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Over the last few years the telecommunications industry has grown beyond
all expectations. An explosive increase is predicted in the number of
subscribers in mobile telephone networks over the world. This enormous
increase in the number of users introduces an extraordinary technological
challenge: to provide wireless networks with spectral efficiencies to cope
with these demands.

 Adaptive antennas are by many expected to be a key component in
the wireless networks of the future. The spatial signal processing provided
by an adaptive array antenna at the base station site gives the desired
enhancement of spectral efficiency [25] through the novel Spatial Division
Multiple Access (SDMA) scheme complementing Frequency/Time
Division Multiple Access (F/TDMA) or Code Division Multiple Access
(CDMA). The spatial processing is in fact a filter that suppresses
transmission to, and reception from, undesired directions. An important
question is which factors limit the antennas ability to suppress unwanted
signals. Studies have been done on temperature drift in receivers, on
linearity requirements [26], on inaccuracies in weights [27], [28] and on
the required precision when performing weight calculations [29]. Also the
array configuration and array errors decrease the performance as
investigated by Steyskal in [24], and Winters and co-workers in [30].
Different algorithms are proposed to be implemented in future adaptive
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base station antennas and their benefits and drawbacks are under
investigation. These algorithms also introduce errors, many of which are
algorithm specific, for example the estimation of the covariance matrix in
the direct methods or the estimation of direction of arrivals in indirect
approaches [31]. In this chapter, some factors that degrade the adaptive
antenna performance are examined and comparisons are made with
measured results.

In different projects around the world adaptive antennas are built to
give :<;�=�=�>"?@=A>B?@C�=�D�C�EF:HG trials, to examine the impact of adaptive antennas in
wireless networks and to give knowledge on actual implementation
techniques [10], [11]. The spatial filtering by the adaptive antenna can be
implemented completely digitally in a signal processor. It can also be
implemented with a hybrid digital-analog design, using an analog
hardware implementation of the weights (on the RF) that are calculated in
a digital signal processor. The hybrid digital-analog design dates back to
the traditional phased-array approach. A drawback with the hybrid design
is the inflexibility when adding a SDMA channel, which needs a new set
of hardware weights. Also the number of bits used when setting the analog
weights are a limiting factor for the antenna performance.

The complexity in the fully digital design lies in the requirement for
high performing analog to digital and digital to analog converters
necessary for the digital beamformer and in the required computation
speed of the digital signal processor. High demands are put on the dynamic
range and sample rate, not to mention the amount of data that has to be
reduced prior to processing.

We shall discuss an adaptive antenna built for the DCS-1800 (Digital
Communication System) system, also presented in Chapter 4. It works in
the receiving mode only and uses the hybrid digital-analog weighting
technique. This technique was chosen because it provided the possibility to
connect the beamformer output to an existing base station receiver for
downconversion, equalization and detection. DCS-1800 frames can
therefore be used in the transmission to emulate a realistic communication
without having to re-design a complete system for detection and
equalization. The use of hybrid analog-digital weights provides an
opportunity to examine the impact of phase errors and amplitude errors in
the beamforming weights, by treating them as an equivalent quantization
noise.

In this chapter the impact of quantization of weights in hybrid analog-
digital beamforming is investigated using the output Signal to Interferer
plus Noise Ratio (SINR) as a figure of merit. We extend the derivations of
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Compton [20] by introducing quantization of the hardware weights. The
magnitude is quantized in logarithmic steps as opposed to the linear
quantization examined by Davis and Sher in [28]. The Digital Beamformer
(DBF) is then discussed in a comparative manner. Also the Bit Error Rate
(BER) is used as an evaluation parameter. The theoretical results are used
to interpret the performance of the adaptive antenna from measurements in
the laboratory and from field trials. For completeness, we now present the
basic principles of array antennas.

In this section, an expression is derived for the SINR of the adaptive
antenna output, assuming narrowband signals. The approximation error
introduced hereby is discussed. Further more, the relation between SINR
performance of the adaptive antenna and the spatial correlation coefficient
is examined. Line of sight propagation between mobile and base, without
multipath propagation is assumed throughout the discussion. The
theoretical results will then be utilized in Section 5.3

[�\^]�\A_�`�a�b�c�dfe�g@c�h�ijh�kmlon�p�q

Consider two plane waves impinging on an array antenna of arbitrary
structure and element type. The plane waves originate from two
uncorrelated signal sources denoted the desired and interfering signal
source. The aim of the signal processing in the receiver is to enhance the
desired signal and simultaneously suppress the interferer. In thisr�s�t�u7v�t�r�w�x�y�z

 discussion, the antenna signals of the array corresponding to
the desired signal are collected in a vector {7|  given by

} ~� � � � �� � �
= +( )ω ψ0 (5.1)

where

� �� � �ψ (5.2)
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is the complex base band signal from the desired source at the array with
envelope ���  and phase ψ� , the variable ω   is the carrier frequency and ¡£¢
the array response vector given by
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Here ®@¯  is the complex radiation pattern (magnitude- and phase pattern) of
the ° th antenna element as a function of the desired signal elevation angle
θ± , the azimuth angle φ²  and the polarization ³µ´ . The angles are measured
relative to a fixed Cartesian coordinate system. The angle φ¶5·  is the phase
shift of the ̧B¹ º  antenna channel relative to the coordinate origin, introduced
by the array structure, i.e.

φ»�¼ » ¼= ⋅
½ ¾

(5.4)

where ¿�À   is the normalized propagation vector of the desired signal and ÁAÂ
is the normalized radius vector of the Ã th element. The interfering signal
source will result in an input vector at the array of similar structure as that
of (5.1), namely

Ä ÅÆ ÆÈÇ É ÆÊ Ë Ì
= +( )ω ψ0 (5.5)

where Í�Î denotes the amplitude and ψÏ  the phaseÐ . Also assume spatially
and temporally uncorrelated noise with power σ2 in each antenna channel.
This gives a total input vector

Ñ Ñ Ñ Ñ= + +Ò Ó Ô (5.6)

where Õ Ö  is the noise vector.
The elements of the input vector ×  are multiplied by complex-valued

weights, collected in a weight vector Ø , to form the output of the adaptive
antenna Ù , i.e. Ú =Û T Ü . The weights are chosen to minimize the mean square
error of the difference between the output Ý  and a reference signal Þ , giving
the criterion
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ñ ñ òó ó= − = −min ( ) min ( )
ô õ ö ô ö2 2T (5.7)

where ÷  is the expectation and T the matrix transpose. The reference signalø  is assumed to be coherent with the desired signal ù úû ü ý þ( )ω ψ0 +  and to be
given by

ÿ���� � ���	��
 � �= +ω ψ0 (5.8)

where �  is the magnitude. The weight vector �  can be calculated by
solving a system of linear equations, see e.g. [11], given by

Φ� �= (5.9)

where Φ is the covariance matrix of the input �  defined as

{ }Φ = � � �* T (5.10)

with *  denoting complex conjugate. The vector �  is the cross correlation
between the input �  and the reference signal � , i.e.

{ }� �= � �* . (5.11)

The expressions for �  and � above result in the following covariance
matrix and cross-correlation vector:

Φ = + +σ 2 2 2�     ! !" " " # # #* *T T (5.12)$ %= &('*) )* . (5.13)

An +-,/.1032�45236  expression for the weight vector

7 8= Φ-1  (5.14)

can be obtained by applying the matrix inversion lemma twice to the
covariance matrix of (5.12), see Compton [20].
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The mean power of the desired signal, the interferer and the noise at
the output of the adaptive antenna are given by
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where the factor 1/2 originates from the squared effective value of the
carriers. Using the expression of [20, p. 144] the SINR of the adaptive
antenna output can be expressed as
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where 

ξ
σ

m mn
=

2

2
(5.17)

is the desired-signal-to-noise-ratio per antenna channel and 

ξ
σ

o op
=

2

2
(5.18)

the interfering-signal-to-noise-ratio per channel.
The expression (5.16) has been calculated under the assumption that

the desired signal and the interferer, given by (5.1) and (5.5), respectively,
are of zero bandwidth. However, the reasoning can be generalized
straightforwardly to the non-zero-bandwidth case with digitally modulated
pulse shaped signals, the only difference being a new expression for the
mean symbol power, provided that the relative bandwidth (ratio of
bandwidth and carrier frequency) of the signal is sufficiently small.

A non-zero bandwidth plane wave impinging on a q;rAs tXuwv5x y�s3rAz5{Vv
{wv-vS{}|  (isotropic elements with an inter-element spacing of λ/2) can be
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approximated with a sinusoid and be treated in the framework above if the
following criterion holds [20]:

( )sinc
1

2
1 1

� �
−


î





≈φ (5.19)

where B is the relative bandwidth, N the number of antenna elements and φ
is the interelement phase shift ranging from -π to π. Sinc(x) denotes the
sinx/x function. Most modern FDMA and TDMA systems will fulfill the
requirements (5.19).

Example:
For the DCS-1800 system, we have B≈10-4, φmax=π (corresponding to an
incoming angle of 90° relative to the normal of the array) and N=8, giving
sinc{ B(N-1)φ/2} =0.9999998. Similar criteria can be stated for other
element configurations.

�A���A�������(�A� �3�A¡	¢O£A¤5¤S¥5¡��A� �3£A¦§�A¦(¨§©ª� «*©-¬�(�;®S�¯£A¦±°²¨(�A�(� �R³´¥*°²¤5¤S�Vµ
¶·¥5¤S¸d£A¤5¬�;¦(®S¥

Revisiting (5.16) one observes that the SINR is affected by the term ¹;º¼»�½�¾ *
which can be related to the important parameter denoted spatial correlation
between the desired and interfering signal. In fact the spatial correlation α
is the term in (5.16) after normalization:

α ϕ= =
¿ ¿

¿ ¿ ¿ ¿
À Á Â

À Á À Â Á Â
*

* *
cos (5.20)

The parameter α is dependent on the antenna element position, the
radiation patterns and the polarization properties as well as on the
impinging signal directions. However it is not dependent on the signal
powers of the interferer and the desired signal. It is convenient to
summarize all this information into the single parameter α and investigate
its impact on the adaptive antenna performance, utilizing (5.16). The
spatial correlation coefficient can be generalized to the case when
numerous interferers are present. It can then be represented as the
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generalized angle ϕ between the desired signal vector and the hyperplane
spanned by the interfering signal vectors in an N dimensional space, where
N is the number of antenna elements [30].

When the two signals are spatially uncorrelated, i.e. when α→ 0 , the
SINR on the antenna output in (5.16) attains the Signal to Noise Ratio
(SNR)  on the antenna input. Thus, the interferer is perfectly suppressed.
Conversely, with a high spatial correlation the SINR in (5.16) approaches
the limit

Õ×Ö 2ØÚÙÜÛ�ÝÚÞ�ß  / (σ2 + à�á 2â(ã�ä�å�æRç ) (5.21)

which is recognized as the SINR when no interferer suppression is present,
i.e. the SINR on the antenna input. When the desired and interfering
signals are located with a small angular separation, seen from the base
station site, the spatial correlation α is high and the two signals cannot be
separated. From this reasoning we conclude that there must be a critical
angle separation between the desired and the interfering mobile where the
SINR becomes unacceptable for correct reception of the desired signal.
This critical angle is dependent on the power in the desired and interfering
signal and is an important figure of merit for the antenna array when
utilizing adaptive antennas in base stations. It determines when a handover
within a cell in a full reuse (cluster size of one cell) SDMA system is
necessary.

To increase the SINR of the adaptive antenna output, a reduction in
the spatial correlation coefficient α is crucial. Effort should be put into
designing the array to reduce this coefficient. However, directions of
arrival of the signals are not known èêé·ëSì�íwëSì  so optimization of the array is
a difficult task. Some general rules for reducing the spatial correlation
coefficient is presented in [30]. One approach is to use high angular
resolution arrays with irregularly placed elements.

Errors will be introduced in the weights of (5.14) since the expectations in
(5.12) and (5.13) must be approximated based on a limited number of data
points. If the weighting is done by hardware, errors due to the practical
implementation of the hardware weights cannot be completely eliminated.
Another source of error is the quantization of the hardware weights.
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In this section, we shall study the error introduced by the weight
quantization. An expression is derived for the variance of the weight error,
assuming uniform distribution of phase errors and amplitude errors. The
results are used in later sections to calculate the SINR using analog
weighting .

The analog weights introduce errors due to the imprecise settings of
phase shifters and attenuators. These errors affect the performance and
interferer suppression capabilities of the adaptive antenna. Nitzberg [29]
showed how the errors in adaptive weights affected the output power.
Davis and Sher [28] derived the statistical properties of the weight errors
for Inphase-Quadrature (I-Q), Phase-Phase (PP) and linear Phase-
Amplitude (lin-PA) weighting, where in lin-PA the amplitude steps are
equally spaced, resulting in an amplitude independent absolute amplitude
error.

In this section, error statistics for logarithmic Phase-Amplitude (log-
PA) weights are derived, following the ��� ������� ���  of [28]. The motivation is
that the theoretical results presented in this work are verified in Section 5.7
using an adaptive antenna with this kind of weighting. In log-PA, the
amplitude steps are logarithmic (in dB steps), giving an amplitude
independent relative error in the weight as opposed to lin-PA, where the
relative error is amplitude dependent. A single weight can be written in
polar notation as

	 
���= θ (5.22)

where �  is the amplitude and θ is the phase. For the distribution of
allowable weights in the complex plane, see Figure 5.1. Note that in log-
PA small weight amplitudes provide accurate setting as opposed to the lin-
PA where the weights are evenly distributed in the complex plane. As a
consequence, the error variance due to quantization errors will increase
with weight amplitude when log-PA is used.
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Fig. 5.1 Distribution of allowed weight vector in one quadrant of the
complex plane for log-PA (a) and lin-PA (b).

Assume that θ∈ [0,2π[ and / ∈ [0,1]. Now, assume that the amplitude error021
 and the phase error 3 θ due to implementation and quantization are

independent random variables. Assume the amplitude error 4+5  in log-PA
to be uniformly distributed in the interval [-ε687:9 ε;8< ] due to the constant
relative error =2>@?�> A εB . Also, assume that the phase error dθ is uniformly
distributed in [ C εθD εθ]. We will now derive an expression for the EGFIH�J2K�L�M
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c�d2eIf�g�h�i2jIklk�mGm�n2mln!oph�q�ksr�k�g�eIq�h , ∆2 2= −∃t t , where ∃u  is the weight we
have to use due to the weight quantization and v  is the weight we want to
use. By differentiating (5.22) with respect to w  and θ and collecting terms,
see [28], we obtain

∆ 2 2 2 2= +( ) ( )
x�y y x

θ . (5.23)

To simplify the notation, let z|{~}2�:����{��:} θ and thus ���~�2���������  Now,
since �  =  ∆ 2 ≥ 0, its Cumulative Distribution Function (CDF) FZ(z)
equals the total probability mass in the circle of radius �  for �  ≥ 0. The
derivation of FZ(z) is separable in the two cases, the relative amplitude
error ε�  is larger than the phase error εθ or vice versa. The calculations are
similar and only the former will be outlined here. The calculation can be
divided into four parts (I-IV), see Figure 5.2.

Fig. 5.2. Quantization of error distribution diagram. I: Circle inside
rectangle, II: Circle limited at y-axis, III: Circle limited at x and y axis, III:
Circle outside rectangle.

The two-dimensional probability density is  �G�����������G�¡  ¢¤£¥��¦ ε§ εθ̈ª©�«  for  ¬  ≤
ε®  and  ¯  ≤ ° εθ. With use of this the CDF for ±  can be calculated in the

different regions above as
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 (5.24)

Taking the derivative of the CDF with respect to z the Probability Density
Function (PDF) is obtained. Using this PDF, the expected value of the
squared magnitude error (Ï ) can be calculated as

( ) ( )Ð Ñ Ò
∆ 2 2 2 21

3
= +ε εθ . (5.25)

This error is a function of the weight magnitude (Ó ). From (5.25), an upper
bound of the weight quantization error variance can be calculated.
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Fig. 5.3. The magnitude squared error CDF for different weight amplitudes
(Ô ) and amplitude errors (εÕ ). The phase error εθ=0.5°. I: Ö =1, ε× =7εθ, II:Ø

=1Ù εÚ =2εθ, III: Û =0.5Ü εÝ =7εθ, IV: Þ =0.5, εß =2εθ.
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In Figure 5.3 the CDF for some cases are plotted. We see that the slope of
the CDF is strongly amplitude dependent, due to the way the weight
amplitude impacts on both amplitude errors and phase errors. The results
differs markedly from that for lin-PA weighting where the weight
amplitude only affects the phase error, see Figure 14 in [28]. When there is
imbalance in phase and amplitude accuracy as in curve I and III in Figure
5.3, a change in weight amplitude affects the CDF slope more than the
small imbalance case in curve II and IV. This means that ò�ó�ôöõ÷ó�ø2ù(ô*ô�úGú�û2ú εθü�ý+þ�ü�ÿ����������+þ
	�	������ ε�������������������������� �!"�� , i.e. nearly equal, to reduce the
effect of the weight amplitude on the magnitude squared error.

Adaptive antennas where the weights are calculated digitally but applied as
analog multiplications of RF-signals will in this chapter be denoted Analog
Beamforming (ABF) adaptive antennas. The antenna signals are sampled
and digitized by A/D-converters. This can be done in numerous ways (see
[32]), e.g. after down conversion to the baseband or by narrowband
sampling techniques at RF. The weighting of the RF-signals is done in
hardware. The hardware weights can be implemented in various ways (see
[28]), e.g. by software controlled attenuators and phase shifters. The
weighting at RF will introduce a more complicated expression for the
output SINR than the ideal expression given in (5.16). This is caused by
two factors:

1) the weights are calculated based on quantized signals but are applied 
to non-quantized RF-signals, and

2)  the analog weights are quantized.

Figure 5.4 shows a block diagram of an ABF adaptive antenna with the
associated quantizations and also an equivalent noise model.
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(a)

(b)
Fig. 5.4. Quantization block diagram (a) and equivalent noise model (b).
The operator q() represents quantization.

Consider first the implications of 1). We shall here extend the derivations
of [20] to the case were the noise vector used to calculate the weights
differ from the noise vector at the analog beamformer. This will be the
case since the hardware channels are different in the two cases, and also
because the calculations of the weights involve a signal quantization, see
Figure 5.9. The quantization noise can be considered uncorrelated if the
number of bits of the A/D converters are sufficiently large, see [33]. Let

σ1
2  denote the average noise power (thermal noise and quantization noise)

of the signal used to calculate the weights, and σ2
2  the average noise power

(only thermal noise) at the analog beamformer. This problem formulation
will not change the expressions in [20] for the desired and interfering

output power (other than that the noise per channel σ1
2  now also contains
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quantization noise) , but will give a new expression, compared to [20], for
the output noise power. This expression is given by
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where γ is given by
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The SINR of the adaptive antenna can therefore be written as
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Equation (5.28) constitutes a more complicated expression than the
corresponding expression (5.16) for the ideal case. However, if the spatial

correlation | t tu v w* | between the desired and interfering signal is small,
corresponding to a scenario where the interfering signal is well outside the
main lobe of the adaptive antenna, the expression (5.28) reduces to
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σ
(5.29)
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In this case, the SINR is approximately given by the ratio between the
optimum combined desired signal and the �������"�����������7���  power per antenna
channel. Note that the quantization noise power in this case does not affect

the SINR since (5.29) does not depend on σ1
2 .

We have not yet considered the quantization of the analog weights
when beamforming at RF. It can be shown that this will introduce a new
noise term in the expression for the SINR proportional to the signal powers
of the desired and interfering signals. This is the topic of the next section.

 �¡£¢�¡¥¤�¦ §"¨�©�ª¬«®°¯¬±�²³«´¨�µ¶±�«´¨�·�²

Quantization of the analog weights in both phase and amplitude will result
in the following expression for the output power of the analog
beamformer:

{ }
{ } { }( ) { }
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= + +

= + ⋅ +

( ) ( )
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» ¼�¼ »
» ¼-¼ » » ¼�¼ ¼�¼

∆ ∆

∆ ∆ ∆2
      (5.30)

where ½ is the ideal weight vector calculated by the processing unit, ¾  the
input vector at the array and ∆ the complex error vector introduced by the
quantization of the weight vector. Under the assumption that the error of
the weight vector is uncorrelated with the weight vector itself the two
terms in the middle of the expression can be neglected leaving

{ } { }¿ À ÀÁ Á Á Á
= +Â Ã�Ã Â Ã�Ã∆ ∆       (5.31)

The first term represents the ideal output power of the analog beamformer.
The second term is the additional noise power originating from the weight
quantization. Straightforward algebra reveals that the additional noise term
can be expressed as

{ } { } { }Ä Ä Å�ÆÇ Ç
∆ ∆ ∆ ΦÈ�È = 0

2       (5.32)
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provided that the variance of each component of the quantization error

vector ∆ is the same, namely { }Û
∆0

2 . The elements of the error Ü"Ý"Þ"ß�à:á  ∆
must be mutually independent, as well as ∆ â  and x ã , for ä =1,2,…,N. The
quantity { }å7æ Φ  denotes the trace of the covariance matrix Φ, given by

{ } { }ç7è é ê êë ìΦ = ⋅ + +2 2
2
2σ (5.33)

where íïî  and ð^ñ  are the input magnitudes of the desired and interfering

signals, σ2
2  is the thermal noise at the beamformer output and ò  is the

number of antenna elements. The final expression for the weight
quantization noise will therefore be

{ } { } { }ó ó ô õ õö ö ÷ ø
∆ ∆ ∆ù�ù = + +0

2 2 2
2
2σ        (5.34)

  
It is now straightforward to state a new expression for the output SINR of
the analog beamformer. The expressions in [20] for the desired and
interfering signal power will not be altered. The weight quantization noise
power will however add to the original noise power of (5.26). The
following expression is obtained:

By again making the assumption that the úüû�ý�þ�ÿ�ý����������
	���ý�þ�ÿ���� ÿ�ú ����
(| � �� � �* |≈0), and also that the ���������������������������! �"#�$�% ���&�'��% )(�& �*(�&+���,���������$�
&-')���.&�'��/�� )�����0�!�$�1���)&-�����)�.2�'��)���)�
�3 ��4&-')�5�-�6�!(�&  (γ >>σ 2), the expression
(5.35) finally simplifies to
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where i  is the magnitude of the reference signal. So, once again the
adaptive antenna is able to suppress the interfering signal down below the
noise floor, at the same time enhancing the desired signal. The noise floor
in this case is however composed of two components; the thermal noise
per channel and also a scaled version of the weight quantization noise.

This noise floor will increase with increasing signal power ( j+k 2 2 andlnm2 2) at the input of the array. In particular, a strong desired signal will
increase the noise floor. We can therefore conclude this section by stating
that o-p)q5rts�q�u�q�v�w�qyx{z}|�~)��v�o�������o-��x�v q$s�s
x�s�uy�-v o-p)q���q��Y��p�oYu��#���-�Qs
q$��~)w
qyo�p�q������� ��o5o-p)q�x)~�o r!~�o5xSz o-p�q���s$s
���N�,q$u�r*q�w��-�����L��z]x�s�u�o�s�x�v�� ��q$u
��s�q$� u
����v��)��u .
Equation (5.36) is further discussed and illustrated in Section 5.6.

Ideally an adaptive antenna is able to suppress the interfering signal down
to the noise floor, and at the same time enhancing the desired signal by
optimum combining. Many components in the practical implementation of
the adaptive antenna are involved in setting the overall noise level. The
beamforming, i.e. application of the calculated adaptive antenna weights to
the antenna signals, can be done either in software (digital beamforming,
DBF) or in hardware (analog beamforming, ABF), described in the
previous section. In the digital beamformer, the antenna signal is down-
converted to a IF (intermediate frequency) or to the baseband before A/D
conversion, see Figure 5.5. This arrangement gives a significant increase in
weight accuracy compared to the ABF, but increases the system
complexity, due to dynamic range considerations and high data rate
support [34]. The A/D converter must be able to resolve a very weak
signal, almost buried in noise, possibly in the presence of a strong signal
from a mobile near the basestation. This put high demands on the A/D
converters spurious free dynamic range (SFDR).
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Fig. 5.5.  Receiver using digital beamforming

Although (5.25) is valid for the DBF case as well, the errors in the weights
when using the DBF is negligible in comparison with the previously
described ABF due to the accuracy in the Digital Signal Processor (DSP).
Assuming that the quantization noise variance σ¬�  is negligible compared
to the thermal noise σ®�¯  one notices that Equation (5.28) reduces to
Equation (5.16), which is the SINR for an ideal array. The main error
source in a DBF is thus not quantization error, but harmonic and
intermodulation distortion introduced by the analog parts, such as
amplifiers and the downconverting mixers. Thus, the key specifications of
the digital beamformer is the spurious free dynamic range and the level of
intermodulation distortion [35].

In this section we will apply Equation (5.36) to the signal environment and
antenna configuration presented in Table 5.1. We will show how the
signal-power-dependent noise floor affects the improvement in SINR.
Some minor approximations are made in order to simplify the derivations.
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TABLE 5.1
EXAMPLE SCENARIO

Item                                 Specification

ÂÄÃÆÅÈÇÊÉÌË�Í�ÇÄÎÏÃÑÐ�ÒÏÇÊÓÔÍ�ÇÄÕ
Angle of desired signal -61°
Angle of interfering signal -7.2°
Thermal noise per channel -72 dBm

Ö0×ÄØ{Ù�×Ê×ÊÚÜÛ�ÝÈ×ÄÞàßÆáÈâÊã�ÚÌØàßÆÝÏ×
Array Eight element

Uniform Linear Array
A/D converter resolution 8 bits
Dynamic range A/D converter 48 dB
Weight resolution:

phase 1 degree
magnitude 1 dB

Weight span
phase [0°, 360°]
magnitude [0 dB, -50 dB]

Fig. 5.6. Approximate quantization errors in amplitude and phase.

Equation (5.25) gives an expression for the variance of the weight
magnitude quantization error utilizing the weight type considered here. A
study of Figure 5.6 give approximate expressions for the relative error in
magnitude and absolute error in phase, i.e.
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By assuming all weights to be of maximum magnitude we get the worst
case expression for the variance of a single weight magnitude as
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(5.38)

An interesting figure of merit for the example antenna is the improvement
of SINR, i.e. the ratio between the output SINR of the analog beamformer
and the input SINR of an element channel. The SINR of an element
channel is given by

þ�ÿ���� �
�

��� ��=
+

2

2
2
2

2

2 σ
  (5.39)

and the approximate beamformer SINR by Equation (5.36), i.e.

	�
��� � ������ � � � �
�≈

2 � � *

(5.40)

where���  is given by

{ } { }� � � � � � � ! " ! ! # != + + +σ σ2
2

2 0
2 2 2

2
2 22

∆ $ $ * . (5.41)

The power %�&  can in analogy with (5.29) and (5.36) be interpreted as the
equivalent noise power per antenna channel of an ideal adaptive antenna.
This gives the improvement as

∆( ) *'�(*),+ '-(�)�+
'�(�)�+
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Equation (5.42) has two factors, the first containing the optimum gain of
the array and the second the ratio between the interfering signal power plus
thermal noise and the fictitious noise floor \ . Since the optimum gain is
independent of the signal power, the second factor will completely
determine the behavior of ( )∆ ]-^�_,` . The second factor illustrates that the
interfering signal is suppressed down to a�b . By studying the signal-power-
dependent ced  it is therefore easy to visualize the behavior of the adaptive
antenna for different power levels of the desired and interfering signal.
Calculated feg  and ( )∆ h-i�j,k  are depicted in Figure 5.7 (a) and (b),
respectively.
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Fig. 5.7. Calculated fictitious noise floor ���  in dBm as a function of ���2 2

and ���2 2 (a), and SINR improvement in dB as a function of ���2 2 and���2 2  (b).

Study for example ���  in Figure 5.7(a) along the line ��� 2 /2=-75 dBm. Here

the first term of (5.41) is dominant for all ���2 /2, in other words ���  is
constant for all interferer magnitudes. Now study Figure 5.7(b) along the

same line. For ���2 /2 below σ2
2  we get a negligible increase in ( )∆ �-���,�

when plotted on a logarithmic scale, see (5.42). As ���2 /2 exceeds σ2
2  the

interfering signal is suppressed down below ��   resulting in a linear

increase in ( )∆ ¡-¢�£,¤ . Along the line ¥§¦ 2 /2=-50 dBm the first term of (5.41)

is dominant for small values of ¨�©2 /2. As ª�«2 /2 increases the third term

dominates, resulting in an increase in ¬� . For small values of ®�¯2 /2,
( )∆ °-±�²,³  will behave in the same manner as before. As ´�µ  starts to

increase we see a decreased increase in ( )∆ ¶-·�¸,¹ . Along the line º§» 2 /2=-35

dBm we actually get a negative ( )∆ ¼-½�¾,¿  for small values of À�Á2 /2. This is
due to the extremely high Â�Ã  caused by the second term of (5.41).

It is also interesting to study ÄÆÅ  along constant Ç�È2 /2-lines. Take for

example ÉËÊ2 /2=-75 dBm, where for small values of Ì§Í 2 /2 the first term of

(5.41) is dominant. As Î�Ï2 /2 increases the second term of (5.41)
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dominates, resulting in a linear increase in âÆã . The slope of the increasing
curve is two when plotted on a logarithmic scale because of the squared
desired signal power. This will have an enormous impact on the ( )∆ ä-å�æ,ç .

Along the line è�é2 /2=-35 dBm we again have a constant ê�ë  level for small

values of ì§í 2 /2. îÆï  will then increase with increasing ð�ñ 2 /2 as the third
term of (5.41) becomes the dominant one, resulting in a linear increase

(slope one) in ò�ó  for larger values of ô§õ 2 /2. The decrease in ( )∆ ö�÷�ø�ù  is
therefore not as dramatic as before.

Figure 5.8 shows the ( )∆ ú�û�ü�ý  plotted in a different way, perhaps
giving a better overview of the behavior of the adaptive antenna. For weak
interference we see a constant level of improvement of the SINR. This is
because the interference is well below the thermal noise, leaving only the
optimum gain of the desired signal. As the interference power increases we
get a linear increase in the SINR corresponding to the suppression of the
interfering signal down below the fictitious noise floor. As the desired
signal gets stronger the ( )∆ þ�ÿ����  is decreasing resulting in a ”bend”  of the
iso-lines (lines of equal ( )∆ �����	� ). For weak interference and a strong
desired signal the SINR is actually impaired because of the enormous
fictitious noise floor.
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Fig. 5.8.  Calculated SINR improvement in dB. The improvement
decreases as the nuance of grey becomes more  black.




����������������������� �!����"#��$%��"&�#���(')�&�+*%,%"��
87

In this section the adaptive antenna system used to verify the theoretical
results above is described, followed by a presentation of the measurement
results.

-�.0/�.21436587�98:<;�=?>@3BA8:<>%A8A87DC!E?FG:<>%H

The adaptive antenna system operates partly according to DCS-1800
standards. However, only the uplink is implemented and only Traffic
Channel (TCH) frames are transmitted for evaluation purposes. In each
DCS-1800 time slot there is a 26 bit training sequence that is used as a
reference signal in the signal processors for each of the two possible users
on the same frequency and timeslot. The users are assigned different
training signals, thus a multiple access scheme using SDMA is possible.
The system is shown in Figure 5.9.

Fig. 5.9. Adaptive antenna system.

The front end consists of linearly polarized microstrip patch antenna
elements with 80° beamwidth. The array is flexible and can be arranged in
a linear or circular configuration with arbitrary element spacing.  Up to ten
antennas can be used in the array. The antenna signals are distributed to
receivers and to two beamformers, which consists of phase shifters and
signal attenuators that are digitally controlled by the DSP. The weighted
signals are passively combined. Note that the weighting is performed at RF
(radio frequency). The receivers down converts the signals to the baseband
before sampling. Weight calculation is done by the DSP based on the
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sampled signals. The weighted and summed RF signals are connected to
ordinary base station receivers enabling measurements of BER, Frame
Error Rate (FER) and other parameters characterizing the beamforming
quality. For laboratory measurement purposes the antenna array is replaced
by a Butler matrix that is fed by signal generators, giving rise to a scenario
corresponding to two plane waves impinging on an eight element uniform
linear array. Thus the adaptive antenna functionality can be verified
without introducing difficulties of multipath propagation and fading.

_�`0a�`0bDc d�e�f�g8h�d%ijd%k8l<fnm�oqp8rGs t

This section presents how the measurement of the improvement in SINR is
performed. The measured quantity is not exact but is at least a good
approximation of the true improvement in SINR, except when the CIR per
antenna channel is high.

When measuring the improvement in SINR, first the signal levels of
the desired signal and the interference are set. The adaptive antenna
weights are then calculated and frozen. The interference is then removed
and the output power of the analog beamformer measured. The measured
power can then be expressed as

( )( ){ }
{ }( )
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2
2

= + + + + =
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∆ ∆

∆
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σ

(5.43)

where }�~  is the desired signal output power given by (5.15) and ���  the
output thermal noise power given by (5.26). The third term is the
quantization noise power derived in Subsection 5.4.1. Note that the lack of
the interfering signal in the power measurement only effects the third term,
since the weights were calculated based on a signal environment
containing both the desired signal and the interference.

The interfering signal source is then turned on, the desired signal
removed, and once again the output power of the beamformer measured.
The measured power in this case can be expressed as
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where ���  is the interference power given by (5.15). Now study the ratio of�
1 to � 2 , i.e.
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It is most likely that the desired signal power of the beamformer output is
greater than the output thermal noise plus quantization noise. The removal
of the second term in Equation (5.45) is therefore not a very crude
approximation, leaving
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(5.46)

Equation (5.46) almost coincides with the exact expression for the output

SINR of the ABF (see (5.36)). The difference is the lack of the term µ�¶ 2 in
the last parenthesis of the denominator. For interfering signals stronger
than the desired signal at the input of the array, Equation (5.46) will
therefore be a good approximation of the output SINR.

The input desired signal power and interference power is measured in
turn at the input of the receivers (or input of the analog beamformer). In
both measurements the signals are corrupted by the thermal noise of the
antenna channel. The ratio of the two measurements can therefore be
expressed as
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The approximation in  Equation (5.47) is valid for desired signals stronger
than the thermal noise. The ratio between the measurements
(approximately (5.46) and (5.47)) will therefore be a good approximation
of the improvement of the SINR for the adaptive antenna, provided that the
requirements above, made on signal levels and noise levels, are followed.

The practical measurements where made using two Gaussian
Minimum Shift Keying (GMSK)-modulated signal sources connected to
the inputs TR1 and TR4 of the Butler matrix, corresponding to a scenario
of one signal source in direction -61° (azimuth plane) relative to broadside
of a uniform linear array, and the other in direction -7.2°. The Sample
Matrix Inversion (SMI) algorithm [36] was chosen for the calculation of
the adaptive weights. (This method is also described in Chapter 4.) The
measured improvement in SINR (calculated as the mean of nine
measurements) is shown in Figure 5.10 (a) and (b), corresponding to
beamformer one and two, respectively. These diagrams should be
compared to Figure 5.8. The diagrams have much in common. Study the
constant improvement for weak interference, the linear increase when the
interference is increased and the decrease for increasing desired signal
power, resulting in the ”bend”  of the iso-lines. Note however the rapid
decrease of the measured improvement as the A/D converters saturate for
strong desired signals (>-40 dBm). It can also be seen that the measured
and calculated improvement of the SINR differ for desired signals much
stronger than the interferer, see Figure 5.8. This is not surprising since the
approximations we have made above are not valid in this region.
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Fig. 5.10 Measured SINR improvement in dB for beamformer 1 (a) and
beamformer 2 (b). The improvement decreases as the nuance of grey
becomes more  black. Note the overestimation of the improvement for
strong carriers and weak interference compared to Figure 5.11. This is
because the measurement is not valid in that region.

ä�å0æ�å0çDè�é&ê%ë&ìîí	ï�é#ð�ëòñ ê�ð�ó�ô8ï�ê%õjê�öø÷<ó

The measurements described in the previous section were conducted in a
laboratory using a Butler matrix as a substitute for the array antenna.
Those measurements gave information about the adaptive antenna
performance in an ideal environment, with omnidirectional radiation
patterns with equal gain. The next step in the evaluation process is to
perform measurements using the real front end with directive antenna
element patterns placed in a circular array configuration. The
measurements were made on an outdoor antenna measurement site with no
reflective buildings or other objects in the surroundings. The front end was
placed on a turntable tower. This gave possibilities to measure static
antenna diagrams, which provide insight into how adaptive antennas work.
The measurements are static and yield no information of the dynamic
performance of the antenna when signal sources are moving.
Measurements of the improvement in signal to interference plus noise ratio
with different separations of signal sources were made and the results are
presented below. The adaptive antenna performance severely degrades
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when the angular separation is less than 20 degrees. This is due to the high
spatial correlation between the signal sources as discussed in Subsection
5.2.2. As presented below, the measurements of  the dynamic performance,
although averaged, were made by moving the signal sources along an arc,
while keeping the distance to the base station antenna constant, and
simultaneously measuring the BER as a function of the angular separation.
For more results from these field trials, see [37], [38] and Chapter 4.
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The impact of spatial correlation is illustrated by measuring the SINR for
different Direction of Arrival (DOA) separation of the desired and
interfering signal, with the circular array field trial arrangement.
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Fig. 5.11. SINR as a function of mobile separation, using measured
element patterns. Solid is fitted theoretical, markers is measured data.

As seen in Figure 5.11, the adaptive array performance, measured in SINR
of the adaptive antenna output, is degraded when the angle separation is
decreased. The experimental results show a qualitative agreement with the
theory developed in Subsection 5.2.2 (recall Equation (5.35)). However,
the noise parameters are unmeasurable, so an approximate curve fit using
Equation (5.16) is shown in Figure 5.11, to qualitatively show the impact
of spatial correlation. The noise power is the variable fitting parameter. At
separation angles above 20°, the SINR is approximately constant. The
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SINR level is determined by the signal powers and noise power at the
antenna input. When the angle is decreased below 20° the degree of spatial
correlation between the two signal sources increases and this SINR
degrades, in agreement with Equation (5.16). When the power of the
carrier is increased, the increase in noise power is non-linear due to the
weight quantization. So the rate of change in SINR is decreasing with
increasing received power, see Figure 5.11. This observation verifies the
discussion in Section 5.6 and Equation (5.35).
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In the previous parts of this chapter the adaptive antenna performance has
been investigated in terms of improvement in SINR. The BER was also
measured as a function of the separation in angle between the desired and
interfering mobile when the two transmitters were moving towards (and
past) each other. The power received from the two mobiles are varied to
emulate the near-far effect. The BER is a function of the SINR at receiver
input. When SINR is decreased below a certain threshold level, the BER is
rapidly increased to about 50% and the communication link is lost. This
problem must be solved in a future SDMA system by performing an intra-
cell handover, i.e. one of the mobiles must change transmitting and
receiving frequencies or time slots.

The SINR is dependent on the transmitting power of the  desired and
interfering mobiles and their spatial correlation, which approaches one
when their angle approaches zero as seen in Subsection 5.2.2. In Figure
5.12 the BER as a function of separation between a desired and interfering
mobile is presented for different settings of transmitted powers. The curves
represents the class II bits (not protected by coding) in the DCS-1800
standards. The measurements are performed in the same environment as in
Subsection  5.7.3.
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Fig. 5.12. BER as a function of interferer and desired signal DOA
separation in horizontal plane. Unprotected (Class II) bits. SIR=-25 dB (1),
-20 dB (2), -15 dB (3), -10 dB (4), 0 dB (5).

The behavior of the curves in Figure 5.12 can be explained by the spatial
correlation measurement presented in Figure 5.11. The threshold level for
the SINR giving a BER of approximately 0 % is about 9 dB in the DCS-
1800 standard. When the separation angle is greater than 20 degrees the
SINR is approximately constant at a level determined by the input of the
desired and interfering signal powers. If the ratio of the input powers are
greater than -20 dB, the antenna manages to suppress the interferer enough
to give a BER close to 0 % as seen in Figure 5.12, curve 2-5. If the power
ratio is  below -25 dB, the improvement in SINR is not enough to provide
an output SINR above 9 dB and the BER will therefore be well above 0 %
for all angular separations, see curve 1 in Figure 5.12. When the angular
separation is less than 20 degrees the high spatial correlation severely
degrades the output SINR, as can be seen in Figure 5.11.


