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Parameter Estimation of Human Nerve C-Fibers
Using Matched Filtering and Multiple Hypothesis

Tracking
Björn Hammarberg (Hansson)*, Student Member, IEEE, Clemens Forster, and Erik Torebjörk

Abstract—We describe how multiple-target tracking may be
used to estimate conduction velocity changes and recovery con-
stants of human nerve C-fibers. These parameters discriminate
different types of C-fibers and pursuing this may promote new
insights into differential properties of nerve fiber membranes.

Action potentials (APs) were recorded from C-fibers in the per-
oneal nerve of awake human subjects. The APs were detected by a
matched filter constituting a maximum-likelihood constant false-
alarm rate detector.

Using the multiple-hypothesis tracking method and Kalman fil-
tering, the detected APs (targets) in each trace (scan) were asso-
ciated to individual nerve fibers (tracks) by their typical conduc-
tion latencies in response to electrical stimulation. The measure-
ments were one-dimensional (range only) and the APs were spaced
in time with intersecting trajectories. In general, the AP amplitude
of each C-fiber differed for different fibers. Amplitude estimation
was therefore incorporated into the tracking algorithm to improve
the performance.

The target trajectory was modeled as an exponential decay with
three unknowns. These parameters were estimated iteratively by
applying the simplex method on the parameters that enter nonlin-
early and the least squares method on the parameters that enter
linearly.

Index Terms—Detection, matched filtering, microneurography,
multiple-hypothesis tracking, parameter estimation, spike sorting,
target tracking.

I. INTRODUCTION

I MPROVING signal processing in an application where tra-
ditional tools are inadequate often generates many new chal-

lenges. We will here describe such an application, arising from
the need to examine the stimulus-response characteristics of
peripheral unmyelinated (C) fibers in human skin nerves. Key
tools for the solution were to be found in a seemingly unrelated
area, namely, radar tracking of multiple targets.
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Fig. 1. APs of two C-fibers with latencies of about 303 and 360 ms,
respectively. The responses were excited by electrical stimuli delivered at 0.25
Hz into the skin innervation territory of the fibers. Successive responses are
displayed in traces from top to bottom. At trace 13, the left unit was activated in
response to a mechanical stimulus causing a decreased conduction velocity, i.e.,
increased latency. Following this, the conduction velocity recovered gradually
as indicated by the APs returning to the latency prior to the activation. The
right unit did not respond to the mechanical stimulus and, hence, its latency
was retained throughout the recording.

To study the C-fibers, action potentials (APs) are recorded
through a thin needle electrode inserted transcutaneously into
the peroneal nerve of an awake human subject [1], [2]. Neu-
ronal activity is evoked by applying sensory stimuli in the skin
area innervated by the fiber of interest. One problem, however,
is that APs originating from other fibers are also recorded by
the electrode. Their presence obstructs the examination of the
stimulus-response characteristics as it is virtually impossible to
decide which APs originate from the fiber under study.

To overcome this problem, Torebjörk and Hallin [3] in-
troduced a method that reveals the excitation of a C-fiber by
utilizing the so-calledmarking phenomenon. The phenomenon
stems from the slight decrease of a fiber’s conduction velocity
after an AP has been conducted. The conduction velocity then
slowly returns to its initial value.

The principle of the method is to apply an electrical impulse
repetitively, at a low frequency (0.25 Hz), into the innervation
territory of the C-fiber under study. For each impulse, one single
AP is evoked and appears in the recording after a certain latency
(Fig. 1, at 303 ms). To document the response characteristics of
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Fig. 2. Sample results from the three steps of the algorithm. (a) Detected
APs. (b) Resulting five tracks after applying the tracking algorithm. (c) Final
trajectories obtained by estimating the model parameters.

the C-fiber, a physiological test stimulus (e.g., mechanical, tem-
perature, or chemical) is applied into the receptive field of the
fiber. If such a stimulus generates additional APs, the conduc-
tion velocity of the affected fiber decreases and the APs excited
by the repetitive stimuli show a noticeable increase in latency
(Fig. 1, traces 13–40). This change in latency is used as amarker
to indicate that the C-unit responded to the applied physiolog-
ical stimulus [4]. In addition, the latency increase provides in-
formation about the number of APs that were generated by the
test stimulus [5].

To enhance the efficiency of these experiments, a computer-
supported recording system is used [6] that both emits the repet-
itive stimuli and records the responses. Often, several fibers are
co-activated and recorded simultaneously, but due to differences
in conduction velocity of the individual C-fibers, the APs are
spaced in time (Fig. 1, at 303 and 360 ms). Using the marking
phenomenon, it is thus possible to identify separate C-fibers and
to examine their characteristic latency responses.

In the human skin nerves, different types of C-fibers exist [7].
Recently, it has become evident that the latency increase, due
to a particular number of impulses, and the time course of their
recovery differ in different classes of C-fibers [8]. This finding is
intriguing because it may promote new insights into differential
properties of membranes in different C-fiber classes in humans.

Previously, the analysis of the recorded traces was carried out
manually; a very time consuming task. Therefore, a computer
program that detects the APs, discriminates between APs orig-
inating from different C-fibers, and estimates latency shifts and
recovery constants quantitatively has been developed [9].

In this paper, we present the signal processing algorithms
used in the analysis program with emphasis on the AP discrim-
ination. A summary has been presented in [10] and a complete
technical report regarding this work is available [11].

II. A LGORITHM OVERVIEW

Practical applicability was the most important issue con-
sidered during the development of the signal processing
algorithms. Hence,optimality was not strived for per se as
it often means poor performance if key assumptions become
invalid. Instead, the goal was to create an analysis tool that is
easy to operate and quickly yields results comparable with a
manual analysis. This way, valuable time would be saved for
the benefit of the evaluation work.

The signal processing approach we decided upon analyzes the
C-fiber recordings in three steps (see Fig. 2).

1) Detection:Signal detection in noise is a problem with
well-known solutions. With the considerations mentioned

above in mind, the matched filter (MF) was the detector
of choice because it is both simple and robust.

2) Tracking:The discrimination step is crucial for the suc-
cess of this work and it presented an interesting challenge.
We found that a reliable algorithm can be derived by ex-
ploiting the marking phenomenon and tracking the APs
of a particular C-fiber in the responses to the repetitive
electrical stimulus; hence, regarding the discrimination
problem as a target tracking problem. Due to the vital
importance of this step, the multiple-hypothesis tracking
(MHT) method [12] was selected because it is commonly
considered as the best tracking algorithm.

3) Parameter Estimation:Once the time course of the
latency corresponding to a particular C-fiber unit is
isolated, a parametric model may be fitted to the data.
The current application uses a combination of the
Nelder-Mead simplex algorithm and the least squares
(LS) method.

This paper is organized as a description of the three main steps
of the algorithm. Section III describes how the detection is per-
formed. Section IV deals with the tracking of the APs using the
MHT method and Kalman filtering. Moreover, it presents the la-
tency model and the incorporation of the AP amplitude into the
tracking algorithm. Section V presents the parameter estimation
briefly. Finally, Section VI illustrates the performance on actual
recordings obtained from awake human subjects.

III. T ARGET DETECTION

Detecting signals hidden in high levels of noise is a delicate
task. If the signal is a member of a set of signals with known
shapes and if the color of the noise is known, thenmatched fil-
teringconstitutes a standard signal processing technique for op-
timally enhancing and detecting the signal. With this approach,
the actual detection is reduced to a simple threshold test where
all peaks above a certain detection threshold, here denoted,
are reported as detections of the sought signal.

To simplify the derivation of the MF, four key assumptions
were made.

1) Constant AP Shape:All APs have the sameshapeand
only the amplitude of the APs differ among the units.

2) White Noise:The noise is uncorrelated.
3) Semi-stationary Noise:The noise variance may change

from trace to trace, but is constant in each individual trace.
4) “Sparse” Recordings:The energy of any APs in each trace

is negligible compared to the noise energy.

Although these assumptions do not fully apply in this particular
application, experience has shown that their influence on the
overall performance is small.

The first two assumptions reduces the MF design to esti-
mating the AP shape and the noise variance only. The former
was done “once and for all” using earlier recordings where sev-
eral manually detected APs were aligned and averaged to reduce
the influence of the noise and the background activity. The av-
eraged potential was then low-pass filtered to further reduce the
disturbances in the frequency region where no AP energy is ex-
pected.
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The last two assumptions simplifies the noise variance esti-
mation. Currently, a novel maximum-likelihood (ML) estimator
is used where the influence of any recorded hum is reduced by
applying a notch filter on the data presented to the estimator.

During analysis, the MF output of each trace is normalized
by its noise variance to yield a measure of the square root of
the instantaneous signal-to-noise ratio (SNR).1 For stationary
noise, this measure is directly proportional to the amplitude of
the AP. The benefits of this design is threefold: First, the detector
has a constant false-alarm rate (CFAR). Second, the selection of
the detection threshold is simple and may be set by the operator
according to the SNR level of the APs being analyzed. Third,
the MF output is a scaled amplitude estimate and can be used to
improve the tracking performance, see below.

IV. TARGET TRACKING

Finding a reliable algorithm to discriminate the detected APs
was a challenge because traditional methods were not suitable.
A pattern matching technique, for example, would have poor
performance due to the diminutive differences of the AP shape
in these recordings. Moreover, such a technique would disre-
gard the latency information provided by the exploitation of the
marking phenomenon.

A clustering algorithm, on the other hand, would indeed use
this information, but the time dynamics of active C-fibers would
be difficult, if not impossible, to handle.

An experienced eye, however, easily takes full advantage of
the marking phenomenon and exploits the latency information
in subsequent traces by forming tracks of APs that belong to
each other. We decided to mimic this by solving the associa-
tion problem as a tracking problem using the MHT method with
Kalman filtering, see below.

Although the tracks may be found using the latency only, the
AP amplitude is utilized to improve the tracking performance.
In general, the AP amplitude is different for APs originating
from different C-fiber units because the distances between the
recording electrode and the nerve fibers differ. Using the scaled
amplitude estimate that the MF provides simplifies the design
and has performed well.

A. Tracking Algorithm—MHT

The performance of the tracking algorithm is of vital impor-
tance and, hence, we selected the MHT [13] method because
it is recognized as the theoretically best approach to multitarget
tracking problems. A good presentation of this algorithm and its
implementation is found in [12]. For a short introduction, see the
Appendix .

The MHT method is a Bayesian probabilistic approach to the
tracking problem. For each trace in the recorded data, the de-
tected APs are collected by the tracking system. At a given time
and with a given set of detected APs, there are several plau-
sible ways to combine the APs into tracks. Instead of choosing

1This is the SNR in the MF output used in the likelihood test and is almost
four times larger than the common measure

SNR =
minimum AP peak-to-peak amplitude

noise root-mean-square value
:

Fig. 3. Block diagram of the MHT algorithm. Data flow is indicated by solid
lines, control flow by dashed lines, and other intimate relations by dotted lines.
For each trace, the controlling logic iterates over the current track set. The track
currently selected is fed to the predictor where the expected AP “position” is
calculated. Agate is formed around the prediction and all detections that fall
outside the gate are discarded. The current track and the gated detections are
used by the track generator to both create updates of the track and to create
entirely new tracks. The generated tracks are then stored to be used for the
processing of the detections in the next trace. From the hypothesis storage, the
control logic selects all hypotheses associated with the current track. They are
updated by the hypothesis generator using the generated tracks and are then
stored again. When the track iteration is completed, thescoresof all hypotheses
are calculated and used toprunehypotheses (and tracks) with a low score. The
entire process is then repeated for the detections in the next trace. Note that the
MHT algorithm does not depend on a particular predictor. The same algorithm
may, in principle, be used for any tracking problem. Only the predictor needs to
be changed.

only the most probable partitioning after each trace, the MHT
method generates a number of candidate hypotheses to be eval-
uated later when more data are received. Thus, the probability
of choosing the correct partitioning of the data into tracks and
false alarms is increased.

As Fig. 3 shows, a model of how the AP latencies change
from trace to trace is needed to evaluate the probability of each
hypothesis. Fig. 1 indicates that the latency is either constant or
(approximately) exponentially decreasing. Both cases may be
modeled by an exponential model. An expedient way to incor-
porate this model in the tracking method is presented next.

B. Prediction Algorithm—Kalman Filter

Fundamental in any tracking system is the track prediction
and filtering. The two major alternative methods are the Kalman
filter [14] and the filter based on interacting multiple models
(IMM) [15]. The IMM method is an extension of the multiple-
model (MM) approach to handle model switching and often pro-
vides the best performance. The IMM method is suboptimal,
however, and in our application no model switches occur. This
suggests that the MM method would give the best performance.
At present, the Kalman filter is used, but extending this to an
MM-based filtering method is straightforward, if required.

As the process under study is a real physical process as-
sumed to be working in continuous time, a model is based on
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this assumption. To incorporate such a model in the tracking
process, a discrete-time model is produced by sampling the
continuous-time model [16]. The measurements, however, are
modeled as a discrete-time process directly.

1) Process Model:From Fig. 1 it seems reasonable to as-
sume that the measured latency, denoted , may be modeled
by

(1)

(2)

where is the true but unknown latency, is the latency
at steady state, is the latency shift due to stimulation, is
the recovery coefficient, is the time of excitation, and
is the residual consisting of model and measurement errors. By
selecting the true latency and its derivative as state
variables, (2) may be written in state space form as an initial
value problem with (2) as its solution. Thisdeterministiccon-
tinuous-time state space model is then augmented with the AP
amplitude and replaced by astochasticcontinuous-time state
space model2

(3)

(4)

(5)

where is the three-dimensional continuous-time state
vector made up of the latency , its derivative , and
the MF output . The 2-D entity is the Wiener
increment[17] of a 2-D Wiener process . The matrix
is the state transition matrix, in which should be as close as
possible to the true recovery coefficient.

Because the latency modeling errors are largest at the start of
the decay and are almost zero at steady state, the incremental
variance of (the first element of ) is defined as

(6)

where are tuning parameters. This results in a process noise
that is high at onset and decreases exponentially to its minimum.
Note that this affects the latency part of the system only. For
the modeling of the amplitude estimate, a constant incremental
variance is used.

Consequently, the incremental covariance matrix of
the Wiener increment is given by

(7)

2The stochastic differential equation (3) may be interpreted as
_x (t) = Ax (t) + Ge(t), where e(t) is two-dimensional (2-D) con-
tinuous-time white noise.

2) Measurement Model:The measurement model is simply
defined as

(8)

where is a 2-D measurement vector containing the mea-
sured latency and the MF output. The 2-D vector is the
measurement noise, modeled as independent zero-mean white-
noise Gaussian processes with a known constantcovariance
matrix

(9)

3) Initiation and Consistency:Initial estimates of the state
and its covariance matrix need to be found before applying the
Kalman algorithm. In [11], an LS estimate using two measure-
ments is presented.

Moreover, the model parameters need to be tuned to yield
consistent estimates. It is advisable to check this using the
methods described in [18].

V. PARAMETER ESTIMATION

Estimating model parameters of a particular model once the
data is available is straight-forward, in principle. However, the
estimation is obstructed somewhat due to the nonlinear data
model used here. In the model (2) the parameterenters non-
linearly, whereas the two parametersand enter linearly.
Our approach is an iterative method in which the nonlinear term
is estimated using the simplex method. For each step in the sim-
plex algorithm, the two linear terms are estimated through the
LS method and the error norm is returned.

VI. RESULTS

As stated above, the recordings are processed in three steps by
detecting the APs in the recorded traces, tracking their latency
changes, and estimating their latency parameters. This section
presents the performance of these steps when applied to real
recordings. The detection and parameter estimation sections are
very brief because they are common methods with well-known
characteristics.

A. Matched Filtering

Despite the erroneous assumptions when deriving the MF,
the expected reduction in detection performance has not been
a problem in practice. The MF detector is robust in terms of the
AP shape and there is no need for retuning the impulse response
for different recordings. In addition, it has been incorporated in
the on-line data acquisition system to facilitate the experiments.

B. MHT

The most critical part of the overall system is the tracking
of the different C-units. For this application to be useful, the
number of tracking errors has to be small. Some errors are al-
lowed because erroneous assignments may be corrected by the
operator prior to the statistical analysis. Below, two examples
are presented: one simple and one more complex.
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(a) (b)

Fig. 4. Confirmed tracks of the tracker when applied to the two C-fiber unit recording in Fig. 1 (SNR � 6.8= 8.3 dB). (a) Time course of the latencies of
the units. (b) Amplitude information of the detected APs where the difference between the two units is clearly seen. The APs with an MF peak output above11
[dashed-dotted in (b)] are marked(�). For comments on the two marked APs in traces 13 and 14, see the text.

(a) (b)

(c) (d)

Fig. 5. Result of the current algorithm where several units were recorded with crossing trajectories (SNR � 4.0= 6.0 dB). (a) Time course and (b) amplitude
information of the detected APs. (c) and (d) Tracking result is included and the activated unit is marked with a thick line. The method handled crossingtracks well
because the amplitudes of the APs differed.

1) A Two Unit Recording:This basic example involves two
well-separated units: one with high amplitude and one with low
amplitude, see Fig. 1. After matched filtering, we obtain the data
shown in Fig. 4 where each dot represents a MF output above
the selected detection threshold 5. First, both units were in-
active and their latencies were constant at about 303 and 360 ms,
respectively. At trace 13, the high-amplitude unit was activated
by a mechanical stimulus and its latency increased dramatically.

The latency then slowly recovered to the level before the acti-
vation.

As shown in Fig. 4, the algorithm successfully tracked both
units. Note that the track of the low-amplitude unit was not lost
despite that APs were missed in some traces.

Note also the two high-amplitude AP detections in traces
13 and 14 not assigned to any track. They probably originated
from the high-amplitude unit, but because they were found in
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the traces directly after the activation of the unit, it is not clear
whether they corresponded to the electrical impulses, the me-
chanical stimulus, or some spurious after effects of the mechan-
ical stimulus. Hence, this result is considered as “optimal” or at
least near “optimal”.

If only the high-amplitude unit had been of interest, the
tracking would have been simplified by choosing a higher
threshold. For example, using 11, only the -marked
APs in the diagrams of Fig. 4 would have been detected and
processed.

To get the best tracking result possible, the Kalman filter set-
tings used on this recording were tuned to their “optimal” values
for this particular unit. By estimating the parameters of the ac-
tive unit’s recovery trajectory and using the consistency anal-
ysis described in [18], the Kalman filter was subjectively tuned
to give as consistent estimates as possible. The selected param-
eters were

ms ms

ms ms

ms

(10)

In principle, a robust Kalman filter setting that is optimal for
all units is desired. Experience has shown, however, that this is
not crucial to the performance (see, for example, below).

2) A Multiunit Recording: This example is more complex
and more realistic and involves several C-units with crossing tra-
jectories. Several of the units were inactive during the recording,
and one of the units (drawn with a thick line) was strongly acti-
vated between trace 11 and trace 12, see Fig. 5. Moreover, there
were two spontaneously active sympathetic C-units that may be
recognized by their more irregular behavior.

It is evident from Fig. 5 that a good tracking result was ob-
tained for the activated unit as well as for the inactive ones. In
this example, no parameter estimation was done to tune the al-
gorithms. Instead, the algorithm parameters were identical to the
ones used in the previous example.

Moreover, the importance of the amplitude information
should be obvious as the latency trajectory of the active unit
crossed the two sympathetic units, but their amplitudes differed.

Note also the tracker’s ability to discriminate between the two
tracks at about 440 ms (traces 20–30) despite their closeness and
low SNR levels.

Note, finally, the lost track between traces 45 and 46 (latency
440 ms). This tracking error may, however, be corrected by the
operator prior to the parameter estimation.

From the perspective of the researchers carrying out these ex-
periments, this is a really good result. The otherwise manually
task of discriminating the APs is here quickly performed auto-
matically and reliably.

C. Parameter Estimation

Fitting an exponential curve to the time course of the latency
is straight-forward. The LS-simplex method chosen here per-
forms well and yields good parameter estimates.

VII. D ISCUSSION

An application of matched filtering and the MHT method to
estimate parameters of human nerve C-fiber APs was presented.
The objective of the algorithm was to automate the classifica-
tion of recorded APs in order to quantitatively estimate conduc-
tion latency shifts and post-stimulus recovery constants of the
C-fiber units.

The APs were successfully detected by means of an MF con-
stituting a ML-CFAR detector. Even APs with amplitudes of the
same order of magnitude as the peaks of the noise were detected
correctly with a reasonably low false-alarm rate.

The discrimination between APs originating from different
C-fiber units was carried out using the MHT method described
in [12]. Only some minor changes were introduced to adapt the
method to the application described. The results corresponded
well with what an experienced physician considers to be a “cor-
rect” result. Two years experience also show that the classifica-
tion is in general correct and that the need for operator interven-
tion is limited.

The estimation of the model parameters was straight-forward
using an exponential decay model. The combination of the sim-
plex method and the LS method worked well even for short re-
covery segments.

In spite of the good performance, there are some aspects that
could be improved. In the MF derivation, for example, the noise
was assumed to be white. As this is not the case in real record-
ings, the color of the noise should have been considered when
the MF impulse response was tuned. Despite this deficiency, the
MF detector has shown to perform well on the real recordings
as well as to be robust to a wide range of AP shapes.

The most obvious drawback of the MHT algorithm is its ex-
haustive computational and storage requirements. In the cases
considered so far, these requirements have, however, not been a
limiting factor. If they were, the track oriented MHT implemen-
tation could be used as its computational and storage require-
ments are less demanding.

The reason for choosing the MHT method in spite of its com-
plexity is that it is considered to be one of the best tracking
methods regarding to performance. Other methods have var-
ious shortcomings. For example, the low track maintenance of
the nearest neighbor association method, and the typical track
switching behavior of the Joint Probabilistic Data Association
method are not acceptable, see [19].

Another drawback of the current implementation is its sen-
sitivity to errors in the model parameterthat represents an a
priori value of the recovery time constant of the latency. It is
reasonable to believe, however, that introducing robust filtering
methods or replacing the Kalman predictor with an MM-based
predictor would make the filtering less sensitive to differences in
the recovery constant. Implementing the MM approach is prob-
ably the most straight-forward because the number of observa-
tions to initiate the predictor is kept low. Otherwise, some iter-
ative initiation procedure would have to be included.

The parameter estimation residuals, finally, were neither
Gaussian nor white due to model errors. Moreover, the esti-
mated confidence intervals tended to be larger than the true
confidence intervals. These deficiencies existed because the
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parameter estimation is based on a theory that is only asymp-
totically correct and because the trajectory lengths considered
in this type of application are too short in this regard.

To further improve the performance of the algorithm, future
work should include a noise covariance matrix estimator and an
MM-based target predictor. If possible, a better model of the la-
tency recovery together with a more appropriate statistical anal-
ysis of the parameter estimation would be valuable.

Nonetheless, the goal of simplifying and improving the effi-
ciency of the analysis of the human nerve C-fiber recordings was
reached. The computer application developed based on the al-
gorithms presented in this paper has already shown to be useful
to the research team. In the practical cases considered so far, the
overall performance of the application has been very good.

APPENDIX

In this appendix, a short introduction to the MHT method is
given.

As signal processing in general, the results of a target tracking
method depend on the amount of data available; the more data
or observationsavailable, the better the tracking result.

The main idea of the MHT method is to achieve high perfor-
mance by consideringall observations before deciding upon a
particular partitioning of the collected data. This is done by enu-
merating all possible ways of combining the observations into
tracks and false alarms, and then choosing the partitioning that
is best. By noting that each combination forms ahypothesis, the
a posterioriprobability may be calculated and used to rank the
hypothesized partitionings.

The obvious drawback of this method is its exhaustive com-
putational and storage requirements. It is, however, possible
to alleviate the demands and [12] describes three approaches:
gating, clustering, and pruning. The first approach,gating, aims
at limiting the number of hypotheses by avoiding combinations
of observations that are very distant from each other because
such observations are very unlikely to originate from the same
target.

The second approach,clustering, aims at limiting the number
of hypotheses by separating noninteracting hypotheses into
independentclusters. Instead of solving one large tracking
problem, a number of smaller problems are then solved sepa-
rately.

The third and last approach,pruning, aims at bringing down
the exponential rate of increase in number of hypotheses by dis-
carding unlikely hypotheses as soon as possible. This decreases
the number of hypotheses that give rise to new ones.

To be able to calculate the probabilities of the hypotheses, one
has to know some statistics about the data to partition. More-
over, a model is needed that describes how the observations in
a particular track change from trace to trace.
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