals tended to be larger than the true
forms well and yields good parameter estimates. confidence intervals. These deficiencies existed because the

C. Parameter Estimation
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parameter estimation is based on a theory that is only asymp-
totically correct and because the trajectory lengths consideregh;
in this type of application are too short in this regard.

To further improve the performance of the algorithm, future 2]
work should include a noise covariance matrix estimator and an
MM-based target predictor. If possible, a better model of the la-
tency recovery together with a more appropriate statistical anall®
ysis of the parameter estimation would be valuable.

Nonetheless, the goal of simplifying and improving the effi- [4]
ciency of the analysis of the human nerve C-fiber recordings was
reached. The computer application developed based on the al-
gorithms presented in this paper has already shown to be usefui$]
to the research team. In the practical cases considered so far, the
overall performance of the application has been very good.

6]

APPENDIX (7]

In this appendix, a short introduction to the MHT method is (8]
given.

As signal processing in general, the results of a target tracking
method depend on the amount of data available; the more datfb]
or observationsvailable, the better the tracking result.

The main idea of the MHT method is to achieve high perfor-
mance by consideringll observations before deciding upon a
particular partitioning of the collected data. This is done by enu-
merating all possible ways of combining the observations into
tracks and false alarms, and then choosing the partitioning thi!!
is best. By noting that each combination forntsygpothesisthe
a posterioriprobability may be calculated and used to rank the
hypothesized partitionings. [

The obvious drawback of this method is its exhaustive comy13]
putational and storage requirements. It is, however, possible
to alleviate the demands and [12] describes three approachéjs‘!
gating, clustering, and pruning. The first approagditing aims  [15]
at limiting the number of hypotheses by avoiding combinations
of observations that are very distant from each other becau ]
such observations are very unlikely to originate from the same
target.

The second approactiystering aims at limiting the number
of hypotheses by separating noninteracting hypotheses in{og]
independentclusters Instead of solving one large tracking
problem, a number of smaller problems are then solved sepéil-9
rately.

The third and last approacpruning, aims at bringing down
the exponential rate of increase in number of hypotheses by dis-
carding unlikely hypotheses as soon as possible. This decreases
the number of hypotheses that give rise to new ones.

To be able to calculate the probabilities of the hypotheses, ¢
has to know some statistics about the data to partition. Mol
over, a model is needed that describes how the observation
a particular track change from trace to trace.

[17]
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