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In mobile radio communications it is important to have a good estimate of
the channel relating the transmitted symbols to the received samples. This
channel can be modeled as an FIR-channel. A part of the dynamics
described by the channel is caused by the pulse shaping performed at the
transmitter in terms of modulation and at the receiver by the receive filter.
If we assume knowledge of this pulse shaping, it can be used to improve
the channel estimates. Fewer parameters need to be estimated from training
data which leads to an improved estimation accuracy.

For multi-user channel estimation, the number of parameters to be
estimated increases linearly with the number of users (transmitters) while
the number of equations is limited by the length of the training sequence.
Since the method presented here is economic with respect to the number of
parameters to be estimated for each user, it will improve the channel
estimates in line with the parsimony principle [42]. In some cases it will
also make otherwise impossible joint multi-user channel estimation
possible.

A commonly used channel estimation method for GSM channels that
utilizes pulse shaping information can be found in [5]. Here the received
training part of the signal is correlated with the modulated training
sequence. The training sequence is chosen so that the correlation
approximately gives the unknown part of the channel, excluding the pulse
shaping. In [3] a method for channel identification is presented that
discretizes the continuous convolution between the pulse shaping function
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and the ”unknown” channel impulse response. This results in a
parameterization of the total channel in terms of parameters for the
unknown part of the channel. The parameterization is then used in order to
identify the total channel.

The channel identification method presented in this chapter also derives
a parameterization of the total channel in terms of parameters for the
unknown part of the channel. The approach to the modeling is however
different. The method is based on approximation, using a set of pulse
shaping functions sampled at different time instants. The approximation is
related to an interpolation between sampled versions of the pulse shaping
function with different offsets in the sampling instants, similar to the
approach in [1]. The approximation used in this chapter can be scaled, and
more than two sampled pulse shaping functions can be involved. It will
therefore not represent interpolation in a true sense but rather a linear
combination of the sampled pulse shaping functions. The modeling is
illustrated for the pulse shaping function used in D-AMPS (IS-54). The
method and notation here is presented for a single receiving antenna, but is
generalized to multiple antennas in Chapter 3. A multi-user example
utilizing multiple antennas is however presented in Section 2.4.

The method in [3] is formulated as a method for multiple antennas. A
closer study reveals that it decouples spatially and is thus a purely temporal
method, i.e. the channels from the mobile to the each of the antennas are
estimated independently. The method in this chapter is only presented as a
temporal method. In the simulation example presented in Section 2.4,
multiple antennas are used, but the identification is applied to each antenna
independently.

Other approaches which utilize the pulse shaping information for
channel estimation can for example be found in [2], and [4]. A blind
method using pulse shaping information can be found in [6].

We here first discuss the model for the channel from one user. The
generalization to multiple users can be found in Section 2.3. In continuous
time, with the time index denoted by 8:9 , a linear communication channel
with linear modulation can be modeled by a ;�<�=?>!<  linear pulse shaping
filter with the impulse response @ ( A
B ), and an C�D�E�D�F?G!D  linear filter with the
impulse response H ( I:J ), representing the ”physical”  channel the signal
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passes through. In the pulse shaping filter we can include all known time-
invariant linear filtering which is performed both at the receiver and the
transmitter. The unknown linear filtering performed by the physical
channel and possibly by unknown filtering in the receiver and transmitter
can be modeled by the unknown, time invariant channel ^ ( _
` ). In the
frequency domain, the impulse responses a ( b:c ) and d ( e
f ) can be represented
by their transfer functions gih (j ) and kml (n ). Another possibility is to use the

derivative operator, defined as o
p
p�q= . We can then form the operators

ris
(t ) and uwv (x ), which relate the input to the output in the time domain

according to

y z { | } | ~ z ��z� � � � �( ) ( ) ( ) ( ) ( )= + . (2.1)

The continuous time model can therefore be illustrated as in Figure 2.1.

Fig. 2.1. Continuous time channel model where �:�  and �  denote continuous
and discrete time, respectively.

The input symbols � ( � ) are defined in discrete time � , but can be modeled as
a sequence of dirac pulses, giving the continuous time signal � ( �
� ). Also, a
continuous time additive noise source � ( �:� ) is modeled. By sampling the
received signal � ( �:� ), the discrete time output sequence � ( � ) is obtained.

The discrete time channel from � ( � ) to � ( � ) can be approximated by an
FIR filter, i.e.

B(� -1)=��� +�������¡  +...+¢¤£:¥§¦©¨«ª   (2.2)

were ¬©«®  represents the unit delay operator: ¯�°¡±³² ( ´ )=µ ( ¶ -1). The channel
model can be seen in Figure 2.2, where · ( ¸ ) is discrete time noise. To
obtain a statistically accurate discrete time representation of the channel
and the noise would require sampling of a continuous time stochastic
process, see e.g. [45]. This is a rather complicated operation and for the
purpose of this thesis we need not go in to further details on this issue. By
using a known training sequence as input ¹ ( º ), the coefficients in B(»©¼¡½ ) can

¾i¿
(À ) ÁmÂ (Ã ) +

Ä ( Å:Æ )
Ç
( È
É ) Ê ( Ë )

Pulse shaping Unknown channel

Ì ( Í
Î )
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be estimated with a least squares method. However, we would then not
utilize the information about the pulse shaping filter â ( ã:ä ).

Fig. 2.2. Discrete time FIR channel model.

A first step towards incorporating the knowledge of the pulse shaping filter
into the discrete time channel model is to sample å ( æ:ç ) è -spaced (once per
symbol interval) and form an FIR filter P(é©ê«ë ) from the so obtained
samples. The discrete time model then becomes P(ì�í¡î ) followed by a ï -
spaced discretization, H(ð©ñ¡ò ) of the unknown channel ó ( ô:õ ). We would then
obtain the model presented in Figure 2.3.

Fig. 2.3. A Discrete time channel model with a ö -spaced sampled pulse
shaping filter.

The estimation is now restricted to the FIR filter H(÷�ø¡ù ) using the
”modulated”  signal ú ( û ) as the input signal. A potential problem with this
method is that the model may be to crude. When designing P(ü�ý¡þ ) we have
to choose where to sample the pulse shaping function ÿ ( ��� ). For a pulse
passing through the physical channel and being sampled at these instants,
we would have a better model than the FIR-model of Figure 2.2. A non-
dispersive physical channel � ( ��� )= � 0δ( ��	 ) would for example be represented
by a channel H(
��� ) with a single unknown tap

However, for a pulse passing through the physical channel and being
sampled at time instants ��� - �������������  the chosen sampling points of � ( ��� ), the
model in Figure 2.3 will not be perfect. The received sampled pulse can
then essentially be described by a linear combination of two T-spaced
shifted versions of P(���� ). Apart from a scaling, this can be viewed as an
interpolation between two shifted pulse shaping filters. If we have no
additional unknown channel dynamics, then the lack of perfect
synchronized sampling can be accommodated by an extra tap in the
channel H(q!#" ). This is illustrated in the following example.

B($�%#& )
'
( ( )

+

) ( * ) +
( , )

- ( . )
P(/10#2 ) H(314#5 ) +

6 ( 7 )8
( 9 ) :�;�< =
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Example: Let P([�\#] ) be given by

^ _ ` ` _ ` _
( )− − −= + +1

0 1
1

2
2 (2.3)

and the unknown channel by

a b c
( )− =1

0 (2.4)

i.e. a single-tap unknown channel. With perfectly synchronized sampling,
the total channel estimate

∃( ) ∃ ∃ ∃ ( ) ∃d e f fge fhe i ije i e k− − − − −= + + = + +1
0 1

1
2

2
0 1

1
2

2
0 (2.5)

will be more accurate than the traditional LS-estimate of l 0, m 1 and n 2, since
only o 0 need to be estimated with the same amount of data. If, however, we
have a sampling offset, we can increase the order of the unknown channel
in the prqDsDt�u  of Figure 2.3. The channel estimate is then given by

∃( ) ( )( ∃ ∃ )
v w x x w x w y ygw− − − −= + + + =1

0 1
1

2
2

0 1
1

= + + + + +− − −z { z { z { | z { z { | z {g|
0 0 0 1 1 0

1
1 1 2 0

2
2 1

3∃ ( ∃ ∃ ) ( ∃ ∃ ) ∃
(2.6)

i.e. a linear combination of P(}�~#� ) and ����� P(�1�#� ). This will give a good
approximation of the total channel, since only two parameters (compared
to three in the traditional case) need to be estimated, provided that the
sampling offset is small. 

If improved accuracy is desired in the model, more than one sampled
version of the pulse shaping function � ( ��� ) can be used, see Figure 2.4. This
is similar to the approach taken in [1]. The modeling of the channel will
here be divided into two branches with two different sampled versions of
the pulse shaping filter, P��� � (���#� ) and P��� � (����� ), with their sampling instants
offset by half a symbol interval. The subscript refers to the offset of the
filters center tap from the center or peak of the pulse shaping function � ( ��� ).
See, for example, Figure 2.8. The benefits of utilizing this � /2-spaced
interpolation as compared to � -spaced interpolation will be illustrated in
Section 2.4.

Each discrete time pulse shaping filter in this model is then followed by
a discrete time channel, H � (����� ) and H � (�1 #¡ ) respectively, see Figure 2.4.
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Each pulse passing through the system will now be represented as a single
tap in H · (̧�¹�º ) and H » (¼�½�¾ ) or a combination of two or more adjacent taps.
Again this can be viewed as an interpolation among adjacent sampled and
shifted pulse shaping functions. Note that the interpolation is now
performed among the ¿ /2-spaced sampled and shifted pulse shaping
functions PÀÂÁ À (Ã1Ä#Å ) and PÆ�Ç È (É�Ê�Ë ). This interpolation is thus refined as
compared to the Ì -spaced interpolation illustrated by Figure 2.3. If an even
more refined model is desired, a larger number of pulse shaping filters,
with less spacing between the sampling instants, can be used for the model
in Figure 2.4.

In order to increase the Í�ÎDÏ�Ð�Ñ¯ÒÔÓÖÕ Ñ¯×ØÎDÙDÚGÛ�Ó�ÍÝÜhÞ�ÛGÚ�ßDÓ�ÎDÚàÛ�ÍDá¯Ò�Ñ�ÙâÜ�ÛGÍÝã ÚGßDÑ
ÍDÎ�Ï�ÐDÑ¯ÒäÓåÕçæèÙÝÒ�Ù�Ï�Ñ�Ú�Ñ¯ÒOÜ  to be estimated, fractionally spaced sampling can be
utilized. Fractionally spaced sampling can be represented in the continuous
time model by introducing a time advance of é /2 before an extra sampler
as described in Figure 2.5. Note that this is, of course, not possible to
realize in practice. It is used here merely to illustrate the idea of fractional
sampling. If even finer sampling is desired, more branches with finer
spacing can be used.

The final discrete time counterpart model, with both pulse shape
interpolation and fractionally spaced sampling, is illustrated by Figure 2.6.
The sampled pulse shaping functions Pê#ë�ì í (î�ï�ð ) and PñÂò ñ (ó1ô#õ ) for the ” ö /2-
branch”  will have their sampling instants offset by - ÷ /2 from Pø�ù ø (ú�ûýü ) and
PþÂÿ � (����� ) in the ” � -branch” . It is important to note though that the same
channel filters H� (�
	�� ) and H (�
��� ) can be used in the two branches.

Fig. 2.4. Discrete time channel model with multiple pulse shaping filters.

Fig. 2.5. Continuous time channel model with fractionally spaced
sampling.

�
( � )

P��� � (�
��� ) H � (����� ) � ( � )
+

 ( ! )
"$#&%(' )

+

P*�+ , (-
.�/ ) H 0 (1�2�3 )
46587(9 :

;=<
(> ) ?A@ (B ) +

C ( D )E
( F )

G ( HJI TKML )
-T/2

T

T N ( O )
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Fig. 2.6. Discrete channel model with fractionally spaced sampling and
multiple pulse shaping filters per sampling branch.

The reason for this is that a good ” interpolation”  in the ” q -branch”
between Pr�s r (t
u�v ) and Pw�x y (z
{�| ) will also be a good interpolation between
P}�~�� � (�
��� ) and P��� � (����� ) in the ” � /2-branch” . Thus, fractionally spaced
sampling does not increase the required number of different channel
submodels H � (�
��� ). An important consequence of this is that the number of
parameters to be estimated in a fractionally spaced channel model does not
increase while the number of equations does due to the extra data points.
The estimates of the channel filters H � (����� ) and H � (�
��� ) can thus potentially
be improved with fractionally spaced sampling. It is important to note
however, that this improvement will be reduced if the fractionally spaced
noise samples are temporally correlated, which will be the case for high
oversampling rates (many samples per symbol) due to the limited
bandwidth of the receiver filters.

We shall here present the channel estimation for the case with only one
user. Further more we shall use � /2-spaced fractional sampling and two
pulse shaping filters per branch as in Figure 2.6. The equations can,
however, easily be extended to arbitrary oversampling, any number of
pulse shaping filters per sampling branch and arbitrary sampling instants.

P����� � (�
��� ) H � (�� �¡ ) ¢
( £J¤¦¥¨§M© )

+

ª$« ( ¬ )W®°¯²±(³ ´

+

Pµ�¶ µ (·
¸�¹ ) H º (»�¼�½ )¾6¿À¿²Á(Â Ã

Ä
( Å )

PÆ�Ç Æ (È
É�Ê ) H Ë (Ì
Í�Î ) Ï
( Ð )

+

ÑÓÒ ( Ô )Õ$ÖÀÖ&×(Ø Ù

+

PÚ�Û Ü (Ý
Þ�ß ) H à (á
â�ã )äkå(æ&ç(è é
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The received sampled signals at time ÿ  and � + � /2 are collected in a row
vector

�
( � )=[� ( � ) � ( � + � /2)]. (2.7)

Under the above assumptions, the sampled channel model can be
expressed as

	�
� ��� 
�� ����
� ��� 
�� � 
�� ����
�� �� � �
B H P1 1 1 (2.8)

with the pulse shaping matrix

P
P P

P P
( )

( ) ( )

( ) ( )
.� � �

� ��
� �

−
−

−
−

− −=








1 0 0

1
05

1

0 5
1

0 0
1

(2.9)

and the channel vector

[ ]H H H
��� �� ��� � ��� �! ! !1

1
1

2
1 . (2.10)

We assume that H1(" -1) and H2(# -1) have the same order $&% . By using the
modulated signal

X P( )
( ) ( )

( ) ( )
( ) ( )

' ( ' ( '
( ' ( ' ) * '= 






 = −11 12

21 22

1 (2.11)

the received signal can now be written as

+�,- .0/ ,�1 . ,- .2
H X1 . (2.12)

We see that we have a multiple-input multiple-output identification
problem for estimating the channel H(35476 ). This can, as shown below, be
solved as a least squares problem.

In order to form a system of equations we vectorize equation (2.12) to
obtain8�9: ;0<>=@?A9�: ;

(2.13)
where

[ ]B C C C C C CDFE DFE= 10 11 1 20 21 2Κ Κ (2.14)
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and

d e
f e f e f e gih f e f e f e gih
f e f e f e g�h f e f e f e gih

j( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

=

− − − −
− − − −







11 11 11 21 21 21

12 12 12 22 22 22

1 1

1 1

Κ Κ
Κ Κ

(2.15)
The unknown channel k  can now be identified with the use of the least

squares estimate

∃ ∃ ∃l m mnpo oqo= −1 (2.16)

where

∃ ( ) ( )
r s t&u v wyx wz|{ }~��F�

�
=

− = +
∑1

1

(2.17)

and

∃ ( ) ( )
� � ��� � �y� ���� ����F�

�
=

− = +
∑1

1

(2.18)

where �  is the length of the training sequence, and �\� +1 is the number of
taps of the FIR-filter � (� -1) . The total channel B(�5�7� ) can then be estimated
by

∃( ) ∃( ) ( )B H P� � �− − −=1 1 1 (2.19)

For the case with ���&���� � ��¡¢�¤£J¡W¥¦£  we can extend the channel model in
Figure 2.6. This is shown below for two users. Refer to Figure 2.7 for the
notation. The generalization of the channel model (2.12) is then given by

§ ¨ ¨
( ) ( )= H( )X-1© (2.20)

with

[ ]H H H H H11 12 21 22( ) ( ) ( ) ( ) ( )ª ª ª ª ª− − − − −=1 1 1 1 1 (2.21)

and
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(2.22)

The multi-user channel estimation then follows from obvious
modifications of equations (2.13) to (2.19). Note that we now, with two
users, have twice as many parameters to estimate but the same number of
equations (output samples).

The multiple user case can be extended to include multiple antennas.
The elements of Ã ( Ä ) in (2.7) will then be column vectors of length Å ,
where Æ  is the number of antennas in the array. The polynomial elements
H Ç È (É�ÊÌË ) of (2.21) will also be column vectors of length Í . With these
modifications, equations (2.20) and (2.22) will hold also in the multi-
sensor case. Therefore, the channel estimation follows from obvious
modifications of equations (2.13) to (2.19) in this case as well. The ÎJÏ�Ð¤Ñ�Ò�Ó
user, multiple antenna case is treated more thoroughly in Chapter 3.
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Fig. 2.7. Example of multi-user channel model for two users sending the
training sequences çéè ( ê ) and ë�ì ( í ) respectively.

To illustrate the pulse shaping modeling, a raised cosine pulse with a roll-
off factor of 0.35 is used. This pulse form is used in the North American
D-AMPS system (IS-54). In Figure 2.8, the taps of the chosen pulse
shaping polynomial can be seen. The dotted line represents î -spaced
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interpolation between time shifted versions of P¼�½ ¼ (¾�¿�À ) and PÁ�Â:Ã Ä (Å'Æ)Ç ) in the
” È -branch” and ”É /2-branch” respectively.

” Ê -branch”

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

t [T]

” Ë /2-branch”

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

t [T]

Fig. 2.8. IS-54 pulse, Ì ( Í�Î ), and the taps of the pulse shaping filters, PÏ�Ð Ï (Ñ'Ò)Ó )
(o) and PÔ�Õ Ö (×'Ø)Ù ) (*) for the ” Ú -branch” and PÛ�Ü:Ý Þ (ß'à)á ) (o) and Pâ�ã â (ä�å�æ ) (x) for
the ”ç /2-branch”.

In Figure 2.9, the channel estimation error, defined in equation (2.23),
for the è , é /2 and ê /3 spaced interpolation can be seen for the noise-less
case. The number of taps in the model of the pulse is chosen large enough
to capture most of the energy of the pulse. A small error is however
introduced because of the truncation. This can be seen in Figure 2.9 as an
offset of the zero level. The error in the ë /3 modeling is therefore smaller
than that shown in Figure 2.9.
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Fig. 2.9. Relative approximation error for a single IS-54 pulse with a delay
between 0 and 

�
 (0.4 means a relative error of 40%). Solid: � , dashed: � /2

and dash-dotted: � /3. Note that we have an offset of the zero level because
of the truncation error in the model of the pulse.

We now discuss the multi-user channel estimation example. Since it is
especially advantageous to use multiple antennas for multi-user detection,
we used a receiver with 4 antennas. The number of users were ranged from
one to five. Each mobile had a channel with equal average power Rayleigh
fading taps at delays 0.00, 0.33, 0.67 and 1.00 symbol intervals. The taps
for each mobile and antenna element were fading independently. The
channels were constant during each frame but independently fading
between different frames. A raised cosine pulse with roll-off 0.35 was used
for the pulse shaping. Other parameters were: 18 training symbols,
fractionally spaced sampling (two samples per symbol), � /2-spaced
modeling. The average SNR was 3 dB and all mobiles had equal average
strength. To be able to compare the single- and multi user channel
estimation methods, a single user multi channel MLSE [7] was applied to
the received signal.

In Figure 2.10 the relative channel error and BER for the multi-user
channel estimation example can be seen for different number of mobiles.
The relative channel error is defined as

∃� � �
− (2.23)
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using the Frobenius norm. Here ∃*  is the matrix representation (the filter

taps form the columns of the matrix) of the estimated FIR-channel ∃( )
+ , −1 ,

whereas -  is the matrix representation of the true channel . (/ -1). First, not
surprisingly, we can see that the joint LS channel estimation performs
better than the single user LS channel estimation. Joint LS means that the
channels of all known mobiles are estimated jointly, whereas one mobile at
a time is modeled and estimated in the single user LS-case, while the rest
of the mobiles are modeled in the noise matrix. We can also see that the
method utilizing the pulse shaping information performs even better,
because this method has fewer parameters to estimate per user. This
becomes especially important as the number of users increases.

Note that in the multi user case, we have only considered 0 /2 spaced
interpolation. It could be the case that some other interpolation, e.g. the 1 -
spaced interpolation presented in Figure 2.3, performs even better, because
the number of parameters to be estimated is further reduced.

With pulse shaping, the channel spans about 4-6 symbol intervals
depending on where we choose to truncate. In the LS methods we chose to
use 4 taps and in the pulse shaping method we used 2 taps in each branch
of H(2
354 ). The joint LS method will thus have 8 parameters 687:9<;>=�7�9  to
estimate with 30 equations (2 x 4 and 2 x 15 because we take two samples
per symbol, have four parameters to estimate per sampling branch, and
since the number of ?>@�A"B"C�D  training symbols are 15). In the case of four
users, we would then have more unknowns than equations.

The pulse shaping method will have 4 parameters (2 per branch) E8F�GH>I F:G  to estimate with 30 equations. As the number of users increases this
difference becomes more important. We can understand this by
considering a limiting case when the number of users is so many that the
joint LS method has more parameters than equations while this is not the
case for the pulse shaping method. In this case the joint LS method will
fail while the pulse shaping method will still give some reasonable channel
estimates. This is the reason why, c.f. Figure 2.10, the joint LS method
degrades in performance faster with an increased number of users than the
pulse shaping method does.
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Fig. 2.10. Relative channel error and BER for the multi-user channel
estimation example. Single user LS estimation (*), Joint multi-user LS (x)
and Joint multi-user estimation utilizing pulse shaping information (o).
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