Abstract

This thesis addresses the problem of letting two mobile telephone customers use
the same frequency and/or time slot simultaneously. It presents an algorithm,
which performs multivariable equalizing and detection, using a multivariable De-

cision Feedback Equalizer (DFE). The DFE presented can be used for arbitrary
numbers of receivers and transmitters.

This algorithm is utilized on two different multivariable channel models, one de-
terministic and one stochastic. These models map characteristics of the antenna
system onto channel characteristics. In the deterministic model, the phase differ-
ence of the carrier wave at the two antennas is the parameter, and for the stochastic
model the envelope correlation of the signals at the two antennas is used. Monte
Carlo simulations have been carried out on a simple FIR channel from a purely
discrete-time viewpoint.

The results obtained from the deterministic model are very good, but rest on
specific assumptions. The stochastic model also produces good results. Although
it potentially can double the system capacity, already for moderately correlated
antennas, the algorithm produces a BER, which is lower than a single antenna
configuration succeeds with. A comparison has also been made with conventional
antenna diversity methods, and also with a multivariable DFE with two antennas
and one message. For the latter case, the achieved BER is superior for any antenna
correlation.
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Chapter 1

Introduction

In the ancient times, personal communications meant talking. The people tak-
ing part in the conversation could be at most a few tens of meters apart. The
need for communications over larger distances was enormous, and soon after man
had become settled, the written word was invented. Writing remained the main
communication method for long distances over a very long period of time, and it
is only recently it has received serious competition as the most important way of
communicating over long distances.

The written word has three major drawbacks however. First of all, it is slow.
Writing is a slow process, and delivering letters takes far too long time. Secondly,
writing has never been, and will never be, as easy as talking. Thirdly, and proba-
bly most important, writing is not interactive. Even today, it takes a few minutes
or more for the reply of an electronic letter to reach the original sender.

At the time of the industrial revolution, the demand for better communications
was enormous. During the 18th century, the optical telegraph was massively uti-
lized in France. A system of semaphores covered entire France. Its successor, the
electric telegraph, became the next step in the development of personal commu-
nications. Actually, these methods were not “personal” at all. They both relied
on operators delivering the message, letter by letter. Hence, the contents of the
messages were no secrets.

It was not until the end of the 19th century that two inventions changed the
business of long-distance personal communications. First, Alexander Graham Bell
invented the telephone. This made it feasible, if not easy, to communicate interac-
tively over long distances (across continents). This communication was basically
private. Two persons were given unique access to a communication channel, and
although it was possible for others to intercept their communication, it required
some effort.

To name the telephone system the ultimate “personal communication” system
would be to say too much, however. The wire or cable based telephone system
is very stationary, and when you call a person, you do not really call the person.
Rather, you direct your call to a specific location where the person in question
is supposed to be. This would be in contrast to the situation where the great



invention of the early 20th century was used, the wireless radio.

The italian Marconi used radio waves to transmit messages. The message needed
no medium to travel in. The invention was also called wireless. This gave a
possibility for truly personal communication. If you brought your wireless radio
transmitter and receiver with you wherever you went, you would always be reach-
able. Unfortunately, the communication would not be private. Anyone with a
radio of the same kind could easily listen to the conversation.

Through the years, the wireless radios became smaller and smaller. Finally, in the
1950’s, it was time for the arrival of the mobile telephone system. This system
combined the advantages of the telephone and the wireless radio. To start with,
these systems were analogue, but later on they became digital. The development
today indicates that very soon, the majority of new telephone (and data) connec-
tions installed, will be radio connections.

The digital mobile telephone systems produce a vast of technological challenges.
There is a general demand to accommodate as many users as possible within some
given limits. Another important issue is to guard against disturbances and weak
signals, something that is common in these systems. One solution to this problem
has been to use multiple antennas to reduce the impact of noise. The main idea
with this approach is that the receiving conditions will almost surely not be the
same at all the antennas simultaneously. Multiple antennas can also be used to
solve more fundamental problems, such as e.g. capacity limitation. This issue is
investigated in this thesis.

L gt

Assuming that there are two antennas at each base station and two antennas
each mobile, is it possible for two users to use the same frequency simultaneously,

by using the information from their two receiver antennas in a clever way?

This naturally leads to the problem of multivariable channel models, and how the
channel models are related to measurable properties of the antenna system. Two
multivariable channel models are presented in this thesis, one deterministic and
one stochastic. The stochastic is the most promising one. The major parameter
in this model is the envelope correlation of the two signals arriving to (or arriving
from) the two base station antennas.

The next problem to consider is how to construct a multivariable filter, which ex-
tracts the transmitted information from distorted and noisy measurements. The
multivariable channel is supposed to be exactly known and time invariant. We
decide to use a multivariable Decision Feedback Equalizer (DFE) after having con-
sidered both a multivariable Linear Feedback Equalizer (LFE) and a multivariable
Viterbi detector. The design equations for a multivariable DFE, which are derived,
can, in principle, be used for an arbitrary number of transmitters and receivers.
The design equations are logical generalizations of those for the scalar case, derived

!The methods presented in this thesis can be generalized to multiple antennas, but we restrict
ourselves to two.



by Sternad and Ahén in [16] and used by e.g. Lindbom in [12]. The multivariable
filter design equations constitute a linear system of equations, AX=B, where X
and B are matrices, not vectors. The special case when there is a single transmit-
ter and multiple receivers is very similar to the maximal ratio combiner discussed

in [5].

This work fits really nice into the future development of mobile radio systems.
Today, digital mobile telephone systems based on three different standards (GSM
2 ADC?, JDC?) are in operation or under development. But future systems are al-
ready being considered. There is no doubt that these systems will operate at higher
carrier frequencies than today’s systems. This will simplify the design of hand-
held units with multiple antennas, since the necessary spacing between different
antennas is closely related to the carrier wavelength. There are several fundamen-
tal design issues for these future systems that are discussed. One point where the
discussion is particularly fierce is the choice of multiplexing method. The method
presented in this thesis can be used whichever of FDMA °, TDMA ¢ or CDMA
7 is finally decided for. However, the use of CDMA would in itself decrease the
correlation among the antennas, which would be very beneficial in the present case.

The thesis is organized as follows: chapter 2 contains a brief overview of digital
radio and mobile communications. Chapter 3 presents the multivariable channel
models that will be used. Chapter 4 presents the filters and equalizers that will be
used. In chapter 5, a Monte Carlo simulation study is presented, together with a
comparison with today’s methods. Finally, in chapter 6 the thesis is summarized
and some conclusions are drawn.

2GSM=Global System for Mobile communication

3ADC=American Digital Cellular

4JDC=Japanese Digital Cellular

SFDMA=Frequency Division Multiple Access, each user gets a private frequency
STDMA=Time Division Multiple Access, each user gets a private time slot
"CDMA=Code Division Multiple Access, each user gets a private code






Chapter 2

Mobile radio communication

2.1 Digital radio communication

2.1.1 The radio transmission system

——| Transmitter RF channel Receiver —

Figure 2.1: The radio system.

A radio transmission system basically consists of three parts. At one end is the
transmitter. The transmitter accepts information from a source, transforms it into
a form that can be transmitted and sends it over a Radio Frequency (RF) channel.
The channel possibly distorts the transmitted signal before it reaches the receiver.
It is then the receivers job to figure out what signal was transmitted, and to turn
it into understandable information. If everything goes well, the information the
receiver delivers should coincide with the information fed into the transmitter.

Digital communication differ from its analogue counterpart in that it can only
transmit a finite number of waveforms. The information is typically a stream of
binary digits. These binary digits could either be converted analogue signals, or
they can be purely digital. They might in the latter case originate from a computer.

The information reaching the transmitter is typically coded, i.e. it has already
been processed. In the same way, the information that leaves the receiver must be
decoded before it can be used. Neither encoding nor decoding will be discussed
further in this thesis. Moreover, the treatment of digital communication systems
in general is very brief in this thesis. For a complete treatment of such systems,

see [13].

2.1.2 The transmitter

In the transmitter, the bit stream is first divided into groups of k bits. Each group
is combined into a symbol. A symbol is the smallest unit of information that is
transmitted over a radio channel. Instead of a stream of bits, a stream of symbols



is transmitted. The total set of symbols is referred to as an alphabet.

Symbols can not be transmitted as they stand, since they are digital. Through
pulse shaping, the digital symbols are converted into analogue waveforms. The
pulse shaping is basically accomplished through low pass filtering, where some
constraints are put on the low pass filter. This technique is called Pulse Amplitude

Modulation (PAM), and the signal is called a PAM signal.

After the pulse shaping, the PAM signal is referred to as the baseband signal. The
next step in the signal conditioning process is modulation. Modulation means that
the baseband signal s;(¢) is multiplied by a continuous time sine or cosine function
of high frequency (w.), the so-called carrier,

Sp(t) = su(t) cos(wet) .

The resulting signal s,(t) is called the passband signal. In the case of mobile tele-
phone communications, the carrier frequency lies in the microwave range. This
means that the wavelength is between 0.3 m and 0.001 m, and the frequency be-
tween 900 MHz and 300 GHz. The microwave region is also called the UHF (Ultra
High Frequency) region. The effect the modulation has on the baseband signal is
that it shifts it to a much higher frequency, see Figure 2.2.

Modulation

So(w) — Sy(w)

—We We

Figure 2.2: Baseband and passband spectrum for a real valued signal, which has
been modulated by a carrier cosw.t.

The spectrum of the baseband signal is symmetrical, if the signal is real-valued.
This property would be insignificant if the baseband signal was to be transmit-
ted itself, since the part of the spectrum that has a negative frequency is not
really transmitted. However, when the passband signal is studied, the situation
is different. The part of the spectrum that lies below the carrier frequency (the
lower sideband) is also transmitted and occupies frequency space without pro-
viding any additional information. One way of avoiding this drawback and to
transmit additional information in the lower sideband, is to allow the symbols to
be complex-valued. It is of course impossible to transmit a complex-valued signal
as it stands, because the real world in general, and the RF channel in particular,
is not complex-valued. The solution is to multiply the possibly complex baseband
signal with a complex carrier and transmit the real part of the corresponding
signal:

s,(t) = Re{sy(t)e™'} .
This is, in fact, equivalent to transmitting the real and imaginary parts of the
pulse shaped symbol s, = s} + jsi separately, using two carriers that have the
same frequency but phases that differ by 90 degrees.



For complex-valued symbols, the baseband spectrum is not symmetrical around
w = 0, and the corresponding passband spectrum is not symmetrical around
w = w.. Hence this modulation scheme uses the frequency space more efficiently.

Modulation
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Figure 2.3: Baseband and passband spectrum for complex-valued signals, mod-
ulated by a complex carrier e/¥<’,

Two modulation techniques that use complex symbols, and which are commonly
used in practise, are QAM (Quadrature Amplitude Modulation) and PSK (Phase
Shift Keying). In QAM, the symbols are transmitted as described above. Multi-
plying the pulse-shaped signal with a complex carrier e™*<! and transmitting the
real part is equivalent to splitting the baseband signal s;(¢) into real and imaginary
parts, modulating them separately by cosw.t and —sinw.t and transmitting the
sum, see Figure 2.4. The signal sj(¢)cosw.t is denoted the in-phase component

while the signal —si(#)sinw,t is denoted the quadrature component.

cos w,t
CA I IEAONS
sp(1)
{d;,} sh(t)
p(t) (?
— sinw,t

Figure 2.4: A QAM transmitter. p(¢) is the pulse shaping filter.

In PSK, the complex-valued symbols are restricted to have the same amplitude,
i.e. {d,} = {re’’»}. After the modulation, the entire information is conveyed by
the phase of the modulated carrier. It is clear that QAM and PSK are closely
related, since

Re{d,} =rcosb, Im{d}, =rsinb, .

2.1.3 The channel

It is not quite clear what is meant by an RF (Radio Frequency) channel. The type
of channel description depends on the purpose. Some people may only want to
consider the space between the transmitting and receiving antenna as the channel.
The channel is then continuous in time. It is also possible to consider the channel
to be discrete in time. In that case, the modulation at the transmitter and de-
modulation, prefiltering and sampling at the receiver are included in the channel,

7



as well as the wave propagation properties of the space between the transmitting
and receiving antenna. This second view is adopted in this thesis. The discrete
channel models used in this thesis will have the transmitted symbols d(k) as inputs
and the received sampled baseband signals y(k) as outputs.

The by far most crucial aspect of the discrete-time channel, which complicates the
receiver design, is the “free” space between antennas. The quotation marks are
well justified; only on very rare occasions may this space be considered free from
obstacles. In fact, objects around and between the transmitter and the receiver
reflect and scatter the radio waves as they travel through the ether.

A QE My

transmitter [l ~ receiver e@
ﬁ 7
t 7 b
N

Figure 2.5: The mobile radio environment. A very large number of scatterers
contribute to multipath propagation.

As the obstacles are located at different distances from the transmitter and re-
ceiver, the same signal will reach the receiver at different time instants. This leads
to a delay spread. The delay spread may cause the same signal to arrive at the
receiver at different sampling instants. The received signal at one time instant
may consist of, not only of the latest symbol transmitted, but also of symbols
transmitted in the preceding sampling instants. This effect is called intersymbol
interference (IST). The channel can then be considered as a linear difference equa-
tion, with the symbols d(k) as input and the received sampled baseband signals
y(k) as outputs:

y(k) = bod(k) + byd(k — 1) + byd(k —2) + ...+ bod(k —n) +v(k) . (2.1)

The signal v(k) comprises noise and interference, and describes the part of y(k)
which can not be modelled as a linear regression of the symbols d(k). The existence
of a bandpass filter in the receiver assures that v(k) has zero mean. Apart from
that, the distribution and spectral characteristics of v(k) are unknown. In the
above model, the sampling interval is normalized to 7" = 1, and k here denotes
discrete time. The frequency response of the channel will in general not be flat. The
channel is then called frequency-selective, since some frequencies are attenuated
more than other. Using the backward shift operator ¢=! (¢7'y(k) = y(k — 1)), the
impulse response (or transfer operator) B(q™') of the channel can be written

B(g™ ) = bo+big +bog .. 4 bug " (2.2)

The coefficients (also known as taps) of (2.2) are in general complex, even for real-
valued symbols d(k). At first glance, this might seem strange, but is a consequence

8



of the baseband representation of a passband channel. Consider transmission of
real-valued PAM signals. The baseband and passband representation of the trans-
mitted signal is shown in Figure 2.2. The RF channel can be represented by its
continuous-time, passband impulse response h(t) or its corresponding transfer func-
tion H(jw), shown in Figure 2.6.

|H(30)]

| — |

| |
—We We

Figure 2.6: The continuous-time, passband transfer function of a RF channel.

To obtain the spectrum of the received passband signal r,(t), the transfer function
H (jw) is multiplied by the transmitted signal spectrum S,(w), shown in Figure 2.2.
This results in a received passband spectrum shown in Figure 2.7. Also shown in
Figure 2.7 is the spectrum, which the received baseband signal r;(¢) has after the
demodulation.

R,(jw) Demodulation Ry(jw)

— -

| |
—We We

Figure 2.7: The demodulation process. Notice that the resulting baseband spec-
trum R;(jw) is not symmetrical with respect to w = 0, even though the passband
spectrum R,(jw) is.

The resulting baseband spectrum of the received signal is not symmetrical with
respect to w = 0. We want to describe the entire process from Figure 2.2 to Fig-
ure 2.7 with only one transfer function Hp(jw) from one baseband signal to another.
We do not want to take the modulation and demodulation explicitly into account
every time the channel is considered. This is possible, but this transfer function
must have an asymmetrical spectrum. But only complex-valued functions have
asymmetrical spectra. Hence, our equivalent baseband impulse response (2.2),
which is the inverse Fourier transform of Hy(jw), must be complex-valued. This is
the price that has to be paid in order to be able to make (almost) all considerations
in the baseband.

The conclusion of the argument above is that the equivalent baseband impulse re-
sponse of the passband transmission is given by (2.2): a polynomial with complex
coefficients. These coefficients might well be time-variant, but throughout this
thesis, they are supposed to be time-invariant.



The performance of a well-designed radio system primarily depends on the channel.
It is interesting to measure the quality of the channel. The usual way to do this is

by using the Signal-to-Noise Ratio (SNR). The SNR in discrete time is defined as
]
(2.3)
where v(k) is defined as in (2.1) and

u(k) = B(q™)d(k) .

The relationship between this definition and the SNR discussed in continuous
time, the signal-to-noise ratio per bit F,/Ng, is affected by many things. The
relationship depends among other things on the receiver prefilter and the size of
the symbol alphabet.

2.1.4 The receiver

In the receiver, the received signal is demodulated. This is accomplished by multi-
plying the signal by cos w.t and — sinw.t, respectively. The respective components
are then passed through a low-pass prefilter and sampled. The sampled quadra-
ture component is multiplied by 7 and finally the two components are added, to
produce the received (complex-valued) baseband signal y(kT').

(1)

T.’L
R
—sin w,t j

Figure 2.8: The QAM receiver, where r,(t) is the received passband signal and w,
is the carrier frequency. The in-phase and quadrature components are demodulated
and sampled separately. Notice that here k denotes the time index. In the following

chapters, the time index used will be t. T' is the sampling interval.

The problem is now to reconstruct the initial symbols from these measurements.
Note that the effect of the pulse shaping filter p(¢) and the receiver filter f(¢) on
the received signal y(k) will, in the following, be included in the total baseband
channel model (2.1).

The performance of a digital radio system is often measured in how many percent
of the symbols or bits were not detected correctly. These figures should be as
small as possible. In this thesis, the size of the alphabet is two (binary signalling).
Hence, the two measures are the same, but the unit Bit Error Rate (BER), is the
one that will be used.

10



2.2 The mobile radio environment

2.2.1 The cellular radio system

Mobile telephone systems are basically built around a large number of base sta-
tions. An antenna is associated with each base station. This antenna is often
situated well above the terrain surrounding it. Each base station provides tele-
phone services to a number of mobiles. A mobile can be a vehicle based telephone
or a hand-held terminal. Each mobile is given unique access to one channel by the
base station. This is in contrast to e.g. walkie-talkies.

! M obile
’ ? ?
' T ' !
base
' station . !
w f
cell

Figure 2.9: The cellular system, used in a mobile telecommunication system.
The real pattern of the cells is actually much more irregular and complicated than
the simple hexagonal one sketched in the figure.

All mobiles served by one base station are said to be in the same cell. A cell is
of course a limited geographical region. However, it is not necessary (or common)
for a base station to be in the middle of its cell. The border between two adjacent
cells are not well defined. The selection of the particular base station which com-
municates with a certain mobile and the handover (switching) of a mobile from
one base station to an adjacent one, is handled dynamically from case to case by
a higher order control system. This system continuously monitors the received
signals’ strengths from the different mobiles.

Except for containing the antenna and analogue amplifiers, a base station quite
naturally provides some administrative services to its mobiles. The most impor-
tant of these services is, of course, (at least today) the connection to the usual,
stationary telephone system. Other services provided by the higher order, super-
visory system includes channel management, i.e. the system decides which channel
is allocated to which mobile. This can be solved in many ways, depending on how
the available frequencies are divided among the mobiles. Methods such as FDMA,
TDMA and CDMA are possible ways to split the frequency band. Multiplexing
methods will, however, not be discussed in this thesis. An overview of the area
can be found in e.g. [3]. Also, in most systems used today, the entire frequency
band can not be used by a single base station. The base station must coordi-
nate its channel usage with that of the neighboring base stations’. Despite this

11



coordination, the major reason for noise in cellular radio systems is co-channel
interference, i.e. the “noise” a mobile in one cell is experiencing mostly stems from
other mobiles in other cells, using the same channel. The typical cell radius is
1-30 km. The size of a cell is dictated by the number of expected subscribers in
the area. The means of regulating the cell size is the transmitter power, antenna
height and the geographical and topographical locations of the base stations. One
possibility to increase capacity in such a system is to increase the number of base
stations, and decrease their range (the size of the cells).

The carrier frequency used for mobile communication is very high, typically in
the lower microwave region. The microwave region corresponds to a frequency of
about 900 MHz to 300 GHz, and a wavelength between 0.3 m and 1 mm. Presently,
frequencies in bands around 450 MHz, 900 MHz and 1.8 GHz are allocated for mo-
bile telephony in Europe. Experiments are carried out for the use of considerably
higher frequencies. These frequencies are intended for use in in-door picocells and
wide-band digital systems.

2.2.2 Multipath fading

In mobile communication, one part of the radio link is generally moving. Thus
communication is to be established between a fixed base station and a mobile in
motion. The radio link from the mobile to the base station is called the uplink,
and the reversed link is called the downlink. As a result of the motion, the channel
will be time varying. Since the channel is varying, also the received signal strength
will vary. This phenomenon is called fading.

There are basically two types of fading: long-term fading and short-term fading.
Long-term fading occurs when the mobile is obscured by large objects, such as e.g.
a mountain or a forest. This fading is rather slow: once behind the mountain, the
channel will not change much until the mobile leaves the vicinity of the mountain.
This typically takes many minutes.

Short-term fading, on the other hand, is not caused by single objects. The collec-
tive effect of many small objects (typically houses or trees in an urban or suburban
environment) causes locally reflected waves to produce a stationary interference
pattern. The channel at one location can be quite different from the channel one
meter away, and if the mobile is moving, the channel might change completely
within milliseconds; hence the name short-term fading. Since this effect stems
from the fact that the signals travel many different ways to the mobile (multipath
propagation), short-term fading is also known as multipath fading. For a compre-
hensive discussion of multipath fading, see e.g. [11], [12].

Fading is most often discussed in terms of temporal variation, but it is actually
more appropriate to discuss it in terms of spatial variation. This is because it
is a spatial change the mobile experiences as it travels through the interference
pattern; the pattern itself is stationary, as long as the majority of the scatterers
are stationary.

12



2.2.3 Rayleigh fading

The delay spread that causes the channel to have an impulse response which lasts
over several sampling intervals, is not the only effect caused by multipath propa-
gation. It is in fact very likely that multipath propagation exists, even when there
is no intersymbol interference. This effect causes each channel coefficient in (2.2)
to be a sum of many locally reflected waves, with small differences in travelling

(k)

times. Each of them is associated with a damping factor ¢;"’(x) and a phase shift
';/)(k)(x), which are both spatially varying:

N k (%)
bp(z) = Zag )(x)ewi @ k=0,1,...,n.
=1

A commonly accepted model for the distribution of the coefficients is the Rayleigh
fading model (see [9]). This model describes the channel coefficients as mutually
independent, complex Gaussian variables, i.e.

bi(x) £ Re{br} € N(0,0%)  bi(x) 2 Im{by} € N(0,0%) .

Bl (x)bi(2)] = 0.

The spatial variation can be expressed in terms of the normalized covariance func-
tion of the coefficients. The normalized covariance function is defined as:

O wig;ﬁ%g’]; o . (2.4)

where ¢ is the distance between two points along the direction z. In a Rayleigh
fading environment, R({) is given by a Bessel function of the first kind and of

R(E) = ho2n%) (2.5)

The above properties are based on the following assumptions:

order zero:

e The mobile is reached by an infinite number of locally reflected waves (N —

e The surrounding local scatterers are symmetrically distributed around the
mobile.

e The coefficients a;(z) are considered to be independent, identically distributed,
random variables, with average power independent of .

e All the phases are mutually independent random variables, with uniform
distributions on [0, 27].

This model has been verified to be accurate (see [9]) under the conditions
1. The receiver antenna is located close to the ground

2. The carrier wavelength is small enough (<0.3m).

13



In an urban or suburban environment, these assumptions apply very well to the
situation around the mobile, but they do not apply to the situation around the
base station. This is because there are few, if any, local scatterers surrounding
the base station. Hence, only a small number of locally reflected waves reach the
base station antennas, which violates assumption 1 above for Rayleigh fading. As
a matter of fact, there is no well-accepted model which describes the fading at the
base station.

The Rayleigh fading model does not say anything about the correlation between
different taps in the channel model. The view adopted in this thesis is that the
taps in the channel are mutually uncorrelated. The pulse shaping filter p(¢) and
the prefilter f(¢) most likely introduce some correlation among the taps. This is
ignored in this thesis, however.

A fading model closely related to the Rayleigh fading model, is the so-called Rice
fading model. In this model, one incoming ray is supposed to be stronger than the
other ones. This leads to different properties of the channel coefficients, compared
to the properties in the Rayleigh fading model. The single, stronger ray is sup-
posed to originate from a direct wave, not locally scattered. This model is also a
commonly used one, however not as common as the Rayleigh fading model.

2.2.4 Antenna diversity

The major problem with mobile radio communications is the uncertain channels.
There is no way to guarantee a good channel, since the channel is basically stochas-
tic. The Rayleigh fading model makes the randomness of the channel quite obvious.
When all the channel coefficients are small, the SNR of the channel becomes very
low (cf (2.3)). This situation is referred to as a fading dip.

One way to reduce this problem at the base station would be to establish another
channel to the mobile. This method is known as antenna diversity, and each chan-
nel that can be established is referred to as a branch. It is then possible to simply
use the best branch, or even better, combine the branches in some way. Antenna
diversity can be accomplished in many ways, depending on how the other channels
are established. One method uses multiple antennas to get different channels. This
is called spatial diversity. An overview of antenna diversity and different combin-
ing methods can be found in [3].

The four most common ways to combine the signals from two antennas are:
1. Selection diversity.

2. Maximal ratio combining.

o

. Equal gain combining.
4. Switched diversity.

Selection diversity simply selects the strongest signal and feeds it into the receiver.
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Maximal ratio combining is the most powerful but also the most complex method.
For a single-tap channel, each signal is weighted by the conjugate of its channel
coefficient. (This is in fact the optimal combiner for the AWGN channel.) In
the case the phase shift of the channel is not known (non—coherent detection),
the branches are weighted by the envelopes of their respective signals. Then the
weighted signals are added and fed into the receiver.

Equal gain combining just adds the signals and feeds the sum into the receiver.

Finally, switched diversity uses one signal as long as its signal power is above a cer-
tain threshold, but as soon is goes beneath it, the reception is switched to another
branch. Compared to selection diversity, this reduces the number of switching
transients. This is the simplest method.

If the two branches are assumed to be uncorrelated, the three first methods improve
the average SNR in the following way, cf [3]:

o selection diversity: 1.8 dB.
e maximal ratio combining: 3 dB.
e equal gain combining: 2.5 dB.

The improvement that is accomplished using switched diversity, is smaller than
that of selection diversity.

The problem with the first two methods is that with today’s equipment, the SNR
must be estimated in continuous time. However, if the signal from each branch
were demodulated, prefiltered and sampled separately, the channel to each antenna
could easily be estimated. The SNR is then trivial to calculate.

This is all very fine and dandy. But the critical point is whether the channels can
be considered independent. This is clearly a function of the distance between the
antennas. If the problem is to obtain uncorrelated channels in a Rayleigh fading
environment, the required distance would be around half a carrier wavelength, i.e.
around 0.15 m at 900 MHz. However, at the base station, the situation is different.
At the base station, it is much more difficult to guarantee uncorrelated signals,
since the Rayleigh fading model is not usually applicable there.

2.2.5 Multiple antennas - a possibility to increase capac-
ity?

When there exist two receiver antennas, and the signal from each branch is de-
modulated, prefiltered and sampled separately, the relation (2.1) can be written

vy (k boi(z . bii(z bpi(z vy (k
(i) = (e o (B Jaw—veoe (e v+ () )
(2.6)
Both y;(k) and v;(k), © = 1,2 are actually functions of z, but for simplicity, this
dependence is not written out explicitly in this thesis. Consider a case where there
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is only one tap in each channel, and the noise is negligible. Equation (2.6) then

becomes ( ﬁg ) _ ( Zz;g ) d(k) .

This can be considered as a overdetermined linear system of equations, which is
solved for d(k) in some sense. But there is another interesting possibility: what if
another message is added? Then the channel model would look like this:

( ya (k) ) _ ( bor(x) by () ) ( dy (k) ) (2.7)
va(k) )\ boa(w) bGy(x) ) \ da(k) ) '

This situation would represent an attempt to transmit two messages simultane-
ously, and hence potentially double the capacity of the system. If the matrix
in (2.7) is non-singular, the system (2.7) would be solvable. A solvable system
should imply a good possibility to filter out the desired signals, and vice versa:
with a singular or badly conditioned matrix, a large risk of error can be expected.
Of course, when more taps are present in the channel and noise is present in the

system, the problem becomes more complicated. However, even then, the problem
is a “simple” multivariable filtering problem.

The question is now how well a system with two receiver antennas and two mes-
sages could perform? It is evident, that a good starting point for the analysis
would be to examine the matrix in (2.7). The elements of the matrix are stochas-
tic variables with some distributions. Is it possible to guarantee that this matrix
is non-singular? In general, this is not possible. However, it is more likely that
a matrix with random elements is non-singular than singular. So, if the elements
are uncorrelated, the matrix will probably be non-singular. But if the elements
are correlated, the matrix might very well be singular. As an extreme example,
consider the case when the columns are perfectly correlated, while the rows are
completely uncorrelated. This is the case when the paths from d;(k) and dy(k)
to y;(k) ¢« = 1,2 are identical, due to a very small separation between the two
transmitters. The model is then reduced to

( yi (k) ) _ ( boy(x) by () ) ( dy(F) ) _

ya (k) boa(w) bga(w) )\ da(k)

The matrix is clearly singular. When the columns become less correlated, the
matrix becomes better conditioned, and the probability of transmission error de-

creases. This is the main subject of this thesis: how will the probability of error
(and hence the BER) be affected by the correlation between the signals?
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Chapter 3

Multivariable channel models

As pointed out in the preceding chapter, the key issue for how well a multi-antenna
multi-mobile-system would work is the principal appearance of the matrix in (2.7).
It would be nice to be able to build a deterministic model, which describes the
situation well. Such a model may, for instance, predict the BER as a function of
the difference of the incoming angle of the two rays from the mobiles. However,
such a model is often hard to obtain. In that case, it is necessary to apply a
stochastic model instead. Such models can typically be based on less restrictive
assumptions. However, only statistical properties of the channel can be used for
prediction of performance.

3.1 Remarks on the notation

From now on, continuous time will not be discussed. Therefore, ¢t denotes discrete
time, and the sampling interval is normalized to T' = 1.

In this thesis, all signals are assumed to be complex, if not stated otherwise. Con-
stant matrices are denoted by boldface roman letters, such as P. The transpose of
a complex matrix is denoted PT, and means only transposition of the matrix, not
complex conjugation of its elements.

The expression P on the other hand, means that all elements in the matrix P
are complex conjugated, but remain in their places. Finally, P* means that P is
transposed and that all its elements are complex conjugated.

For polynomials, the following notation is used: scalar polynomials are denoted by
capital, italic and light letters. For any scalar polynomial P(¢™!) = py + p1g™* +
oo+ Pn,q ", define the conjugate polynomial

Plg)=ps+pig+...+p, 9"

Matrix polynomials will be denoted by boldface script symbols, like B(g™!). (The
same convention applies for polynomial matrices, but those will not be used in
this thesis.) Similar to the scalar case, the definition for the related conjugate
polynomial B.(q) is

B.(q) =B;+Bg+...+BLq" .
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When appropriate, the backward and forward shift operators are often substituted
by the complex transform variables z=! and z respectively.

Finally, rational functions of polynomials, i.e. transfer operators or transfer func-
tions, are denoted by capital, calligraphic letters, e.g. C(¢™") or C(z71).

3.2 A deterministic model

As a matter of fact, a deterministic channel model can be found only for the up-
link, if at all. The model below model assumes a very clean environment around
the base station. Any reflexes, which reach the receiver within one sampling inter-
val are supposed to arrive from almost the same angle, in other words the model
assumes there exist no local reflexes. The difference between the distances the
waves have travelled is considered so small, that the power of the signals (i.e. the
magnitude of the channel coefficients) are the same for both branches. There will
only be a difference in the carrier phase between the two channels, and this is
modelled by a multiplication of a complex number of magnitude one. Figure 3.1
shows the geometry of the problem.

Wavefront

Antenna 2 Antenna 1

Figure 3.1: Geometry for deterministic channel model.

It is now assumed that the rays from the two mobiles arrive from angles oy and
oy relative to the baseline of length s between the antennas. The matrix in (2.7)

is then given by:
B= (" b2 (3.1)
- ble—m 526—1%) '

where the phase @; of the ith mobile is related to the incident angle «; of the ray
from the same mobile by

2[ .
Y = :Scosai 1=1,2.

?

The complete deterministic model then looks like this:

Y1) = ( yi(
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where

bix bak 7

Bk = ( blke—ﬁmk b2ke—w2k : (33)
The theoretical calculations as well as the simulation study will be devoted to
the single tap case. When that problem is studied in detail, it is revealed (see

Appendix B) that only the phase difference

Ap = s — ¢

effects the probability of error, i.e. it is possible to set ¢; = 0 without any re-
striction. This is equivalent to turning the antenna system so that the baseline
between the antennas is perpendicular to the incoming beam from the mobile cor-
responding to the first column of (3.1).

Ideally, this model can be used for any antenna spacing. A large antenna sep-
aration would make it possible to resolve closely located mobiles, since a small
difference in incoming angle would result in a large phase difference Ap. On the
other hand, widely separated mobiles could in this case be hard to separate, since
different incoming angles will result in the same phase difference. For instance,
s = 10X would result in a phase difference Ay = 7 for an angular separation
of only three degrees, but a phase difference Ap = 27 for six degrees. The for-
mer would be very advantageous, but the latter disastrous. However, when the
assumption of no local reflexes is violated (which it probably is), the magnitude
of the signals can not be assumed to be the same at the two antennas, and it is
not probable that the two phases are so well determined either. For the model to
be robust (give a reasonable description even when the assumptions are not quite
fulfilled), it is thus necessary to use a rather small spacing between the antennas,
maybe half a carrier wavelength. For larger spacings, local reflexes will proba-
bly make the deterministic model useless. However, a too small separation would
result in a too small phase difference, so the necessary compromise is a delicate one.

It is important to note, that this model is only applicable to the uplink case. This
is because ignoring local reflexes at the mobile would be an extremely bad approx-
imation. If there were two antennas at the mobile (which is assumed later in this
thesis), the channel to these two antennas would be quite random, even if they
were placed less than half a carrier wavelength apart. There would not exist any
deterministic phase difference, assuring that the matrix (3.1) is not badly condi-
tioned.

3.3 A stochastic model

3.3.1 The downlink

Since a deterministic model has been proposed for the uplink, it is natural to first
consider the downlink in the stochastic case. The general idea is to transmit two
different messages from the two base station antennas. Two assumptions are made
concerning the mobile, the first of which is:
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e There are two antennas at the mobile.

This assumption is presently valid in the Japanese Digital Cellular (JDC) mobile
radio system. The next assumption is the following:

e The mobile is in a Rayleigh fading environment, with the antennas separated
by at least half a carrier wavelength.

A schematic picture of the spatial variation of two Rayleigh faded taps is shown
in Figure 3.2.

Real part of channel coefficient

Real part of channel coefficient

Figure 3.2: Real part of two channel coefficients in a Rayleigh fading environment.
The upper figure shows by, (z), i.e. the channel from base station antenna 1 to
mobile 1, while the lower shows b2, (), i.e. the channel from base station antenna
2 to mobile 1. The correlation between the two channel coefficients is a critical
parameter in the thesis. Note that the position z is given in the unit of carrier
wavelengths.

The last assumption assures that the two channels are uncorrelated. The validity
of this assumption can surely be argued about. It can, however, easily be accom-
plished if the mobile is a car telephone. A separation of half a wavelength is less
than half a meter in the microwave range, while a car is at least 1.5 meters wide.
On a hand-held terminal, this separation is much more difficult to accomplish.
However, in future systems, the carrier frequency will be higher, and the carrier
wavelength will decrease accordingly. For a carrier frequency of 1.8 GHz presently
allocated for mobile telephony in Europe, the carrier wavelength will 15 ¢m, and
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hence the necessary separation will be smaller. In either case, the correlation be-
tween the two received signals may still be significant, and the consequences of
this are interesting subjects for further studies.

No assumption is made on the correlation between the signals arriving from the
two base station antennas. This correlation is allowed to vary and it is a major
parameter in this thesis. Considering the single-tap case only, the matrix in (2.7)

is now described by
b (x) bE(x) )
Bo(z)=[ o 3.4
o= () 0 3
where the elements in (3.4) are stochastic variables, having the following second
order moments:

B[ (2))] = SNR  kym = 1,2 (3.5)

Eh (W) =0 k=12 (3.6)
B @) _ o s
DALY
BISWH] _, os

Ebgi(=)?] A
where s is the antenna separation. The definition of the SNR stems from the fact
that both the signals {d(¢)} and the noise have unit variance. Actually, it would
be appropriate to define an SNR for each antenna, but throughout this thesis,
the signals received and transmitted at the antennas are considered to have equal
average power.

However, the BER will not be studied as a function of the correlation of the channel
coefficients themselves. Instead, it is studied as a function of the correlation of the
envelopes of the signals, primarily because these are easier to measure. The major
parameter in the thesis is thus the envelope correlation

o by ()B4 ()] — B[k (2) (B ()] |
pa = B([5b, (2)7] — (E[[bb ()])? | (38.7)

Notice that the columns are elementwise correlated, while the rows are element-
wise uncorrelated. Equations (3.4)-(3.7) constitute the stochastic model for the
downlink investigations. When the channel consists of more than one tap, all taps
have all but one of the above properties. The taps have identical distributions,
and are mutually uncorrelated. The only difference is the definition of SNR. In
this case, (3.5) becomes

ED_ bj(x)]*] = SNR k,m=1,2. (3.8)
=0

3.3.2 The uplink

If the deterministic model of Section 3.2 can not be applied, due to the existence
of significant multipath propagation, it would be nice to be able to use a stochastic
model in the uplink as well. The assumption that must be made is in this case
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e The signals from the two transmitters (mobiles) have uncorrelated channels.

It is easily realized, that the only difference between the stochastic downlink model
and the stochastic uplink model will be the correlations between the elements
in (3.4). In the stochastic uplink model, the columns are elementwise uncorrelated,
while the rows are elementwise correlated. This is reciprocal to the uplink case.

The relations (3.4)—(3.7) are then modified to
E[|b5 ()] = SNR  k,m=1,2
Elbgy(2)b5,(2)] = 0 k=12

oy A E[1boy ()] [bga(2)[] = E[]bg, ()1 E[1bgs ()]
: Elbg: ()] = (E[]bg: (2)]])? '

For a thorough calculation of the correlation at the base station antenna, see [9].

(3.9)

It is worth noting, that the two uncorrelated transmitter antennas can be at the
same mobile if a Rayleigh fading environment is assumed, as well as on two separate
mobiles. This makes it possible to increase speech quality when the traffic load in
the system is low, thus using the free system capacity. One way to improve quality
is to split the stream of bits, which are to be transmitted, into two separate streams.
Each bit stream is transformed into a stream of symbols, and transmitted from
a separate antenna. This can be done both in the uplink and in the downlink.
The free capacity can then be used to allow more elaborate coding techniques to
achieve lower resulting BER, or it can be used simply to transmit more data, if
the reliability of the radio link is good enough.

3.4 The utilization of the channel models

In Chapter 5, the above models are used as a basis to conduct Monte Carlo sim-
ulations. With a channel assumed ezactly known, an equalizer is optimized. This
equalizer is used on the simulated data, and the number of errors encountered are
counted. The ratio between the number of errors and the number of data is an
estimate of the BER.

The models that will be simulated are the following:

e The deterministic model is simulated for a single-tap channel as a function
of Ap with SNR as a parameter. For SNR=0dB, the simulation results will
be compared with a theoretical calculation.

e The stochastic model is simulated for a single-tap channel and a two-tap
channel, both in the uplink and downlink. The results are obtained as a
function of the envelope correlation (3.7) and (3.9), with SNR as a parameter.

Before discussing the outcome of these simulations any further, some candidates
for multivariable equalizer structures must first be derived.
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Chapter 4

Equalizers

The equalizer is the part of the receiver, which tries to remove the noise and
distortion from the received signals. In the present thesis, the equalizer operates
completely in discrete time. The equalizers commonly used operates on sequences
of data, which are scalars. This case is studies in the first part of this chapter. In
the second part of the chapter, the focus is moved to equalizers which operates on
multiple data (i.e. vectors) simultaneously. These are referred to as multivariable
equalizers, in contrast to the singlevariable equalizers discussed in the first part of
the chapter.

4.1 Singlevariable equalizers

4.1.1 General discussion

The problem is the following: given a sequence y(t¢) and a known channel model
Blg")=bo+big >+ ...+ bqg ", (4.1)

determine the transmitted sequence {d(t)} when it is known that the received
sequence is given by

y(t) = B(g")d(t) + v(t) (4.2)

where v(t) is white gaussian noise.! In addition, it is known that d(¢) can only
attain a finite number of values. These assumptions will be used in the sequal.

There are basically two ways to accomplish this. One principle is to process y(t)
through a filter, which is a IIR filter in the general case. The filter’s job is to
produce an estimate of the transmitted symbol. The filtered value is then fed into
a decision device. In the decision device, it is decided which symbol was transmit-
ted, by the minimum of the euclidian distance to a symbol.

In some algorithms, previously decided symbols are also used in the filtering. This
is called decision feedback.

!Cochannel interference can not be considered because of the assumption of white, Gaussian
measurement noise. How to handle cochannel interference is described in [16].
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Figure 4.1: The equalization of a radio channel using a linear filtering approach.

The other principle is to estimate the transmitted symbols directly from a sequence
of measurements {y(¢)}. This is done by choosing the values of a sequence {d(?)},
which would lead to the values closest to the observed sequence {y(t)}. When the
noise is white Gaussian, this method is equivalent to Maximum Likelihood (ML)
estimation of the symbols. This method would be very complex if it was not for
the Viterbi algorithm, which will be studied in Section 4.1.4. For a more elaborate
discussion about these methods see e.g. [12].

An equalizer can be obtained in many ways. A common approach, however, is
to use some sort of criterion. The two most common strategies is to optimize
the mean square error (MSE) criterion or the zero forcing (ZF) criterion. The
latter completely eliminates the intersymbol interference, while the MSE criterion
balances removal of IST against noise amplification.

4.1.2 Linear equalizers

The linear estimator produces an estimate c?(t) of the symbol d(¢) from noisy
measurements {y(¢)}. This is done by using a stable, linear filter C(¢™"), which
may be rational:

d(t) =C(g™y(t) . (4.3)
At first glance, it might seem natural to choose
Clg7') = —— .
) B(q™)
This would lead to an estimate

d(t) = d(t) + %

which is totally free of intersymbol interference. This choice is made according to

v(t)

the ZF criterion previously mentioned.

However, this approach has two major drawbacks:

1. There is no guarantee that C(¢™') is stable. This is often not the case when
|b| is small, compared to the other taps in the channel.

2. Even if the channel was minimum phase, zeros in the channel, which lie close
to the unit circle, would produce large noise amplification in some parts of
the spectrum. This is also a common situation in a multipath RF channel.
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If the MSE criterion is used instead, the aim is to minimize the expectation of the
total estimation error:
Carsp = arg min E|z(t)]? (4.4)
Cla™h)
where

2(t) = d(t) = d(t) = [1 = C(g™)B(g™)]d(t) = C(g 7 o(t) .

It is fruitful to rewrite the problem in the frequency domain. Using Parsevals
relation, and assuming C(z7!) to be stable, F|z(¢)|* can be written

2 2
2_ 94 _ 2d_z Ty % 2d_z
Bef =72 f 1-CoBEPT+ 7 f P, @)

If infinitely many measurements were available, the solution minimizing (4.5)
would be given by the unrealizable Wiener filter:

_ B.(z) - 0_3
ST TS (46)
A= B0 o= (0]

Unfortunately, infinitely many data will not be available. The necessity of causality
and finite delay in the transmission, requires the introduction of a smoothing lag
my in the estimator:

d(t) = Clq™ " )y(t +my) = ¢™Clq y(t) myg >0 . (4.7)

The smoothing lag allows signal energy, originating from one symbol, to be col-
lected during a period of my samples after its first appearance at the receiver,
before the estimate is calculated; hence the filter uses more information (com-
pared to ms = 0) when it estimates the symbol. Bear in mind, the first coefficient
bo in the impulse response of the channel might not be the largest.

Next, the choice must be made if the equalizer is to have a finite (FIR) or infinte
(ITR) impulse response. The recursive (ITR) equalizer generally requires fewer fil-
ter coefficients than the transversal (FIR) equalizer at a similar performance. The
discussion hereafter will be devoted to the IIR equalizer.

Rewrite the filter C(¢™") as

S(g™")
R(q™")
The filter R(¢™") is of order n, and is determined by a spectral factorization of the
power spectrum ¢, (z):

Clg™") = (1.8)

6,(2) = oR(=")R(z) = B(="")B(z) + v (1.9)

where v is defined in (4.6) above. The constant o is used for making R(¢™") monic
(unit leading coefficient). The forward filter S(¢™") is calculated from the linear
polynomial equation

g™ B.(q) = cR.(q)S(¢7") + qL.(q) (4.10)
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and is of order mys. Above, L.(q) is second unknown polynomial in ¢ to be deter-
mined. Equations (4.9) and (4.10) constitute the filter design equations. Introduce
the feedback filter R(q™"):

R(g") =q(R(¢g™") - 1) .

With C(q™!) given by (4.8), the estimate (4.7) is given by

A — A

d(t) = q"™ S(qg " )y(t) — R(g~")d(t —1) . (4.11)
y(© -1 + s\ d(o) Decision d(
S(q) _Z device
R(qY) rq!

Figure 4.2: The Linear Feedback Equalizer.

This is the Linear Feedback Equalizer (LFE). A multivariable generalization of the
LFE is discussed in e.g. [2] or [1]. The major disadvantage with it, is that it does
not use the a priori information that the data are digital. This is exactly what the

DFE (Decision Feedback Fqualizer) does.

4.1.3 The decision feedback equalizer

By using decisioned symbols in the feedback filter, the effect of previously detected
symbols on the current measurement can be eliminated. Unlike the LFE, the noise
that was present in c?(t) does not enter the feedback path (unless incorrect decisions
are made) and hence does not affect future decisions. If this method is used in its
simplest way, the expression for cz(t) becomes

d(t) = - bed(t — k 4.12
(1) bo Ezf (4.12)

This expression is obtained by simply inserting (4.1) into (4.2) and rearranging.
If past symbols were detected correctly, this would lead to the estimate

d(t) = d(t) + bl—ov(t)

which clearly contains no intersymbol interference, much like the linear equalizer,
derived from the ZF criterion. Since the feedback path is broken by the decision
device, which is extremely non-linear, all signals are bounded, and no instability
will occur. If correct past decisions are assumed, the feedback filter could actually
be considered to be a forward filter from the transmitted symbols. See Figure 4.1.3.

If |bg| # 0, this equalizer is stable. However, if by is small, the noise will be
severely amplified. To overcome this problem, the same technique as in the case of
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Figure 4.3: The DFE as a feedback filter and a feedforward filter.

the LFE is used: introduce a smoothing lag and construct a forward filter S(g™'),
which extracts more information from the signal y(t). The expression for d(t) then
becomes:

d(t) = S(g7")y(t) = Qg )d(t = 1) . (4.13)
Under the assumption of white measurement noise, S(¢™!) and Q(¢™!) are FIR
filters. The optimal order of S(g!) is equal to the selected smoothing lag m, and

the optimal order of Q(g™!) is equal to the length of the channel impulse response
minus one, i.e. n — 1.

Inserting the expression for y(t) into (4.13) gives

d(t) = ¢™S(¢7")B(g")d(t) + ¢™ S(q7 )o(t) — Qg™ )d(t — 1) . (4.14)

Split the filter preceding d(t) into a non-causal part G_(q) of order m and a causal
part ¢~'Gy(¢7"):

"5S¢ )B(g) =G (q)+ ¢ 'G(q7) (4.15)
where

G_(q) = gom,q™ + ...+ 919 + g0 Gl ) =g+ 0 +. ... 4 gmrd" .

If correct past decisions are assumed, the choice

Q=G (4.16)
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removes all the intersymbol inteference caused by previously detected symbols.
Once S(q7 ") is selected, the feedback filter is uniquely determined by (4.15) and (4.16).

As in the case of the LFE, the forward filter can be calculated by means of an MSE
optimization if correct past decisions are assumed. The solution of the problem
can be expressed in the following way, see [12],

1. Solve the linear system of equations

I+ B B_]0, =b" (4.17)
where
bo ... O
B 2 SR
bmf ... by
b*z(bmf,...,bo)*
932(80,...,Smf)T.

2. Calculate the feedback filter 6, = (gi,...,¢,_1)" through the multiplication

0, = B0, (4.18)
where
buyer o by by
B, 2 0
bn bn—l
0 0 b,

If n < my, the coefficients by, n < k < mj are simply set equal to zero.

The DFE calculated from (4.17) and (4.18) gives the optimal DFE only for the
case of FIR channel and white or autoregressive measurement noise. In other
cases, both the forward and feedback filters are in general IIR filters. This general
DFE is discussed in [16]. Note that in contrast to the LFE, the calculation of
the optimal DFE requires no spectral factorization, but only a solution of a linear
system of equations of order my + 1.

A major drawback with the DFE is that a single erroneous decision causes the
probability for further errors to increase substantially. This higher error probabil-
ity can cause another error with accompaning increase in error probability. This
can result in a burst of errors. Most coding strategies are rather sensitive to such
bursts, and this forces the radio system to use interleaving. Interleaving is a cod-
ing technique, which separates adjacent symbols, so that they will not fall into
the same error burst. However, interleaving causes a delay in the transmission,
and a delay is always unwelcome. In [17], so-called robust equalizers are discussed.
These algorithms can, among other things, control the error bursts, and can basi-
cally trade shorter, but more frequently occuring error bursts for the longer, but
seldomly occuring ones.
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4.1.4 The Viterbi algorithm

As mentioned earlier, the Viterbi algorithm selects the symbol sequence, which
provides a channel output signal sequence closest to the real one. This algorithm
was not developed to equalize multipath fading channels. Originally, it was de-
vised to decode convolution codes, but found another suitable application. This
section will only give a short introduction to the idea of the Viterbi algorithm. For
a more thorough treatment, see [12], [13].

The criterion minimized by the Viterbi algorithm is
~ N N A A A
{dt}tzl = arg mglv Z |yt — ‘g(dt, dt—l; . ;dt—n)|2 (419)
51 t=1

where {y;} is the received sequence and {§:}Y is the output of the noise-free
channel model

‘g(czta Czt—h R Czt—n) = Z bkdt—k .
k=0

The Viterbi algorithm uses the limited length of the channel impulse response;
hence, the algorithm is difficult to use on IIR channels. In an iterative manner, it
calculates branch metrics, which should be as small as possible for an alternative
to have large probability. Define

1
vild,day . dngn) 23 Jye = 9(diy dier,y . di )| t<n+1 (4.20)
k=1

d: =0 Vi <0
’Yt(dt—nydt—n—l—ly---;dt) é |yt_g(dtydt—ly---ydt—n)P t> n + 1. (421)
Equation (4.19) can then be written

~ N N
{dt}tzl = arg min Z ’)/t(dt—ny dt—n—l—l; ey dt) . (422)
{dt}{v t=n+1

As the time N increases, the required number of metrics would grow without limit,
since the number of alternatives grows exponentially. If the alphabet consists of
M symbols, each symbol arriving at the receiver would require M times as many
metric calculations as the preceding symbol.

The Viterbi algorithm, which constitutes forward dynamic programming, finds a
way to reject some of the possible combinations of symbols. Consider a FIR chan-
nel with an impulse response of length three. In an iterative way, the metrics
of the M? possible combinations of the three first symbols are calculated. Since
~4 does not depend on the first symbol dy, it is possible to rule out some of the
possibilities before even calculating v4. This is done by grouping the sequences so
that they only differ in the first position, i.e. in d;. After that, the metrics of the
pairs of sequences are compared, and the alternative within each pair which has
the largest metric is discarded. In this way, the number of calculations in each
step becomes bounded and does not increase with the sequence length N. See [12]
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for a more elaborate discussion.

Since the Viterbi algorithm basically is a sequence estimator, it introduces a time
delay. In a telephone system, this is a drawback. It is however possible to use
a modified algorithm which makes it possible to make decisions on a symbol-by-
symbol basis, which admits real time implementation.

The main drawback of the Viterbi algorithm is still its complexity. The complexity
grows exponentially with the channel length. Likewise, it grows exponentially with
the size of the symbol alphabet.

4.1.5 Comparison

The performance of the three studied methods is compared in Figure 4.4 for a
multipath propagation channel with severe intersymbol interference. It should
be stressed however, that the performance can vary considerably when the condi-
tions change. When fading characteristics (i.e. the inability to guarantee a fixed
SNR) are introduced, the difference between the DFE and the Viterbi algorithm
at higher SNRs decreases instead of increases. But it shows the two major points,
when comparing equalizer structures: the LFE is inferior to the other two and the
Viterbi algorithm is a little bit better than the DFE.

Comparison of Idifferent channel eqtljalizer metlhods

0.1} 1

' ‘ LFE ]

@ . \ .
(]
<
£

0.001 | . \DFE .

Viterbi :
0.0001 : : : : :
0 5 10 15 20 25 30
SNR

Figure 4.4: Comparison of the performance (BER) of the three discussed equal-
izing methods for a typical multipath propagation channel (from [3]).

The LFE is clearly inferior to the other two. The Viterbi algorithm is the most
powerful method, but for BER typical for mobile radio communications, the dif-
ference is negligable. In studies of propagation models relevant to both the ADC
and GSM systems, the difference in performance between the DFE and the Viterbi
algorithm is much smaller than the difference displayed in Figure 4.4.
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4.2 Multivariable equalizing

Since the LFE clearly performes quite badly, our candidates for a multivariable
equalizer are the DFE and the Viterbi algorithm.

4.2.1 The multivariable DFE

The multivariable DFE is not very different from the singlevariable version. How-
ever, the coefficients of the channel are not scalars any more. In the general case, if
the number of antennas are n, and the number of messages are ng4, the channel co-
efficients are of dimension n,|ng, the coefficients of the forward filter S(g~!) are of
dimension n4|n, and the coefficients of the feedback filter @(q~!) are of dimension
ng|ng:

yi(1) di(1) vi(t)
: =(Bo+Big ' +...+ B¢ : + : (4.23)
Yn, (1) dn, (1) Un, (1)
621 (t) yl(t)
: = ¢"(So+Sig"+... 485,47 :
d,, (1) Yn, (1)
di(t—=1)
- (Qo + Q1q_1 +...+ Qn—1q_(n_1)) - : (4-24)
dnd (t - 1)

where the matrix coefficients of the polynomials have dimensions

o b el

N———’ N———’ N———’

g Ty g
When the DFE is calculated, it is possible to follow the same procedure as when
calculating the singlevariable DFE, replacing the scalars with matrices. But to

show an alternative derivation, the following algorithm can be used to calculate
the forward filter.

Theorem 4.1

Assume the channel is given by (4.23). Assuming correct past decisions, the FIR
DFE given by (4.24), minimizing the filtering error

in the MSE sense, has the matrix coefficients given by the following algorithm.
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1. Solve the system of linear equations

B] 0 0 |1, o 0 ST 0
0
B B! 0 | 0 I, 0 sT 0
T
BT BT 0 |0 0 S2 :
; : : ; : 3 0
. . . . T _ I
B, BL _, B’ |o o I, _Smy | = o
e o o |B, B B, Lim,g o
7T Ll(m]r—l)
0 ] 0 | 0 B B, 1 .
: : : : : : = 0
0 0 v 0 o B, Lo
(4.25)
where

W = Blu(t)u(t)]

and the zeroes on the right hand side are matrices of dimension ng4|ng, for

the matrix coefficients S;, 1 =0,1,...,my and Ly;, 1 =0,1,...,my.
2. Perform the following matrix multiplication:
( Q @ Q.1 > =
B; B, B,
= (Sw, Su, So ) % B B B0
B B0
(4.26)
|

Proof: See Appendix C.

Remark 1. As in the case of the singlevariable equalizer, if n < m; the matrix
coefficients of B(q™!) of degree higher than m in (4.25) and (4.26) are simply set
to zero.

Remark 2. Equation (4.25) can be divided into block matrix form, and hence

written
AT 1 E [(J
-D A F) \o0o)°
where the corresponding blocks have been indicated in (4.25). Thus

ATE4+F =1
~-DE+ AF = 0.

Multiply the first equation by A from the left. Insert the product AF from the
second equation into the first. This gives

(AAT+D)E=AJ. (4.27)

32



Perform the multiplication on the right hand side. Equation (4.27) is then reduced
to _

By,

(D +AAT)E = : : (4.28)

By
Equation (4.28) is the multivariable equation corresponding to the singlevari-
able (4.17). Equation (4.28) has the obvious advantage of having dimension
ng(mys + 1) instead of (ng + ny)(my + 1) for (4.25). A matrix inversion is an
operation with a numerical complexity which is proportional to N3, where N is
the size of the matrix. Reducing the size of the matrix by a factor two hence
reduces the computation time by a factor of eight. Notice also that the complexity
is minimized by the fact that the linear system of equations in (4.25) (and (4.28))
is solved for multiple right hand sides, only requiring one LLU-decomposition. An
alternative would have been to stack the elements of the matrix coefficients on top
of one another. However, this would have resulted in ny times longer vector of
unknowns, and a correspondingly larger matrix to invert.

The algorithm above can be used for any number of antennas (n,) and messages
(nq). For instance, when n, = 2 and nq = 1, it provides the optimal combiner for
two antennas and one message; hence this DFFE can be interpreted as the mazimum
ratio combiner for the case of arbitrarily severe intersymbol interference.

It is possible to generalize the above result to IIR channels, colored symbols and
also to arbitrarily colored noise.

Equation (4.25) has a unique solution for any combination of n, and ny if ¥ has full
rank. If some measurements are considered noise-free, solvability may, however,
not be possible to guarantee.

4.2.2 Why not a multivariable Viterbi detector?

Since the Viterbi detector theoretically is the most powerful detector, it would of
course be interesting to see how it performs in the case of a multivariable channel.
However, the complexity of the algorithm puts obstacles in the way. Introducing
a multivariable channel means, that the number of metric branches that must be
calculated increases. In fact, the complexity of a Viterbi detector for a message
vector d(t) = (dy dy ... d,,)T with an alphabet of M symbols is equivalent to
the complexity of a singlevariable Viterbi detector for an alphabet of M"4 and
the number of metrics to be calculated is increased accordingly. This would lead
to a very high complexity indeed. Hence our candidate for multivariable channel
equalization is the DFE.

Remark. In [8], a suboptimal Viterbi detector is derived for the case of one re-

ceiver antenna and two transmitters. This approach reduces the computational
complexity at the expense of an increased BER.
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Chapter 5

A simulation study

All the simulations that will be mentioned in this chapter were performed using
a special library for matrices and matrix functions, developed at the Systems and
Control Group, Uppsala University. This library was written in C4++ during the
spring of 1993.

5.1 The deterministic model

5.1.1 Statement of the problem

The model used in this chapter is the deterministic model of Section 3.2, and hence
only the uplink is studied. The system under consideration is thus

y(t) = B(g ")d(t) +u(t) .
The following assumptions that were made:

1. There are two transmitters (mobiles) and at the base station, there exist two
receiver antennas. This means that the dimension of the channel coefficients

Bk is 2|2
2. The channel has only one tap; hence there is no intersymbol interference.

3. The channel coefficient has the following structure:

by by
me ()0 o

where b; and b, are positive real numbers. Thus, the received signals at the
base station are given by:

yi(t) = bydi(t) + bada(t) + ve(2)
ya(t) = bydy(t) 4 bae ™ 2dy (1) + vo(t) .

4. The complex noise vector v(t) € CN(0,1) is white and uncorrelated with the
transmitted symbols.
5. The mutually uncorrelated symbols {d(¢)} belong to the set {-1,1}, and the

probability for each of these values is equal.
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In Section 3.2, it is mentioned that the resulting BER depends only on the phase
difference Ap; = 3 — 1. (See also Appendix B.) This is also a motivation for by
and by being real numbers, which also is intuitively appealing.

The restriction to a single-tap channel might seem oversimplified, but actually it
is the worst case. In case of a channel with multiple taps, it does not matter if
some of the taps are badly conditioned, just as long as all of them are not.

5.1.2 The simulation

The simulations were performed with
o Ap € [0,n].

e b; €[1,10] (This corresponds to SNR:E[M] € [0dB,20dB].).

1a;
lvi (#) |2

e by €[1,10] (This corresponds to SNRzE[%ﬁzm] € [0dB,20dB].).
The first conclusion that could be drawn was that the resulting BER’s were sym-
metrical: it did not matter whether transmitter number one or transmitter number
two was the strongest. This is quite natural.

Next, when one transmitter was made stronger, estimation of that signal produced
fewer errors. The weaker transmitter quite naturally showed the opposite behav-
ior. In fact, the total BER did not change if the power of the stronger transmitter
was changed as long as it remained the stronger, i.e. the total BER was only ef-
fected by the SNR of the weakest signal. Hence, the ratio between the two SNR'’s
was not an interesting parameter (for the total BER), and the results presented
in this section are for transmitters of equal strength. This is also the relation
which should be used in practice, since it is desirable to distribute the total BER
evenly among the involved mobiles, in order to achieve reasonable speech-quality
for both. This is even more so, since digital telephone systems have a threshold
BER, under which the speech quality decreases abruptly.

Power Power
Fewer
More A4~ errors
errors
LY
1 2 1 2
Transmitter Transmitter

Figure 5.1: The result of increasing the transmitter power of one transmitter
while keeping the other constant.

The single remaining interesting parameter is thus the SNR of the weakest signal.
The BER as a function of the phase difference Ap with SNR as the parameter is
shown in Figure 5.2.
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Deterministic model

Estimated BER

05 1 1‘.3 » (ra &) 25 3

Figure 5.2: The BER as a function of Ay for SNR=0dB (solid), SNR=10dB
(dashed) and SNR=20dB (dotted).

As stated in Section 3.2, the phases ¢ and @, are related to the incoming angles
a; by

s
A

where s is the distance between the antennas.

CoSs 1 =1,2 .

i = 2w

5.1.3 Verification

Having achieved these results from simulations, it would be nice to be able to
verify the results in some way. For the deterministic model, one could analytically
calculate the probability of error. This is accomplished through setting up the
joint probability density function for the vector d = (d; d3)T, and checking what
conditions must be fulfilled in order to obtain an erroneous decision. The calcula-
tion was carried out for by = by = 1, and the result is given in Result 5.1.

Result 5.1. With b; = b, = 1, together with the other conditions in this section,
the probability of error and hence the BER is given by

1 o 2 1 o0 2
Porons(Ap) = —= U dt “Udt 5.2
o(A9) 2\/m Js, ° + 2/ Js, c (5:2)
where o
;_ 5 —cos Ay 5 — 3 —3cosAp

1= T =Scoshp 27 JI0—ScosAp
Proof: See Appendix B.
The result is shown in Figure 5.3 together with the corresponding simulation.
As can be seen, there is a perfect agreement between the simulated and theoreti-
cally obtained values. This agreement can not be easily accomplished in a channel

having an impulse response greater than one sample, since error bursts make the
problem extremely difficult to analyze.
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\({alidation of simulation of the deterministic model
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Figure 5.3: Theoretically calculated (solid) and simulated (x) BER for
SNR=0dB.

5.2 The stochastic model

5.2.1 Prerequisites
In this section, we make the following assumptions:
e Assumptions 1, 4 and 5 from subsection 5.1.1 hold.
e The channel coefficients have the properties given in Section 3.3.
o The channel coefficients are assumed to be known and time invariant.
e Channels are accurately described by one or two taps.

e When the length of the channel impulse response is two, the two taps are
assumed mutually uncorrelated.

o In the downlink case, there are two antennas at each mobile.

5.2.2 The simulations

The elements of a matrix channel coefficient

== (50 40

are all taken from the same Rayleigh sequence. The Rayleigh sequence is calcu-
lated by a MATLAB-program, written by Lars Lindbom, see also [12]. The two
pairs of elements in the matrix which are uncorrelated (b}, and b, in the down-
link, and &), and b3; in the uplink, ¢ = 1,2), are taken from two points of the
sequence, sufficiently far apart. The two elements, which are correlated (b, and
b2, in the downlink, and b}, and b, in the uplink, i = 1,2), are taken at two points
closely spaced. When two taps are required, they are taken from different Rayleigh
sequences. The simulations were carried out under the following conditions:
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e The envelope correlation varied in the interval p; € [0.1,1], p, € [0.1,1].
e SNR=5, 10, 15 and 20dB, where SNR is defined as

Elltg() L .
SNR = Fo O k,m,i=1,2 (5.3)

in the single-tap case, and

ang 2 EBBEP+ BR@F]
Ellvi(®)[?]
in the two-tap case. In principle, eight different combinations of &, m and
1 could exist. However, since there is no reason why the power of the noise
(E[Jvi(t)]?]) at the two antennas should be anything but equal, only four
interesting combinations remain, which depend on the channel. In this thesis,
all these “different” SNR’s are chosen equal.

e For each envelope correlation, 1000 channels were simulated, each with 400
symbol pairs.

e The DFE (4.23)-(4.26) was used with smoothing lag equal to the length of

the channel impulse response, i.e. my = n.

e In the downlink simulations, each base station antenna transmitted a sepa-
rate message.

e In the two-tap case, the average power (the variance) of the two taps were
equal.

Since the average signal strengths of the two messages are set to be equal, the
estimated BERs for the two transmitters show no significant difference. Therefore,
in the graphs, only the mean of the two BER’s is shown. This is the case for all
simulations carried out in this section.

The uplink

The results are shown in Figure 5.4 for the single-tap case, and in Figure 5.5 for the
two-tap case. In Figure 5.8, the BER is shown as a function of SNRe[5dB,20dB]
(defined in (5.3) and (5.4)), with the envelope correlation p, as parameter.
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Uplink, two base station antennas, two mobiles, one tap in the channel

Estimated BER

0.0001 1 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 06 07 0.8 0.9 1
Envelope correlation

Figure 5.4: The BER as a function of envelope correlation for SNR=5dB (solid),
SNR=10dB (dashed), SNR=15dB (dotted) and SNR=20dB (x-solid) for a channel

with an impulse response of length one.

Uplink, two base station antennas, two mobiles, two taps in the channel

Estimated BER

0.0001 ' ' '

0.1 0.2 0.3 0.4 0.5 06 07 0.8 0.9 1
Envelope correlation

Figure 5.5: The BER as a function of envelope correlation for SNR=5dB (solid),
SNR=10dB (dashed), SNR=15dB (dotted) and SNR=20dB (x-solid) for a channel

with an impulse response of length two.
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The downlink

The results are shown in Figure 5.6 for the single-tap case, and in Figure 5.7 for the
two-tap case. In Figure 5.8, the BER is shown as a function of SNR€[5dB,20dB]
(defined in (5.3) and (5.4)), with pg as parameter.

Downlink, two base station antennas, two mobiles, one tap in the channel

Estimated BER

00001 L L L L L L L L
0.1

0.2 0.3 0.4 0.5 06 = 07 0.8 0.9 1
Envelope correlation

Figure 5.6: The BER as a function of envelope correlation for SNR=5dB (solid),
SNR=10dB (dashed), SNR=15dB (dotted) and SNR=20dB (x-solid) for a channel

with an impulse response of length one.

Downlink, two base station antennas, two mobiles, two taps in the channel
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Figure 5.7: The BER as a function of envelope correlation for SNR=5dB (solid),
SNR=10dB (dashed), SNR=15dB (dotted) and SNR=20dB (x-solid) for a channel

with an impulse response of length two.
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Downlink, one tap

Estimated BER

Downlink, two taps

Estimated BER
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Figure 5.8: The BER as a function of SNR for an envelope correlation of 0.5
(solid), 0.6 (dashed), 0.7 (dotted), 0.8 (dash-dotted) and 0.9 (x-solid).

All graphs in Figures 5.4 to 5.7 share some properties. For envelope correlation
p = 1, 1.e. identical channels, the SNR does not matter. The curves all start
at a BER of 25% for the downlink and ~12% for the uplink. The major reason
for erroneous decisions is then the inability of the algorithms to separate the two
messages. This effect decreases very rapidly when the correlation decreases. The
noise becomes the major reason for errors. This can clearly be seen as the BER
curves fall off much more rapidly for higher SNR. The difference between the dif-
ferent BER-values is also larger for the case of a two-tap channel than in the case
of a single-tap channel. The reason is that the longer the impulse response, the
less likely it is that all tap matrices are badly conditioned simultaneously. Thus,
multipath propagation actually helps this system to utilize spatial diversity.

The envelope correlation between the two antennas is cumbersome to calculate.
Among other things, it depends upon the topographical environment in which the
base station antenna stands, the distance between the antennas and the incoming
angle of the two beams. For derivation and discussion of the correlation, see [9].

5.3 Comparison with singlevariable equalizers
and conventional diversity methods
It is of course of interest to compare these results with what could be expected for

today’s systems. That is the subject of this section. The comparisons are made
for the following two cases:
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1. A system with a single mobile, having one antenna and a base station with
one antenna.
e Two taps in the channel, each subject to independent Rayleigh fading.
e SNR=10dB, where the signal-to-noise ratio is defined as
E|bo|* + |b1?
s = Pl £ ]
Ellv(t)]?]

2. A system with a single mobile, having one antenna and a base station with
two antennas, which utilize selection diversity. A comparison is also made
with an optimal DFE for this case, i.e. n, = 2 and ngy = 1 in Theorem 4.1.
Simulations were made under the following assumptions:

e Two taps in the channel.

e The channel coefficients have the following properties:

1
bk:<[;§) k=01

E[[b5]* + 153 [°]
Ellvil?]
EQbe[1b31) — Elloy 1 E[1b]]
Elbi 2] = (ETlbx1)?

= SNR = 10dB i=1,2

=p k=0,1.

In this case, the resulting BER clearly depends on the correlation between
the antennas.

The results are displayed in Figure 5.9, together with results from Figures 5.5
and 5.7. Note that in the three cases used for comparison, only one message has
to be detected, while in the case of the multivariable equalizer, two messages (i.e.
twice the number of symbols) have been detected.

Remark In [5], an optimum decision feedback equalizer was derived by Balaban
and Salz for the general diversity case with several branches. The approach taken
there was also to minimize the MSE. However, the channel was not considered
completely discrete in time. Rather, the prefilter of the DFE derived in [5], is
continuous in time, and only the feedback path is discrete in time. This inhibits
a complete and fair comparison, but since the criterion that was minimized is the
same, the method should be similar to the optimum diversity DFE derived here
(at least for some choices of the smoothing lag my). Note that [5] assumed inde-
pendently fading channels. This is not the case for the DFE derived in this thesis.
In [6], a numerical study was carried out for the optimum diversity scheme derived
in [5]. That example was more realistic than the ones presented in this thesis. It
included continuous-time models of the channel and the prefilter, and the operat-
ing conditions were taken from the proposed American mobile telephone system
ADC previously mentioned. The resulting BER from that study were generally
higher than those obtained here. This might be explained by the modulation used
there (4-QAM), which has a larger alphabet; {1 + 7,1 — 7, =1+, —1 —3}.
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Comparison with conventional diversity methods
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Figure 5.9: The BER for the six different situations listed above: single base
station antenna (horizontal and solid), selection diversity ({-solid), multivariable,
single message (x-solid) and multivariable, two messages, uplink (dashed) and

downlink (dotted).

5.4 Concluding remarks

e The simulations performed with a deterministic model give extremely low
BER, but is based on non-realistic assumptions, since it does not account
for the fading dips in the channel.

e The BER’s obtained from the stochastic model are also very low already for
moderately correlated channels. The only assumptions that are made here
are that the channel is known and time invariant.

The BER for an envelope correlation of 0.7 is shown in Table 5.1 for the four cases
simulated in the stochastic case. The figure 0.7 is chosen quite arbitrarily.

Table 5.1: The BER at envelope correlation 0.7 in the stochastic model (two base
station antennas, two mobiles, multivariable DFE).

Link Number | BER(%) BER(%) BER(%) BER(%)
of taps | SNR=5dB | SNR=10dB | SNR=15dB | SNR=20dB
Uplink 1 6.1 2.3 0.66 0.18
Uplink 2 5.2 1.5 0.37 0.18
Downlink 1 8.0 3.0 0.91 0.27
Downlink 2 8.0 2.6 0.58 0.14
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Chapter 6

Conclusions

6.1 Discussion of the results

The problem of being able to reuse the same frequency in the same mobile tele-
phone cell has been addressed in this thesis. The considered system has been a
digital one and a view of a discrete channel model has been adopted. It has been
assumed throughout the thesis, that the base station has two antennas. The basic
property that has been utilized, is the fact that the two transmitters have different
channels to the receiver antennas. This has been exploited in two models, one
deterministic and one stochastic.

In the deterministic model, the base station antennas are used as a directional
antenna. The channels from one mobile to each antenna are considered to be
identical, except for a phase difference, resulting from the carrier wave phase.
This property has been used and the results are very good. The BER falls off very
rapidly when the phase difference increases. The channel has here been considered
to have a constant magnitude. This means that no local fading dips have been
encountered, which explains the extremely good results.

For the deterministic model, an explicit formula for the probability of error has
been derived. The results from this formula agree perfectly with the results from
the simulations. The deterministic model can however only be used in the uplink.
It is useless in the downlink, since no deterministic phase difference can be utilized
in the Rayleigh fading environment around the mobile. The assumption of no
fading dips is of course also unrealistic in most cases for the uplink. A stochastic
model has thus also been studied.

The stochastic model assumes the mobile to be located in a Rayleigh fading en-
vironment. Also, it assumes two antennas at the mobile, which are completely
uncorrelated. The correlation between the wave patterns at the receiver, resulting
from the two transmitted messages, is varied. The results are very promising. The
BER falls off rapidly with decreasing envelope correlation between the two base
station antennas. However, it does not fall off as rapidly as for the deterministic
model. The stochastic model indicates that a practical system should work well
both for the uplink and the downlink.
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To extract the information from the measured data, a multivariable Decision Feed-
back Equalizer (DFE) has been derived and used. This DFE can be used for ar-
bitrary numbers of measured signals (receivers) and messages (transmitters). For
the case of one message and multiple antennas, this DFE is closely related to the
maximal ratio combiner. Two other types of equalizer structures, the Linear Feed-
back Equalizer (LFE) and the Viterbi algorithm have been considered but deemed
inappropriate as multivariable equalizers.

One important aspect, only mentioned very briefly, is that overall system aspects
must be taken into account when discussing possible capacity increases. Some ad-
ditional system capabilities must also be implemented. Today, switching between
different cells is an administrative task performed by the supervisory system, but
using the algorithms proposed in this thesis, an intelligent system of channel man-
agement within the cells must be devised as well.

To claim that the data rate can be doubled might be too optimistic. When more
transmitters are added, the overall radio transmitter power in the cell is increased.
This results in increased co-channel interference in neighboring cells, which will
reduce the possibility for frequency reuse in other cells.

If the traffic load in the system is low temporarily, and the increased capacity is
not needed for increasing the number of users, it is still possible to use the free
capacity. For example, the data transmission rate could be doubled to increase
the speech quality. It is simply a matter of splitting the double-rate transmission
into two parts, and transmitting each part through a separate antenna.

Another possibility when the traffic load is low, is to use a multivariable DFE, with
one message and two measured signals. This DFE has been simulated, and the
BER which is achieved from it is extremely low, see Figure 5.9. In fact, the BER
is considerably lower than it is when any kind of conventional antenna diversity is
used.

6.2 Problems

The suggested new method provides new problems as well, not previously encoun-
tered. One is the carrier wave frequency. Recall that the basic idea was to reuse
a frequency within one cell. This is all well, but what if the two carrier frequen-
cies are not exactly equal? In the baseband, this will lead to rapidly changing
channel coefficients. This is the same problem as the Doppler shift, that a mobile
encounters as it is moving. In this case however, the problem could be an order
of magnitude worse. In principle, it would, of course, be possible to improve the
frequency stability of the oscillators in the telephones, but one reason for aban-
doning pure FDMA in the new digital systems, is that it is easier to manufacture
accurate clocks than to manufacture accurate oscillators.

Another problem could be the sampling phase. The methods implicitly assume
that the symbols from the two transmitters reach the receiver simultaneously.
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This might be difficult to achieve, and if the symbols arrive asynchronously, either
transmitter could possibly receive a very bad local SNR. See Figure 6.1. In this
case, better synchronization would, of course, be beneficial.

Pulse

Pulse

5
Sampling instance

Figure 6.1: A problem with the sampling phase. Each graph shows one message.
Each message is in this case a sequence of eight +1, pulse shaped with a raised
cosine pulse. The sum of these two message is received at one antenna, and
sampling is performed at the time instances marked by dotted, vertical lines. Tt
is clearly seen that the sum of the two messages will mostly consist of the upper
message; hence the SNR for the lower message is considerably lower.

6.3 Future work

As already mentioned, it is possible to generalize and investigate properties of IIR
DFE’s, colored noise and arbitrary numbers of messages and antennas.

If a hand-held mobile is assumed, the assumption of completely uncorrelated sig-
nals at the two antennas of the mobile, is probably hard to fulfill, at least for the
present generation of systems. Relaxing the assumption of uncorrelated antennas
at the mobile, and study the BER as a function of the correlation both at the
transmitter and at the receiver is thus an interesting problem.

If the number of base station/mobile antennas were increased above two, how

would this affect the performance? Is it possible to accommodate even more mo-
biles at one frequency, or is it better to increase the quality of the two transmis-
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sions that are carried out? One can foresee an interesting possibility to combine
the deterministic and the stochastic approach if four base station antennas were
used. For instance, assume two pairs of antennas, separated by a long distance,
sufficiently far apart so that the antenna pairs are mutually uncorrelated. The
distance between the two antennas in each pair should however be short in order
to get strongly correlated signals within each antenna pair. Each pair might be
used as a directional antenna when transmitting. The message to one mobile is
transmitted only (or at least mostly) in direction towards that mobile. Even if
the effect of the directional antenna only partly works, and the other mobile is
reached by the message intended for the first mobile, the “unwanted” message will
be weaker. Hence, the directional effect will suppress the undesired signal at each
mobile. This will probably lead to more errors for the undesired message, but less
for the desired one, and hence result in higher overall performance.

Other aspects, which should always be considered when it comes to digital mobile
radio communications, are the following three items:

e Identification of channels. How is the identification affected? The number
of coeflicients to estimate is increased by a factor of four in the proposed
system, but the number of data points is only doubled. This is a problem.

e Tracking. If the channel coefficients vary considerably over a transmission
period, they must be tracked.

e Robust design. Is it possible to cope with variations in the channel estimates
without the equalization collapses?

These items have not been considered in the present thesis, and are obvious can-
didates for future research.
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Appendix A

Rayleigh fading

Consider the following situation:

Incoming
/ rays \

o Ring of
. secondary
.. oot transmitters

Figure A.1: Very many (NN) scatterers surround the mobile. Each dot is con-
sidered to be a secondary transmitter. The large arrows are reflexes, resulting in
intersymbol interference. The mobile is presumed to be located in the middle of a
circle of secondary transmitters.

In reality, the transmitters are of course not located exactly on a circle. Since
we are only going to make a statistical analysis of the problem, this does not
matter. This is because the phase shift contributed by each secondary transmitter
is unknown, and only its statistical distribution is known. Suppose the damping
and phase shift contributed by the jth transmitter are a? and ';Z;?, respectively.
This can be replaced by an equivalent damping and phase shift at the antenna,
a; and v;, respectively. These equivalent random variables are discussed. Hence,
the contribution at the antenna from the jth secondary transmitter is a;e’¥7. The
distribution of a; is unknown, but its mean power is

E[a?] =2,
The distribution of v, is uniform in [0, 27]:

Y, € U0, 2n] .
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Making the assumptions made in subsection 2.2.3, we obtain the following expres-
sion for the channel coefficient:

N
b= 1 i
i, 2 e
1=1
This is true for every channel coefficient. For simplicity, the subscript & has been

dropped.

According to the central limit theorem, the sum of an infinite number of identically
distributed random variables is Gaussian distributed. Hence, it follows at once that

b, b e N0, 03] .

Now consider two closely spaced antennas in the center of the circle of Figure A.1.
Figure A.2 shows a magnification of the center, depicting the incoming ray from
one of the scatterers. Using antenna 1 as the reference, the channels associated

Wavefront
from single
secondary

transmitter

Antenna 2 Antenna 1

Figure A.2: A magnification of the center of Figure A.1.

with the two antennas can be written as

N
b(0) = Nhj%o;“fem (A.1)
. (¥ )
_ . Wit x cos a; ¢
b(z) = ]\ll_l)lgo;aze (A.2)
where _
, A 27s
A

Splitting these equations into real and imaginary parts yields

N

b"(z) = A}l_r)r;o Z:GZ[A:E,(:E) cos ¥; — Ay;(x) sin ¢;] (A.3)
N
bi(z) = ]\}1_131 > ai[Ayi(z) cos ¥ + Azi(z) sin ¢ (A.4)

=1
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Az (z) = cos(zcosa;) Ay;(x) = sin(x cos ;) .
Equations (A.3) and (A.4) can be rewritten

bie) = (25;?3)— ]&%Z%(A%Ei? e ) ()
SN

The expectation of b,;(xz) is obviously zero, since the expectation of both sin ),
and cos1); is zero. Hence the covariance of b,.,(x) can be written

R(€) = Elb,(2)b,(z — €] = F ( A A A ) |

Using (A.3) and (A.4), the covariance function can be rewritten

R(¢) = lim EzzaakA(cosU}jcosLbk cosszin¢k)AT (A5)
= ; ) ) i . .

/ . 1 / . 1
N—oo 4= = sint; cos by, sin; sin Yy,

Moving the expectation operator inside the summation and using

Elcos; sinyy] =0

Elcos1; cos py]) = Elsint; sin ] = (Z_k
207
Flell=%

yields

N—oo

=
)

Il

g
DO

S
S
i ™) =
-
N
O
o= O

) AT = tim %gfjAAT . (A.6)

Performing the matrix multiplication gives matrix elements which look like

Aji = +Az,(2)Az;(z —€) + Ayy(a)Ay;(x - €) (A7)

=+ cos(x cosa;)cos((x — &) cos ;) £ sin(x cos o) sin((x — &) cos ;) .

Using familiar trigonometric identities on (A.7) gives

0'2 N COS( ¢ COS & —sin(€ cos o

N N-voo = sin(é cosa;)  cos(& cos ;)

_ 2 * Z;-V:l cos(& cos ;) N Z — sin(€ cos «;) A8
= oy lim { 1SN _ . (A8)
oo \ w7 L= Sin(§cosag) Z _, cos(& cos ;)
Now, since a; = %m, it is possible to use the usual equality between a Riemann

sum and an integral:

1 b
Nh_{lgoﬁZf i) = — [ @)z .
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Using this equality on each of the matrix elements in (A.8) yields

J_Z ( [27 cos(€ cos a)da — [T si (fcosa)da)

o \ [Z7sin(Ecosa)da [T cos(€ cosa)da

= ( Joég) Jo(zf) )

where the final equality follows from the integral representation of Bessel func-
tions.

R(¢{)
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Appendix B

Calculation of the verification
formula

In the simplest case of a one tap channel using the deterministic model, the channel
is described by

i = ()= (S ) (60)(00) oo

where

d;(t)ye{-1,1} 1=1,2 v(t) € CN(0,1) .
Since there is only one tap in the channel, there is no intersymbol interference,
and hence, no need for the Q filter in the DFE. The only remaining part of the
equalizer is the prefilter. The smoothing lag and hence the order of the prefilter is
chosen to be zero, since there is no need to collect signal energy in later sampling
intervals. The equalizing then gives the estimate

d(1) = Sy(t) = SB(1) + Su(1)

and the estimation error z(t) is given by

A

(1) = d(t) — d(t) = (T — SB)d(1) + Su) (B2)
2D (t) ZZ’)/(:)/

In (B.2), zM(¢) is due to incomplete channel inversion, and 23)(t) is due to the
noise. The decisioned symbol is denoted d(t) = (d;(t) da(2)).

The equalizer matrix S is most easily calculated using the method of completing
the squares. This gives

S = B*(BB* + E[u(t)v*(¢)]) ' = B*(BB*+1I)"" . (B.3)
If (B.1) is inserted into (B.3), S becomes

1 9 _ glAe eml(g _ e—]ASO)
. —
6 —2cos Ap \ 2— I8¢ el2(2 — 1A%
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and (I — SB) becomes

1 2 —(1 + e’2%)
I-SB) = ———— .
( ) 6 — 2cos Ay ( —(1 + e7729) 2

The probability density function for the noise component of the error, z(3)(¢), is
given by

1 —@ AT @
P() = e TN (B.4)
where
1 10 — 8cos Ap e2h¢ 4 ¢=1A¢
_ (2) (2)* _ x ¥
A= E[Z9(1)277(1)] = 88" = (6 — 2 cos Ag)? ( e~ 28¢ 4 e8¢ 10 — 8cos Ap

If 23(t) = (zy + 3y1 22 + Jy2)T, the expression (B.4) can be written

1 T1,T2,Y1,Y2
P(1) = e ) (B.5)

with

g(x1, 29, y1,y2) = ki[ka(z122 + v1y2) + ka(21y2 — 22y1) — k4($f + ”Ué + yf + yg)]

where
43 — Ap)?
b= (3 —tos 2] (B.6)
49 — 77 cos Ap + 32 cos? Ap — 4 cos® Ap
ky = cos2Ap + cos Ap (B.7)
ks = sin2Ae —sin Ag (B.8)
ky = 5—4cosAp . (B.9)
Also,

2
ki(6 —2cos Ap)?

How large is the probability to make an erroneous decision? The probability is

det A =

definitely depending on what symbols were transmitted. First suppose d(t) =
(1 ). The probability that the decisioned symbol d;(t) differs from d; () is the
probability that

Re(di (1)) < 0 < Re(z(1)) > 1 < Re(zM(1) + 2P (1)) > 1
)

Re(2\2(1)) > 1 — Re(z{Y(1)) .
The real part of z(1)(t) can be calculated through

Re[(I — SB)d(t)] = Re[(I— SB)]d() . (B.10)
This gives for d(t) = (1 1)T

1 —cosAp
6 —2cos Ap
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and for an erroneous decision to happen, the following must happen:

5—cosAp A
Re(z9(¢ ——— =01 .
e(z1 (>)>6—2003Aap !

The probability can then be written using (B.5):

Purong(Ag) = P(Re(z%”( t) > 61)

= aZdetA det A /51 / / / 9(zrm2u2) gy, dy, deodzy

Due to the symmetry of the problem, the probability that dy(t) differs from dy(#)
is given by the integral

Purong(Ap) = P(Re(22 > 4p)
= rZdet A det A /51 / / / 9(=1.22.90.%2) dyy, dyy dizy dicy (B.11)

When d(t) = (=1 —1)T, the probabilities are the same, also from symmetry. The
situation is a bit different when d(¢) = (1 — 1), however. The condition for an
erroneous estimation of d; is still the same:

Re(d () < 0 & Re(z (1)) > 1 < Re(2V (1) + 22 (1)) > 1
)
Re(27(1)) > 1 — Re(z{M(1)) .
When Re(zg)(t)) is calculated from (B.10), the following limit is obtained:

3 —3cosAp a

Re(z%l)(t)) ~ 6 — 2cos Ap -

2 .

The probability of error is then

Purong(A¢) = P(Re(z@( 1) > &)
N 2detA /52 / / / olor w2 192) dy, dy, dwada, (B.12)

where symmetry again can be applied, so that the probability for error in dy(t) is
the same. Using symmetry a fourth time, it is concluded that the probabilities are
the same if the transmitted symbols are d(¢) = (=1 1)7T.

The problem has thus been reduced to the calculation of the integrals in (B.11)
and (B.12). Study the integral in (B.11). It can be written

1
m2det A Js

o0 o0
% / e—k1k4yf—k1k3x2y1 / e—k1k4y§+k1k3$1y2+k1kzylyzdy2dy1d$2d$1 ]
— 00 — 00

Pwrong (AS‘Q)

©0 2 [0 2
e—k1k‘41‘1 / e—k1k‘41‘2+k‘1k‘2.r11‘2
— 00

Study the exponent in the innermost integrand:
91(y2) = —kikay; + kiksz1ys + kikayays
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Now, completing the squares gives

k k k k
01(y2) = —kika(y3 kixly? kiyly?) = —kika(y3 — (k—il"l + = Y Y1) ya)
—/_/
a’ kikya®

= —kiks(y; — ay> + Z) + 44
a k1k4a2

= —kiks(ys — —)?

1 4(y2 2) + 1

Hence the innermost integral can be written:

I = ¢ / ehiks (=50 gy — R g (B.13)
—00 k1k4

The last equality can be found in any collection of formulas. Move the constant in

a2
front of the entire integral, but insert ™ into the second innermost integral.
It can then be written

I = /°° P kvt ko) gy (B.14)
In the same way, complete the squares in the exponent in the integrand in (B.14):

kiks k k
g(yp) = —k1k4y1 — kiksxayr + - 4(—35171 + —2’!/1)2
4 “ky ka4

1
= k1[—/€4y1 ksxoyr + (k‘zl"l + 2ksksziyr + k‘2y1)]

4ky
k2 k2k3 k2
= ki[- (k4—m)+( kazs + —— T )y1+4k4 z7]
alzo az
_ 2 @2 k3a?
= atki[—y + st 4k4a1]
as k22 a-
— k’ e k 31 _2 2 ]
arki[—(y1 9%, )’ + ay 1(4k4a1 2a1) )]

Hence I, can be written

3 1

]—2 _ ea1k1 4k4a1+ / —(y1— 2a1 dyl

R B.15
et ik ‘/alkl (B.15)

Proceeding as before gives the exponent of the second outermost integrand:

/ _ _ﬂ 2 k‘lk‘gﬂf% k; klaﬁ
93(‘272) o k1a3(«172 2&3) -I_ 4]€4 (46L1]€4 -I_ 1) -I_ 4&3
where
k?
az = kg— —>0
ay
2
aqg = kg.l?l(l — kB ) .

4&1]{?4
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This results in

kik2a? k2 2 roo ag \2
I; = e %4 (zamg TO+ 4%/ e_klas(xr"_m)
— 00
ki k2a? K2 kya2 T
— iy (Taig TV
= e it LT (B.16)
1a3

Using the constants obtained in (B.13), (B.15) and (B.16) and the integrand
from (B.16) gives

2 2
kia2 K2 k3

e 4z ¢ 1[ka— 4k4 (4a1k4 +1)]d$1

Pwrong AS«Q

\/_\/]C k4a1a3det/\ '[;1

For the last time, complete the squares in the exponent in the integrand. This
gives

klalas

Vaykksaras det A i< "
(6 — 2 cos Ap)? RLEL =y
NN A

~ (6 —2cos Ap)? -l

- 2VmVkikaias /61 .

(6 —2cos Ap)? | /
- 2\/_\/ k1k4a1a3 klalag 81
(6 — 2 cos Ap)?

2\/;_]{?1(11@3 81
1 e
= — ~dt B.17
s (B.17)

Pwrong(AS‘Q) =

where

The last equality in (B.17) follows from the expressions for ky, a; and az. Finally,

1 can be simplified to

—cos A
P LA (B.18)
V10 — 8cos Ap

The calculations for (B.12) are completely analogous. In this case, the result is

1 o0 2
Pronas (A e~V dt B.19
(a0 =—= [ (B.19)
where 33 A
A 4 (B.20)

V10 —8cos Ap
The total BER which will be achieved in the simulations is the mean of these
two probabilities. This i1s again concluded because of the symmetry. Equa-
tion (B.17) and (B.19) together with (B.18) and (B.20) constitute the verification
formula (5.2).
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Appendix C

Derivation of multivariable DFE

The problem is the following: given a FIR channel of order n
y(t) = B(q)d(t) +u(t) (C.1)
Eldt)d ()] =011, Elo()o (7)) =6,V Elu()d(1)] =0

where the dimensions of the channel matrix coefficients are

———
ng

and a FIR DFE ) B
d(t) = q™ S(g M y(t) — Qg )d(t — 1) (C.2)

with matrix filter coefficients of dimensions

(e a

S—— S——
Ty ng

calculate the polynomial matrices so that the MSE of the filtering error
2(t) = d(t) — d(1) (C.3)

is minimized. Assume correct past decisions, i.e.

dt) = d(1) . (C.4)

This means calculating the probability of the first error. After the first error has
occurred, the probability of error in the next symbol increases substantially. This
is ignored, however.

Inserting (C.1), (C.2) and (C.4) into (C.3) yields

2t —my) = d(t—my)—q™S(¢")B(g " )d(t —my) +
+ Qg ")d(t —myp—1) = S(q u(t —my) . (C.5)
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In order to minimize E[|z(¢)|*], we adopt the variational scheme, suggested in [1],
see also [2] and [16]. Introduce an arbitrary variation of the estimation error (C.5),
given by a linear combination of the signals we are allowed to base our estimate
on, at time ¢t — my:

n(t) = ny(t) + na(t) = Galq y(t) + ¢ ' Galg™)d(t)
where G1(q™ ') and G4(q™!) are arbitrary, stable, multivariable filters of appropri-

ate dimensions.

If orthogonality between the estimation error (C.5) and n;(¢) and n,(¢) separately
could be achieved, any variation n(t) is orthogonal to the filtering error (C.5), and
hence (C.5) would be the smallest possible error. Our first aim is thus to prove
that the following matrix is equal to zero:

Elz(t —my)ni(t)] =

= E[{(¢7™ L, = S(aHB(a™ ) +¢7™ Q¢ 1))d(t) — S(g™Hu(t)} x

x {G1(q7)(B(g™d(t) + ()} =

! -m -1 —1y 4 ,—myp—1 -1 -1 dz
:2—773}14:1{[2 1,,-S("YB(z" )+ 'Q(z )1, B.(2)-S(z )\IJ}Gl*(z);_

In the last equality, Parseval’s relation has been used. It was also utilized that
FElv(t)d"(7)] = 0. According to Cauchy-Goursats theorem, the integral is zero if
and only if the integrand is analytic within and on the unit circle. This is the
case if each element of the integrand can be expressed as a polynomial in z. The
condition for analyticity and hence orthogonality can thus be written:

27T, = S(=")B(=") 4 2 Q(= )| Bu(z) — S(=")¥
(i

[27™ L, — S(z")B(z™") + 2 ™ 'Q(2 )| B.(2) — S(z7)VU = 2La.(2) . (C.6)

= LQ*(Z)

for some matrix polynomial L,.(z) of dimension ng4|n,. Next, orthogonality with
respect to ny(t) is assured, which leads to the following result:

2L, — 2™ TS H)B(z7 ) + Q(27Y) = 2L1.(2) (C.7)

where Ly, is of dimension ng|ngs. Multiply (C.7) with z=™#~! B,(z) from the right,
and subtract the result from (C.6). This gives

27 L1.(2)By(2) — 2Lg.(2) = S(z7H)V . (C.8)

An intermediate result is obtained by multiplying (C.7) with z~' and rearrang-
ing (C.8) :
I,,4+27'Q(:7") =Sz B(27") + Li.(2) (C.9)
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2L9.(2) = =Sz + 7™ L1,(2)B.(2) . (C.10)

This is a system of two coupled matrix polynomial Diophantine equations, with
four unknown matrix polynomials, Q(z7!), S(z7!), Li.(2), Ly.(z). To obtain a
unique solution, the degrees of the respective polynomials must be

ns = nr, = My ng=mnr,=n—1.

As it stands, this system is difficult to solve, because of the large number of
unknown matrices. However, by converting both equations into linear systems
of equations in the coefficient matrices, and combining some of the equations
from (C.9) with some of the equations from (C.10), a uniquely solvable system
is obtained.

To convert (C.9) and (C.10) into a system of linear equations, write out the trans-
pose of the equations for the powers z° to 2™/ from (C.9):
2 L, =BgS, +B{S, ,+...+B; . S;+Lp

d 0 my
2. 0 =BJS, _,+B{S, ,+...+B] . _S{+Ly

Do : (C.11)
2t 0 =BIST + BTST 4 f1(mf—1)
2™ 0 = Bong + flmf .

Then take the transpose of the equations, corresponding to the powers z° to z=™¢
from (C.10):
ZO 0 = —\I]ng + EOEIO + Elfll + ...+ Emftlmf
o0 = —\IITS? +BoLii + BiLip + ... + Emf—lflmf
Do : (C.12)
st 0 = —WTS£f_1 + Eotl(mf—l) + Elflmf

Z_mf: 0 = —\IJTS;an ‘|‘§0E1mf-

Equations (C.11) and (C.12) contain 2(m; + 1) matrix equations and 2(m; + 1)
unknown matrices. Bring them together into a system of linear equations, which

yields

Bl o ... 0 |I, 0o ... 0O g7
BT B! o |0 I, 0 T 0
1 0 ng : S, 0
Bl B' . o |0 . . 0 S; :
.T T. .T .. . : .
B! B!l , Bl lo o ... I, Sn; | = 1,
—lI}T 0 e 0 BO ]31 A 7Bmf _lef 0
o -v" ... 0 |0 By ... B, Lim,—1 :
. . : . . . 0
0 0 9T 0 o B, Lo
(C.13)
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which is (4.25).
This system is solved with respect to the matrix coefficients S; and Ly;.

Notice that the system (C.13) has (n, + nq)(mys + 1) equations and an equal num-
ber of unknowns. As long as there is noise in the system, the system is solvable.
However, when W looses rank, the system can not always be guaranteed to have a
unique solution for all combinations of n, and ng.

When (C.13) has been solved, the equations corresponding to powers of z from -1
to -n of (C.9) are used to calculate the coefficients of Q(271):

Z_l : QO = Smel +Smf—1B2+---+S1Bmf +SOBmf-|-1
272 Q, =SBy +5m,-1Bs+ ... +S1By,11 + SoBr 2

PR Qn—mf—l = Smen—mf + Smf—an—mf+1 + ...+ San—l + SOBn
Z_n_mf_l : Qn—mf—Z = Smen—mf—}—l -I' Smf—an—mf—}-? -I' e -I' San
Do : : (C.14)
Z_n+1 : Qn_Q = Smen—l + Smf—an
" Q. =S5,,B..
Bringing (C.14) into matrix form results in (4.26). The matrix polynomial Ly(27")
can be calculated in a similar way as Q(z~') was calculated, but this polynomial

is not needed. As always, if my > n, the additional channel taps are simply set to
zero in the equations above.

Equations (C.11), (C.12) and (C.14) are the equations needed to calculate the
multivariable DFE.
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