Abstract

The aim of anti-windup compensation is to modify the dynamics of a control loop
when control signals saturates, so that a good transient behaviour is attained after
desaturation.

Model-based anti-windup compensation is here considered for both single-input
single-output(SISO) and multiple-input multiple-output(MIMO) systems. Open-
loop systems are, in this report, assumed to be stable or marginally stable while
nominal feedback controllers may be unstable. Systems and nominal feedback
controllers are assumed to be descibed by models given in input-output form,
with transfer function matrices parameterized by rational fractions. A modified
controller structure is proposed, which leaves the nominal closed-loop dynamics
unchanged as long as none of the control signals saturate. The loop gain around
the saturation can be adjusted by designing a special anti-windup compensation
transfer-function matrix. Two approaches for the design of MIMO anti-windup
compensation are developed.

One is based on a fully crosscoupled MIMO system, whereas the other approach is
applicable for control systems which utilize decoupling. Both approaches are gen-
eralizations of the systematic anti-windup design procedure developed by Sternad
and Ronnbéck for scalar systems. The proposed design methodology strives to at-
tain two partly contradictory goals. First, the transient effect after control signal
desaturation should be small, as measured by the H, norm of a linear transfer
function. Second, the risk of repeated re-saturation and nonlinear oscillations
should be eliminated.

The main idea behind the MIMO approaches in the present report, is to reduce
MIMO design to a set of scalar designs, by diagonalizing the loop gain around
the control signal saturation elements. As in the scalar case, the design equations
will then consist of scalar spectral factorizations. The multivariable approach is
completely general and since it is based on rational fractions, it will be applicable
to continuous-time systems as well as discrete-time systems. A number of exam-
ples are investigated for the decoupling approach and in this framework different
design choices are evaluated.



Contents

1 Introduction 3
1.1 Remarks on the notation . . . . . ... ... ... ......... 6
2 Anti-Windup Compensators for Scalar Control Systems 8
2.1 Scalar anti-windup controller design . . . . . . . . ... ... ... 8
2.2 Systematic anti-windup design . . . . . . .. ... 12
2.3 'The systematic anti-windup design procedure for scalar systems . 13

3 Anti-Windup Compensators for Multivariable Control Systems 15

3.1 MIMO representation of the process model and of the nominal

controller . . . . . . ..o 15
3.2 MIMO anti-windup compensation . . . . . . ... ... ... ... 17
3.3 Systematic MIMO anti-windup design . . . . . .. ... ... .. 20

4 Anti-Windup Compensators for Decoupled MIMO Systems 25

4.1 Feedforward decoupling compensation . . . . . . . ... ... ... 26
4.2 Decoupling and control of square systems . . . . . ... ... ... 27
4.2.1 Controller design . . . . . . ... ... oL 28

4.2.2 Loop gains around the saturations and AWC . . . . . . .. 29

4.3 Examples . . . . ... 32
4.3.1 Summary of the simulation results . . . .. .. ... ... 43

5 Conclusions 44
Bibliography 45



Chapter 1

Introduction

Many of the frequently used feedback design techniques are based on linear pro-
cess models. Real processes are however nonlinear in general. The nonlinearities
can be either dynamic or static. One of the most frequently encountered static
nonlinearities is caused by actuator saturation. In this thesis, we shall restrict
the attention to static nonlinearities caused by actuator saturation.

Let us assume that a linear, nominal, feedback controller has been adjusted to
control the linear dynamics of a single-input plant. Figure 1.1 depicts nominal
control of a plant with a saturating actuator. Here v is the actual input to the
plant which may vary between v,,4, and vp,,.

As an example consider a valve which controls the flow of a liquid in a pipe.
To keep the flow at a desired value it may happen that the regulator commands
the valve to open up more than is physically possible due to its construction.
A nominal linear controller will not be able to detect that the control signal
saturates and it may continue to command the valve to open up even more. Since
the control commands will not effect the real process when the valve saturates,
the controller states will deviate from their appropriate values; they are said to
“windup”. When the control error finally becomes zero, the wound up controller
states might cause a saturation of the control signal in the opposite direction.
The valve will then close and the nominal controller will, of course, not detect
this saturation either. In a worst case senario, the system could be trapped in a
vicious circle, with repeated control signal saturations.

Provided that v,,;, and v,,,, are known, these saturation effects could be reduced
by the use of a controller, which calculates and updates its states by using the
true control signal v € [Unin, Umaz| instead of the assumed control output u. Such
a controller will receive information of a saturation event as soon as it occurs.
The controller can then be designed to react in an appropriate way when the
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Figure 1.1: A nominal linear controller connected to a linear SISO process
with actuator constraints. The signal 3 is a process disturbance and -y is
measurement noise. The dynamics of the controller and of the process is
here represented by the polynomials R,S,T, A and B, as described, for
example, in [1].

control signal goes into saturation.!

In the example of the valve, this means that, if the valve is wide open, the
modified controller will not try as hard as a nominal controller to open it any
futher. When the control error indicates that the flow should be decreased, the
modified controller will start to choke the valve earlier than a “nominal” controller
would have done.

But, is “earlier” sufficently early? How fast will the effect of the saturation
decay? Even though the saturated control signal is fed back to the controller, it
will not be possible to exclusively control and modify the controller states, when
the control signal saturates, without also effecting the control signal after the
saturation event.

The problem of finding controllers which have desired properties during or after
saturation events, has over the years resulted in a number of different anti-windup
strategies. See for instance the observer-based design proposed by Astrém and
Wittenmark in [1], and the conditioning technique developed by Hanus and co-
workers in [2]. A common property of the strategies suggested in [1][2] is that a
separate anti-windup compensator is designed. This compensator is disconnected
form the system as long as the actuator does not saturate. A nominal regulator
can then be designed as usual, i.e. under the assumption that the system is
linear, in order to give the system desired dynamic properties, as long as the
control signal amplitude remains in the linear range. More information about
references to this subject is to be found in the PhD thesis [3] by Ronnbéck.

For reasons explained in [4], and afterwards also investigated and decribed in
[5][3], there is, however, no guarantee that the whole system behaves acceptably,

1Systematic anti-windup compensation schemes for systems with both actuator magnitude
constraints and actuator rate constraints would be of value in several practical applications.
We will, however, not consider such situations in this thesis.



during or after a saturation event, even though we have prevented controller-state
windup. Nonlinear oscillations and even limit cycles might occur. To avoid such
effects, the whole linear dynamics around the saturating element, consisting of
nominal controller elements, anti-windup filters and the open-loop plant, have
to be taking into account. This can be done by the use of a Nyquist-like design
method suggested by Wurmthaler and Hippe in [4].

One drawback of this method is that it is based on a re-design of the nominal
linear controller. The anti-windup modification proposed in [4] influence the
dynamic properties of the system even when the actuator does not saturate.

An anti-windup compensator structure which adds sufficient degees of freedom to
the system in order to use ideas similar to those suggested in [4] without having
to modify the nominal design, is suggested in [5]([3](Part II)). Futhermore, this
proposed compensator will only modifiy the dynamics of the closed loop when
the actuator (control signal) saturates. With this modified controller, it be-
comes possible to exclusively control the dynamics of desaturation transients. A
Nyquist-like method based on Hy-optimization for the design of this compensator
is suggested in [6]([3] Part VII).

The structural modification of controllers for Single Input-Single Output(SISO)
systems, operating under actuator constraints, is briefly described in Chapter 2.
The modification of the controller is based on the work by Roénnbéck [3] and
Ronnbéack, Walgama and Sternby [5]. The design of the anti-windup compensator
is based on the work by Ronnbéck and Sternad [6]. In the subsequent chapters,
these ideas are generalized for use in Multiple-Input Multiple-Output(MIMO)
systems with actuator constraints. The anti-windup compensated controller dis-
cussed in Chapter 2, and the systematic anti-windup design procedure associated
with such a controller, are generalized in Chapter 3, to MIMO systems.

The open-loop systems are here assumed stable or marginally stable, while nom-
inal feedback controllers may be unstable. Systems and nominal controllers are
assumed to be descibed by models given in input-output form, with transfer
function matrices parameterized by rational fractions. The main idea behind the
MIMO approaches in the present report, is to reduce MIMO design to a set of
scalar designs, by diagonalizing the loop gain around the control signal saturation
elements. A very simple and direct variant of the method, which is based on the
use of feedforward decoupling in the nominal controller design, is presented in
Chapter 4. At the end of this report, a number of designs are tested on a model of
a Heavy Oil Fractionator process. The feedforward decoupling regulator is used
in all these examples, with or without anti-windup compensation.
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1.1 Remarks on the notation

Throughout this report, only discrete time systems, with normalized sampling
time, are considered. Nevertheless, theories and derivations are directly applica-
ble to continuous-time systems. The time index is denoted k. Constant matrices
are denoted by boldface roman letters, such as F.

Polynomials in the forward shift operator ¢, (qy(k) = y(k + 1)) are denoted by
italic letters, such as A(q) or A, with degree na.

The polynomial A* denotes the conjugate polynomial to A, in which the forward-
shift operator ¢ is substituted by the backward operator ¢—*.

Scalar and time-invariant discrete-time dynamic systems, described by linear dif-
ference equations

A(q)y(k) = B(q)u(k) (1.1)

are represented by rational transfer operators, or transfer functions, indicated by
calligraphic letters,

y(k) = H(gu(k) = ——su(k) . (1.2)

The complex variable z is substituted for ¢ whenever poles and zeros of rational
transfer functions are discussed.The systems are asymptotically stable whenever
H(z) has all its poles in |z| < 1. The polynomial A(q) is said to be “stable”, or
strictly Schur, when all zeros of A(z) are located within the unit circle |z| = 1.
The polynomial A(g) is said to be “marginally stable”, when there are zeros of
A(z) located on the unit circle |z| = 1.

Polynomial matrices will be denoted as
A(q) = Aoqna + Alqna_l +...+ Ana (13)

with A; representing the coefficient matrices.

The notation A* denotes the conjugate-transpose of the polynomial matrix A,
where the backward-shift operator ¢ ! is substituted for ¢ i.e.

A= (az’j(Q)) AT = (ajz'(qfl)) ) (1-4)
or
A*(q) = ATg e ATg (e L AT (1.5)

The degree of a polynomial matrix A, denoted by na, is defined as the highest
degree of any of its polynomial elements. Futhermore, A(q) is said to be monic
if the leading coefficient matrix Ay above equals the identity matrix.
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Matrix transfer operators, or rational matrices, have transfer operators as ele-
ments. They will be denoted by boldface calligraphic letters, like .A(g). Rational
matrices are said to be proper if all of their elements have numerator degrees
not higher than the denominator degrees. They then represent causal difference
equations. Arguments of polynomials and polynomial and rational matrices will
be omitted when there is no risk of misunderstanding.

Multivariable discrete-time systems, described by matrix transfer functions, are
asymptotically stable if and only if all of their transfer function elements have
poles only within the unit circle |z| = 1. Square polynomial matrices A(q) will
be said to be stable if all zeros of the determinant polynomial det(A(z)) are
located within the unit circle |z| = 1.

Let Y(C) denote the describing function, cf. [7][8], of a saturation nonlinearity.
The argument C' is an amplitude of an sinusoid which, if it is precent, may exite
nonlinear dynamics in the closed loop. We shall call the function

] 1.6
the NonLinearity Characteristic Function (NLCF). The loop gain around the
nonlinearity, denoted by L,(w), and the corresponding NLCF, is depicted in a
Nyquist diagram below.




Chapter 2

Anti-Windup Compensators for
Scalar Control Systems

As a prerequisite for the design of MIMO anti-windup compensators we shall in
this chapter review the anti-windup compensator design technique developed in
[5][3][6] for scalar systems.

2.1 Scalar anti-windup controller design

Let the process to be controlled be described by a linear input-output model
expressed in polynomial form

y(k) = %v(la) L B() ;5 u(k) = satfu(k)]imee (2.1)

where (k) is an input disturbance. If the system is open-loop unstable, it will
not be possible, for all initial conditions, to prevent the output signal from grow-
ing towards infinity whenever the control signal is saturated. Marginally stable
systems can be stabilized by saturating control elements, see [8]. Let us therefore
in the following assume the open-loop system to be stable or marginally stable.
In other words, the denominator polynomial A(z) has zeros within, or on, the
unit circle |z| = 1.

The nominal controller is given by the linear difference equation
R(q)u(k) = =S(@Q)ym(k) + T(q)r(k) ; ym(k) = y(k) + (k) (2.2)

where 7(k) is the reference signal, y(k) is the measured output signal from the
plant, and u(k) is the unsaturated control signal. The polynomials R(g) and A(q)
are assumed monic. The nominal control structure is depicted in Figure 1.1. For
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Figure 2.1: Anti-windup compensation of the nominal controller in Fig-
ure 1.1. A model of the saturation is used to feed the saturated control
signal back to the controller. This modified controller structure has been
suggested by Ronnbéck et.al. in [5].

simplicity we shall in the sequel neglect the influence of the disturbance 3, and
of the measurement noise y. Thus,

Um(k) = y(k) = Do(k) (2.3)

A
We shall also assume that the saturated control signal v(k) is known, either from
measurements, or from a model of the saturation. The saturation limits v,,;, and
Umaz May be time dependent.

A modification of the nominal controller structure (2.2), which was suggested in
[5] and [6], for controlling saturation events, will now be presented. To prevent
undesired effects caused by control signal saturation, it is crucial that the satu-
rated control signal v(k) is fed back to the controller. One simple way to take
the true control signal v(k) into account is to let delayed values of the saturated
control signal v(k) be utilized instead of delayed values of u(k) in the controller
recursion (2.2). We would then obtain the modified controller

q"u(k) = (¢"" — R)v(k) — Sy(k) + Tr(k) . (2.4)

Notice that (2.4) is identical to (2.2) whenever v(k—1i) = u(k—i) fori =1,...nr.

By appending two additional stable and monic polynomials F(g) and P(q) to
(2.4), a more general controller structure can be introduced as

Fu(k) = (F — PR)v(k) — PSy(k) + PTr(k)
v(k) = satlu(k)]ymes . (2.5)

Umin



A block diagram of the resulting controller structure is shown in Figure 2.1.
Observe that when F(q) = ¢™", P(q) = 1, the difference equation (2.5) is identical
to (2.4). To avoid algebraic loops around the saturation, it must be assumed that

nf=np+nr . (2.6)

The difference equation and the saturation model (2.5) together, represent a
variable-structure controller. By appropriate choices of the polynomials F'(¢) and
P(q), it becomes possible to influence the controller behavior during and after
saturation events. The closed-loop dynamics for non-saturating control signals
will remain unchanged, and will be determined by R, S, A and B. Notice
that the input-output properties of (2.5) are identical to those of (2.2) whenever
v(i1) = u(i), for i = 0,1..nr. When v(k) # u(k), the control system will react
on the difference between the unsaturated control signal v and the saturated
control signal v, in a way determined by the “anti-windup polynomials” P and
F. In [1], one method of anti-windup compensation, called The observer-based
method, is suggested and outlined. This method corresponds to the choice P =
1 in 2.5, and a choice of F(q), of degree nr, as a stable “windup observer”
polynomial. The anti-windup compensated controller, structure 2.4 obtained
from the choice F'(q) = ¢"", P(q) = 1 in (2.5) can be obtained as a special case of
the observer-based method. Such an observer is called a deadbeat observer, and
the compensator is denoted a deadbeat anti-windup compensator.

Some insight into the consequences of different choices of F'(¢) and P(q) in (2.5)
can be obtained by an approximate linear analysis. Let 0(k) denote the difference
between v(k) and u(k), that is

6(k) = v(k) —u(k) = satlu(k)yre —u(k) . (2.7)
Now, (k) can be interpreted as a disturbance acting on the system, cf. Fig-
ure 2.2. A simplified description of the effect of the nonlinearity can be obtained
by neglecting the nonlinear dependence of §(k) on u(k), i.e. by regarding d(k)
as an exogenous disturbance. For more details on the use and the limitations of
such an intepretation, see [6]. We may use §(k) to describe the transient response
of the system when the control signal exits saturation. The effect of §(k) on the
system will then correspond to an initial value decay, influenced by the addi-
tional polynomials P and F. As long as the control signal does not resaturate,
the whole closed-loop system will remain linear. If the effect of the nonlinearity
is represented by an equivalent disturbance acting on the input to the plant, that
is, by

v(k) = u(k) + (k) (2.8)

then the output signal y(k) of Figure 2.1 can be described as being determined
by two transfer functions, one from the reference signal r(k) and the other one
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Figure 2.2: System with anti-windup compensated controller. The differ-
ence between the saturated control signal v(k) and the unsaturated control
signal u(k) is modeled as a disturbance §(k).

from ¢(k). The output signal y(k) is then obtained as

y(k) = Ynom(k) + ys(k) (2.9)
where
Ynom (k) = Huomr(k) = %r(k) (2.10)
ys(k) = Hs6(k) = i—ié(k) (2.11)
and where
a(q) = R(q)Alg) +S(q)B(q) (2.12)

represents the characteristic polynomial of the nominal closed loop system.

The dynamics controllable from r(k) is represented by H,om(g) which is unaf-
fected by F(q) and P(q). The modes excited by d(k) have dynamic properties
corresponding to Hs(g). In order to alleviate the effect of saturation, the polyno-
mials P(q) and F(q) of Hs(g) have to be selected carefully. It might be tempting
to select F'(g) and P(q) so that the dynamics of H;s(q) becomes “fast”. However,
due to the inherently nonlinear feedback, which is not apparent by regarding ¢ (k)
as an exogenous disturbance, such a choice may cause stable-cycle oscillations and
repeated re-saturations when the control signal saturates. These effects can be
explained by investigating the relative locations of the NonLinearity Characteris-
tic Function (NLCF) (1.6), and the loop gain around the nonlinearity. See [4][6].
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If this loop gain is located too close to the NLCF, then repeated re-saturations
and oscillating transients may be present. If the loop gain intersects with the
NLCEF, stable cycle oscillations may occur. The loop gain around the saturation
of the system depicted in Figure 2.1 is

Pa

L, = a1 (2.13)
Considering (2.11) and (2.13), a qualitative conclusion can be drawn: Because H;
is proportional to F'/ P while the first term of £, is proportional to P/F, the use of
P and F to reduce the gain of H;, will increase the loop gain £,. This may force
this function to approach and to cross the NLCF, with repeated resaturations
or limit cycle oscillations as a result. Consequently, there is a trade-off between
minimizing Hs and keeping the loop gain away from the NLCF.

2.2 Systematic anti-windup design

Different ways to describe the saturation and the different approaches to compen-
sate for it, have over the years resulted in suggestions for a number of anti-windup
design methods. See [1],[2],[5],[3][6][4]. It is possible to interprete these and other
methods in terms of special choices of the polynomials F' and P [5][6]. Exam-
ples include the Conditioning technique by Hanus [2], and The observer based
approach by Astrém and Wittenmark [1].

Throughout this report we shall use a method which will be called Systematic
anti-windup design. It was developed in [6], and has been motivated by the trade-
off between minimizing #, and forcing the loop gain £,, introduced in (2.13),
away from the NLCF. The systematic anti-windup design method is formulated
as an optimization problem.

The idea is to determine P(g) and F(q), which are factors of both H; and L,,
by minimizing the criterion function

_ 2
J = |Hslls+pll (Lo+1)" =11
= BF2+ AF 12 (2.14)
o Pa ||, 'OPa ) ’

where the scalar p plays the role of a trade-off parameter. If p is selected as a small
number, then the result will tend to minimize the Hy-norm of the desaturation
dynamics Hgs, whereas a large value of p ensures that the loop gain stays well
away from the NLCF. As a matter of fact, the loop gain L, collapses towards a
point at the origin if p is increased.
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The solution to the minimization of the criterion (2.14) is obtained by solving a
linear polynomial equation and a spectral factorization equation [6]. The linear
polynomial equation is solved by the choice F'(¢) = a(g) and since «(g) is monic
and stable, such an assignment is always admissible.

|F=a=RA+SB| (2.15)

The optimal choice of the stable and monic polynomial P(q) is then obtained
from the polynomial spectral factorization equation

|rPP* = BB* + pAA*| . (2.16)

Here, r is a scale factor and A* denotes the conjugate polynomial

A g =¢g™4+aqg ™+, +am - (2.17)

2.3 The systematic anti-windup design proce-
dure for scalar systems

Assume that the plant is given by (2.1) and the controller by (2.5). Then the
criterion (2.14), and the design equation (2.16), can be used to adjust the windup
properties of the resulting closed-loop system.

A convenient way to do this is to use a multi-step procedure, see [6] for details,
which presupposes the following requirements.

1. The plant must be open-loop stable or marginally stable, and a transfer
function model 2.1 of the plant is assumed known.

2. The saturated control signal v(k) must be known at all times k, either from
measurements, or from a model of the saturation.

3. A pre-existing nominal controller is assumed to be given in input-output
form 2.2. The nominal closed-loop behaviour (without saturation) is to remain
unchanged.

Step one

Append the anti-windup design polynomials F' and P to the nominal controller
(2.2) and use the saturated control signal v(k) to create a control law equal to
(2.5). Figure 2.1 illustrates the structure of the modified controller.

Step two

12



Set F equal to « = AR + SB as in (2.15). Select a penalty p, and solve the
spectral factorization (2.16) for P. Plot the loop gain £, (w) defined by (2.13) and
—1/Y(C) (where Y(C) is the describing function of the saturation nonlinearity),
in a Nyquist diagram.

Step three

If required, adjust the parameter p to obtain a more suitable loop gain, £,(w)
and repeat step 2.

Step four

Simulate the system with saturating control signals and different types of distur-
bances. If the result is not satisfying, go through steps two and three again.

For system and controller combinations with stable loop gains, the parameter p
is increased in step 2 and 3, from an initial small value, until the loop-gain locus
L,(w) is close, but not too close, to the line —1/Y(C) which starts at —1 and
goes towards infinity along the negative real axis of the complex plane. Criteria
for suitable closeness between these two curves are discussed in [4] and in [6].
A simple cone around —1/Y(C), with opening to the left and an opening angle
of 80° is suggested in [4]. The use of a more elaborate signal-dependent safety
margin around the loop gain £(w) is suggested in [6].

For loop gains £, containing multiple integrators, it will be impossible to avoid
one or several crossings between L£,(w) and —1/Y(C). Some of these intersec-
tions indicate that stable limit cycle oscillations will occur, if an excitation of
sufficiently large amplitude is introduced. The frequency w of L,(w) and the
amplitude C of —1/Y(C), corresponding to the intersection point, indicate the
properties of the resulting stable oscillations. The design strategy will in such a
case be focused on shifting the unavoidable intersection points to regions along
the NLCF, where the corresponding amplitude is so high, so that no realistic
disturbance in the system could cause oscillations.
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Chapter 3

Anti-Windup Compensators for
Multivariable Control Systems

The main purpose of this thesis is to find a way to introduce Anti-Windup Com-
pensators into multivariable systems, and to use the method of Systematic Anti-
Windup design to form this AWC filter. In this chapter, we will suggest a solution
to this problem.

The method of Systematic Anti-Windup design for SISO systems is based on a
Nyquist-like design procedure, where the loop gain is adjusted in relation to the
NLCF (1.6). This approach can be used also for MIMO systems if the loop gain
around the saturations is made diagonal. Such a restriction allows us to inde-
pendently analyze and adjust the loop gains around each individual saturating
actuator. The design of a multivariable anti-windup compensator can then be
reduced to a set of scalar designs.

3.1 MIMO representation of the process model
and of the nominal controller

The dynamic properties of a multivariable system

y(k) = H(g)v(k) (3.1)

are given by the proper elements of the transfer-operator matrix #4(¢). In analogy
to the scalar case, H(q) can be parameterized by a matriz fraction, as

H(q) = B(q)A '(q) (3.2)

where B(q)A™'(g) is a right matrix-fraction form of H(q). Left fractions are de-
fined analogously. If B(g) and A(q) both are polynomial matrices then B(g)A™"(q)
is called a right Matriz Fraction Description(MFD) of #(q) [9][10].
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If #(q) is parameterized as
H(q) = B(g)A () (33)

where B(¢) and A(q) both are stable and proper transfer-operator matrices, then
B(q).A ' (q) is called a right rational fractional representation of H(q) [9][10].

Rational fractional representations will be utilized to represent systems and reg-
ulators in this chapter, mainly for three reasons.

1. In the same way as with the use of polynomial fractions in ¢ !, the use

of proper rational fractions in ¢ will guarantee the causality of systems
interacting in open and closed loop. Proper rational fractions in ¢ do, in
fact, include polynomial fractions (MFDS) in ¢~' as a special case,

H(g) = B(g)A '(¢) = B¢ HA () ,

if the denominators of the rational elements are selected as ¢", with n
selected appropriately. For example,

q—2
-2 @ . qgt=2¢7
@ —08¢+04 2—087+04 1—08¢!+0.4g2
q2

2. While developed in discrete time, the use of proper and stable rational frac-
tions allows the AWC-design theory to be applied directly also in continuous
time!

3. Rational representation of regulators (see (3.7) below) will facilitate the in-
clusion of a large class of pre-existing MIMO controller structures. For ex-
ample, observer-based state-feedback regulators, where the stable observer
dynamics will play the role of stable denominators in the rational functions.

Let a MIMO generalization of the plant (2.1) have m inputs and p outputs.
We will parameterize the plant model by a right fractional representation in the
sequel. In order to simplify the discussed design procedures and realizations
involved in the systematic anti-windup concept, we shall use a diagonal denom-
inator matrix A(g) in the fractional representation of the plant model. The

'In the continuous-time case, the derivativ operator p is substituted for ¢, s is substituted
for z and the stability area corresponds to the left-half plane. Thus, B and A in e.g. H(s) =
B(s).A '(s) must have proper elements, which poles have to be located stricly in the left half

plane. In conjugate polynomials A*, —s is substituted for ¢—'.
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numerator matrix B(q) is assumed to be a full transfer-operator matrix. We thus
obtain

y(k) = B(g) A~ (q)v(k) = H(q)v (k) (3-4)
y1 (k) Bii ... Bim A o\ v1(k)
: = : : KB : (3.5)
yp(k) Bpl s Bpm 0 -Am Um(k)
., (3:6)

where all elements of B and A are stable and proper. We shall, as in the pre-
vious chapter, not include disturbances (3(k) = (k) = 0 in Figure 1.1) in the
discussion.

In the following, whenever a multivariable controller
R(q)u(k) = =8(q)y(k) + T (q)r(k) (3.7)

is under consideration, R(q), 8(g) and T (¢) are assumed to be stable and proper
rational matrices of dimension m|m, m|p and m/|p, respectively. Assume also, as
before, that the saturated control signal vector v(k) is fed back into the controller.
One simple way to take the true control signals v(k) into account is to let de-
layed values of v(k) be utilized instead of delayed values of u(k) in the controller
recursion. We would then obtain the modified controller

u(k) = (1 — R)w(k) — Sy(k) + Tr(k) . (3.8)

It should be noted that, the expression (3.8) does not necessarily correspond
to a MIMO dead-beat anti-windup controller, even though (2.4) does in the
scalar case. This is due to the fact that R is assumed to be a rational matrix.
The denominator polynomials of the elements of R will control the dynamic
properties of any desaturation event and hence, this controller may already have
some kind of anti-windup compensation (not necessary dead beat) contained
inside its structure.

3.2 MIMO anti-windup compensation
If the equation (2.5), for the scalar controller, is divided by the stable polynomial
F(q), we obtain

P

u(k) = (1 - §R> o(k) — %Sym(k) £ 2Tr(R) (3.9)
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Figure 3.1: A discrete-time MIMO process y(k) = B(q).A™!(q)sat[u(k)]
with a two degree of freedom controller structure {R(q) S(q) T(q)} ap-
pended with a stable and proper anti-windup transfer-operator matrix
W(q). The rational matrix W(q) is to be designed such that the loop
gain becomes diagonal and such that the desaturation transient decays as
fast as possible, while avoiding repeated re-saturations.

In analogy with the above expression, the structure of a general multivariable
discrete-time recursive control law, with anti-windup facilities, will be represented
by

u(k) = I-WR)v(k) — WSy(k) + WTr(k) , (3.10)

where the stable and proper m|m rational matrix YW(q) now plays a similar role
as P(q)/F(q) does in (3.9). The controller (3.10), connected to a plant described
by the model (3.4), is depicted in Figure 3.1.

Whenever a multivariable anti-windup compensator is under consideration, a
fractional representation will be used to represent the rational anti-windup matrix

W(q), as
W(q) =P(@F '(q) . (3.11)

For reasons described below, P(q) is a diagonal m|m transfer-operator matrix,
while F(q) is a full m|m transfer-operator matrix. Futhermore, P(q) and F(q)
are both assumed to be chosen stable and proper. In analogy to the scalar case
we also assume P~'(¢) and F~'(g) to be chosen stable.

Remark 3.1: Notice that (I — W(q)R(g)) must be strictly proper to avoid
the occurence of algebraic loops. In other words, a matrix series expansion of
W (q)R(q), with respect to ¢, must have a unit matrix as the leading term.

By making use of ¢ as defined in (2.7) the output y(k) can, as before, be decom-
posed into a nominal response (caused by the reference signal) and a response
which is caused by the saturation. In other words

Y(k) = Ynom (k) + ys(k) (3.12)
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where

Ynom (k) = Hpomr (k) = Ba ' Tr(k) (3.13)
and

ys(k) = Hsd(k) = Ba™ "W (k) . (3.14)

Here, a is defined as the stable, proper and inversely stable m|m rational matrix

a2 RA+SB . (3.15)

Remark 3.2: The way W enters H; in (3.14) is analogous to the way F/P
enters Hs in (2.11). Note also that H,om(¢) is unaffected by W(q), just as in
the scalar case (2.10). This means that W(q) will have a similar effect on the
dynamic properties of H;, as P/F has on H; in (2.11).

Inserting (3.4) into (3.10) gives

u(k) = I-WR-WSBA (k) +WTr(k)
= —-W(R+S8BA ") —T)u(k) + WTr(k)
= —-W(RA+8B)A —T)v(k) + WTr(k) (3.16)

where the transfer operator
WMRA+SBA ' -1

is the multivariable loop gain around the saturations shown in Figure 3.1. This
loop gain will be denoted by

1>

L, & WRA+SB)A ' -1

WaA™! -1 . (3.17)

To facilitate the design and make use of the systematic approach developed for
scalar control signals, the loop gain £, is required to be diagonal, see Figure 3.2.
Due to Remark 3.2 and the expression for the loop gain in (3.17), we will chose
F(g) in (3.11) as

F(g)=alg) - (3.18)

As we shall see in Section 3.3, this choice of F(q) is suitable also for the systematic
anti-windup design. The loop gain is then given by

L,=PA'-1 . (3.19)

18
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Figure 3.2: The loop gain around the control signal saturation elements,
L is diagonalized by W into m scalar loop gains L£;. Effects of satura-
tions in different control elements can therefore be analyzed and controlled
separately.

The assumption that A is diagonal will make £, become diagonal only if P is
chosen to be diagonal. Consequently,

W(q) = P(9)a'(q) (3.20)

will be a suitable choice of the anti-windup compensator, introduced in (3.11), if
the following requirements are met.

1. P(q) has to be diagonal in order to obtain a diagonal loop gain L,.

2. In order to realize the anti-windup compensated controller in (3.10), W(q)
has to be stable. This means that P(¢) has to be chosen stable.

3. To assure stability of W, the factor a~! must be stable. This requirement
is already met by the design of the nominal closed loop system.

4. The shape of Hs(g) in (3.14) gives that W '(g) has to be chosen stable.
This is assured if P '(g) is chosen stable. Note that a(q) is stable since
R, S, A and B all are stable fractional representations.

3.3 Systematic MIMO anti-windup design

The idea is now to adjust the elements of P(q) in (3.11) by utilizing a criterion
which is a direct generalization of (2.14)

T = M2 +]Q L+ =T
= |[Bam W+ |Q (Aa"'W I ~T)|

. (3.21)
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The constant diagonal weight matrix

S 0
Q= (3.22)

0 \/Pm

is analogous to the square root of the scalar weight parameter p in (2.14). By
insertion of (3.20) into (3.21), the criterion can be rewritten as

J=|BP,+]Q(AP ' -T)|, (3.23)
where
. : A,
Q (AP ' —1) = diag {\/E <? — ) } (3.24)
L_ (B Ba
BP = (771 Pm) (3.25)

and where Bj ... B, are the columns of B. Now, (3.24) and (3.25) allows us to
express (3.23), using Parsevals formula, as

B, B, B,
= — = ... = ——1
J H<p1 o) e v (3 )}
_ ( 1 By ’3_) (E B; _m> }%
B |z|=1 Pl Pz P P1 PQ Pm z

2{
g el (oo () )
|

1 * * *
BB | B.B; BmBm} dz (3.26)

2

2

S

PP T Bp; T PP

1 . A; A; * dz
* o {{ (=) (F-1) 1S

It is obvious that the expression (3.26) can be decomposed into a sum of m
separate pairs of integrals

tr{B B*}dz 1 A; A; " dz
— A2 1) (22 -1) = (32
/= ZQW ?{4 1 : T om |z|:1pj <73j ) <731' ) z (3.27)
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Each term of the sum is influenced by a separate p; and a separate P; for j =
1,2...m. Thus, the criterion (3.23) can be rewritten as a sum of m quadratic
criteria which may be minimized separately with respect to P;, i.e.

J=> "7 , (3.28)

where J; is given by

1 Z Bi;B;; d 1 A; A; *dz
Ji=— = -1 2 _1) = .(3.29
0 [ 'P'P] + 2m J, e (Pj ) (Pj ) z (3.29)

In (3.29) we used that the numerator inside the first integral in (3.27) can be
expressed as

p
r{B;B}} = _ BB} (3.30)

where p is the number of process outputs and B;; is the ijth element of B.

Minimizing (3.28) will thus be the same as minimizing m separate criteria, each
of which will be minimized by solving a spectral factorization of the type (2.16).
Minimizing (3.23) with respect of the elements of P for a given matrix Q, will
consequently require m scalar spectral factorizations. The optimal choice of the
stable transfer operator P;(g) is then obtained from the scalar rational spectral
factorization equation,

rPiP; = 3 io1 BiiBj + piAiA; (3.31)

which has to be solved for 7 = 1, 2....m, where m is the number of process inputs.
If the stable denominator polynomial of P;P; (left-hand side of (3.31)) is chosen
as the known stable denominator polynomial of the right-hand side of (3.31), then
(3.31) can be solved as a scalar polynomial spectral factorization equation. This
completes the design of the anti-windup compensator W in (3.11), (3.20) for a
given set of scalar penalties p;. The transfer function Hs, for desaturation tran-
sients, will be given by (3.25), see Figure 3.3 and the matrix (3.17) representing
the loop gains around the control signal saturations, is given by

» = PA -1 = diag (%—1) : (3.32)
j
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Figure 3.3: The resulting linear dynamics of the desaturation transients.
The stabel transfer operator P; occurs as a common denominator of each
element in column j of H; and hence, the “pertubation” y;s,, 1 = 1...p,
caused by desaturation in the jth loop, can be given desired dynamic prop-
erties by an appropriate choice of P;.

An intuitive explainition of why (3.31) will give the optimal choice of P;, in the
sense of minimizing the effect of a saturation event as seen from the process
outputs, as (2.16) gave in the scalar case, is given next.

If we are interested in the design of an anti-windup compensator around the jth
actuator, by considering the dynamic properties of H;, then the only components
of u(k) and v(k) involved in such a design procedure will be u;(k) and v;(k). See
Figure 3.3. Consequently, if only the jth actuator saturates then the pertubation
ys = Hs6 will only be affected by d;. This means that the dynamics excited by
a saturation event in the jth loop, i.e. a saturation in the jth actuator, will be
described exclusively by the jth column of Hs. In Chapter 2 we discussed the
trade-off between minimizing H;s and keeping the loop gain away from the NLCF.
In analogy with that discussion, there is now a trade-off between minimizing the
jth column of Hs and and keeping the jth loop gain away from the jth NLCF,
see Figure 3.4. An appropriate compromise choice of the scalar anti-windup filter
P; in such a case, is then obtained by solving the spectral factorization (3.31).

Note that the scalar p; in (3.31) has a similar effect on the design of P;, as the
weighting p in (2.16) has on the design of P in the scalar case, see Figure 3.4.

Let us look at a typical design example by assuming that we have diagonalized the
loop gain around the saturations, so that m scalar loop gains is to be adjusted in
relation to the m NonLinearity Characteristic Functions (NLCFs). The situation
is illustrated in Figure 3.5. As we can see, the second loop gain £,, intresects the
NLCF,, which may cause repeated re-saturations and/or limit cycle oscillations
in that loop. If this is the case, it will, of course, have a negativ affect on the
whole system. To avoid the possible occurrence of such undesired affects, the
loop gain L,, has to be decreased. An opposite situation is present in the mth
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Figure 3.4: The jth loop gain £;. The distance from the NLCF} is
controlled by increasing or decreasing p;.
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Figure 3.5: The m scalar loop gains around the m, possibly saturating,
actuators. Each loop gain £,; = (P;/A; —1) can be adjusted by an appro-
priate choice of P;.

loop. The mth loop gain may be increased, i.e. it may be possible to “blow
up” L,,,, in order to obtain a faster desaturation transient, without obtaining
repeated-resaturations and/or limit cycle oscillations. The loop gain £,, seems
to have an appropriate location already.?

When the adjustments proposed above are made, we must simulate the system
to see how it performs. A step response of the desaturation-transient dynamics,
Hs, will enlighten us of how further adjustments are to be made, as well.

2This discussion is true in general but, since different plants and actuators have different
dynamic properties, one sufficiently relative location between a NLCF and its correspondig loop
gain, may not be sufficient for another loop gain-NLCF configuration.
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Chapter 4

Anti-Windup Compensators for
Decoupled MIMO Systems

The method of feedforward decoupling is frequently used in practical control
applications. The reason for this is that conventional PID controllers, which are
the most common controllers in industrial applications, can only be used in single
loops, i.e. in SISO systems. Nevertheless, such control systems will, of course,
suffer from control signal saturation. Therefore, we will in this chapter suggest an
anti-windup compensation strategie specially adapted to feedforward-decoupled
systems. The method is based on the systematic anti-windup concept discussed
in the previous chapters. The resulting design is simpler than the one discussed
in Chapter 3, in the sense that it involves the adjustment of only one scalar loop
gain, which requires only a single spectral factorization.

Dynamic-feedforward decoupling of processes with m inputs and p outputs is first
discussed in Section 4.1. Thereafter our discussions consider only square MIMO
processes.

A method for the design of a feedforward-decoupling controller will also be dis-
cussed. This decoupling controller consists of a set of scalar polynomial con-
trollers, on RST-form (2.2), in conjuction with a decoupling link.

Readers who intend to append anti-windup compensation to PID controllers
which work in conjunction with a decoupling link should note that all design
methods discussed in this report, assume knowledge of a plant model. While
there is normally some kind of plant model available from the design of the de-
coupling link, this model may not be sufficiently accurate for the design of the
anti-windup compensator.
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Figure 4.1: A feedforward decoupling compensator C(g) in series with the
system #(q) with m inputs and p outputs. Here, m > p is required.

4.1 Feedforward decoupling compensation

Two drawbacks of decoupling must be stated from the beginning. First, a dy-
namic feedforward decoupling link will tend to consist of transfer functions of high
order. Second, some of the resulting control signals may have large amplitudes, in
particular if the plant is ill-conditioned. Therefore, decoupling is not always the
best approach to the design of a well performing multivariable controller. This
is true in particular if the process is of high order.!

The saturation nonlinearity of the system will be neglected at this stage, which
means that we will treat the system as if it were linear. The nonlinearity is taken
into account in Section 4.2.2.

Let the MIMO process with m inputs and p outputs, with m > p, be decribed
by

y(k) = Hiqu(k) , (4.1)

where H(q) is assumed to be stable or marginally stable. Then, by connecting
a stable p|m matrix transfer operator C(q) to the input of the process H(q), it
is sometimes possible to obtain a decoupled system D(q). Let u'(k) denote the
input signals to D(g). The signal vectors u(k) and u'(k) are then related by

u(k) = C(q)u'(k) . (4.2)
Total decoupling is obtained if #£(q)C(q) is diagonal, that is, if
Di(q) 0
H(q)C(q) = D(q) = (4.3)
0 Dy(q)

Tt is not always necassary to use a dynamic decoupling link. If we can accept weak cross
couplings, a static decoupling link will in many cases be sufficient. However, we will only
concider dynamic decoupling links in this report.
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where the matrix D is of dimension p|p. The decoupled system consists of p
mutually independent SISO systems instead of a MIMO system containing cross
couplings. See Figure 4.1. With a few exceptions, each one of these SISO systems
can then be handeled by conventional SISO controller design.? For similar reasons
as those discussed in Chapter 2, concerning stability whenever the control signal
saturates, we will require that all of the scalar transfer operators D;(q) are stable
or marginally stable and, of course, also proper.

The feedforward decoupling compensator C(q) is then given by

C(q) = H ' (¢9)D(q) (4.4)

where all elements of C(g) must, for the same reasons as above, be stable and
proper.

If some modes of ™ '(g) are unstable, we have to select some of the transfer
operators D;(q) in such a way that they cancel out these unstable modes. Thus,
D;(q) may be required to have zeros outside of the unit circle. This might com-
plicate the design of a suitable feedback.? Such cancellations must, of course, be
made before the decoupling compensator C(g) is implemented.

4.2 Decoupling and control of square systems

In the case of square systems, it is possible to select a special solution to find
suitable compensators C(g) and a resulting diagonalized system D(q). If H(q),
of dimension (p|p), is the system considered, then H~'(g) can be expressed as

%_I(Q) — % (45)
so that
i Adj(H)
C=H'D= WD . (4.6)

Since all elements of H(q) are assumed to be stable, or marginally stable, and
proper, all elements of Adj(#) are stable, or marginally stable, and proper and
so is det(#). In agreement with what was said before, det(?{) probably has some
zeros outside the unit circle, which makes 1/ det(?) unstable.

20ne of these exceptions becomes obvious in LQ controller design. A penalty on the input
signal to C(gq), does not have the same effect as a penalty on the real controller output signal
u(k).

3This is, of course, not an unexpected effect. The zeros of #(g) which lie outside the region
of stability, are also those which make # *(q) unstable. Such zeros can never be canceled
without obtaining hidden unstable modes in the controller.
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One possible, and suitable, choice of D(q) would then be
Dlg) = det(H ()L, (4.7)
and hence (4.6) and (4.7) give

C(q) = Adj(H(q)) - (4.8)

The MIMO system H(g) has thus been diagonalized into n SISO-systems, all
with the transfer function det(#(g)). Note that some transmission poles and
transmissions zero might cancel each other in the realization of det(#(q)) [10].
We will, in the following, assume that there exists no common marginally stable

factors in det(H(q)).

4.2.1 Controller design

Due to the fact that all the p decoupled systems have the same dynamics, only
one SISO controller design has to be performed. This can, for instance, be done
with the LQG methods suggested in [11], yielding the controller

R'ui(k) = —=S"y;(k) + T'r;(k) (4.9)

where the index 7 denotes the ith components of the control signal u/(k), the mea-
sured plant-output signal y(k) and the reference signal vector r(k) respectively.

These n SISO controllers correspond to one MIMO controller of the system

y(k) = Du'(k)

R (k) = —8S'y(k)+T'r(k) (4.10)
where
R'(q9) = R(9)J, (4.11)
S'(q) = S(9I, (4.12)
T'(q) = T'(9)I, . (4.13)

According to (4.2) and (4.10)-(4.13), the total multivariable controller is obtained
as

Ru(k) = —-Sy(k) + Tr(k) (4.14)
where
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R(q) = R'(qg) = R(9)L, (4.15)
H(q))S'(q) (4.16)
T'(q) = Adj(#H(9))T'(q) - (4.17)

%
S
[
a
S

Notice that the feedforward decoupling link C(q) is included in the structure of
the nominal polynomial matrix controller (4.14).

The next step is to take constraints on the control signal into account. With a
decoupled closed loop system, it will be straightforward to obtain a diagonal loop
gain matrix, which can be used together with Nyquist-like methods as before. A
transfer operator matrix YW(q) can then be appended to the nominal controller
(4.10), to control the saturation properties.

4.2.2 Loop gains around the saturations and AWC

The system has a configuration described by Figure 3.1. Recall that u(k) is the
actual input signal to the process and hence this signal will suffer from saturation,
not u'(k).

By utilizing the anti-windup controller (3.10) with R, & and T given by (4.15)-
(4.17), the loop gain (3.17) around the saturations becomes

L,=W(R+SH)-1I, (4.18)
where

SH = S'CH = S'D = §' det(H)I, . (4.19)

Note that SH is a scalar transfer operator times a unit matrix of dimension p|p.
By rewriting det(?) as a polynomial ratio
Bdet(Q) é
Adget(q)

and combining this ratio with (4.19) and (4.18), the loop gain £, can be written
as

det(H(q)) (4.20)

1

1
Adet

‘Cv = W(RIAdet + S,Bdet) D - (421)

If W in (4.21) is chosen to be a scalar transfer operator times the unit matrix
I, ie.

W(q) = %Ip : (4.22)
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then the rational matrix expression of the loop gain, £,, simply becomes a scalar
transfer operator times a unit matrix of dimension p|p. This is the choice of W
that we will use from now on. The final scalar expression for each one of these
loop gains is, in such a case

P(RIAdet + SIBdet)

Ev - F Adet

—1. (4.23)

Note that (4.23) is analogous to (2.13). Before we can formulate a suitable anti-
windup design procedure, which will help us to find suitable polynomials F' and
P, we need to know how F' and P will influence the dynamic properties of Hs.

By making use of (3.4), (3.14) and (4.15)-(4.17) we obtain
H; = Ba ‘W' = BA ' (R+SBA )W (4.24)
= HR+SH)"'W ' . (4.25)
Inserting (4.15), (4.19), (4.20) and (4.22) into (4.25) gives the expression

AdetF
Hs = H . 4.2
o (R' Ager + S'Bger) P (4.26)

As we can see, the anti-windup polynomials F' and P in (4.22) enters Hs in (4.26)
in the same way as F' and P in (2.5) enters #; in (2.11).

The choice F' = R'Ager + S'Baet, allows us to adjust the loop gains £, in (4.23),
by an appropriate choice of P in the same way as in Chapter 2.

But, regarding the dynamic properties of ;s in (4.26) , i.e. the dynamic proper-
ties of the desaturation transients, this choice of F' may leave some of the plant
poles left in the exression of Hs. If all the transmission poles of H are factors
of Age, then there will be no poles left in Hs, except for those given by P.
Nevertheless, we will chose the anti-windup polynomial F' as

F = RIAdet + SIBdet (427)

For the design of P, we will use the modified spectral factorization equation

rPP* = BuuBi, + pAdtAs,| - (4.28)

The 2-norm of H,; is not minimized by the choice P = B¢ and due to this fact,
a polynomial P obtained from (4.28) will not minimize a criterion analogous to

29



(2.14). Still, it will be possible to adjust the loop gains in relation to the NLCFs,
by using P, obtained by solving (4.28) for different values of p. If the value of
p is increasing, the polynomial P will approach the stable, or marginally stable
polynomial Age. Such a P will force the loop gain curve away from the NLCF
and for large values of p, the loop gain £, will end up as a point in the origin.
If the value of p is decreasing, the polynomial P will approach the stable, or
marginally stable polynomial B3¢, This, in turn, will increase the loop gain £,
and force it to approach the NLCF.
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4.3 Examples

The anti-windup strategy introduced in this chapter will be compared with three
other strategies. The nominal controller is a LQ controller designed by the meth-
ods discussed earlier in this chapter.

First, we will investigate how the nominal controller performes without anti-
windup compensation. Then we will use a method similar to the observer based
method by Astrém and Wittenmark [1] and also a method similar to the con-
ditioning technique by Hanus, et.al. [2]. As a final example, we will investigate
how our stategy performs.

The process to be controlled is a Heavy Oil Fractionator (HOF), which is used to
separate components from crude oil. The HOF has two inputs and two outputs
and a plot of the open-loop step responses of the process is shown in Figure 4.2.
In all examples, a symmetric nonlinearity with saturation limits v,,;, = —0.5 and
Umaz = 0.5 will be used.

Input 1 Output 1 Input 1 Output 2
5 6
4 5
o 3 o4
e} e}
2 2
5 2 53
IS £
< 1 <2
0 1
-1 0
0 10 20 30 40 0 10 20 30 40
No. of Samples No. of Samples
Input 2 Output 1 Input 2 Output 2
2 6
15 4
(] ()
=} °
2 2
s 1 g 2
£ S
< <
0.5 0
0 -2
0 10 20 30 40 0 10 20 30 40
No. of Samples No. of Samples

Figure 4.2: Step responses of the Heavy Oil Fractionator process. This
HOF is used to separate components from crude oil and the process has
two inputs and two outputs. The input ul is a Top Draw of one of these
components and the input 42 is a Side Draw of another component. Both
Draws must be within hard maximum and minimum bounds of +0.5 and
—0.5. The outputs y1 and y2 are temperatures at the Top End Point and
the Side End Point of the HOF, respectively.
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Figure 4.3: Feedforward-decoupling controller, without anti-windup com-
pensation, in conjuction with a process plant .

Example 1

This first example shows how the system reacts on saturation events when the
controller lacks windup compensation. The control law, given by (4.14), is

Ru=-Sy+Tr (4.29)
but, we will realize the controller as
Ru=C(-S'y+T'r) . (4.30)

The system is shown in Figure 4.3. This is a LQ-controller designed by use of
the method described earlier in this chapter. The decoupling link is thus given
by (4.8). For the design of the regulator {R', §',T"}, the LQ-design criterion

J=y*+1.5%u? (4.31)

was used. Here, u' is the input signal vector to the decoupled system D = HC.
The regulator has one observer pole at z = 0.75 and, to obtain integral action,
the polynomial R' has one zero in z = 1. Futhermore, the scalar polynomial 7’
is chosen such that deg[7T"] = deg[R/].

Evaluation of the simulation

We note that the loop gain curve not intersects the NLCF (see the bottom dia-
grams of Figure 4.4), which means that stable cycles should not occur. In the plot
of the output signals (top diagrams of Figure 4.4) we observe that such stable
cycles are not present. It would, however, be desireble to get rid of the peaks in
the output signals, which are caused by the saturation events. One can clearly see
how the control signals overshoot there allowed range when the output transients
occur (middle diagrams of Figure 4.4).
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Reference and output signals r1, y1
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Figure 4.4: The Heavy Oil Fractionator controlled by feedforward-
decoupling and two identical L.QQ controllers, without anti-windup compen-
sation. Since the two loop gains around the two saturating control signal
elements are, by design, the same, the two bottom diagrams shows the
same loop gain and the same NLCF. The right-bottom diagram is just a
magnification of the left-bottom diagram, in the region around the point -1.
The reference signals 71,72 and the plant output signals y1,y2 are shown
in the upper diagrams. The controller output signals u1,u2 and the plant
input signals v1,v2 are shown in the middle diagrams.
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Figure 4.5: Feedforward-decoupling controller, with dead beat anti-
windup compensation, in conjuction with a process plant .

Example 2

The anti-windup compensator used in this example is similar to the deadbeat-
observer based anti-windup compensator suggested in [1] for scalar systems. The
control law is given by

¢"u= ("I, - R)v+C(-S'y+T'r) . (4.32)

Figure 4.5 depicts the system. The controller (4.32) can also be seen as a special
case of the more general anti-windup compensated control law

u= (I, —-WR)v —WSy+WTr . (4.33)

These two controllers becomes equal by the choice W = ¢~ L.
Evaluation of the simulation

The pre-existing controller, { R, §’,T"}, and the decoupling link C are the same
as in Example 1.

In this case the loop gain curve does intersect the NLCF and, as we can see,
the intersection point is located close to the point —1 (bottom diagarams of
Figure 4.6). As a consequence, stable cycle oscillations will most likely occur in
this system. The behavior of the plant output signals and the controller output
signals tells as that this is the case (top and middle diagrams of Figure 4.6). The
fact is that the uncompensated controller in Example 1 performed better.
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Reference and output signals r2, y2

Figure 4.6: The Heavy Oil Fractionator controlled by a feedforward de-
coupling L.Q) controller equiped with a deadbeat anti-windup observer. The
right-bottom diagram is a magnification of the left-bottom diagram in the

region around the point —1.
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Figure 4.7: Feedforward-decoupling controller, with anti-windup compen-
sation analogous to the conditioning technique, in conjuction with a process
plant H.

Example 3

The anti-windup compensator used in this example corresponds to the Condi-
tioning technique anti-windup compensator suggested in [2]. The control law is
given by

(T /to)u = (T"/to — R) v+ C(—=S'y +T'r) . (4.34)

Figure 4.7 illustrates the system. This compensated control law can also be seen
as a special case of the more general anti-windup control law

v=(L-WRyv+W(-Sy+Tr) . (4.35)
Chosing W as
W= -1 (4.36)
= Tt 5 :

will make (4.34) and (4.35) equal.
Evaluation of the simulation

The pre-existing controller, { R, §’,T"}, and the decoupling link C are the same
as in Example 1.

This system behaves nicely even though there is an intersection between the loop
gain curve and the NLCF (bottom diagrams in Figure 4.8). Compared to the
behaviour of the output signals in Example 2, this system acts real nice (upper
diagram of Figure 4.8). The reason for this is that the intersection point is located
further to the left in this case, than it was in Example 2. As a result, there must
be higher amplitudes present in this loop in order to exite oscillativ modes. Still,
there is no guarantee for the absence of nonlinear oscillations in this system.
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Reference and output signals r1, y1
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Figure 4.8: The HOF process controlled by a feedforward-decoupling L.Q
controller equiped with an anti-windup compensator based on the con-
ditioning techique. The right-bottom diagram is a magnification of the
left-bottom diagram in the region around the point —1.
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Figure 4.9: Feedforward-decoupling controller with modified systematic
anti-windup compensation in conjuction with a process plant .

Example 4

In this and also in the last example, the modified Systematic anti-windup design
strategy, discussed earlier in this Chapter, is used for the design of the anti-
windup compensator

P
W=l . (4.37)

The stable polynomial F' is then given by (4.27). The stable polynomial P is
obtained from (4.28) where the trade-off parameter p = 1 in this example. Hence,
the anti-windup compensated control law is

FLyu = (FI, — PR)v+C(—PS'y + PT'r) . (4.38)

Figure 4.9 illustrates the system.
Evaluation of the simulation

The pre-existing controller, { R, §’, T"}, and the decoupling link C are the same
as in Example 1.

Regarding the shape of the loop gains and the behaviour of the output signals,
this anti-windup compensation seems to have much in common with that used in
Example 3. The loop gains (bottom diagrams in Figure 4.10) are almost identical
to those in Example 3 (bottom diagrams in Figure 4.8). Note that the control
signals 1, u2 (middle diagrams in Figure 4.10) both have larger amplitudes
during the saturations event than the corresponding control signals ul, u2 in
Example 3. But, as we can see, the saturated control signals in this example, are
saturated under a less number of samples. In other words, the number of dots,
during a saturations event in 11 in this example, are less then the number of dots
during the same saturation event in u1 in Example 3. The same is true also for
u2. Nevertheless, these two systems show almost identical behaviour.
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Figure 4.10: The HOF process controlled by a feedforward-decoupling
LQ controller supplied with the modified systematic anti-windup compen-
sation. The right-bottom diagram is a magnification of the left-bottom

diagram in the region around the point —1.
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Example 5

This system is identical to the one in Example 4 except for the fact that P is
obtained from (4.28) with p = 9.

Evaluation of the simulation

As in the previous examples, the pre-existing controller, {R', §',T'}, and the
decoupling link C are the same as in Example 1.

The loop gain curve does not intersect the NLCFE and the output signals behave
nicely. As we can see in the middle diagrams of Figure 4.11, the number of time
instants when the control signal saturates, is less than in any of the Examples 2-4.
Compared to the system in Example 1, this is not the case. The difference in the
behaviour of the control signals in this Example and the control signals in Ex-
ample 1, is that those in Example 1 tends to oscillate soon after the desaturation
events. As a result, desaturation transients will be present for a longer time in
that system. These effects can be explained by the loop gain and the shape of the
loop gain curves. The loop gain is “higher” in this example than in Example 1,
i.e. the loop gain curves in the lower diagrams of Figure 4.11 are more “blown
up” than those in Figure 4.4 and hence, the desaturation transients will decay
faster in this system.
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Figure 4.11: The HOF process controlled by a feedforward-decoupling
LQ controller supplied with the modified systematic anti-windup compen-
sation. The right-bottom diagram is a magnification of the left-bottom

diagram, in the region of the point —1.
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4.3.1 Summary of the simulation results

Let us first conclude that the nominal system in Example 1 performed quit well
under the present conditions. But, as mentioned in the begining of this report,
there is no guarantee for a satisfactory behaviour, during or after a saturation
event, of such a system. There are many factors involved which may have a
bad influence on the performance of any system, during or after a saturation
event. The dynamic properties of the plant, the constraints of the actuator and
the design of the nominal controller, are some important factors. If we had
used another regulator, without anti-windup compensation, for the control of
the HOF process in Example 1, then that system may not have performed as
well. Compared to the pre-existing {R', S’, T'} regulator that we used in all the
examples, such a regulator may have been designed by use of a lower penalty
on the control signal increment and/or an observer pole located closer to the
origin. How the anti-windup compensated controllers in the Examples 2 and 3
had performed with such a pre-existing controller is not easy to anticipate, but
one thing is clear; regarding control signal saturation events, there is no guarantee
for a satisfactory behaviour of such systems either.

If that pre-existing regulator had been used in the Examples 4 and 5, it still had
been possible to obtain loop gains which shapes had been almost identical to
those in Example 5.
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Chapter 5

Conclusions

In Chapter 3 we suggested a method for anti-windup compensation of multi-
variable controllers. It is a generalization of the Systematic anti-windup design
method, developed and discussed in [6] for scalar systems. Therefore, a brief
description of that method was presented in Chapter 2. We showed that the
multivariable anti-windup design could be reduced to a set of scalar designs, by
diagonalizing the loop gain around the control signal saturation elements. The
scalar loop gains could then be adjusted so that the desaturation transients in the
output signals, decay fast, while nonlinear oscillations are avoided. For a system
with m inputs (inputs to the plant) this design requires that m scalar penalties
are chosen appropriately.

Anti-windup compensation of feedforward decoupling controllers, used to control
MIMO processes, where discussed in Chapter 4. A number of simulations of such
a decoupled system, using different anti-windup compensation strategies, where
also presented and discussed in Chapter 4. Unfortunatly, the general method
developed in Chapter 3 has not yet been evaluated by simulations. A complete
investigation of the general method discussed in Chapter 3 and also an investi-
gation of how the limitation in the control signal increment could be taken into
account in the anti-windup design, are important topics for futhure research.
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