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Abstract

In order to study peripheral neural activity correlating to pain, an analysis tool that facilitates the
investigation of human unmyelinated (C-) fibers has been developed. The tool calculates important C-
fiber data such as latency changes and recovery time constants, and helps the researcher to present and
statistically process data.

By applying electrical stimuli repetitively at 0.25 Hz and additional stimuli, such as mechanical
or chemical, at the receptive field of a studied C-fiber it is possible to estimate important data. The
action potentials (APs) that are evoked by the stimuli are recorded. The recordings will usually contain
APs from several fibers. Our tool has to determine which C-fiber an AP originated from to be able to
get information about the single fibers.

To associate APs to a single C-fiber automatically, an algorithm from the radar tracking ares,
multiple hypothesis tracking (MHT), is used. The APs are treated as radar targets, and the algorithm
tracks and calculates the most probable traces. After tracking, curves are fitted to each trace and C-
fiber data are calculated. The analysis program consists of three main parts: detection, association
(tracking) of APs and estimation of important constants.

Keywords: Pain, anaysistool, C-fiber, action potentiad, MHT
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1 Introduction

This report is a master thesis work performed at the Department of Clinical Neurophysiology at
Uppsala University. The work is a part of a pain research project in which the Department of Clinical
Neurophysiology is collaborating with the Institute of Physiology and Experimental Pathophysiology
at the University in Erlangen. The aim of the project is study neurophysiological mechanisms for pain.
To get a better understanding of these mechanisms, the nerve signals that carry pain information to the
central nervous system are analyzed. Today much of the analysis is performed manually and an
automatic analysis tool would make the research more efficient.

The Department of Clinical Neurophysiology has in collaboration with the Signals and Systems
Group at Uppsala University, developed an algorithm to automatically analyze nerve signal recordings
[1]. Thealgorithm is based on the manual methods that are used today. The main part of the algorithm
is a tracking algorithm, called multiple hypothesis tracking (MHT), developed from the radar tracking
area. Why this algorithm is suitable will be clarified later in the report.

This report describes the development of an implementation of the automatic analyzing
algorithm. The aim of the system is to facilitate the investigation of pain. The thesis work includes
reading the literature in the area and building an application in Microsoft Visual C++. A mgjor effort
has been required to understand and implement the MHT algorithm, which is a quite computationally
heavy algorithm. The program should have a graphical user interface that makes it easy to carry out
the fiber analysis. The graphical user interface should also provide functionality that helps the analysts
to present and export data. Below, a brief explanation of the neurophysiological background follows,
which is needed to understand the rest of the report.

1.1 Neurophysiological background

A nerve consists of a bundle of many thousands of nerve fibers. Human skin nerves consist of fibers of
different types. They are divided into A- and C-fibers depending on their conduction velocity. In this
work, the unmyelinated nerve fibers (C-fibers) are considered as they play an important rolein pain.

1.1.1 C-fiber

The conduction velocity of the unmyelinated C-fibers is much lower than for class A fibers. Thisis
due to the small fiber diameter (*2-1 um) and the absence of a myelin sheet [2]. The small size of the
C-fibers makes them difficult to study and they are quite unexplored. The signals that they transmit are
low in amplitude and recordings often contain high levels of noise. The C-unit or C-fiber is sensitive
to stimuli in areceptive field at its end. If the receptive field of a fiber is stimulated, action potentials
(APs) may be evoked.

C-fibers are divided into afferent and efferent fibers. The afferent fibers conduct signals from the
body to the central nervous system. These fibers are divided into subclasses based on their responses
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to different kinds of stimuli. The responses are studied by applying e.g. mechanical, thermal, or
chemical stimuli. The efferent sympathetic fibers conduct signals from the brain to the body.
Sympathetic fibers attend perspiration, for example. The focus in this study is on the afferent fibers.

1.1.2 Action Potential

C-units communicate with the central nervous system by conducting electrical impulses. These
impulses are called action potentials (APs) and may be evoked by different kinds of stimuli depending
on the sub-class of the C-fiber, see above. Each time an AP arises, it has a constant and maximum
strength [2]. After evoking an AP, the conduction velocity of the fiber temporarily decreases. By
recording APs of afiber, it is possible to study some of its properties.

1.1.3 Recording Method

The recordings are performed on healthy young subjects. A microelectrode (0.2 mm diameter) is
inserted into the peroneal nerve at knee level to record the action potentials of the C-units. A pair of
needle electrodes is inserted into the receptive field (on the foot) and electrical stimuli are applied
repetitively, see Figure 1 [3,4]. The eectrical stimuli evoke APs that can be detected as spikes in the
recording. The amplitude of the APs may be in the same range as the peaks of the noise, and it is a
difficult task to identify them.

Figure 1: A pair of needle electrodes is inserted into the receptive field of the studied fibers. A

microelectrode is inserted into the peroneal nerve at knee level to record the signals. The

magnification shows the size of the electrode tip in relation to the diameters of the nerve fibers.

(Courtesy of Prof. Erik Torebjork, Dep. of Clinical Neurophysiology, Uppsala University, Sweden)
The stimuli applied during the experiment usually excite several C-units. If the axons of the C-units
are close to the recording electrode tip, the recording will contain APs from different fibers. The
amplitude of the APs depends on the distance to the recording eectrode. To be able to study single
fibers a way to discriminate the recorded APs into different fibers is needed. As mentioned before, C-

fibers have low conduction velocity. By using a long distance between the stimulating and the



recording positions, small differences in conduction velocity will result in different latencies and the
recorded APs from different C-fibers will be spaced in time, allowing identification of different C-
units. Identification of single fibers is facilitated if repetitive eectrical stimulation is applied, at a
constant frequency. This stimulus will evoke responses (APs) appearing at a stable delay (Figure 2).
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Figure 2: The action potentials from one C-fiber, stimulated with electrical impulses. By displaying
successive traces from top to bottom, the action potentials appear at a characteristic latency. In
this recording there is a fiber with latency of approximately 442 ms. The time between successive
traces is 4 s (0.25 Hz).
In 1974, Hallin and Torebjork introduced a method based on what they called the marking
phenomenon [5]. The method uses the decrease in conduction velocity after conducting an AP to
reveal excitation of a specific C-fiber. The marking phenomenon makes it possible to study how single
C-units respond to different kinds of stimuli.

The principle of the marking phenomenon is that electrical impulses are applied to the receptive
field of the studied C-fiber at a low frequency (0.25 Hz). For each impulse, one single AP is evoked
and appears in the recording at a certain latency. To study the response characteristics of a C-fiber,
additional stimuli, e.g. mechanical, chemical, or thermal, are applied to the receptive field of the fiber.
If such stimuli evoke additional APs, the conduction velocity will decrease. In that case, the AP
excited by the electrical stimuli will show a sudden increase in latency and a slow recovery (Figure 3).
This change in latency is used as a marker that the C-unit has responded to the applied physiological
stimuli.

Figure 3 shows recordings where an additional stimulus has been applied after trace 10. The
recording includes two different fibers. The additional stimulus after the tenth trace has evoked extra
APs in one of the fibers, and the conduction velocity has decreased. When the additional stimulus is
removed, the fiber gradually recovers to the conduction velocity prior to the activation. The magnitude
of the latency shift provides an estimate of the number of APs that were evoked by the provocation.

" A traceisthe recordi ng of the APs evoked by one electrical impulse



The course of the recovery may be studied and important constants like latency shift and the recovery
time constant may be estimated. Recently, it has become evident that the latency shift and the course
of therecovery are different for different classes of C-fibers. This finding is interesting since it may be
used for a quick identification of different types of C-fibersin a multi-fiber recording.
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Figure 3: A recording containing APs from two different fibers. Applying additional stimulus after
the tenth trace decreases the conduction velocity of one of the fibers (the one to the left). This
decrease is used as a marker that the C-unit responded to the applied stimuli. The gradual recovery

can be seen in the figure.

1.2 Purpose of the master thesis project

The method described in chapter 1.1 estimates the latencies of individual C-fibers, and detects the
latency shifts after activation. Although it is easy to detect APs this way, it is a very tedious process to
analyze a recording manually. The goal of this project is to develop an application that automatically
detects the APs, measures amplitudes and calculates latency shifts, recovery time constants and other
data that may be useful for the analyst.

1.3 Outline of the report

Chapter 2 describes the different parts of the automatic algorithm. The algorithm consists of three
main parts: detection, association and parameter estimation. Chapter 3 is the main chapter and it
describes the association algorithm, MHT. The theory of the MHT algorithm and the implementation
are explained. The graphical user interface is described in chapter 4 followed by a real recording
example in chapter 5 to illustrate the performance of the algorithm. Chapter 6 discusses results and
possible improvements. The Appendices contains external documentation of the code and the C++
code (on a CD-ROM).



2 Automatic algorithm overview

The three main problems that have to be solved are detection of action potentials, association of APs
to different C-units, and estimation of important parameters. The algorithms to solve these problems
are explained in [7]. The three main steps are shown in Figure 4.
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Figure 4: The three main parts of the automatic algorithm. First the AP are detected with a

matched filter, then the APs are associated to different paths with the MHT algorithm, and finally a

parametric model is fitted to the found paths.
Detection of the Aps, despite high levels of noise, is accomplished by a matched filter. All C-fiber APs
are similar in shape and differ mainly by a scalar factor. Under the assumptions that the signal is
known and that the noise is wide-sense stationary, the MF is then the optimal detector. These
assumptions are not completely true in our application but it has turned out that the MF works fine.
The recordings may contain hum from the power lines and, in order to simplify the noise variance
estimation, the hum is removed using a notch filter before the actual detection. The filtering is
performed using a threshold. Peaks in the filtered signal, with amplitude above this threshold, are
reported as APs. The threshold is set at a low value (by the user) and the output from the matched



filter can be thresholded further, using an adjustable threshold. This makes it possible for the user to
use a threshold above this value without a time-consuming re-filtering. The MF peak amplitude, the
associated latency, and the sample number are stored in the application for further processing.

When the action potentials have been detected, they should be associated to different C-units.
This association is complicated and is simplified by associating APs into paths where the analyst
manually may associate paths to C-units. We try to mimic the manual procedure by solving the
association problem using the multiple hypothesis tracking (MHT) method. The MHT method is a
bayesian probabilistic approach to the tracking problem. The implementation of the MHT algorithm is
based on [6]. The terminology “target”, “track” and “observation” will be used. In our application, a
target corresponds to a path, atrack to a C-fiber path and an observation to an AP.

When the APs have been associated to different paths, it is possible to estimate conduction
velocity (through the relaxation latency), latency shift and recovery time constant by fitting a
theoretical model to the data. The curve fitting is performed using an exponential model. We use the
simplex algorithm in combination with the least squares method to estimate the linear and non-linear
terms of the exponential model.
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Figure 5: The exponential model used.



The main parts of the application are shown in Figure 6. The document is a container class that
stores data and parameters e.g. found APs, found paths, and current threshold. The graphical user
interface consists of a number of view classes that display different kinds of information to the user.
The data file is the recorded file with some functionality added. The following chapter explains in
detail how the MHT object works and how it isimplemented.

Parameter
estimation

Document Data file

Matched
filter

Figure 6: The main parts of the application and how they are associated. The document stores data
and parameters. The GUI presents e.g. signals, found APs, found paths, and estimated curves. The
data file is the pre-recorded signal file with functionality to find APs added.
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3 Multiple Hypothesis Tracking — MHT [6]

3.1 Introduction

Multiple Hypothesis Tracking (MHT) is a tracking method that, unlike simpler tracking algorithms,
waits to decide which are the correct associations until further data has been processed. In this
application, there will at any given time be a number of plausible ways to combine APs into C-fiber
paths. If a standard assignment technique were used, the most likely combination would be chosen
after each data set had been processed. This is done, for example, in the nearest neighbor method and
may lead to miscorrelation with poor tracking as a consequence.

Thebasicidea of MHT isto form a number of candidate hypotheses to be further evaluated when
more data is available. This approach makes MHT a very good tracking method. Studies show that
MHT makes the right decisions in an environment with high probability of false alarm (Pra) at which
the nearest neighbor method fails to maintain tracks, see[7]. The MHT algorithm is recursive and each
data set is processed only once. A drawback of MHT may be the computational requirements, but in
this application thereis no need for real-time computing performance.

A path or atrack shall be formed from the APs originating from a single fiber. Only APs evoked
by the electrical impulses shall be used. A recording may contain some APs from the additional
stimuli applied to a certain fiber, but these extra APs shall not be tracked.

The algorithm overview can be seen in Figure 7. Input data are first considered for the update of
existing tracks. Gates determine which observation-to-track pairings are “reasonable” so that
generation of very unlikely hypotheses can be avoided. When gating is done, the actual track and
hypothesis formation begins. To limit the number of hypotheses, some kind of evaluation is needed.
Thisis performed by calculating a score for each track and letting the hypothesis score be the sum of
the scores for individual tracks within that hypothesis. Finally, tracks are predicted ahead to the arrival
time of the next data set (trace) and the processing cycle repeats itself.

Track and Hypothesis
formation

Gating —

A4

Input data

Prediction le— Hypothesis evaluation

Figure 7: Overview of the MHT logic.

To evaluate the candidate hypotheses, a model of the latency recovery is needed. In most cases, the
latency is either constant or approximately exponentially decreasing. Hence, an exponential model is
used to describe the time course of the latency. With this model, it is possible to predict future states
and evaluate the quality of the different tracks.
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The following chapters describe the different steps in Figure 7. Chapter 3.2 describes the
prediction logic, which also is used for the gating explained in chapter 3.3. Chapter 3.4 explains track
and hypothesis formation, and chapter 3.5 describes the hypothesis evaluation. Chapter 3.6 explains
different kinds of optimization methods, and chapter 3.7 focuses on the implementation of the MHT
algorithm.

3.2 Prediction

The prediction logic is central in al kinds of tracking systems. Prediction is used to estimate present
and future target kinematics such as position, velocity, and acceleration. In this application, the
Kalman filter is used due to its simplicity but it is easy to extend the prediction to a more complex
method like a filtering method based on interacting multiple models (IMM) [8]. The Kalman filtering
generates time-variable tracking coefficients that are determined by an a priori model for the
measurement noise and the target dynamics. If the system is linear and the measurement noise is
white, with zero-mean, the Kalman filter minimizes the variance of the prediction error. Both the
latency and the amplitude information of the APs are used in the prediction logic. For practical
reasons, the peak value of the matched filter output is used instead of the real amplitude estimate. The
filter isinitiated using the first two measurements.

The Kalman filter is derived in [1] but a brief explanation is included in this report because it is
needed to understand the gating equations. We assume that the latency follows an exponential curve
described by:

() =y, + Ae 00 3t @)

where y; is the steady state latency, A is the latency shift due to stimulation, ay is the recovery time
constant and ¢, is the time of excitation. Such an exponential decay can be modeled in discrete time as
the impulse response of a dynamic system, described by a second order sampled state space mode.
This model is combined with a first order random walk model of how the SNR at the matched filter
output” changes with time. The total state space model for the states to be estimated by Kalman
filtering is then given by:

x(k +1) =Fx(k) + v,(k), k 2K, ©)
T o

F=0 a 00, a=e™ )
b o 1

where x(k) is a three-dimensional state vector consisting of the latency, the derivative of the latency
and the square root of the SNR of the matched filter output. Here, o is an a priori guess of ag in

" An estimate of the SNR at the matched filter output is needed in other parts of the MHT algorithm.
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equation (1), T is the period between traces (constant) and F is the transition matrix. The three-
dimensional vector v4(k) is process noise which is introduced to capture errors in the approximate
dynamic model. The process noise is modeled as zero-mean, white noise with covariance matrix:

9'3/3 T2/2 Off¢(k) 0 0f

Q,k)=%/2 T o0omMW 0 o2kk) 00,0<p=<<1 )
o o THo o opf

where the possibly time-varying variance function o ?(k) describes the modeling error of the latency

due to deviation of the constant o from the true value a,. The recovery time constant is set to 0.06 in
current filter. The drift rate p for the third state is introduced to describe small changes in SNR at the
matched filter output.

The measurement model describes how measurements are collected and is defined as:

y(k) = Cx(k) + v, (k) where (5)

-} 5

wherey k isthe measurement vector containing latency and the matched filter peak output value. The
matrix C maps the state vector to the measurement vector. The two-dimensional vector v, k is the
measurement noise model ed as zero-mean, white noise with constant covariance matrix, Q.

Given the target dynamics and measurement models from eqg. (2) and eg. (5), the equations for a
Kaman filter, which provides filter estimates x(k | k) and one step ahead prediction estimates

x(k +1| k) of thestatesin (2), are given by:

X(k | k) = x(k | k —1) + K(K)[y(k) - Cx(k | kK —1)] (7.1
K(k) =P(k | k -1)CT[CP(k | k -1)CT +Q,(K)]™ (7.2)
Pk | k) = I -K(K)CIP(k | k -1) (7.3
X(k +1| k) =Fx(k | k) (7.4)
P(k +1| k) =FP(k | K)F™ +Q, (k) (7.5)

The vector difference between measured and predicted quantities (latency time and the matched filter
peak output value) is defined as:

y(k) = y(k) - Cx(k | k -1) (8)
with residual covariance matrix:

S =CPC’ +Q, ©)
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3.3 Gating

Gating is a technique for eliminating unlikely observation-to-track pairings. A gate is an area that is
formed around a predicted track position. The gate area has a certain shape and size. An observation is
correlated to those tracks that have gates that include the observation. It is common in radar tracking
applications to use a maximum likelihood gate where the size of the gate is affected by the prediction
uncertainty, see [6]. This gate tended to be too large in our application and a fixed dliptic gate was
used instead.

The normalized distance between prediction and measurement is defined as:

d’> =y’s™y (20
where yis defined in eg. (8) and S in eg. (9). Corrdation is allowed if the following reationship is
satisfied:

d’ < Gised (11)

where Gy IS the a priori set fixed gate stored in each track. Because each track stores its gate, it is
easy to change to an adaptive gate.

3.4 Track and hypothesis formation

Central in the MHT algorithm is the formation of hypotheses. When a new scan is processed, tracks
and hypotheses are generated according to Figure 8. An observation may be correated with an
existing track, with the start of a new track, or with a false alarm. It is assumed that a single target

produces no more than one observation per scan.

Loop observation set <
Loop tracks that are affected by current observation @—q¢————

Create a new track by duplicating
current track and adding current observation

Create new hypotheses by duplicating the hypotheses that included
current track, and replacing current track with new track

Have all affected tracks been updated?

Yes No

Create a new track consisting of just the current observation

Add the newly started track to all hypotheses that
existed before current observation was treated

Are all observations taken into account?

Yes No

All hypotheses are generated

Figure 8: Track and hypothesis formation loop.
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The received data set is looped to examine what tracks are affected by the different observations.
In order to associate an observation to a track, two important criteria need to be satisfied. First, the
observation must lie within the gate of the track. Second, no prior observations must have been
previously assigned to that track within the current frame time (scan). These criteria are fulfilled by
creating lists of tracks that satisfy the gating equations for each observation in the new observation set.
Pointers to the affected tracks are stored in lists that are accessed by the different observations, see
Figure 9. This guarantees that a track cannot be created and updated during the same scan.

Tracks to Update List

— —
Obs 1 Obs M
— PEE—

Track List Track List

N LZ \ N W /'

I\

Master Track List

Figure 9: The update list is used to assure that a track is updated only once per scan. The update

list stores a list of tracks to update for each observation. Only tracks in these lists may be updated,

which guarantees that a track can’t be created and updated during the same scan. The master

track list data structure is a container for all tracks (this will be explained further in chapter 3.6.1).
Once the creation of this update structure is finished, the formation of new tracks and hypotheses
begin. The update structure is traversed so that generation from one observation is completed before
the next is considered. For each track in the update structure, a new track is created with observations
from the old track plus the new observation. The new track inherits parameters such as gate, detection
probability, and Kalman filter from the old track. The new track is added to the master track list and
used to create new hypotheses from the hypotheses that included the old track. The new hypotheses
are copies from their “parents’ but with the old track replaced with the new one. When all tracks that
are affected by an observation have been updated, a completely new track, with just the current
observation, is created. The new target track is added to all hypotheses that existed before this frame
time, to ensure that all hypotheses are current. This formation logic is repeated for all new
observations.

This method is illustrated with a small example, where two data sets, with two observations each,
is used, see Figure 10. Hypotheses are presented in a matrix form where the rows are hypotheses, the
columns are observations, and the elements are tracks. Observations are denoted as yk) (jth
observation received on scan k). Tracks are denoted as Ti (ith track). A track created from another

track is denoted as Tinew track (Tiow rack)- A false alarm is denoted as 0.
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Latency

Trace

Figure 10: Two data sets with two observations each.

Observation y;(1) is considered for correlation with existing tracks, but since no tracks existed before
this frame, no tracks are affected. The update structure will be empty and only new tracks will be
created. Observation y;(7) may be a false alarm or the start of a new track, 77. These alternatives are

mutually exclusive and it is possible to create two new hypotheses:

Hypothesis y1(1)
1 T1
2 0

Table 1: Hypotheses after processing the first observation.

When observation y,(7) is considered for correlation, there will exist tracks but these tracks have
already been updated during this frame time and shall not be updated. Therefore, the possibilities are a
new target track, T2, or afalse alarm. Hypotheses 1 and 2 are replaced by the new ones.

Hypothesis y1(1) y2(1)
3(1) T1 T2
4(2) 0 T2
5(1) T1 0
6(2) 0 0

Table 2: Hypotheses and tracks after processing the first sweep.

This ends the frame time and the next data set is considered. Now, depending on the gating, the update
structure probably will contain tracks. In this example, it is assumed that all tracks are updated with all
observations (infinite gate). If we start by considering observation y;(2), we get the tracks: 73 from 77,
T4 from 72 and finally a new target track, 75. These tracks and the possibility of false alarm expand
the old hypotheses list to a total of 12 hypotheses. Hypotheses 3-6 are replaced by the new ones, see
Table 3 below.

16



Hypothesis y1(1) y2(1) y1(2)

7(3) T2 T3(TL)
8(5) 0 T3(T1)
93) T1 T4(T2)
10(4) 0 T4(T2)
11(3) T1 T2 T5
12(4) 0 T2 T5
13(5) T1 0 T5
14(6) 0 0 T5
15(3) T1 T2 0
16(4) 0 T2 0
17(5) T1 0 0
18(6) 0 0 0

Table 3: Hypotheses and tracks after processing one of the observations in sweep two.

In the same way, tracks 76, 77, and T8 are created. Updating the affected hypotheses makes a total of
34 hypotheses, see Table 4 below (the parent hypothesisis excluded for convenience).

Hypothesis y1(1) y2(1) y1(2) y2(2)
19 T4(T2) T6(T1)
20 T2 T5 T6(T1)
21 0 T5 T6(T1)
22 T2 0 T6(T1)
23 0 0 T6(T1)
24 T3(T1) T7(T2)
25 T1 T5 T7(T2)
26 0 T5 T7(T2)
27 T1 0 T7(T2)
28 0 0 T7(T2)
29 T2 T3(T1) T8
30 0 T3(T1) T8
31 T1 T4(T2) T8
32 0 T4(T2) T8
33 T1 T2 T5 T8
34 0 T2 T5 T8
35 T1 0 T5 T8
36 0 0 T5 T8
37 T1 T2 0 T8
38 0 T2 0 T8
39 T1 0 0 T8
40 0 0 0 T8
41 T2 T3(T1) 0
42 0 T3(T1) 0
43 T1 T4(T2) 0
44 0 T4(T2) 0
45 T1 T2 T5 0
46 0 T2 T5 0
47 T1 0 T5 0
48 0 0 T5 0
49 T1 T2 0 0
50 0 T2 0 0
51 T1 0 0 0
52 0 0 0 0

Table 4: Final hypotheses and tracks.

As seen in the last table, the number of resulting hypotheses will be very large even for this small
example. If the number of tracks may be decreased, the number of hypotheses will significantly
decrease. One easy way to reduce the number of hypotheses is to allow a track with just one

" Track T3 consists of T7 plus the new observation and 77 has been removed from the table.
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observation to be either a new target or a false alarm. If this method would have been used in the
previous example, the number of resulting hypotheses would have been halved. Another way to
decrease the number of tracks and hypotheses is to replace the infinite gate with a smaller one.
Additional optimizations methods are discussed in the following chapter.

3.5 Hypothesis evaluation

It is necessary to be able to determine which hypotheses and tracks are the most probable ones. Thisis
done by calculating a score for each track and Ietting the hypothesis score be the sum of the individual
tracks within that hypothesis. The track score function is derived from the maximum-likelihood
expression; -2in[PR(Z/Q)], where PR(Z/Q) is the posterior probability of the data Z given by the
partitioning Q. The partitioning Q refers to the particular assignment of observation to tracks and false
alarms.

Track status is defined in terms of life stages. In this application, we use the commonly defined
life stages but with one small difference: confirmed tracks that are deleted are called terminated. C-
fibers that respond to additional stimuli make a sudden increase in latency with an ended track as
result. Terminated tracks are not considered for updates but are still used for hypotheses evaluation
and may be included in the final result. The deletion logic is dependent on the track life stage. The
distinction between a single-point hypothesis representing a new true target and a single-point
hypothesis representing a false target (i.e. a false alarm) is eliminated for convenience. The score is
updated each time an observation is added to a track. After each frame, the score of all tracks that were
not updated are calculated recursively. We assume that for each detection (beyond the initial one)
associated with a track, the probability density of the residual vector is the Gaussian likelihood
function, given by:

d?

) =—S (12)
(2m) 8|

whered and S are defined in equation (10). This probability density is converted to a finite probability
within space cells (see Figure 11). The log likelihood expression for data association becomes, see [6]
chapter 9:

g g

_ BNT E O PD O
L =1 Eﬁ LS 13
"BB. 2 nE(l-PD )a(20)"2 [ls|H 13)

where Byr is the new target density, Ber isthe false target density and M is the measurement dimension.
The initial probability of detection is set by the user (the default value is 0.98) and used to calculate
the Pp connected to each individual track with more than one observation, see equation (17). The

target densities, Byrand Ber, are defined as:
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where Iyr is the new target intensity per space cell and /o iS the clutter intensity [1/ms]. Both these
intensities may be changed in the application. V_, is defined to be a measurement volume el ement

such that independent true target detection and false alarm events occur within each element (in this

casean area, AAmp * AlLat ), see Figure 11.
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Figure 11: The volume element (space cell) such that independent true target detection and false
alarm events occur within each element. The latency width is determined by the resolution of the
matched filter. The fine threshold is set in the application and the maximum amplitude is calculated
during the matched filtering.

3.5.1 Potential track

A potential track consists of a single observation, which may be the start of a new track or a false
alarm. A potential track is deleted if its score falls below a given threshold or if it misses an update
opportunity. The score of a potential track is calculated according to:

O
gngﬁ Bur E i=0
L=00 B=0O (16)
O ~
Q‘i—l-'-(l_PD) i>0

where P, is the estimated probability of detection (the initial user set value is used) and i is the

number of scans since the track was created.

3.5.2 Tentative track

If a second observation is added to a potential track, the false alarm option is eliminated. Like the
potential track, atentative track is deleted if its score falls below a given threshold. A tentative track is
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allowed to miss a number of consecutive update opportunities before it is deleted. The detection
probability is calculated recursively according to:

P, (k) =(1-€&x)P, (k - 1) +&op [1_ 0 (athresh - 5(k))] (17)

where A, is the forgetting factor, a,,.,iS the chosen fine threshold and a is the amplitude estimate.

The scorefor tentative (and confirmed) tracks function is implemented according to egquation (13). We
have a two dimensional measurement vector (M=2) and the score becomes:

O
Sn%éﬂﬁ i=0
O O@er
L = El—,-_l +In(1-P,) i >0, missed detection (18)
: 5 p Eoa
o, ,+ndl—2 O =7 i >0, detection added
E %FT 26 |sif E 2

where S, is the residual covariance matrix associated with track i at the /th observation. o is the
normalized distance associated with the fth observation of the ith track. Thefirst term (i=0) is the score
resulting from the track initiation. The second term is a penalty term arising when detections are not
received. This term approaches negative infinity as Pp approaches unity. The final term is the score
resulting from an added observation. The magnitude of the final term depends on the distance between
the prediction and the added observation, see equation (10).

3.5.3 Confirmed track

The only difference between a tentative track and a confirmed track is in the deletion logic used. A
confirmed track must not be deleted and is instead terminated. The termination is performed when the
score would be lower than the maximum score achieved, even if a new observation would be added.
The score is computed in the same manner as for tentative tracks. A tentative track becomes confirmed
if it satisfies the criterion:

Li > Lconf (19)

where LqoriSthe apriori set confirmation threshold chosen by the user.

3.5.4 Terminated track

A terminated track is defined as a track that is no longer active but still affects the hypotheses. A
terminated track is formed when a confirmed track is deleted. The terminated track is not a candidate
for further updates but may be part of the final result. The score of a confirmed track will rise to a
maximum and then, if the track is lost, start to decay. The amount of decay relative to the maximum
score determines whether termination is to be performed. The termination condition is defined as:
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The score of a confirmed track that is ended will be below the maximum score of the track because of
the penalty score for the missed update opportunities. When the track is terminated, it should return to
its state before the consecutive misses. This means that the score of the terminated track is to be set to
the maximum score of the confirmed track.

3.6 Optimization methods

3.6.1 Shared objects

To make an efficient implementation, it is important to notice which objects are shared. The
observations may be used by several tracks in different hypotheses. Thus, they are stored in a shared
data structure where the tracks use pointers to build lists of correated observations. The tracks are also
shared, because different hypotheses may use the same track. This fact is utilized by storing the tracks
in a common data structure in each cluster, called a master track list. Then, each hypothesis stores
pointers to the tracks in the master track list.

Track sharing produces some additional complications. It is not possible to delete all tracks used
by a hypothesis that is deleted. A mechanism is required in order to decide if a track may be deleted
and unused memory to be reclaimed. This is done by counting the number of hypotheses attached to
each track and storing this information in the individual tracks. The track sharing implies that there
may exist many more hypotheses than tracks. To avoid a track being processed several times, some
operations (e.g. gating, calculation of score) are performed directly on the tracks. Often the operations
will be performed on all the tracks and it is convenient to add such functionality to the master track
list. In the same manner, it is convenient to perform some operations on all hypotheses (e.g. pruning,
combining and calculation of scores) and such functionality is added to the hypothesis list.
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Hypothesis List
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Master Track List

Figure 12: The structure of the hypothesis list. Each hypothesis includes an individual track list.
This list is internally double linked and stores pointers to the tracks in the master track list.

3.6.2 Hypotheses limitation methods

3.6.2.1 Combining

Hypothesis limitation methods are required to keep the number of hypotheses at a reasonable level. A
way to limit the number of tracks is to combine similar tracks. Combining is done using the N-scan
criterion because of its ease of implementation. The N-scan criterion combines tracks that share the N
most recent observations. The track with the highest score is chosen to replace the others in each of the
hypotheses. The hypothesis score must remain unchanged after track combining because this
combining procedure is essentially a way to limit the number of tracks to be stored. This constraint is
maintained by storing the score differences in a residual score, SCRES, in each hypothesis. Whenever
atrack is replaced, SCRES is incremented by the difference in score between the former track and the
track that is replacing it. The hypothesis score is calculated as the sum of the score of the tracks
contained plus SCRES (negative).

This method works fine if, like in common radar tracking applications, the interest is in the
current state. The drawback of the N-scan criteria is that it does not guarantee hypotheses with track
sets that are compatible’ beyond the N latest scans. Tracks in a hypothesis may be replaced by better
ones and there is no guarantee that these tracks are compatible with the rest of the track set. This
means that tracks may overlap. In the default configuration there is no track combining used but it is
possibleto turn it on by setting a N-value in the application. To avoid lots of overlapping tracks the N-
value should berather large (>2).

" Compatible means that tracksin a set doesn’t share observations
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Hypotheses that have the same sets of tracks may also be combined. Hypotheses are changed
when tracks are combined and when tracks are deleted. In this application, combining hypotheses
means dropping the one with the lowest score.

3.6.2.2 Pruning

The most important way to limit the number of hypotheses is through pruning. We use a smple
method where the number of hypotheses is limited to the M most likely. The number of hypotheses to
be kept after processing each observation and after processing all observations in a frame (scan) is My
and M., respectively. A larger number of hypotheses should be kept after processing each observation
and therefore M, should exceed M.

The pruning is implemented in a ssimple way. If the number of hypotheses exceeds 2*M,, we
select and retain the M best hypotheses. If the number of hypotheses is below 2*M,, we delete the
worst hypothesis until the limit (M, depending on whether the pruning is after an observation or after
the hole frame) is reached.

3.6.2.3 Clustering

If the entire set of hypotheses is divided into sets of independent clusters it is possible to increase the
calculation speed. A cluster is by definition a set of hypotheses that share a set of observations.
Different clusters must not contain the same observation. Validating to which cluster an observation
belongs to is done in the gating procedure. If more than one cluster is affected by an observation, the
clusters must be merged to form a supercluster. The merging is done by saving one of the involved
clusters and create all combinations of the hypotheses that were included in all merged clusters. All
tracks, from the merged cluster set, are copied to the supercluster. Once having assigned an
observation to a certain cluster, hypothesis generation proceeds only internally to that cluster.

3.7 Implementation

3.7.1 MHT algorithm

The MHT logic used in this application is illustrated in Figure 13. Observations are gated with the
existing tracks and an update structure is formed. If observations satisfy gates of tracks within more
than one cluster, the clusters are merged. When all observations have been processed and the update
structure is completed, the formation of tracks and hypotheses begins. The number of hypotheses is
limited by combining and pruning methods. After traversing the whole update structure, track deletion
and prediction for the next scan occur. Before the cycle repeats, the best hypothesis from each cluster
is sent to the rest of the application and plotted in the main graph.
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New sweep

Collect observations with amplitude above the fine threshold

Loop observation set <

Gate with existing clusters

Number of clusters that are affected by this observation

0 1 >1
Create new Merge affected
cluster clusters

Are all observations gated?

Yes No

Loop observations and process the cluster <
that shall be updated
|

New cluster?

No Yes

|
Create new tracks and calculate score
Generate all possible hypotheses
|

Pruning after processing an observation (keep M1 hyps)

Are all observations treated?

Yes No

Combine similar tracks

Combine hypotheses with
equal track sets

Pruning after processing the hole frame (keep M2 hyps)

Filter all tracks and
remove bad ones

Delete empty clusters

Plot the most possible
hypothesis of each cluster

Figure 13: Flow chart of the MHT logic.

3.7.2 Classes

An overview of the multiple hypotheses tracking algorithm implementation is as follows: The MHT
object contains a linked list of clusters. Clusters contain linked lists of hypotheses. Hypotheses are
represented by some parameters and a linked list of used tracks. Finally, the tracks are represented by
some parameters and a linked list of observations. The class objects chosen are the underlined. These
arethe main MHT classes but some more have been discussed in the text. It has been mentioned that it
is convenient to perform operations on whole set of tracks, hypotheses, and clusters. Therefore some
additional classes like track list, hypothesis list, and cluster list is added.
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The lowest level dement in the data structure is the observation object, containing information of
a single observation. This class of object contain information about id, sweep number, amplitude,
latency, and sample number. It may seem redundant to store both the latency and the sample humber
but this has turned out to be convenient.

The next leve is the track object. This object contains a linked list of observations and some
parameters. The parameters include current gate, score, the estimate of the detection probability, a
pointer to the Kalman filter (makes it easy to change the prediction technique), and the track life stage.
A track actually contains a linked list of hypotheses that are attached to it, because we thought that this
would be good. For the moment, this list is unused but remains in the code. This list class is called
hypothesis list and the main hypotheses class is called master hypothesis list.

A hypothesis contains a doubly linked list of track pointers, current score achieved from tracks,
and aresidual scorethat originate from the track combining.

A cluster contains a master track list, a master hypothesis list, and an update structure used to
assure that new tracks aren’'t updated during the frame time when they where created. A cluster also
knows whether it was created during this frame time.

The MHT object contains alist of clusters. It is convenient to perform commands on the entire set
of clusters, and thus functionality is added to the cluster list. The MHT class also contains a structure
to mark which cluster that shall be updated by each observation. The class overview can be seen in
Figure 14.

APPLICATION

|

CCltToUpdate

\ CTrksToUpdate

Figure 14: Overview of the MHT classes.
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3.7.3 Data structures

All lists are double linked which makes them easy to traverse. Element insertion is fast at the list head
and at the list tail. A sequential search is needed to look up an eement by value or index. This search
method is slow and should be avoided if possible. Most of the lists have functionality added which
makes it possible to perform actions on whole sets of objects. An overview of the data structure is
presented in Figure 15.

MHT

Cluster List

Cluster 1 Cluster 2 Cluster K

—

-—

Master Track List 1[] Hypothesis List 1

Track List

‘ ] }47 Hypothesis 1
[L /7w 1]
|
Track 2 4 ¢
l
|-

M 1

Track List

Hypothesis M

Track 1

Track N

Figure 15: Overview of the used data structures.

The MHT object contains a list of all the clusters. A cluster contains a master track list and a master
hypothesis list. The structure of these lists is seen in Figure 15. The track data structure is displayed in
Figure 16.
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Figure 16: Track object overview.
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4 Graphical User Interface

Theanalyzing tool will be used by experienced analysts. They want to be able to:

» Display information of the chosen file

» Display successive recorded signals

» Display detected APs

* Analyze parts of the data file

» Display the amplitude of the APs and make it possibleto set athreshold

» Display found paths

e Calculate important C-fiber data

»  Edit paths that are found by the MHT algorithm

* Make presentation and further analysis easy
The GUI is implemented in a way that makes it possible to focus on the parts that is needed for the
moment. All windows may be resized and be floating or docked~. Even docked windows may be
resized although this affects the other windows. Windows that are not being used for the moment may
be closed down and redisplayed when the need arises. The window customization is a bit complicated
but the application remembers the windows settings between sessions.

The detection of APs is automatically done when a data file is opened. To avoid that this quite
time-consuming filtering is done every time a data file is analyzed, the found APs are stored in a
project. This project also stores information about threshold settings, MHT algorithm settings, found
paths and their parameters. This makes it easy to continue a previously started analysis. Information
about the datafile that is connected to the project is displayed, see Figure 17.

Filename: MMBTII06E

Date: 18.03.97-10:28

Sweeps: 746

Starttime [ms]: 430

End time [ms]: 630

Samp. freq [Hz). 31240

Comment. capsaicin and ton pressure

Figure 17: Information about the attached data file is displayed.

The data files that are analyzed may be more than hour long. If the whole data file is viewed, it is
difficult to do any analysis. Therefore an infinitely variable zoom ability has been implemented. This
makes it possible to study everything from a single trace to the whole file. The signals, action

" Docked meansthat the border of the window is removed and it is put into the main window.
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potentials, found paths, and fitted curves are displayed in a scrollable view, see Figure 18. By default,

the tracking is done on the data shown on the screen only.
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Figure 18: A scrollable view with infinite variable zoom abilities makes it possible to customize the

viewed area. The view displays successive traces from top to bottom.

The user may choose which AP that shall be used in the tracking. This is done in a window that
displays latency versus amplitude. A rough threshold is used in the matched filtering and it is possible
to dynamically set a threshold above this. This window is separated from the main view area but they

display the same set of AP (chosen in the main view).
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Figure 19: The threshold, seen as a red line, is set dynamically by the user.

When the filtering, tracking, and curve fitting is done, the resulting parameters are displayed in a
window. The user may select a row in this window and the corresponding path will highlight in the
other windows. Parameters from a row or the entire window are easily exported to another program for

further processing. The parameters displayed are latency (y,), latency shift (A), and recovery time

constant (a), see Figure 20.
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Path no: {0y A Alpha -
1 59048 -9.65 33
2 56340 -473 358
55336 -040 331

3

4 46444 5030 94
] 511.24 2718 D6
G -185.81 65005 01
7 49191 1853 482
2 48420 2TBY 174
a 48252 1543 266
10 396.27 9356 06
11 369.33 11640 11
12 48511 700 .7
13 50426 5481 a7
14 46989 BO9 476 LI

PR

Figure 20: The parameters of the fitted curves are displayed in a table. The user may select a row
and the corresponding path will highlight in the other views.

The analyst may change found paths manually. This is done exclusively with the mouse, see Figure
21. Found paths may also be completely deleted.
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Figure 21: Editing a path that is considered wrong. To the left, the path has been selected. Then the

user uses the mouse to change the path. The rightmost picture shows the resulting path.
Important information is displayed in the status bar on the bottom panel of the application. The
information displayed is depending on what action the user takes. For example if a single AP is
selected, the unique id, amplitude, and latency are displayed. Current threshold as wdl as the sweep
and latency of the current mouse position are always displayed.

|Sweep 43, Latency 53216 |AP[22:4], Amp 7.1, Lat 45334 | Threshold B.45 i

Figure 22: The status bar displays important parameters. The left box displays sweep and latency

of the mouse pointer. The middle box shows the id, amplitude and latency of the selected AP. The

right box shows current threshold settings.
The detection and the association algorithms are quite computationally heavy and may take a couple of
minutes to complete. To inform the user about the current state and to avoid confusion, progress bars
are used. The progress dialogs also allow the user to stop the calculations.

Tracking... [22%]
Step |
(TI]]]] _ Bresk |

Figure 23: Progress bars are used during detection and tracking to inform the user about the
current state.
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The available commands are accessed by a standard menu. Some commonly used commands are also
accessible via atoolbar, see Figure 24.

DizEg| === ala

= = RANE WA 2N

Figure 24: A toolbar gives access to the most important features.

A picture copy facility has been added to make it easy to publish pictures generated by the application.
To allow customizations of the pictures, a number of different color schemes may be chosen. The
default mode uses black background but it may be convenient to use, eg., a white background when
publishing. In the current application, the copied pictures will not include axes and scales but this
feature will be added later if desired. It is also possible to print the view area directly from the
application. A picture of the graphical user interfaceis included in appendix Al.
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5 Example

This chapter uses a real recording to demonstrate the performance of the application. The MHT
parameters that are used are shown in Figure 25. Some explanations are needed. Track combining is
not used (nScan=0). The pruning logic is set to keep 64 hypotheses after processing each observation
and 8 hypotheses after each trace cycle. The initial probability of detection is quite high, which means
that tracks are punished if they miss initial update opportunities. The max delta latency variable is
used before the Kalman filter is initiated. The Kalman filter needs two measurements to initiate which
means that max delta latency is used prior to the addition of the second observation. The gate is fixed,
with size 20. The shortest track possible is a parameter that determines the minimum length of the
tracks that shall be used in the final result.

MHT 5Settings

nScan [0 = aoff] IEI tdin score before confirmation |3|:'
k41 |54 Score before delete IE|
b2 I8 Sweepz without update before delete I3

Initial prob. of detection ID-E'8 G ate |2|:I

MT intensity [1/ms] |1.7e-0 Clutter intensity [1 Ams] [1e-005
M aw delta latency 10 Shortest rack pozsible |5

Default Settings | Cancel |

Figure 25: The MHT settings used in the example. Note the Default Settings button, which always
makes it possible to reset to default configuration.

The area that is tracked contains four different fibers. One of the fibers reacts due to some additional
stimulus and is activated. The activation is seen as a latency shift after the 530th trace. The fiber to the
left doesn't react at al and remains at a steady latency. The two fibers to theright in figures 25-28 are
probably sympathetic fibers, conducting signals to the skin. These fibers show an irregular behavior
dueto the brain’s activation. The model that is used can’'t explain their latency course and the tracking
algorithmisn’'t expected to be able to find these paths.
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Figure 28: The paths found by the
MHT algorithm. Note that the
amplitude of the sympathetic fibers
differ from the amplitude of the
activated C-unit.
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Figure 27: The detected APs. The top
plot displays latency versus MF peak
amplitude. The bottom plot displays
latency versus trace numbers. The
latency scale is equal in both plots.

525

otys-o|
NEERE,

535

TRACE

555

565

460

490 500 510

LATENCY [ms]

480

Figure 29: Curves are fitted to the
different paths. Note that the green and
dark blue paths belonging to the
activated fiber has the same steady
latency.

Note that the MHT algorithm tracks the path crossings correctly. In the top part of Figure 28 it
is seen that the amplitude of the stimulated fiber islower than the amplitude of both the
sympathetic fibers. The tracking performance has probably been improved by utilizing this

information in the filtering.
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The parameters of the curves in Figure 29 are displayed in Table 5. The model is given by
y(t) =y, + Ae ™) spe Figure 5. As mentioned before, the exponential model does not work
for the sympathetic fibers and they could be omitted. Note that the estimated y, of the both
paths belonging to the activated fiber, is similar.

Yo A a
454.84 1.96 3.1 The fiber that doesn't react at all
465.05 2.40 8.3 The activated unit before activation
467.22 37.82 329 The recovery of the activated unit
467.94 31.18 9.6 The short, right bottom path of the sympathetic fiber

490.99 13.42 41.8 The left most sympathetic fiber
491.30 22.68 17.0 The sympathetic fiber to the right

Table 5: Parameters of the found tracks.



6 Discussion

Early experiments indicated that the chosen algorithms would be a good solution to the automatic
analysis problem. Nevertheless, it has been a challenge to develop the automatic analysis tool. Many
parts had to be united and the resulting application should be fairly easy to use. Some questions that
we had at the beginning of the development were: Would the tracking work smoothly on an ordinary
personal computer? Would it be efficient to use object oriented programming to solve the problems?

The achieved results correspond well with what an analyst would consider correct. The
application simplifies the analysis and minimizes the required manual work. The tracking is quite fast
and not very memory consuming. The application allocates approximately 4 MB of memory
depending on the data file that is analyzed. During tracking, the memory requirements sometimes rise
above 5 MB. The allocated memory is much dependent on the number of APs in each sweep.

By using object oriented programming the code is quite easy to understand and has the speed of
common C-code. One drawback with the MHT algorithm is that there are some parameters to adjust,
eg., false and new target densities, gate, and initial probability of detection. A drawback with the
Kalman prediction technique used is that the filtering performance is dependent on the recovery time
constant a. Perhaps it will be necessary to replace the filter by an IMM based predictor, using multiple
values of a.

By using a tree node structure to store tracks, it is possible to improve the efficiency of the MHT
algorithm [9]. The ideais to implement a tree where a track and a list of pointers to its children form a
node. The tracks in the most probable hypothesis are traced back for N observations and the ancestor
track becomes a root node. All confirmed tracks that are not descendants of one of these root nodes
will be deleted. This means that this logic uses current data to make irrevocable decisions regarding
the correct hypotheses N traces back in time. This logic reduces the number of tracks required in
typical scenarios by about half when compared to the algorithms described in chapter 3. This treelogic
may be implemented if the association procedureis considered too slow.

Hopefully this application will help the researchers in their pain studies. The development of the
application will probably continue as the analysts ask for extra features. Perhaps the application will
be used in more ways than originally intended.
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