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Abstract

A major concern for adaptive antennas is the calibra-
tion of hardware. Here we consider the calibration of
an analog beamformer, which calculates the weights
in a DSP, but weights the RF signals using a hardware
beamformer. This paper presents two novel methods
of performing a calibration of this adaptive antenna
during normal operation. This will mitigate temper-
ature drift and aging of active components. Both
methods uses a feedback of the beamformer output
signal, to calculate the error in the beamformer out-
put, or to identify the parameters in the tempera-
ture drift. The algorithms are transparent to nor-
mal antenna operation and are computationally sim-
ple. Simulations show that when using these auto-
calibration methods, the performance is independent
of variation in hardware parameters when a realis-
tic temperature drift is introduced. The proposed
algorithms are intended for use in a TDMA mobile
telephone system, but the methods are applicable in
radar systems also.

1 Introduction

The benefits of using an adaptive array antenna at
the basestation site in a mobile telecommunication
systems in order to increase spectral efficiency is well
known [1],[2]. In this paper an important issue in ar-
ray technology is addressed, namely the calibration of
the antenna array. Calibration of antenna arrays for
mobile communication systems has earlier been pre-
sented in [3]. There the sensitivity of a digital beam-
forming system to calibration errors were studied and
a method to calibrate the array prior to operation
was presented. In [4] an auto-calibration algorithm
for the transmitter part of a digital beamformer was
presented.

In this paper, the uplink, or receiving part of the
array antenna in a TDMA system, as for example
GSM, is considered. It is also assumed that we use
an analog beamformer (ABF), where the beamformer
weights are calculated in a digital signal processor
(DSP), but the weighting is performed by hardware
weighting units on the RF signals. The benefits of
using an ABF as compared to the digital beamformer,
where both weight calculation and beamforming is

performed in the DSP, is that the beamformer output
signal can be connected to an ordinary basestation
receiver. The proposed system can thus be used as
an add-on system to existing basestations to improve
system performance in "hot-spot” traffic areas.

When using the ABF, it is important to know the
transfer function between the input sampling receivers
and the point in the signal path where the weights are
applied to the signals, to be able to compensate for
this difference. Prior to start-up, this transfer func-
tion is measured using an off-line calibration algo-
rithm. However, there are active components in the
weighting units and the receivers, which are sensitive
to temperature variations and who’s characteristics
also will change due to aging. This will soon make
the off-line calibration data invalid.

In Figure 1, measurements of the temperature drift
in amplitude and phase for the hardware weighting
unit used in an ABF testbed described in [5],[6], is
presented. The measurements were performed over
a period of ten hours after a cold start-up. We can
see that the drift is approximately 0.1 dB and 1° per
hour of operation and it demonstrates the need for
frequent re-calibrations. It is therefore desirable if
the calibration can be performed simultaneous with
normal antenna operation.

This paper presents two on-line calibration algorithms,
that are transparent to normal antenna operation and
have low complexity. The first algorithm is derived
from the least mean square (LMS) algorithm and is a
non-parametric solution. The second algorithm is de-
rived using a parametric approach, where the trans-
fer function is identified and the temperature drift is
tracked. To study the performance of the proposed
algorithms, a simulation was performed, modeling a
simple signal environment with two signal sources
(mobiles) and no multipath propagation. The time
variations in the hardware was simulated by using a
parameter drift similar to the measured one. Both
algorithms succeed to maintain the output signal to
interference ratio (SIR) at the same level as with per-
fect knowledge of the transfer functions. The LMS-
like algorithm requires a slowly or non-varying sig-
nal environment, while the second algorithm actually
benefits from a rapidly varying signal environment,
which is characteristic for fading in a multipath sce-
nario.

The paper is organized as follows, in Section 2, the



model of the hardware in the adaptive antenna is
introduced and the sample matrix inversion (SMI)
algorithm is described. In Section 3, the proposed
auto-calibration algorithms are described and in Sec-
tion 4 the simulation results are presented. Finally
the results are summarized in Section 5.

2 Problem formulation

A block diagram of the adaptive antenna is shown
in Figure 2. The signals arriving at the N anten-
nas are described by the N x 1 column vector x,(t).
The noise generation in the front end is modeled as
a zero mean white Gaussian noise vector, n; (¢), with
covariance matrix oZI. The noise in the input down-
converting and sampling receivers, ny(t) is also mod-
eled as a zero mean white Gaussian noise vector, but
with covariance matrix o3I. The signals from the
antennas are split into a digital path and an analog
path. The analog path consists of cables and the
hardware weighting units. The digital part consists
of digital signal processing for weight computation
and calibration.

Assuming all weights are set to unity, the transfer
function measured between the input sampling re-
ceiver at point A in Figure 2 and the beamformer
weighting units, point B, is described by the complex
diagonal matrix D = diag[di,...,dn]. The signals
at the beamformer is denoted x”(¢) and is defined as
x"'(t) = Dx(t). Each factor d; describes the attenua-
tion and the phase shift of the analog path [ relative
to the corresponding digital path, except for the noise
ns (t)

The factors d; will in general be nonlinear functions
of the calculated weights, w, due to coupling between
the phase shifters and the attenuators. The matrix
D will thus in general be a nonlinear function of w,
i.e. D = D(w). The elements in D are assumed to
be constant over the receiver passband, but they will
change during operation due to temperature drift in
the weighting units, as seen experimentally in Figure
1.

The output from the beamformer is down-converted
to the baseband and sampled giving §(k) = y(tx) +
n3(ty). The notation #; will be used in this paper,
to denote the time continuous signal sampled at the
time instant ¢ = t;. The term ng3(¢) is the noise added
by the feedback receiver. We will assume that ng(t) is
zero mean complex Gaussian with variance o3. The
signal §(k) will be used in the calibration algorithms,
to be presented below.

2.1 The SMI-algorithm

The example antenna presented here uses the Sam-
ple Matrix Inversion (SMI)-algorithm to calculate the

adaptive antenna weights. A reference signal, s(k),

present in each transmitted burst, e.g. the training

sequence in a Time Division Multiple Access (TDMA)-
systems like GSM and IS-136, is utilized in order to

form a least-squares problem. The sampled baseband

signals of the antenna elements form a column vector

denoted x'(k). The mean square optimal weight vec-

tor is obtained by solving the Wiener-Hopf equations

[7].
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where the sample-mean covariance matrix and cross-
correlation vector are estimated by using M samples
as
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Here, (-)¥ denotes complex conjugate transpose and
(-)* denotes complex conjugate. The SMI-algorithm
tries to combine the NV antenna signals in an optimum
way, given the structure. There is no need to estimate
the direction of arrival for the impinging signals, so a
calibration of the array manifold (the common path)
is not necessary.

2.2 Calibration

Compensation of phase and magnitude differences be-
tween the digital path and analog path must be per-
formed for each antenna element, since the adaptive
antenna weights are calculated based on the sampled
signals of the digital paths, x'(k), whereas the beam-
forming is performed on the RF-signals of the analog
paths x" (t).

Prior to operation, the matrix D is computed by per-
forming a calibration. This calibration step is called
an off-line calibration and the corresponding matrix
is denoted Dg. A continuous wave (CW) signal at the
carrier frequency is injected at one antenna element
at a time by directional couplers. The attenuation
and the relative phase of that specific analog path
compared to the digital path can be measured by us-
ing the signal §(k). The calibration process is then
repeated for all N antenna branches.

If the magnitude of a weight is adjusted, the ad-
justed phase will also change, and vice versa, due
to non-ideal isolation between the phase shifter and
the attenuator in the hardware weights. The rela-
tion between the desired and the actual weight used
for weight control is stored in a look-up table with
all possible weight settings as entries. Since full ac-
cess to the control of the weighting units is required,
the off-line calibration can only be performed prior
to operation of the adaptive antenna.



During operation, temperature drift in the receivers
and weighting units and other possible changes will
degrade the performance of the adaptive antenna.
It is therefore desirable to perform some calibration
simultaneously with the main operation. This cali-
bration must be of relatively low complexity and yet
accurate enough to maintain a good performance of
the adaptive antenna. Furthermore, the calibration
should not interfere with the main operation of the
antenna.

x"(ty) and e(k) to update the weight vector as:
Desired algorithm: (p>1)
o(k) = W' (p — 1)x'(k)

e(k) = yo(k) —y(tx)
Ww(p) = W(p — 1) + ux"(tg)e" (k)

<

(4)

Where the initialization of the algorithm has been
omitted.

The constant p is the step-size parameter in the al-
gorithm and y(t) is the output of the analog beam-

3 The auto-calibrating algorithmgrmer. The algorithm (4) cannot be used since x" (¢,

3.1 The LMS-approach

This section outlines the auto-calibration algorithm
using an LMS-approach and presents the assumptions
made concerning the off-line calibration and the ther-
mal drift of the involved hardware.

A signal-flow graph of the proposed algorithm is shown
in Figure 3. The signals at the weighting units, x" (¢),

are multiplied with the weight-vector w'! (p—1), based
on the calculations in the previous frame p— 1, where

p is the frame index, ie. y(t) = w(p — 1)x"(¢).

Since adaptive arrays utilizing analog beamforming

is studied, the weights are assumed to be applied to

the data of the next TDMA frame. This is necessary

since otherwise the weights have to be calculated and

steered out during a time period that is much shorter

than a frame. This also implies that the time step in

the algorithm is one TDMA frame.

The sampled beamformer output signal, §(k), is com-
pared with the corresponding beamformer output sig-
nal in the DSP, yo(k), and the error signal e(k) =
yo (k) — (k) is formed. The signal yo(k) is calculated
by using the SMI-weights from the previous frame as
yo(k) = W (p — 1)x' (k) However, only one sample k
is used and it can be taken arbitrarily from the whole
frame p.

For calculation of the necessary adjustments an LMS-
like (least mean square) algorithm is proposed. The
aim of the algorithm is to minimize the mean squared
magnitude of the error signal e(k).

We assume that the signal vector x"(t;) relates to
x' (k) according to

x"(ty) = Dx(ty) = D{x'(k) —ma(k)}  (3)

The relationship between Dx(¢)) and x'(k) in (3) is
an approximation, since D = D(w) and w in turn
depends on x'(k). We thus assume here that the ma-
trix D is independent of the weights. It is possible
to accomplish this by designing the hardware weights
with high isolation between the phase shifter and the
attenuator.

To adjust the weights to compensate for the temper-
ature drift, the well known LMS-approach would use

is not measurable and only a noisy estimate of y(ty)
is available. The approach used here is therefore to
use x'(k), i.e. the noisy measurement of x(k), and
the matrix Dy obtained from the off-line calibration
process to estimate x”(tx), using (3). The proposed
algorithm can then be stated as follows:

Proposed algorithm:
Initialization: (p=0)

W(0) = (D) W0(0) (5)
Algorithm: (p>1)
yo(k) = W' (p — 1)x' (k)
é(k) = yo(k) — (4 6

x"(k) = Dox' (k)
W(p) = W(p—1) + px"(k)e" (k)

The fact that the calibration data from the off-line
calibration is used will only slightly affect the perfor-

mance of the gradient method since the LMS-approximation

of the gradient is in itself very crude. The correct in-
stantaneous gradient direction is given by x" (¢ )e* (k)
but here the approximation Dox’(k)é* (k) is used in-
stead. An exact analysis of the influence of the prop-
erties of this error in gradient estimate on the con-
vergence of the algorithm remains to be investigated.
Simulation studies presented in Section 4 show that
the performance of the proposed algorithm will be
satisfactory in a relatively stationary signal environ-
ment, i.e. with a slowly varying SMI-weight vec-
tor. When the signal environment is non stationary,
the long convergence time inherent in LMS-like algo-
rithms can be expected to create problems. The error
term é(k) will be large if the SMI-weight vector wyg
is not changing slowly. The performance will then be
degraded.

3.2 The tracking approach

An alternative on-line calibration method is to track
the temperature drift of the transfer functions d;, [ =
1,...,N, to form the estimated row-vector d(p) =

[(21 (p)cfQ(p)cZn(p)] The idea is to consider the

output signal y(¢x) as a linear combination of the sig-
nals z(ty), after the weights, w, as in Figure 4. Note



that the order of the weights and the transfer func-
tion coefficients d; has been switched. However, only
x'(k) and (k) can be measured, and not z(t;) and
y(tx). By using the known weights and the identi-
fied transfer function vector from the previous frame,
d(p — 1), we can estimate z(t;). The estimate is de-
noted by z(k) and element [ in the column vector z(k)
is defined as:

(k) = (k)] (p — 1)
ot “73,1(1’ - 1)
=i(h) Cil (r—1)

This regressor vector is now used in the identification
of d by forming a least-squares identification problem
utilizing the sampled output §(k). This approach is
possible since the system is assumed linear. The out-
put y(tx) is a linear combination of the regressor vec-
tor z(t):

(7)

y(te) = d(p)z(tx) (8)

By multiplying with z (¢;) and applying the expec-
tation operator, we can write

Tyz = d(p)Raz 9)

We can now estimate the least-squares estimated
temperature drift in frame p by using the estimated
covariance and cross-correlation matrices

1M
n H
Rzz - M I;z(k)z (k)
i (10)
Fja = 57 O G(R)2 (k)
k=1
and calculate the diagonal elements of D(p) as
a(p) = IA'?Qz]-?{'z_zl (11)

Note that the samples used in (10) are not necessarily
from the same frame p. The performance will be
improved if samples from several frames are used, as
discussed below.

The elements in d(p) are low-pass filtered in order
to introduce a memory in the algorithm. A first or-
der filter with a pole at 0.9 is used. This will reduce
the variance of the regressor vector and therefore im-
prove the tracking of d. Experiences from the simu-
lations show that this improves the tracking ability.
When using this indirect approach instead of the di-
rect method described in Section 3.1, samples from
the whole frame is used in the identification process,
instead of the utilization of only one sample as in the
LMS-approach. Furthermore, mobile communication
systems are interference limited and not noise limited.
Thus the noise level in x(t) (and also in z(k)) will
be low compared to the signal levels. Therefore R,
will be badly conditioned if the number of incoher-
ent rays impinging on the array is less than N. The

A1
calculation of the inverse R,, will create problems

when computing d(p) in (11) and the tracking of the
temperature drift may not succeed. This can how-
ever be mitigated by using a few number of samples
from several frames to estimate the covariance matri-
ces. This will in general make R, better conditioned.
The idea is that the fading will cause the signal com-
ponents in z(k) to vary over the frames, creating a
sequence that is persistently exciting with a well con-
ditioned covariance matrix R,,. This approach will
thus benefit from a rapidly time-varying signal envi-
ronment and as opposed to the LMS-approach pre-
sented in Section 3.1, which requires a stationary or
slowly time-varying signal environment. The reason
for this is that here we only track D which varies
more slowly than the weight vector w.

4 Simulation study

The aim of the simulation is to study the perfor-
mance of the two auto-calibration algorithms pre-
sented above. A simple signal environment with two
mobiles transmitting binary phase shift keying (BPSK)
modulated signals of equal power but with different
training sequences was used. The two signals were
transmitting on the same frequency and the wave-
length was A. The desired and the interfering signals
are assumed to impinge on an eight element uniform
linear array (ULA) from distinct directions 64 and 6;
respectively. No multipath propagation or fading is
assumed. The antenna array inter-element spacing
was A/2. The length of the training sequence was 26
symbols to comply with the GSM/DCS-1800 stan-
dard.

The received signal can be expressed as
Xq(t) = a(fa)sa(t) + a(6:)si(t)

where a(6;) and a(6;) are the array response vectors
in direction 64 and 6; and s4(t), s:(t) are the desired
and interfering signals respectively.

(12)

In the simulations the temperature drift in magnitude
and phase was generated as independent integrated
random-walk processes to obtain a “smooth” drift.
The elements of the diagonal matrix D can be written
as

d; = Aje?* I=1,...,N (13)

Where A; and ¢; are generated as integrated random
walk processes:

Ap+1) = Ailp) + o)
! (14)
wi(p+1) = pu(p) + 1_7(1_1%,1(10)

with v4;(p) and v, ;(p) being white noise sequences
of appropriate variance. A; and ¢; are initialized by
the values from the off-calibration. This gives a tem-
perature drift with statistical properties similar to
the measurements presented in Figure 1.



To reduce the conditional number (or eigenvalue spread)similar to the SMI without drift compensation. This

of the covariance matrix R, in (2), regularization
is employed to obtain a condition number approxi-
mately equal to 102. More details of this regular-
ization method can be found in [8]. The covariance
matrix can therefore be inverted without numerical
problems, and the weight vector calculated by the
SMI-algorithm will be approximately the same from
frame to frame, under steady state conditions.

This will support the one frame delay in the weight
settings. Since the LMS-algorithm proposed in Sec-
tion 3.1 is a closed loop algorithm, it is not possible
to update the weights more frequently than once per
frame; the “response” of the old weights is used to
calculate the new weights. This means that the time
step of the algorithm is one TDMA frame (or 4.615
ms in GSM/DCS-1800).

The noise variances of the integrated random walk
processes (14), that model the temperature drift of
the magnitude and the phase, sets the time scale of
the simulation and can be increased to reduce the
simulation time. It is therefore not necessary to sim-
ulate more than 500 frames corresponding to 2.3 sec-
onds in GSM/DCS-1800.

To measure the performance of the adaptive antenna,
the SIR on the beamformer output was estimated as
7 _ E(W a(0a)sat)*) _ [%"a(8a)]?
SIR = 7 = —5 (15)
E([w™a(0:)s:(t)*)  |[w™a(8;)
Here we have assumed that the noise levels are well
below the signal levels.

The SIR of the adaptive array utilizing the auto-
calibration algorithm presented in Section 3.1 is plot-
ted as a function of frame number in Figure 5. In
this particular simulation the angles of the two mo-
biles have been chosen to 8; = 15° and 6; = 43°
relative to the broadside direction of the ULA. The
step size p used in the LMS-like algorithm was 0.005.
The variances of the noise sources 07,03 and o7 were
chosen 20 dB, 40 dB and 30 dB below the signal
level, respectively. The SIR of the adaptive array
only utilizing the off-line calibration is also plotted in
Figure 5 for comparison. It is evident that the auto-
calibration algorithm is able to maintain the SIR on a
high level, whereas the performance of the traditional
SMI adaptive array is severely degraded as the drift
in the magnitude and phase of the weights is intro-
duced. The variations of the SIR is also lower for the
LMS-method. This is due to the recursion involved
in the algorithm that smoothes the SIR.

Figure 6 shows the SIR when using the identifica-
tion approach presented in Section 3.2, compared to
the SMI algorithm with the off-line calibration data
only. All simulation parameters are identical to those
in the LMS-study. Also in this case the SIR of the
auto-calibration algorithm is maintained on a high
level. However, the variations of the SIR is higher in
this case compared to the LMS-approach, and more

can be explained by the batch oriented approach in
the tracking as opposed to the LMS method where
the feedback signal smoothes the weight adjustments
and the variation of CIR is slower. In the identifica-
tion approach it is also possible to study the tracking
ability of the algorithm. The tracking of the temper-
ature drift for the fifth antenna path is presented in
Figure 7, and it can be seen that the tracking of both
magnitude and phase is successful.

5 Summary

Two algorithms are proposed for mitigating the tem-
perature drift in adaptive antenna arrays using hard-
ware weights. The two methods utilize a feedback sig-
nal from the summed beamformer output. The first
method used the initially calculated SMI-weights to
create a reference signal in the DSP. An LMS-like al-
gorithm then adjusts the hardware weights to make
the feedback signal follow the reference. The second
method attempts to track the drift in the transfer
functions, and use this tracking information to adjust
the SMI-weights. Simulations shows that the output
SIR is unaffected for both methods when a realistic
temperature drift generated as an integrated random
walk process is introduced. The SMI-algorithm with-
out compensation for the temperature drift however
suffers a considerable performance degradation. The
variance of output SIR of the LMS-approach is lower
due to the smoothing effect introduced by the recur-
sive algorithm. The LMS-approach requires a slowly
time-varying signal environment. Otherwise the al-
gorithm will lose track of the weight-vector w. The
tracking approach does not demand a slowly vary-
ing or quasi-static signal environment as the LMS-
approach. It actually benefits from rapid time varia-
tions as in a multipath environment. Such variations
in the signal environment will tend to make the input
signal to the algorithm persistently exciting. As long
as the problem of a persistently exciting input signal
can be handled, it will therefore be the more attrac-
tive approach. It is however more computationally
complex.
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