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Abstract

We consider the problem of estimating and suppressing many unknown independent and
time-varying interferers in a spread-spectrum communication system. The interferers are
assumed to be present in a wide frequency range. In order to detect, estimate and track
the interference, we use a bank of hidden Markov model filters operating in the frequency
domain. The hidden Markov model filters’ outputs are then used to suppress the existing
interference. The computational complexity of our scheme is only linear in the number of
interferers. The simulation studies show that our proposed novel schemes adapt quickly in
tracking the time-varying nature of the interference.

1 Introduction

In this paper, we consider the problem of detecting, tracking and suppressing interference in a
spread-spectrum communication system. The interference is assumed to consist of many un-
known, independent and time-varying narrowband interferers.

There are several advantages with spreading the spectrum of the signal that you wish to
transmit; see e.g. [2, 3]. One of the major advantages is the inherent ability to reject interfering
signals whose bandwidths are small compared to that of the spread spectrum. However, the
interference may be powerful enough so that communication becomes effectively impossible. In
order to improve the performance of a spread-spectrum communication link in an interference
corrupted environment without increasing transmit bandwidth (or reducing throughput), some

additional means of interference removal must be used. The problem of interference suppression
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has been studied extensively over the last decades [2, 3, 4]. Previous work in this area can be
classified into frequency domain and time domain approaches.

Time domain techniques for narrowband interference can be split into linear and non-linear
methods. [2] provides a discussion on parametric linear techniques for narrowband interfer-
ence suppression. In these linear techniques, also known as estimator/subtracter methods [5],
a transversal filter is used to obtain estimates of the received signal based on previous samples
and model assumptions. The filter is implemented using single-sided taps (linear prediction fil-
ter) or double-sided taps (linear interpolation filter). Interpolation linear filters were found to
give greater interference suppression. Adaptive schemes based on the least mean squares (LMS)
algorithm and lattice filters have been developed [6, 7, 8]. Different models for narrowband in-
terference exist in the literature; e.g. in [8, 9], the interference is modeled as a Gaussian AR
process, in [7] as a sum of sinusoids and in [6] as a pulsed RF tone. In 1991, Vijayan and Poor
[10] suggested a non-linear technique for prediction of the narrowband interference signal that
took into account the non-Gaussian distribution of the observation noise. This led to various
nonlinear techniques to combat narrowband interference suppression in spread spectrum systems
[5, 10, 11]. The interference in [5, 10, 11] is modeled as a Gaussian AR process. For known in-
terference statistics the interference is estimated using an approximate conditional mean (ACM)
filter [12]. The ACM filter is a modification of the Kalman filter that deals with non-Gaussian
distributions in the observation or the state process. For the specified assumptions on the ob-
servation process in [5, 10, 11], the ACM filter for interference estimation turns out to be a
Kalman-type recursive filter which includes some nonlinearities. In [13], a new (suboptimal)
nonlinear filter and parameter estimator for narrowband interference suppression in spread spec-
trum systems is presented. A cross-coupled hidden Markov model (HMM) and a Kalman filter
were used to compute the desired state estimates. In [14], no assumptions on the statistics of the
involved noise processes are made. An iterative scheme based on the coordinate descent method
is proposed where the spread-spectrum signal is estimated using the Viterbi algorithm while the
interference is estimated in an /; sense using an interior point based scheme.

Frequency domain techniques are usually non-parametric and require no prior knowledge of

the characteristics of the interference. These algorithms are based on transform domain filtering;



see e.g. [7, 15, 16]. The key idea is that the received signal is estimated and used to design filters
that attenuate the signal in the frequency range where the interference is dominant. [7] employs
the fast Fourier transform (FFT) algorithm for performing spectral analysis on the received
signal, and on the basis of the spectral estimate, a transversal filter is designed for suppressing
the interference. In [15, 16], real-time Fourier transformation using a surface acoustic wave (SAW)
with a chirp impulse response built into the taps is used. In [17], the problem of suppressing
many independent narrowband interferers that are present in different frequency bins is studied.
Adaptive filtering in the frequency domain via the LMS algorithm is performed in order to track
and estimate the interference.

In this paper, we consider a similar problem to the one posed in [17]. In this paper, we assume
that there are many possible frequencies at which interferers might be present. The mazimum
number of possible frequencies at which interferers may exist can be chosen very large in order
to detect all interferers. Each interferer has an on-off keying modulation and is dedicated a fixed
phase and is purely single frequency sinusoidal. The presence and statistics of the interferers are
highly time-varying, i.e., an interferer is allowed to appear, disappear and possibly be replaced
by another interferer with different statistics. This model is physically more realistic and flexible
than a model assuming fixed interference. By modeling the amplitude of each narrowband
interferer with an independent Markov chain, the possible presence of the interferers is described
efficiently.

We use a bank of independent HMM estimators operating in the frequency domain to detect
and estimate the interference. Each of the HMM estimators yields the conditional mean estimate
of a narrowband interferer. The estimated narrowband signals are then removed prior to trans-
forming back to time domain. By detecting, estimating and suppressing the existing multiple
narrowband interferers in the frequency domain instead of in the time domain, we make use of
the fact that the interferers are independent in the frequency domain. We can therefore apply
an adaptive estimator to each of the interferers independently and thereby, the computational
complexity of detecting the narrowband interferers is linear in the number of interferers instead
of exponentially growing which would have been the case if the estimation of the interference

would have been performed in the time domain. This is the case since we in the time-domain



approach would have to investigate all possible combinations of active and inactive interferers.
Keeping the computational complexity as low as possible is crucial since the number of interferers
can be very high.

The outline of this paper is as follows. In Section 2, we describe the signal model and state
the objectives. Next, in Section 3, we propose and analyze off-line and on-line schemes for
suppression of multiple narrowband interferers. Section 4 gives some experimental results and

finally, Section 5 provides concluding remarks.

2 Signal Model and Objectives

In this section, we describe the model for the received noise corrupted signal and we then state

our estimation objectives.

Continuous-time Signal Model

We assume that the continuous-time, complex envelope of the received signal, y(t), consists of
the sum of the spread spectrum signal s(t), the interference z(t¢), and the observation noise w(t),
i€,

y(t) = s(t) +z(t) + w(t). (1)

The interference x(t), is, similar to [6], assumed to consist of at the most M superimposed

independent narrowband interferers, ™ (t), m =0,1,... M — 1, where M is a known integer, i.e.

() = 3 am(8), (2)

where

™ (t) = ™)™ m =0,1,... M — 1, (3)

where £™(t) is an unknown stochastic random process indicating the signal strength and presence
of the mth interferer at the known frequency mF.

The spread spectrum signal s(t) is assumed to be transmitted over the entire frequency range
[0, fmaz), Where frae = (M — 1)F, while the mth narrowband interferer, z™(t), operates at
frequency mF', for m = 0,1,... M — 1. Thus, the interferers are assumed to be equispaced in

frequency.



Discrete-time Signal Model
The discrete-time model is the result of sampling the continuous-time model in (1) at sampling

rate 1/T. The discrete-time observations are given as follows
Yk = Sk + T + Wk, (4)

where s is a sampled spread spectrum signal, wy, is a zero mean white circular Gaussian process
with variance o2 and the interference x is given by

M-1 )
T = Z glrcnejZﬁkaTs' (5)

m=0
The sampling period, T5, is assumed to be equal to the chip period, T, of the spread spectrum
signal. The condition 7 = T, ensures the sampled spread spectrum signal s; to be an independent,
identically distributed (iid) process. The process &', m = 0,1, ... M —1 is assumed to be constant
during the time batches bN — N,...bN — 1 for b = 1,...7T. It is denoted as A}*, b=1,...T.
The amplitude of the mth interferer, A;*, m = 0,1,... M — 1, is modeled as a discrete-time,
homogeneous, first-order, 2-state Markov chain with states ¢™ = (¢7", ¢5*), where ¢ = 0 and ¢’
is an unknown non-zero complex number, 7.e. A™ serves as an indicator function for the presence
of the mth interferer. Thus, when the mth Markov chain A}* is at state ¢{", it implies that there
is no interferer present at frequency m#F'. On the other hand, when A}" is equal to ¢7*, then the
interfering amplitude is ¢3*. The transition probability matrix of A™ is denoted by II™ = (7)),
where 7, denotes the probability that Aj, is in state ;" given that A" was in state g,'. That
is,
mm =P (A7, = qrlAy = q'), n,p € {1,2}. (6)
Of course, 7, > 0 and 212):1 T =1, Vn,p € {1,2} and m € {0,1,... M — 1}. Let 7™, m =
0,...M—1 denote the initial state probability vector that is the vector containing the probabilities
of the states of AT

am = ("), Vm € {0,1,...M — 1}, where 7, =P (A" =¢") Ym € {0,1,...M —1}. (7)

Objectives

Given the discrete-time observations gy, the objective is to propose both off-line and on-line



algorithms that

e are of low complexity. The computational complexity should increase linearly with the number

of possible interferers.

e detect accurately which frequencies mF for m = 0,1,... M — 1 are corrupted with interference.
Using the model description in Section 2, this is equivalent to estimating the state of the Markov
chain A™ form=20,1,...M — 1.

e estimate accurately with what probability the mth interferer z™, m = 0,1,... M —1, is present.

e estimate accurately the interferers z™, Vm € {0,1,... M — 1}. Using the model description in

Section 2, this is equivalent to determining ¢5*, Vm € {0,1,... M — 1}.

e estimate accurately the transition probabilities from absence to presence of the interferers,

i.e determine II"™, Vm € {0,1,... M — 1} in our model description above.

e suppress the interference, x.

3 Algorithms for Interference Estimation and Suppres-
sion

In this section, we propose off-line and on-line schemes for detection, tracking, estimation and
suppression of the multiple narrowband interferers in a spread-spectrum communication system.

The key idea of the suggested algorithms is to perform adaptive filtering in the frequency
domain using a bank of hidden Markov model (HMM) estimators (filters for the on-line scheme
and smoothers for the off-line scheme) to detect and estimate the interference. The outputs of the
HMM filters/smoothers are then used to determine the parameters of our proposed suppression
scheme which is also run in the frequency domain. We choose to perform the adaptive estimation
in the frequency domain and not in the time domain in order to make use of the fact that the
interferers are independent in the frequency domain. Therefore, the computational complexity of
detecting the narrowband interferers is linear in the number of interferers instead of exponentially
growing which would have been the case if the estimation of the interference would have been
performed in the time domain. Keeping the computational complexity as a function of the

number of interferers as low as possible is crucial since the number of interferers creating the



interference can be very high. In Fig. 1, our proposed scheme is depicted. The output data are
grouped into batches of 7" consecutive blocks. Each block contains /N data points. The discrete

Fourier transform (DFT) of the bth batch is given by

bN—1
Y(kF,0) =T, Y. yoe 8k k=0,...N—-1,b=1,...T, (8)

n=bN—-N
where F; = 1/(NTs). The received signal is, as stated in Section 2, a sum of the transmitted
spread spectrum signal, s, the observation noise, w, and the interference, x. The DFTs of each

of these components are as follows.

bN—1 o bN-1 M-1 . 27
X(kF,b) = T, > ape?d ®E=T, Y 3 grel>minTee=i vk 9)
n=bN—N n=bN—-N m=0

for k =0,...N—1, b =1,...T. The interferers 2™, m = 0,1,...M — 1 are, as previously
stated, assumed to be mutually independent in the frequency domain. Assuming the interference

is constant during one batch we have

by 1 . 2mn bN—1 i2nn (mF
Xm(sz,b) — TSAZn Z ey27ranTse—JTk — TsAgn Z 6]T(F—s— )’ (10)
n=bN—-N n=bN—N
M-1
X(kF,,b) = > X™(kF,,b) (11)
m=0

for k=0,...N -1, b=1,...T. By choosing the sampling period 7y and the number of data
points N per batch, such that F; = F and N = M, we have the following result [18]

NT,A™, ifm=k

X™(kFs,b) = { 0, otherwise k=0,..N—-1,b=1,...T. (12)
The DF'T of the observation noise is given by
bN—1 o
W(kF,b) = T, Y wee? %% k=0,...N-1,b=1,...T (13)
n=bN—-N
and finally, the DFT of the spread spectrum signal is
BN -1 o
S(kFy,b) = T, > spe vk k=0,...N—-1,b=1,...T. (14)
n=bN-N



It is straightforward to show that W (kFj, b) and S(kFy,b) are zero mean iid random variables
with variance T?No? and T2?No?, respectively, and that W (kFj, b) is Gaussian distributed. In-
voking the central limit theorem (CLT), S(kFj, b) is approximately Gaussian distributed for large
N. We then observe that the signals at each frequency bin k, consist of 1) a finite-state Markov
chain X (kF;,b) and 2) for large N, additive white Gaussian noise. Hidden Markov theory can
thus be used to extract the Markov chains impeded in the additive background noise. In the
following two subsections, we use off-line and on-line maximum likelihood (ML) techniques for

estimating and subtracting the interference.

Notation: For notational convenience, we choose to denote Y (mFj,b) at the frequency mF as
Y,". We denote the set {Y;™, b = 1,...T} as Y™ and {Y;", b = by,...b} as Y7, Sim-
ilar notation holds for S(mFj,b), X (mFs,b) and W(mF;,b). Furthermore, we let A™ denote
(AP, b=1,...T}. Let 0™ 2 {g&*, 11"}, m=0,... M — 1.

3.1 Off-line Interference Suppression Scheme

We use a bank of M independent HMM smoothers in the frequency domain, that estimate, detect
and subtract the interference present at each frequency bin. The estimation and detection of the
mth, m = 0,1,... M — 1, interferer is presented here. In order to simplify the notation for the

reader, we here drop the superscript 'm’ indicating the mth interferer.

Interference Parameter Estimation

The EM algorithm proposed in [19] is used to obtain the maximum likelihood (ML) estimate of
6 which is denoted here as M. As a by-product of the E-step, conditional mean estimates of
the state A of the mth interference is obtained. It is shown in [20] that under mild regularity
conditions, the sequence {0”)} for l =1,2,..., of the EM algorithm converges to a stationary
value of the likelihood function. The superscript ’(/)’ indicates the iteration number of the EM
algorithm. Some of the results presented in this section are derived in [21]. The EM algorithm
is outlined in Fig. 2.
First, the [th iteration of the E-step in the above mentioned EM algorithm is performed.

The Expectation Step:



The aim in the E-step is to evaluate (0, 0(”), defined in (47).
The probability density function for the complete data (),.4) can be expressed as

In f(V, Alf) = élnf(Yb A 0) 10 f(A) |0) + b_zT,;lnﬂAb 4.0 ()
where
FG 1 4,0) = e (16)
fa]6) = [0 (17)
=1
F ] Au6) = T Al ot (18)

1

Il

irj
where 0(-) denotes the Dirac delta function and o? is the sum of the variance of the spread-
spectrum signal and the variance of the observation noise after the DFT. Using Eq. (15), we

compute the function defined in (47) to be

QE.6Y) = E{lnf(V,A)| Y69} (19)
T
= ~Tom0? — 5 3 (6 400) + (% - TuNe:) 40(2)
=1
- PR 0
+Y In(@)y, () + Y D In(mi)v, (6,9),
i=1 b=21i,j=1
where
W) 2P (4, =ilY,00), 40G,5) £ P (4 =j, 4 1 =i, 09 (20)

forb=1,2,...T, i,5 € {1,2}.
From [21] the forward un-normalized a posteriori state probabilities, «, are recursively com-

puted as follows

2
@) (7) = 7 (¥e Ay =310) = 3 (Yo A = j A = 10V) 1)
i=1
2
= Y f (%A =4,09) 7o, ()
=1



and the backwards un-normalized probabilities, 3, are given by

BPG) 2 F (Veraldy =i, Y5,00) (22)
2
= >/ (yb—|—2:T7 Yo, Appr = jlAy =4, Y, 0(1))
Jj=1
2
= 3 f (VoszrYorr, Apia = 5,60) F (Yol Ay = 5,60 7
j=1

2
- Zﬁlgl(j)f (Yb+1|z4(,+1 =, g(l)) ij{)
j=1

forb=1,2,...T, i,5 € {1,2}.
Initialization for the backward probabilities is /359 (1) =1, i € {1,2}. The initial forward proba-
bilities are given by ol” (i) = 7O f(Y; | Ay = 4,00), for i € {1,2}.
Using the relations above the following relationships are achieved
oy ()6, (i)
Siray) (06 ()

(@) = (23)

and
(l)( ) al()lll(z)f (Yb|Ab = qj, 0(”) Wf;)ﬁél) (])
Y L) = . |
211 o ()7 f (Y5l A = 4;,60) 67 (7)

(24)

forb=1,2,...T, i,5 € {1,2}.
Note: When the model parameters are known, the a posteriori probabilities are computed via
Equations (21), (22) and (23) by replacing the /th parameter estimates #) by the true parameters
6.
The Maximization Step:

The aim in the M-step is to update the parameter estimates 8¢+ from the previous estimates

6D as follows

9+ = arg max Q(6, o). (25)

1. The transition probabilities, m.
The following problem is to be solved
arg max,,, Q(6,6V)

2
Y1y =1

subject to : T >0 =12

10



The solution is as follows

! .o
0 _ Zim w6 )

TS 6)

1I. The amplitude level, qs.
The state level ¢, on the [ + 1th iteration is computed by solving the following problem

arg max Q(6,60). (27)

The solution is given by

l
o _ ZbT:leé)(?)_
21?:1 TsN’Yle) (2)

(28)

Detection (State Estimation)

Here, the goal is to detect the interferer’s possible presence. Each interferer’s amplitude is, as
discussed previously, modeled as a 2-state Markov chain with one state-level being equal to zero
and the other a non-zero complex number. When the state of the Markov chain is zero, the
corresponding interferer is absent. Thus, by estimating the state of the mth interferer’s Markov
chain, we can conclude whether the mth interferer is present or not. The minimum probability
of error estimate of detection of the interferer is given as follows

interferer present if 7,5”(2) >1/2

(1)

29
interferer not present if ,”(2) < 1/2 (29)

Interference Suppression
The outputs of the HMM smoother, fy(l),qgl), are used to estimate the mth interferer. The
estimate of the narrowband interference at frequency m#F; on the bth data batch is given by the

conditional mean estimate

X 2E{a|y,00}, (30)

where )A(,Sl) denotes the estimate of X" on the /th iteration. (30) reduces to

X0 =00, b=1,...T. 1)

11



Equation (31) represents the estimate of the narrowband interferer at the mth frequency
bin, which is computed by weighting the estimate of the interferer’s signal strength by the
probability that the interferer is active. The interference suppression is performed by subtracting
the estimated interferer X, from the data Y of the mth frequency bin, prior to taking the inverse
discrete Fourier transform (IDFT). The spread spectrum signal after interference suppression is
given by

3 1 = m o-m, (1 j2m
%k = ( int(k/N) Xin{((k)/N)) Nk =0,1,...TN —1, (32)
NT, —,

where int(k/N) denotes the integer part of the division k/N, and X™® denotes the estimate of
the interferer in the mth frequency bin computed on the /th iteration of the EM algorithm.

3.2 On-line Interference Suppression Scheme

We use a bank of M independent HMM filters in the frequency domain, that estimate, detect
and subtract the interference present at each frequency bin. The estimation and detection of the

mth interferer is presented below.
Interference Parameter Estimation

The on-line stochastic gradient algorithm studied in [22, 23] is applied to the posed problem.

The model parameters are updated according to the following iterative scheme

1—p

Op = 0p 1 + 1_7/),,_1beb; (33)
where p is a predetermined real constant and
Iy = plp1 + Vo (Op—1), Iy = Vi (6), I = 0. (34)

and 6y is the initial model parameter estimate. The incremental score vector, Vj, is defined by

OF {In f (Yy, Ap|Vy_1, Ay_1, 0
Vi) 2 BT QB A OF) - (39)
0=0p_1

K, denotes the step size at the bth time instant and is chosen as

Ky = 5. (36)

12



In order to speed the convergence, K could instead be chosen as b~!, where [ is a positive, real
constant [24].
1. The transition probabilities, .

By using a differential geometric approach suggested in [25], the formulae for updating the

transition probabilities are given by the following set of equations

Gijb
Tijb = —5 , <27 (37)
7 -1 (gijp)

where 7;;, denotes the transition probability estimate on the bth iteration, and

1 —
Gijb = Gijp—1 + prleb]b; Iy = ply1 + Vi (9ij0-1) » (38)
and
ap-1(2,7 _
Vi (9ijp—1) = 2 (M - ab—l(l)gz’j,b—1> : (39)
Gijp—1

1I. The amplitude level, q,.

The element of the incremental score vector corresponding to the state level go, is given by

NT;
Vi (g2,6-1) = (Yo — NTsq2p-1) 7%(2), (40)

where g2, denotes the signal amplitude estimate of the mth interferer on the bth iteration.
ap(2) denotes the un-normalized a posteriori probability that the interferer is present on the
bth iteration. «(2) is iteratively computed from the iteration in (21), by replacing the model

parameters on the bth iteration by the model parameter estimates 6.

Detection (State Estimation)
The minimum probability of error in detecting the mth interferer using data up to time index
b is given by

interferer present if al()l)(Q) >1/2
interferer not present if a,(,l)(Q) <1/2 (41)

Interference Suppression
The outputs of the HMM filter, a, ¢o, are used to estimate the mth interferer. The estimate of
the narrowband interference at frequency mF; on the bth data batch is given by the conditional

mean estimate

X, 2E {Ap| Vs, 06} = q2p0(2), (42)

13



where Xb denotes the estimate of Xj.
Finally, prior to taking the IDFT, the data Y} in each frequency bin is reduced by the inter-
fering estimate X, that is

Yy — qapts(2) (43)

Computational Complexity

As stated previously, there is a major advantage to perform the detection, estimation and suppres-
sion of the interference in the frequency domain instead of in the time domain. If the detection of
the interferers would have been carried out in the time-domain (see Eq.(4-5)), the optimal detec-
tor given our model assumptions would have been an HMM filter /smoother. The computational
complexity of the time-domain HMM filter /smoother grows exponentially with the number of
interferers. This is the case since we have to investigate all 2/ possible combinations of active
and inactive interferers. Thus, our schemes have computational complexities that are linear in
the number of interferers instead of exponentially growing as would have been the case if we
would have worked in the time domain.

In Table 1, the computational complexities of our off-line and on-line interference schemes
are given. Here, the complexity requirements for the Fourier transformation is not included.
We choose to perform the transformation using the fast Fourier transform (FFT) which has a
computational complexity of %logQ(N ) per batch. Furthermore, the complexity requirements

for subtracting the interference for both the on-line and off-line case is O(M) per batch.

4 Experimental Results

In this section, we illustrate the performance of our proposed off-line and on-line schemes by way
of simulation studies. We investigated the performance of our algorithms by varying the level
of the amplitudes of the interfering signals, by varying the number of users transmitting spread
spectrum signals, and finally by varying the number of possible narrowband interferers. The
off-line and on-line schemes were evaluated for the case when the state level ¢J* is known and the
case when the interference amplitude is unknown and has to be estimated. We chose to compare
our schemes in terms of performance with the scheme suggested in [17]. That is, as a comparison

we ran a bank of least mean squares (LMS) algorithms in the frequency domain, that replaces

14



our bank of HMM smoothers/filters. The LMS algorithm for the mth interferer is given by
o = 3+ Yy — ), (44)

where 11 > 0. Suppression was computed by subtracting zj* from Y;™ prior to taking the IDFT.
Note that Eq. (44) reduces to our proposed online interference estimation scheme of (33) and
(40) by setting p =0, K" = uNT,/o? and of*(2) = 1.

We evaluated the results in the time-domain and we used the SNR improvement as the
performance measure. The SNR improvement is defined as

A E(lye — skl?)
SNR;,, = — )
P E(lye — sk — 2]?)

(45)

where Z;, denotes the estimate of the interference.
Common fixed parameters for all the simulations below were the following. We set the
standard deviation of the additive observation noise to be o, = 0.1, the frequency F' = 30000

and the transition probability matrix II"™, was given by

m (0.99 0.01
H _<0.01 0.99)’Vm€{1"'-M}- (46)

The number of data batches was 7" = 1600. The update constant p was chosen as 0.05. Fine-
tuning of the on-line parameters was not thoroughly investigated. For all the simulation studies
below, we ran 100 Monte Carlo simulations.

e Varying the amplitudes, ¢™(2), of the interfering signals.

The number of possible narrowband interferers were chosen as 16 and there was only one user
transmitting a random sequence of +1. We varied the amplitudes ¢™(2), m = 0,...M — 1 of
the interferers between 0.6 and 1.6. The amplitudes ¢"(2) for different m € {0,... M — 1} were
kept the same in each simulation. Firstly, we ran the off-line scheme with known state-levels
gy', m=0,...M — 1, and thereafter, we ran our off-line schemes assuming unknown state-levels
gy, m=0,...M — 1. The EM algorithm was iterated three times. The initialization of ¢3* was
then set to a random non-zero number. Next, the on-line scheme assuming known state-levels
g, m=0,... M —1, was studied. Thereafter, the on-line scheme assuming unknown state-level

g, m =0,...M — 1 was run. The initialization of ¢} was set to a random non-zero number.
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Finally, as a comparison a bank of LMS schemes was run under the same conditions. In Fig. 3,

the results are presented.

e Varying the number of users transmitting spread spectrum signals.

The number of possible narrowband interferers were chosen as 16 and the amplitudes ¢™(2), m =
0,...M — 1 of the interferers were all chosen to ¢™(2) =1, m = 0,... M — 1. The number of
users transmitting random sequences of +1 was varied between 4 and 20. Firstly, we ran the
off-line scheme with known state-levels ¢i*, m = 0,... M — 1, and thereafter, we ran our off-line
schemes assuming unknown state-levels ¢3*, m = 0,... M — 1. The EM algorithm was iterated
three times. The initialization of ¢} was then set to a random non-zero number. Next, the
on-line scheme assuming known state-levels ¢5*, m = 0,...M — 1, was studied. Thereafter, the
on-line scheme assuming unknown state-level ¢5*, m = 0,... M —1 was run. The initialization of
gy* was set to a random non-zero number. Finally, as a comparison a bank of LMS schemes was
run under the same conditions. In Fig. 4, the results are presented. Here, we notice a decrease in
the performance as the number of users increase for the on-line scheme. Though, the degradation

is not that severe for the off-line algorithm.

e Varying the number of possible narrowband interferers.
The number of users transmitting a random sequence of +1 was chosen to 1 and the amplitudes
q™(2), m=10,...M — 1 of the interferers were all chosen to ¢™(2) =1, m =0,...M — 1. The
number of possible narrowband interferers was varied between 2 and 32. Firstly, we ran the
off-line scheme with known state-levels ¢i*, m = 0,... M — 1, and thereafter, we ran our off-line
schemes assuming unknown state-levels ¢5*, m = 0,... M — 1. The EM algorithm was iterated
three times. The initialization of ¢5* was then set to a random non-zero number. Next, the
on-line scheme assuming known state-levels ¢5*, m = 0,... M — 1, was studied. Thereafter, the
on-line scheme assuming unknown state-level ¢3*, m = 0,...M — 1 was run. The initialization
of ¢I" was set to a random non-zero number. Finally, as a comparison a bank of LMS schemes
was run under the same conditions. In Fig. 5, the results are presented.

As can be seen from Figs. 3-5, the off-line scheme performs better than the on-line scheme,
which is not surprising since off-line schemes smoothes the data while on-line scheme filters the

data. To bridge the gap between the on-line and off-line schemes, fixed-lag smoothers can be
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used. The parameter estimation via the off-line scheme outperforms the parameter estimation of
the on-line scheme. The major reason why the LMS algorithm does not perform as well is that
its tracking of abrupt changes, i.e. detecting when interferers go on and off, is not as efficient as
the HMM filter/smoother since the HMM estimator makes use of the knowledge of two discrete
states. See Fig. 6 for a typical realization of the interfering signal amplitude and the estimation

via the on-line scheme versus the LMS method.

5 Conclusions

In this paper, we have studied the suppression of multiple time-varying narrowband interferers
in a spread-spectrum system and both off-line and on-line schemes have been proposed. The
presence and statistics of the interferers are highly time-varying, i.e., an interferer is allowed to
appear, disappear and possibly be replaced by another interferer with different statistics. Our
proposed algorithms detect, track and estimate these interferers by running a bank of hidden
Markov model (HMM) estimators in the frequency domain. Each of the HMM estimators yields
the conditional mean estimate of a narrowband interferer. The estimated narrowband signals are
then removed prior to transforming back to time domain. The computational complexity of our
proposed schemes is only linear in the number of interferers.

Future work will investigate the performance of our interference suppression schemes when
the frequencies of the interferers are not equispaced. Other statistics of the interferers will be
studied. Furthermore, the effects of multipath fading and the study of robustness to model

mismatches will be addressed in future work.
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Figure 1: Schematics of the proposed interference suppression schemes using a bank of HMM
estimators.

H H Off-line complexity per pass H On-line complezity per batch H

’yb O(M?22T) o(M2?)
il O(M2°T) O(M2?)
o O(MT) O(M)

Table 1: Computational complexity requirements of the algorithms.
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Algorithm 1
0. Determine the initial estimate 0.

1. Expectation step:

Evaluate
Q(0,09) 2 E{mf(¥,A|0)y,00}. (47)
2. Maximization step:
Compute
9 = arg max Q (9, 0(1)) : (48)

3.1 := 1+ 1. Iterate steps 1-3 until ||§"tY) — 00| < ¢, where ¢ is some specified
constant.

Figure 2: The EM algorithm
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Figure 3: Performance in terms of SNR improvement for varying the amplitudes, ¢"™(2), of the
interfering signals. Off-line scheme results are denoted by solid lines ', on-line scheme results
by dashed lines - -’ and finally LMS algorithm results by dashed-dotted line ’-.-’. We use ’o’ and
" to show the performance when the parameters are known and unknown, respectively.
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Figure 4: Performance in terms of SNR improvement for varying number of users transmitting
spread spectrum signals. Off-line scheme results are denoted by solid lines ', on-line scheme
results by dashed lines’- -’ and finally LMS algorithm results by dashed-dotted line ’-.-’. We use
’0’ and "*’ to show the performance when the parameters are known and unknown, respectively.
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Figure 5: Performance in terms of SNR improvement for varying number of possible interferers.
Off-line scheme results are denoted by solid lines ', on-line scheme results by dashed lines ’-
-" and finally LMS algorithm results by dashed-dotted line ’-.->. We use 0’ and "*’ to show the

performance when the parameters are known and unknown, respectively.
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Figure 6: Typical tracking of the interference amplitude via the on-line scheme with parameter
estimation versus the LMS algorithm.
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