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Abstract

Digital communications systems require the receiver to estimate the trans-
mitted bit sequence from a noisy received signal. Estimation is therefore
a crucial part in digital communications. Prediction of error rates, on the
other hand, is not, but it enables capacity improving techniques in the form
of fast link adaptation and opportunistic resource scheduling.
In this thesis, solutions to the estimation and prediction problems are

proposed by inferring radio channels that vary rapidly due to the mobility of
users. It is crucial not only to produce point estimates and predictions of the
channels, but also to take the uncertainty of those estimates into account.
This thesis adopts the Bayesian probability interpretation, which regards

probability theory an extension to logic. Orthodox statistics, which considers
a probability to be a limiting frequency of an imagined experiment, will in
many cases produce only point estimates, whereas the Bayesian method also
always produces measures of uncertainty.
Linear state space models are designed for a number of system types, and

the Kalman �lter is used to infer the time-variant radio channels.
The proposed channel predictor is evaluated on a speci�c system proposal.

It is found that control data aiding the channel estimation and prediction
(so called pilot data) should be transmitted simultaneously by all users, and
that the distribution pattern of pilot symbols should also be varied over time,
in order to achieve a high prediction performance.
Two methods for predicting the bit error rate are proposed. It is shown that

although the associated mathematical expressions are somewhat involved,
the numerical complexity induced by those is negligible compared to the
complexity of the channel predictor.
It is also suggested how the proposed algorithms may be used for evaluation

and design of wireless multiuser systems.
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Chapter 1
Introduction

A world, in which the demand for mobility and accessibility is ever-increasing,
requires improved technologies for enabling high data rates for mobile wire-
less users. The topology of multiuser systems takes a few forms of which
the cellular system is the most popular; a few base stations, wired to one
another and to other infrastructures via a core network, serve many mobile

wireless units or terminals (or simply mobile users or mobiles). The system
is so called because the geography is divided into cells, each cell being served
by one base station. Wireless multiuser networks present many challenges
mainly due to the fact that the radio channel qualities experienced by users
vary as users move about. E�cient processing of information has always
been called for to ensure good quality of received data, but in later years
adaptivity has become a central concept in the development of wireless sys-
tems. An adaptive system continuously draws conclusions about the channel
quality and may thereby use di�erent transmission techniques depending on
the current quality. In a multiuser system, the adaptivity is added to by
introducing scheduling. A scheduler, centralised at the base station, then
assigns resources to users based on needs and channel qualities, hence taking
advantage of the channel quality diversity.
To allow for e�cient scheduling, the scheduler needs to know the channel

quality estimates of each mobile user in the system. Since these estimates
are most conveniently produced at the terminals, they must be signalled
back to the base station at regular intervals. Based on these estimates, the
base station then take resource allocation decisions which it signals back
to the terminals as special feedback information signals. This control loop
takes a certain amount of time, typically on the scale of microseconds, which

1



2 Chapter 1. Introduction

requires the mobile terminals to predict the channel, so that the reported
channel qualities will be valid at the time of transmission.
The channel quality diversity caused by the mobility of the users is what po-

tentially makes adaptivity and scheduling bene�cial. Rapidly varying chan-
nels however also makes prediction a di�cult problem. Moving through a
wave pattern with a wavelength on the order of a few decimeters means that
one will experience fading of a few tens or a few hundred Hertz, depending
on the exact wavelength and the exact velocity. The channel quality predic-
tor, predicting a few milliseconds ahead in time, therefore needs to be able
to predict the channel on the order of fractions of a wavelength, or at most
one wavelength.
The focus of the present thesis will be on the estimation and prediction of

the radio channel quality necessitated by the adaptivity functionality. The
question of how to schedule resources in an optimal manner is outside the
scope of this thesis. Instead I present algorithms for processing the informa-
tion that necessarily forms a basis for such optimal scheduling decisions.
Probability theory o�ers optimal processing of information. The theory

has over the years divided into two rivaling approaches. In this thesis I
will take the so called Bayesian standpoint. Since it is the other approach,
frequentist probability theory, that is prevalent in channel estimation and
prediction theory, I will go through some lengths to explain the idea and
method of Bayesian probability theory.
As the present work is intended both for those who have previous knowl-

edge in channel estimation/prediction and want to see a Bayesian discourse
on the subject, and for those who are already acquainted with Bayesian
probability theory and would like to see a speci�c application of the the-
ory, I presume no previous knowledge in either �eld. Relevant concepts and
terminology will be introduced when needed.

1.1 Outline of the thesis

Chapter 2

Chapter 2 is entirely devoted to probability theory. The aim is to give the
reader a thorough understanding of the Bayesian method, not only to make
later chapters comprehensible, but also to provide the method for general
scienti�c inference. I also provide some comparisons between Bayesian the-
ory and frequentist theory, the latter of which is prevalent within the �eld of
channel estimation and prediction. The comparisons focus mainly on actual
results. Ideological di�erences are considered to be of subordinate impor-
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tance.
The two main tools in Bayesianism � Bayes' theorem and marginalisation

� are presented. A few methods for assigning so called prior probabilities are
treated, as is the general method for producing point estimates.
Bayesianism does not equate probability with frequency. In this chapter the

relation between the two concepts is investigated for certain circumstances.
Understanding of the probability/frequency correspondence is especially im-
portant in the context of channel prediction, since a central measure of radio
channel quality, the bit error rate, is a frequency.
Bayesian theory comes in many �avours (as does frequentist theory). The

viewpoint taken in this thesis is that propounded by Edwin Thompson Jaynes
in his book Probability Theory � The Logic of Science.

Chapter 3

The modelling of a radio channel usually amounts to modelling several in-
dividual taps. Chapter 3 is restricted to the modelling of one single tap.
I distinguish between single carrier systems and multi carrier systems and
describe how the respective systems are accurately modelled.
The estimation and prediction problems are formulated, and it is concluded

that both are solved by inferring the channel taps. The construction of a
linear model is outlined, which makes it possible in later chapters to conduct
optimal inferences when known so called pilot information is transmitted
over the radio link. To exemplify the modelling procedure, a speci�c model
is designed step by step. This particular model is chosen so that it assigns
equal probability to all frequencies of the fading.
The use of a linear model is suboptimal in the sense that it does not allow

any uncertainty of the model parameters. Chapter 3 sketches the principle
of the suboptimal linear estimator/predictor and compares it to the optimal
Bayesian solution.

Chapter 4

The one tap model derived in Chapter 3 is here extended to a model repre-
senting several fading taps (impulse responses) at several simultaneous users.
Many di�erent types of system are studied; uplinks and downlinks of single
carrier as well as multicarrier systems. It is shown how OFDM systems may
be modelled in several di�erent ways, which way to choose depending on
resulting numerical complexity.
Correct scaling of the process noise covariance matrix so as to produce a
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given process covariance is generally a very complex problem when setting up
state spaces. Chapter 4 gives a closed-form expression for the process noise
covariance matrix which applies to the special model structures studied here.
A linear model of time-varying channel taps is only motivated if model

parameters such as velocity, fading descriptors, noise variance, and so on
can be estimated with high accuracy. �O�-line� estimators, optimal or sub-
optimal, that operates beside the linear model hence have to be used. Such
estimators are brie�y discussed at the end of Chapter 4.

Chapter 5

Here the models constructed in previous chapters are used to conduct near-
optimal inferences about channel taps. The purpose of this is twofold. The
�rst is actual applicability; by inferring channel taps, the estimation and
prediction problems presented in Chapter 3 can be solved.
The prospect of the derived algorithms to be implemented in a real system

is however restricted by the numerical complexity imposed on the hardware.
The complexity is therefore investigated for a few di�erent scenarios depend-
ing on which assumptions are made. It is shown that the use of the proposed
algorithm is potentially feasible within a few years, if the number of data
points measured at each sampling instant is kept low.
We study channel estimation and prediction performance in a speci�c sys-

tem, and conclude that users should use overlapping pilot signals rather
than taking turns in sending exclusive pilot signals. The bene�ts of using
time-varying pilot patterns is also stressed. We �nally conclude that predic-
tion performance depend heavily on the fading statistics of the channel taps.
Correct estimation of fading properties is therefore of ample importance.
In channel prediction research it is common to produce predictions of the

squared channel magnitude. It is shown how optimal squared channel mag-
nitude estimates are produced with the present algorithms, but it is also
shown that such estimates correspond poorly with estimates of the bit error
rate, which should be more suited to underlie the scheduling decisions.
Two approaches to bit error rate prediction are presented: expected bit

error rate and probability of bit error rate. The question of which one to use
is left open.
The second purpose for inferring channel taps is to show how the presented

algorithms may be used for system evaluation and design. Probability theory
describes how uncertainty propagates through a chain of related variables.
Instead of examining one speci�c scenario, exactly de�ned by one particular
channel realisation and one particular set of transmitted data (as is the case
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when a simulation is carried out), we may therefore use probability theory
to evaluate how a certain system will perform given that the radio channels
experienced by users are accurately described by speci�c models. Chapter 5
sketches how such an evaluation process could be carried out.

Chapter 6

Chapter 6 discusses potential extensions to the present work.

1.2 Contributions

The material in this thesis has partly been published in

• D. Aronsson and M. Sternad, �OFDMA Uplink Channel Prediction
to Enable Frequency-Adaptive Multiuser Scheduling�, European Signal

Processing Conference, Poznan, Poland, September 2007

• D. Aronsson and M. Sternad, �Kalman Predictor Design for Frequency-
Selective Scheduling of FDD OFDMA Uplinks�, Submitted to Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communica-

tions, Athens, Greece, September 2007

• M. Sternad, S. Falahati, T. Svensson and D. Aronsson, �Adaptive
TDMA/OFDMA for Wide-Area Coverage and Vehicular Velocities�,
IST Summit, Dresden, Germany, June 2005

• M. Sternad and D. Aronsson, �Channel Estimation and Prediction
for Adaptive OFDMA/TDMA Uplinks based on Overlapping Pilots�,
IEEE International Conference on Audio, Speech, and Signal Process-

ing, Philadelphia, USA, March 2005

• M. Sternad and D. Aronsson, �Channel Estimation and Prediction for
Adaptive OFDM Downlinks�, IEEE Vehicular Technology Conference,
Orlando, USA, October 2003





Chapter 2
Bayesian inference

In this chapter I will introduce the reader to Bayesian probability theory.
The aim is to give the reader a thorough understanding of the Bayesian
framework, not only to make later chapters comprehensible, but also to
provide the method for general scienti�c inference according to the Bayesian
school. I provide some comparisons between Bayesian theory and orthodox
(frequentist) theory, since the latter is prevalent within the �eld of channel
estimation and prediction. The comparisons focus mainly on actual results.
The two main tools in Bayesianism � Bayes' theorem and marginalisation

� are presented. A few methods of assigning so called prior probabilities are
treated, as is the general method for producing point estimates.
Orthodox probability theory de�nes probabilities as observed limiting fre-

quencies, but this is not the case in Bayesian theory, where a probability
represents a state of knowledge. Under some circumstances there are how-
ever a strong correspondence between frequencies and probabilities as de�ned
by Bayesianism. This is especially important to understand in the context
of channel prediction, since a central measure of radio channel quality, the
bit error rate, is a frequency.
There are many di�erent kinds of Bayesianism. The speci�c viewpoint

taken in this thesis is that advocated by Edwin Thompson Jaynes in his
book Probability Theory � The Logic of Science[1].

2.1 The probability concept

The concept of probability is ubiquitous in all science. To some extent,
measurements and observations are always subject to error, and so we have

7



8 Chapter 2. Bayesian inference

to take uncertainty into account when we draw conclusions from data. In this
thesis I will discuss the process of making inferences from noisy data about
unknown radio channels and system performance in a digital communications
system. How to formalise a procedure for inference, that in some way is
optimal, has puzzled many great thinkers for at least the past two centuries.
Their collected ideas have essentially condensed into two camps. To see what
characterises the respective camp, we will take a look at how a few di�erent
authors in the �eld of probability theory have chosen to de�ne probability.
William Feller [2, pp 4�5] exposes his view on what probability theory is

about and what a probability really is:

�[...] we are not concerned with the accidental circumstances of
an actual experiment: the object of the theory is sequences (or
arrangements) of symbols [...] Before speaking of [a probability]
we should have to agree on an (idealized) model which would
presumably run along the lines `out of in�nitely many worlds
one is selected at random....' �

He continues with explicitly stating what he means when he talks about a
probability:

�[...] we shall not worry whether or not our conceptual experiment
can be performed; we shall analyze abstract models. [...] We
imagine the experiment performed a great many times. An event
with probability 0.6 should be expected, in the long run, to occur
sixty times out of a hundred.�

Ronald A. Fisher [3, pp 34�35] is of roughly the same opinion when he
attempts to clear up old misunderstandings. He exposes his view on proba-
bility hence:

�Indeed, I believe that a rather simple semantic confusion may be
indicated as relevant to the issues discussed, as soon as considera-
tion is given to the meaning that the word probability must have
to anyone so much practically interested as is a gambler, who,
for example, stands to gain or lose money, in the event of an ace
being thrown with a single die. To such a man the information
supplied by a familiar mathematical statement such as: �If a aces
are thrown in n trials, the probability that the di�erence in abso-
lute value between a/n and 1/6 shall exceed any positive value ε,
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however small, shall tend to zero as the number n is increased in-
de�nitely�, will seem not merely remote, but also incomplete and
lacking in de�niteness in its application to the particular throw
in which he is interested. Indeed, by itself it says nothing about
that throw. It is obvious, moreover, that many subsets of future
throws, which may include his own, can be shown to give proba-
bilities, in this sense, either greater or less than 1/6. Before the
limiting ratio of the whole set can be accepted as applicable to
a particular throw, a second condition must be satis�ed, namely
that before the die is cast no such subset can be recognized. This
is a necessary and su�cient condition for the applicability of the
limiting ratio of the entire aggregate of possible future throws as
the probability of any one particular throw. On this condition
we may think of a particular throw, or of a succession of throws,
as a random sample from the aggregate, which is in this sense
subjective homogeneous and without recognizable strati�cation.�

Bruno de Finetti [4, pp 73�74] speaks of four di�erent kinds of probability
interpretations and declares himself in favour of what he calls the subjec-
tivistic approach :

�The subjectivistic approach [...] considers probability a measure
of the degree of belief of a given subject in the occurrence of an
event (proposition).�

De Finetti also refers to earlier proponents of the same approach to proba-
bility theory, among which Harrold Je�reys was one of the stronger. Je�reys
[5, p. 20] writes:

�We can now introduce the formal notation P(q|p) for the number
associated with the probability of the proposition q on data p;
it may be read `the probability of q given p' provided that we
remember that the number is not in fact the probability, but
merely a representation of it in terms of a pair of conventions.
The probability, strictly, is the reasonable degree of con�dence
and is not identical with the number used to express it.�

That the general de�nition of probability is �reasonable degree of con�-
dence� was also the opinion of George Pólya. In [6, p. 58], Pólya restricts
himself to study experiments that allow themselves to be repeated under the
same conditions over and over again � a case which he calls random mass
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phenomena. The de�nition of probability he then uses seems very similar to
that propounded by Feller and Fisher:

�We have to consider the theoretical value of long range relative
frequency and we shall call this theoretical value probability.�

However, later ([7, pp 116�117]) when he expands the area of application
and looks at general plausible reasoning, he writes:

�We used the symbol Pr(A) to denote the probability of the event
A, that is, the theoretical value of the long range relative fre-
quency of the event A. In the present chapter, however, we have
to deal with plausible reasoning. We consider some conjecture
A, and we are concerned with the reliability of this conjecture A,
the strength of the evidence in favor of A, our con�dence in A,
the degree of credence we should give to A, in short the credibility
of the conjecture A. We shall take the symbol Pr(A) to denote
the credibility of A.�

Pólya then investigates whether the laws used in the case of random mass
phenomena also apply in general plausible reasoning, or whether there is
in fact an ambiguity in using the same symbol for denoting both probabil-
ity and credibility (with Pólya's de�nitions). By carefully investigating its
consequences, he �nds that the same rules may in fact be applied in both
cases.
From the above attempts to de�ne probability, it is clear that Feller and

Fisher belong to a camp that regards probabilities to be imagined limiting
frequencies. We shall call this approach the frequentist school. Je�reys,
de Finetti and Pólya, on the other hand, look at probability as a general
measure of belief. This approach will be called the Bayesian view. It is
so called because one of its central theorems was introduced in 1763 by
reverend Thomas Bayes as a solution to a problem concerning what has
historically been called inverse probability. However, the idea of regarding
probability a general degree of con�dence should rightfully be attributed to
Pierre-Simon Laplace who in 1814 introduced it in his Essai philosophique
sur les probabilités. In this thesis I will take the Bayesian standpoint.
The progress of probability theory has since long been plagued by contro-

versies between the two sides; Bayesianists accusing frequentists of producing
erroneous results, and frequentists accusing Bayesianism for unsound ideol-
ogy. Frankly, judging from the few examples given above, one can see why
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the latter is; it may not seem very clear why there would exist rules to which
something as seemingly ethereal as `degree of belief' would have to conform.
Therefore a milestone was set in 1946 when Richard T. Cox [8] showed that

such rules can be derived by just attaching a very few qualitative require-
ments on such a measure of belief. Cox's exposition helps clarify what the
present de�nition of probability is, and the rules hence derived constitute
the foundation for probability theory. We will look at the discoveries made
by Cox below.
Bayesian probability theory has in later years been developed and re�ned

to a great extent by Edwin Thompson Jaynes. A lifetime of thorough work
in the Bayesian �eld is summarised in his excellent book Probability Theory

� The Logic of Science[1]. The thoughts and ideas expressed in this book
permeates the present thesis.

2.2 The Bayesian de�nition of probability

Probability theory operates on propositions, which is denoted by capital
letters. Propositions can be of any general type, for example

A The measured voltage is between 1.5 and 2.0 Volts.

B The bridge will hold for normal stresses.

C You dress nicely.

are all valid propositions.
Cox [8] introduced the concept of plausibility1. Plausibility is a general

measure of degree of belief. The plausibility of a speci�c proposition will
vary depending on what other propositions we know to be true. For example,
it is more plausible that it is freezing outside if we know that it is winter,
than if we are ignorant to the time of year. In accordance with a notation
introduced by John Maynard Keynes in 1921, I will denote plausibilities by

A|B, (2.1)

meaning the plausibility of proposition A given that proposition B is true.
Cox aimed to show that rules for probability theory interpreted in the

Bayesian sense � rules that by the time of Cox already had been employed

1To be precise, Cox really used the term likelihood, but today this notion is used for
another purpose as we shall see shortly.
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as axioms by several generations of workers in the �eld � could be derived
from the axioms of classical logic2 only by adding a few `common sense'
requirements.
These requirements were stated as functional relationships between plausi-

bilities. Jaynes chose to reformulate these as verbal statements, making the
exposition easier to follow. I will adopt his view here, although I leave out
the actual derivation.
Jaynes uses three desiderata, starting with

(I) Degrees of plausibility are represented by real numbers.

I will adopt the convention that higher numbers correspond to higher plau-
sibilities, without further specifying the exact relationship. Jaynes discusses
other possibilities for constructing a theory for plausible reasoning, where
this desideratum is not needed. Instead he replaces desideratum (I) with
two more elementary ones,

(Ia)
If (A|X) ≥ (B|X) and (B|X) ≥ (C|X) then (A|X) ≥
(C|X), and

(Ib)
Given A,B, C, one of (A|C) > (B|C), (A|C) = (B|C),
(A|C) < (B|C) must hold,

and argues that any useful theory must be analogous to one that associates
plausibility with real numbers, so that we might just as well accept desider-
atum (I).
The second desideratum is concerned with how plausibilities change when

new data are obtained. If old information C is updated to new information
C ′ so that the plausibility for A is increased,

(A|C ′) > (A|C), (2.2)

while the plausibility for B stays the same,

(B|AC ′) = (B|AC), (2.3)

then common sense says that

(AB|C ′) ≥ (AB|C), (2.4)

2Classical logic is usually formulated as six axioms expressing true/false relationships
between propositions (see e.g. [8]). They may be compressed to fewer axioms, but at the
expense of clarity.
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and that

(A|C ′) < (A|C), (2.5)

where A denotes the logical complement of A, that is the proposition that
is always true when A is false and vice versa. The above `common sense'
requirements are expressed by desideratum II :

(II) Qualitative correspondence with common sense.

The third desideratum is divided into three statements, all having to do
with the consistency of the theory :

(IIIa)
If a conclusion can be reasoned out in more than one way,

then every possible way must lead to the same result.

(IIIb)
We must always take into account all of the evidence available

that is relevant to the problem.

(IIIc)
Equivalent states of knowledge must always be represented in

the same way.

Surprisingly, these three desiderata are all that is needed to derive a con-
sistent theory for plausible reasoning. Although the plausibility measure is
quite arbitrary, the derivation reveals that there must exist relationships be-
tween functions operating on plausibilities. One such example turns out to
be

P(AB|C) = P(A|C)P(B|AC) = P(B|C)P(A|BC) (The product rule)

P(A|B) + P(A|B) = 1 (The sum rule)

The function P(A|B) is termed the probability of A given B. It has the
additional property that P(`truth') = 1 and P(`falsity') = 0.
We now summarise what probability means in the present theory:

Plausibility is a measure of belief isomorphic to the real
numbers, so that the plausibility can be either increased,
decreased or unaltered by new information.
Probability is a monotonic increasing function of plausi-
bility and obeys the product and sum rules, necessitated by
Cox�s desiderata.
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An important point that is often neglected in the literature is that the
above de�nition of probability is not in any way more correct than using
some one-to-one mapping q(·) = f ◦P(·). I elaborate on this in Appendix A.
But the function P has qualities that make it preferable to other functions
apart from the fact that its corresponding rules look simple. As we shall see
in Section 2.10, there is an attractive correspondence between probabilities
and frequencies in repeatable experiments. Also, if we know that there are,
say, seven red and three white balls in an urn, then our choice of function P
gives a probability 3/10 of a white ball being drawn. This certainly seems a
sound property for a de�nition of probability. In fact, Laplace himself used
this property as the de�nition of probability [9].

The probability for an event is the ratio of the number of cases
favorable to it, to the number of all cases possible when nothing
leads us to expect that any one of these cases should occur more
than any other, which renders them, for us, equally probable.

I shall therefore adopt the same de�nition and choose the function P as the
representative for probability, but always keeping in mind that speci�c prob-

ability values only possess relative meaning when connections to frequencies

cannot be made. Probability values can only tell whether a proposition is
more or less plausible than some other proposition.
For it is important to note that the present theory makes no references

to repeated experiments, observed frequencies or hypothetically observed
frequencies. The de�nition of probability used here applies to all kinds of
propositions. Probability according to Bayesianism is therefore an extension

of deductive reasoning and has thus a wider range of application than the
frequentist interpretation3.
Another di�erence between the two schools is that Bayesianism always

require a probability assignment to be speci�c about what information is
given. This is not necessary in frequentist probability theory, where proba-
bilities are regarded physical entities. In the following, whenever I talk about

3It should be mentioned that some controversy has been raised regarding whether
probability theory as an extension to logic may be applied to all kinds of propositions. The
derivation due to Cox requires the excluded middle axiom which says that any statement
is always either true or false. The objection concerns, among others, statements that may
be neither veri�able nor falsi�able. Many number theoretical statements belong to this
group. The present thesis is mostly concerned with statements about physical entities
to which, most would agree, the excluding middle axiom must apply. However, it is
also common that we have to make inferences about parameters which describe certain
properties of pdf:s, hence referring to probabilities that relate to other probabilities. For
such parameters, application of the excluding middle axiom may seem controversial.
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probability theory in general, I will condition on the information I, meaning
`whatever is known in advance'. When discussing a general �post-data� case
I will condition on DI, meaning prior information I and data D.

2.2.1 Continuous variables

Usually, the number of propositions (that is, the size of the hypothesis space)
presented to us in a given problem is very large. In fact, if we are to make
inferences about a continuous variable, we require the number of propositions
to be inde�nite. Letting A=The variable of interest has a value between θ
and θ + dθ, we can write

P(A|I) = p(θ|I)dθ. (2.6)

The function p(θ|I) is now a function representing the probability for a dθ-
interval starting at θ. If we decide on a hypothesis space of mutually exclusive
propositions so that, for example, A1 = θ ∈ [0,dθ), A2 = θ ∈ [dθ, 2dθ), and
so forth, then the function p(θ|I) is not unique since it only matters to us
what values it takes on the �sampling points� 0, dθ, 2dθ, and so on. But
if we allow the propositions to start at an arbitrary �phase�, then p(θ|I) is
uniquely de�ned at every point. The important special case arises when we
let dθ go to zero. p(θ|I) will then represent the probability density of the
in�nitude of propositions around point θ. It is therefore called the probability
density function (pdf) of θ. A pdf has the properties

p(θ|I) > 0, and∫ ∞

−∞
p(θ|I)dθ = 1

Generally, the integral is taken over the entire domain of p(θ).
Now that the step is taken to represent probabilities for an in�nite number

of propositions by pdf:s, we may use pdf:s also to represent �nite sets of
propositions by using Dirac distributions. Hence

p(θ|I) =
1
2
(δ(θ + 1) + δ(θ − 1)) (2.7)

means that it is absolutely certain that θ is either −1 or 1, but that we are
equally ignorant to which of these cases is true.
An unorthodox detail from a mathematical point of view is that θ is not

only the free variabel in the function p(θ|I), but that it is also a part of the
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function name. What if we want to evaluate p(θ|I) at the point θ = x? How
do we express it? p(x|I) will not do, because that looks like a totally di�erent
function, namely the prior for the variabel x. p(`θ = x'|I) could work but
it would not mean the same thing as p(`x = θ′|I), which seems strange. In
this thesis, whenever I need to evaluate a probability function at a certain
value or change variables in a probability function, I will assign a temporary
function

f(θ) = p(θ|I). (2.8)

This convention eliminates the need for complicating a notation that other-
wise is very practical.

2.3 Tools in probability theory

The sum and product rules may now be used to derive more useful tools.
Essentially only two tools are needed to conduct general inferential calculus.
Bayes' theorem is used to switch places between parameters on the right and
left sides of the conditioning bar in a probability assignment. Marginalisation

is used to remove parameters from the left side of the conditioning bar. We
investigate them below.

2.3.1 Bayes' theorem

By a simple rearrangement of the product rule, we get Bayes' theorem:

P(X|DI) = P(X|I)
P(D|XI)
P(D|I)

(2.9)

Bayes' theorem describes how to update what we know about a certain
proposition X when we get some data D that is related to X in some way.
That is to say, we start o� with a representation of our knowledge, P(X|I),
and when we receive the information that proposition D is true, we may
update this to P(X|DI). Usually, we will have some physical relationship
between X and D which makes it easy to say what we know about D given
that X is true (P(D|XI)). Bayes' theorem is used to turn that knowledge
around, so to speak.
Naturally, Bayes' theorem applies equally well to probability density func-

tions as it does to proper probabilities.
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2.3.2 Marginalisation

The sum rule allows us to calculate probabilities for `compound' propositions:

P(`a < x < b'|DI) =
∫ b

a
p(x|DI)dx. (2.10)

When we have two or more variables we have the important special case

P(x|DI) = P(x, `−∞ < y < ∞'|DI) =
∫ ∞

−∞
p(xy|DI)dy, (2.11)

where the last statement comes from the fact that the proposition −∞ <
y < ∞ is always true. What is accomplished here is that y on the left side
of the conditioning bar is eliminated. Nearly every problem in probability
theory requires us to use marginalisation in this way to remove so called
nuisance parameters.
In the case of discrete hypothesis spaces, the above integrals are replaced

by sums.

2.3.3 Change of variables

Changing variables is not an actual principle of probability theory, but purely
one of mathematics. It is needed whenever we have a mathematical relation-
ship between two parameters and need to calculate the pdf for one of them
from the pdf of the other. For example, let us say that

p(x|DI) = 1, 0 < x < 1, (2.12)

and that we want to know the pdf of y = x2. Noting that

p(x)|dx| = p(y)|dy| ⇒ p(y) = p(x)
∣∣∣∣dx

dy

∣∣∣∣∣∣∣∣
x=

√
y

, (2.13)

we get

p(y|DI) =
1

2
√

y
, 0 < y < 1. (2.14)

Changing variables can become very complicated if the functions involved
are multidimensional and/or the mapping from x to y is not one-to-one.
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2.4 How to assign priors

Looking at the product and sum rules, it is evident that a pdf can only be
deduced from other pdf:s. Hence there is the need for principles that can
produce the initial distributions required to �get started�. These initial pdf:s
must be based on � and only on � whatever information we have beforehand.
But how do we calculate such prior probability densities (or simply priors)
when seemingly there is no prior information available? Below I will discuss
three important principles.

2.4.1 The principle of indi�erence

Assume that two persons know n outcomes of some experiment to be possi-
ble, and that this is the only thing they know. Person A labels the proposi-
tions in a certain way, while person B uses some other labelling, unaware of
the labelling method that A has used. But since A and B are in the same
state of knowledge, this must mean that if we pick out a certain proposition,
then both persons must assign the same probability to that proposition.
Since one is unaware of the labelling of the other, the only scheme that guar-
anties that they make the same probability assignments is the one where
they both assign the same probability 1/n to all events.
This is the principle of indi�erence. The name was �rst used by John

Maynard Keynes in 1921, but the principle was used long before that by
earlier probability theorists such as Jakob Bernoulli and Laplace, but then
going under the name the principle of insu�cient reason. It applies only to
�nite hypothesis spaces but is very useful when reasoning about everyday
`deck of cards' and `game of dice' kinds of problems. It has however a num-
ber of pitfalls which usually creates heated debates when basic probability
theory is discussed. I take the opportunity to mention one such pitfall which
has confused myself for quite some time, although it is not relevant for the
discussion following in this thesis.
Let us say that we have an urn �lled with objects and that we are about

to draw an object from this urn. Now we are given the information I1=the
objects in the urn are either blue or red. Let R=`the next draw is a red object'

and B=`the next draw is a blue object'. The principle of indi�erence requires
both persons to assign

P(R|I1) = 1/2
P(B|I1) = 1/2,

(2.15)

because the information I1 only tells them that there are two possible out-
comes and nothing more.
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Now imagine that they are given the additional information I2=the blue

object may be either spherical or cubical, and let B1 and B2 be the new �sub-
propositions�. Should they interpret the joint information I1I2 as that there
now are three possible alternatives and go back and reassign

P(R|I1, I2) = 1/3
P(B|I1, I2) = P(B1|I1, I2) + P(B2|I1, I2) = 2/3,

(2.16)

or should they reiterate the principle of indi�erence over just the propositions
B1 and B2, so that

P(R|I1, I2) = 1/2
P(B1|I1, I2) = 1/4
P(B2|I1, I2) = 1/4?

(2.17)

The former alternative certainly does seem strange since it forces a reas-
signment of probabilities upon receiving I2 despite the fact that I2 does not
say anything about a blue object being more probable than a red. And in
fact it is a misapplication of the principle of indi�erence, because information
I2 is not indi�erent to the propositions R and B; it says something about B
but nothing about R.
In the latter, correct application, the principle of indi�erence was �rst

applied to propositions R and B, and then to B1 and B2. The example
shows that caution must be taken when using this principle, so that it is only
applied to propositions to which the information at hand is indi�erent4.
When correctly applied, the principle of indi�erence is a very powerful

tool for assigning priors. However, since the applicability of the principle of
indi�erence is restricted to �nite hypothesis spaces and the present work will
be concerned with continuous hypothesis spaces, we have to turn to more
general principles for assigning priors. Transformation group theory is one
such principle. We will look at it next.

2.4.2 Transformation groups

The idea of using transformation groups to produce priors is to consider
the change of parameters under which a persons state of knowledge doesn't
change. Stated di�erently, if we are equally ignorant about a variabel θ as we
are about some transformation f(θ), then we may use f to derive a prior for θ
that will express total ignorance on our behalf. This is most easily explained
with a few examples. First, let us consider a so called scale parameter α. We

4Thanks goes to Erik Björnemo for repeating this argumentation over and over again
until I �nally grasped it. It took me about three years.
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want to produce a prior f(α) = P(α|I) from a few simple facts: we know α
to be positive, but we have no perception about its scale. Generally we may
say that

f(α)dα = f(α′)dα′, (2.18)

and in this case α′ = cα. Its prior must then obey the relation

f(α) = cf(cα), (2.19)

which has the solution

f(α) =
1
α

. (2.20)

The above prior, which is usually called Je�reys' prior, is unnormalisable.
This is seldom a problem, because most problems are well-behaved in the
limit when the domain of f goes to the entire positive real axis, and the
normalisation constant will usually cancel when Bayes' theorem is applied.
For another example, consider calculating the prior f(β) = P(β|I) for a

location parameter β. We know it to be bounded between two values A and
B, but except for that we have no perception about its value whatsoever.
Hence we have

f(β) = f(β − r), (2.21)

within the boundaries given. The solution is

f(β) =
{

1
B−A A < β < B

0 otherwise
) (2.22)

The method of transformation groups is more general than indicated above,
since it allows taking into account several parameters simultaneously. It
turns out that it doesn't su�ce to merely say in which way we are ignorant
to each parameter, but that also the order in which the transformations are
carried out matters. Such subtleties are not relevant in the present work, so
I will not discuss them further.

2.4.3 The maximum entropy principle

It is often the case that we have prior information that constrains the variabel
of interest in some way or another. The maximum entropy principle allows
such additional information to be incorporated into a prior.
In his seminal 1948 paper, Shannon [10] looked for a measure that would

account for the `amount of uncertainty' in a set of probabilities. Denoting
such a function by H(p1, . . . , pn), he set up the following requirements:



2.4. How to assign priors 21

• H should be continuous.

• H(1/n, . . . , 1/n) should be monotonic increasing in n.

• Di�erent ways of calculating H(p1, . . . , pn) should give the same an-
swer.

Shannon showed that the only function satisfying these requirements is

H(p1, . . . , pn) = −
n∑

i=1

pi log(pi). (2.23)

The choice of logarithm is arbitrary. H(p1, . . . , pn) is called the entropy of
the distribution {pi}. The principle of maximum entropy is that we should
choose the prior that maximises the entropy while still adhering to known
constraints. The prior thus produced is the least committal prior possible,
since it is the distribution that has the largest possible degree of uncertainty
among all distributions conforming to the constraints.
In the most common application of the maximum entropy principle, we

assume that the expected values of a number of functions are known:

Fk =
n∑

i=1

pifk(xi), k = 1 . . .m. (2.24)

By using Lagrange multipliers we may now �nd the {pi} that maximises
entropy without violating the m constraints.
The entropy principle can also be extended to the continuous case. The

continuous entropy is de�ned by

H(P(x|I)) = −
∫

P(x|I) log
[
P(x|I)
m(x)

]
dx. (2.25)

The function m(x) describes how `dense' the points xi become at di�erent
locations when we let n go to in�nity. It is calculated through use of trans-
formation groups.
A typical maximum entropy example is that where we take f1(x) = x and

f2(x) = x2, and we know that F1 = µ and F2 = σ2 + µ2. The distribution
P(x|µσI) that then maximises entropy is

P(x|µσI) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)
, (2.26)

that is, the gaussian distribution.
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We now have a few very powerful and general tools for producing priors.
Note that, since the maximum entropy principle requires the principle of
transformation invariance, we may regard the maximum entropy the sole
principle for assigning priors, with the other two as special cases; when there
are no constraints available, then maximum entropy will give the answer
P(x|I) = m(x), so then we have the transformation groups solution. When
we have a discrete distribution without constraints, then maximum entropy
gives pi = 1/n � the principle of indi�erence.
On the other hand we can also choose to look upon transformation groups

as the only principle for assigning priors, and use MaxEnt as a means of up-
dating the pdf when our state of knowledge changes from complete ignorance
to one where a set of constraints on the pdf is given.
My personal objection against the maximum entropy principle is that we

cannot know the mean values Fk, since they aren't physical entities but
properties of our state of knowledge. No data can ever force a speci�c mean
value upon a distribution that represent my state of knowledge. It may
certainly seem sober to think that a sample of ten million measurements
with arithmetic mean value µ should imply a distribution with mean value
µ, but such conclusions should be made with utter care. What entitles us
to keep the sample mean and variance in a data series while disposing of all
other information (as is often the case)? There might be reasons for doing
so, but then we would need to adhere to principles outside the theory so far
presented, and such principles must always be stated explicitly.
In fact, it is doubtful whether the information-theoretical rationale for the

MaxEnt principle given here is needed at all. As we will see later, there
is also a combinatorial rationale. Motivated from combinatorial principles,
MaxEnt becomes a purely mathematical method, and its range of applica-
tion is restricted to �elds in which the situation under study can be described
to be in one of a large number of �states�. However, such �elds (for exam-
ple statistical mechanics and image reconstruction) are exactly those where
MaxEnt has proven successful.
Prior assignment for noise measurements is often motivated through the

use of maximum entropy; knowing the noise power and nothing more forces a
gaussian prior upon the noise. However, when we speak of thermal noise (as
is the case in the present work), the gaussian prior is also easily motivated
by the central limit theorem and the fact that thermal noise is generated
by adding contributions from a large number of similar physical processes.
The e�ect is that the impact of moments higher than the second moment
vanishes so that the noise is characterised by its variance alone. See Appendix
D. In fact, the motivation of assigning a gaussian prior with independence
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between samples is made stronger if the central limit theorem is used, than
if a maximum entropy argument is employed. We shall see in Section 2.10
that careless use of the maximum entropy principle carries some risks with
it.

2.4.4 The near-irrelevance of priors

It should be mentioned that, however important from a philosophical view-
point, the choice of prior rarely plays an important part in the �nal result.
While the present theory maintains that there is a unique correct prior for
each parameter, for all practical purposes we may not need to be so strict
when assigning priors, since the impact of the prior in many cases become
negligible even when only a few data points are available. As a rule of thumb
one may say that the prior is worth one data point, although it is of course
possible to construct examples where the prior is of higher importance. The
reader is encouraged to test di�erent priors on a particular problem to see
what signi�cance it has on the �nal result.

2.5 How to make a decision

The assignment of priors lets us specify a `starting point' of an inference
problem. Then, through use of Bayes' theorem and marginalisation, we may
produce a `post-data' (posterior) pdf for the parameter that we are interested
in. But what do we do with this pdf? Parameter point estimation problems,
which is a very common type of problem in statistical inference, require us
to answer the question `What value do you think the parameter will take?'.
Value judgment inevitably enters the theory at this point; our guess will
depend on what we are prepared to lose if we happen to make the wrong
guess. The associated theory is called decision theory and it a large �eld on
its own. Looking for the estimate θ̂ of a parameter θ, we construct a loss

function L(θ, θ̂) that describes the loss associated with making the wrong
guess. We will then choose the estimator θ̂ that minimises∫

L(θ, θ̂)p(θ|DI)dθ. (2.27)

In this thesis we will be concerned with conditions that repeat over and
over again. We therefore want to choose a loss function that produces good
performance over the course of many trials. The quadratic loss function is
by far the most commonly employed criterion and is reasonably the optimal
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criterion to use in repeated scenarios. Minimising the quadratic error con-
forms to choosing the mean value of a pdf as estimate for that parameter,
and so we will always choose

θ̂ =
∫

θp(θ|DI)dθ, (2.28)

which minimises the expected value of the error (θ − θ̂)2. As we will see
later, when consecutive samples are independent, the arithmetic mean will
eventually approach θ̂.

2.6 Model selection

Up to this point I have only considered the problem of how to assign prior
pdf:s, manipulating pdf:s by means of marginalisation and Bayes' theorem,
and taking a decision from a given pdf. In most problems of inference how-
ever, we have a set of data from which we wish to draw conclusions. It is
then necessary to have a model which relates the measured data D to the
parameter of interest, which will be called θ:

D = f(θ, ξ) (2.29)

Additional nuisance parameters ξ are also in general included in the model.
In the above model, all parameters � D, θ, and ξ � are generally vector-
valued. It is now possible to construct the pdf p(θ|D, I) by using the tools
of probability theory and the principles for assigning priors. The to-do list
of Bayesian inference now looks like this :

1. Construct a model.

2. Assign priors.

3. Use probability theory to derive the pdf for θ given whatever informa-
tion is available.

4. Invoke decision theory to produce an answer to whatever question was
asked.

But then, how do we know which model to choose in the �rst place? The
somewhat disheartening answer is that there exists no formal procedure for
model selection. That is to say, once we have established a particular set of
models, then probability theory provides us with the means of telling which
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one is best suited given a set of measurements (as we shall see shortly),
but we are still left in the dark when it comes to choosing the original set.
However optimal the theory for making inferences, the output result will still
be bad if the model is bad. It may very well be that many scienti�c areas
are still waiting for the discovery of �good� models.
Imagine then that we do have a number of models, and that we want to

evaluate them against one another based on a measurement D = {d0, d1, . . .}.
Denote the models Mk. Using Bayes' theorem, we have

p(Mk|D, I) = p(Mk|I)
p(D|Mk, I)

p(D|I)
. (2.30)

Since we only want to compare the probabilities of the di�erent models we
do not need to calculate the denominator p(D|I). Also, in most cases we
would assign equal values to all prior probabilities p(Mk|I). Thus we have

p(Mk|D, I) ∝ p(D|Mk, I). (2.31)

The right-hand-side is usually called the likelihood of Mk and is denoted
L(Mk). Although is may require marginalisation over a few nuisance pa-
rameters, L(Mk) is usually much easier to evaluate than the probability
p(Mk|D, I).
Hence we see that the model selection process consists of �rst choosing a

set of models, and then evaluating the likelihood for each model given a set
of data. Taken that all models are assigned the same prior probability, we
choose the model that gives the highest likelihood.

2.7 The methods of frequentism and Bayesianism

Since the conventional attitude towards probability theory in physical chan-
nel estimation and prediction theory is the one propounded by frequentists,
it may be a good idea to look at the di�erences between Bayesian and fre-
quentist methods.
Problems of inference5 come in many di�erent forms of which the most im-

portant ones in the present context are sampling theory, hypothesis testing,
and parameter estimation.

5`Inference theory' in normally distinguished from `decision theory'; In Bayesianism,
the inference part of a problem is to produce the posterior of the parameter under con-
sideration, whereas the decision part amounts to determining the course of action from
the posterior. For an engineer it is of little interest to produce a pdf without any con-
crete suggestion of course of action coming out of the calculations, and so here I will be
careless about the terminology and talk about `inference' when I mean the joint process
of inference and decision making.
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Sampling theory is the theory of determining the probabilities for outcomes
(samples) in data series, discrete or continuous. Problems in sampling theory
are often analogous to problems regarding balls being drawn from an urn.
Sampling theory is not actually directly relevant to the present problem
in digital communications, and as a Bayesian, I will have no need for it
in this thesis. The reason I mention it as an important topic is that it is
central to orthodox statistics; in order to �nd the most likely values of some
model parameters given some data, we may use sampling theory to calculate
the probability for the data that was actually received, as a function of the
model parameters, and then search for the values of those parameters which
maximise the probability. This principle is called the maximum likelihood

principle. When no cogent prior information is available, and when we do
not care about the size of the error in the �nal guess, the maximum likelihood
solution coincides with the Bayesian solution.
Hypothesis testing is the procedure of deciding which model that best

describes a given set of data. Model selection is an alternative name for the
same thing, although model selection often concerns the model structure,
while hypothesis testing usually concerns values of �xed parameters in the
model.
Parameter estimation is, as the name strongly indicates, the estimation of

one or many parameters from given data. Its output can either be speci�c
values, in which case one talks about point estimation, or intervals, which is
called interval estimation.
All problems of inference begin with a model relating the parameters of

interest with the data and possibly additional nuisance parameters,

D = f(θ, ξ), (2.32)

where the measured data D, the parameters of interest θ, and the nuisance
parameters ξ are generally vector valued.
The general method for obtaining information about θ varies widely de-

pending on whether one confesses to the frequentist or the Bayesian school.
In frequentist theory, which method to use depends on the type of problem,
whereas in Bayesianism the procedure is more or less the same regardless
of the problem statement. This means that the Bayesian method can be
listed as a `do this�then that' procedure, whereas frequentist methods must
be expressed as `do this�or that'. Below is a summary of the methods used
in the respective camps.
Bayesianism:

1. Determine the prior distributions.
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2. Use the tools of probability theory to derive the posterior distribu-
tion. In sampling theory the posterior is often given directly by the
model and the prior. Estimation and hypothesis testing often requires
application of Bayes' theorem and marginalisation.

3. Investigate the posterior to produce the sought-after result. Point esti-
mation is performed through the use of a loss function integrated over
the posterior (see Section 2.5). Interval estimation amounts to �nd-
ing an interval of the posterior (usually the shortest interval possible)
having a certain area. Hypothesis testing can be seen as a special case
of parameter estimation. In hypothesis testing, it is mostly common
to choose the hypothesis that has the highest probability. This is the
same as using a maximum criterion as loss function.

Frequentism:

• Point estimation of a parameter θ is commonly performed by using
intuition to invent an unbiased estimator θ∗(D) which is a function of
data D. It is chosen so that its mean value over the sampling distri-

bution,
∫

f(D)p(D|θI)dD, equals the parameter value θ. Note that
this is quite di�erent from the Bayesian least mean squares estimate,∫

θp(θ|DI)dθ. Other orthodox parameter estimation methods are the
maximum likelihood method and the least squares method.

• Interval estimation also starts by inventing an estimator θ∗(D). The
sampling distribution p(θ∗) is then calculated. Technically, this is done
by a change of variables, p(θ∗)dθ∗ = p(D|θ)dD. Last, one �nds the
least interval having an area of 0.9 or so over this distribution.

• Hypothesis testing relies on a number of signi�cance tests, among
which are the commonly employed χ2-test. Maximum likelihood is
another method, which � if no cogent prior information is available
and the loss function prescribes the same value to any error, regardless
of its size � produces the same answer as the Bayesian approach.

Frequentist theory requires the division of model parameters into random

variables and deterministic but unknown parameters. Only random variables
are allowed to have pdf:s. There exists no formal procedure for determining
which parameter belongs to which group. Usually, measured data is taken to
be random variables while all other parameters are considered deterministic.
A rule of thumb is therefore to let that which is known (the data) be random
variables and let all other parameters � those that are the subject of the
inference in most cases � be deterministic.
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The concept of random variables vs. deterministic parameters bear no
meaning in Bayesianism. Examples of other concepts which are relevant in
frequentism but lack meaning in Bayesianism are su�ciency (which is not
the same as su�cient statistics), ancillarity, and optimal stop rules.

2.8 Bayesianism/frequentism comparisons

In this section I show a few examples where Bayesian methods and frequentist
methods are utilised on the same problems. We begin with a simple example
of a point estimation problem:

Example 2.1 Parameter point estimation

Let us assume that we have used some principle to assign a gaussian pdf to
data D = {d1, . . . , dN}:

p(D|µσI) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
i=1

(di − µ)2
)

. (2.33)

Given data D, what is our estimate of µ (let us pretend that we already know
the variance σ2)? The frequentist method of unbiased estimators begins
with guessing an estimator, which is then adjusted so that it conforms to a
property called unbiasedness. The arithmetic mean

µ̂ =
1
n

N∑
i=1

di (2.34)

is known to be such an estimate.

Moving on to the Bayesian solution, we write down Bayes' theorem:

p(µ|DσI) = p(µ|σI)
p(D|µσI)
p(D|σI)

. (2.35)

We are completely ignorant to the value of the location parameter µ, so its
appropriate prior is uniform on an interval that we will make in�nitely wide
by going to the limit. The corresponding normalisation constant will be
present also in the denominator, which will basically make the prior P(µ|I)
disappear. But then we see that

p(µ|DσI) ∝ p(D|µσI), (2.36)
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which peaks at µ =
∑

di/N . Whether we use the maximum value, the
mean, or the median as estimate does not matter since the distribution is
gaussian; they all yield the arithmetic mean. We see that the Bayesian and
the frequentist method yield the same answer in this case.

When we have gaussian distributions and no cogent prior information,
there is a symmetry that produces the same answer regardless of whether
we use Bayesian och frequentist methods. This is relevant in the present
context, because these conditions often apply in digital communications.

But let us also shortly look at the estimation of the variance σ2 (now
µ is assumed to be known). For convenience, let ρ2 =

∑
(di − µ)2. The

conventional frequentist (unbiased) estimate is

ρ2

N − 1
, (2.37)

but what about the Bayesian solution? Using Je�reys' prior and the ex-
pectancy as estimate, we have∫

σ2P(σ|I)
P(D|µσI)
P(D|µI)

dσ =
π−N/2ρ2−NΓ

(
N−2

2

)
/4

π−N/2ρ−NΓ
(

N
2

)
/2

=
ρ2

N − 2
. (2.38)

We see that the frequentist and Bayesian estimate are virtually the same
already for moderately low values of n. Indeed, it would seem strange if
they would deviate considerably in such a common case as estimating the
variance of a gaussian distribution.

Next we will take a look at an interval estimation problem. The methods
used in this example are vastly di�erent between the two schools, and � as
we shall see shortly � so are the results. The example is taken from [11].

Example 2.2 Interval estimation

We now consider an interval estimation problem. A certain type of devices
will operate without failure for a time period θ, after which they start to
break down following an exponential law. The probability that x number of
failures occur between time t and t + dt is hence p(x|θI)dx for small values
of dx, where

p(x|θI) =
{

exp(θ − x), x > θ
0, x < θ

(2.39)
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We are interested in determining the `life expectancy' parameter θ to some
level of con�dence, that is we want to establish boundaries within which θ
is likely to lie. The data that we have are N measurements of failure times
x1, . . . , xN .

The frequentist method of con�dence intervals starts by inventing an es-
timator of θ. Again, we use an unbiased estimator

θ∗ =
1
N

∑
(xi − 1), (2.40)

which is unbiased because the expectancy for θ (over the sampling dis-
tribution) is θ + 1. We must then �nd the sampling distribution for θ∗.
The method of characteristic functions reveals that it is proportional to
(θ∗ − θ + 1)N−1 exp(−N(θ∗ − θ + 1)). Here we will look at the speci�c
case N = 3 with data {x1, x2, x3} = {12, 14, 16} and look for the short-
est 90% con�dence interval. By integrating the sampling distribution and
numerically looking for the shortest interval, we �nd

12.1471 < θ < 13.8264. (2.41)

Next we look at the bayesian solution. It demands that we assign a prior
to θ. Since θ is a location parameter, our ignorance about its value is
properly represented by a constant prior. By applying Bayes' rule we then
�nd

p(θ|x1, x2, x3, I) =
{

N expN(θ − x1), θ < x1

0, θ > x1
(2.42)

Since the posterior is decaying, the Bayesian interval is clearly shorter the
lower the values we choose. Hence, the interval has upper limit x1, and
its span is easily found to be −N−1 log(1 − 0.90). We therefore have the
Bayesian solution

11.23 < θ < 12.0. (2.43)

Comparing the two approaches, we see that both the methods used and the
results are quite di�erent. The reason for the frequentist solution yielding an
absurd answer (we know from the data that θ < 12) is that the estimator θ∗

was poorly chosen. How to choose a `good' estimator is a nontrivial problem
and there exists no formal procedure for how to do it.

Finally we look at a hypothesis testing problem. It is relevant in channel
estimation theory in connection with a type of channel estimators called
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blind estimators, although this kind is not used in the present thesis. The
below example is borrowed from [1, p. 300].

Example 2.3 Hypothesis testing

The English one pound coin is su�ciently thick that it might stand on edge
after a toss. An experiment of 29 tosses is performed, with the outcome
n1 = 14 heads, n2 = 14 tails, and n3 = 1 standing on edge. Person A is
familiar with the coin in question, and so A assigns probabilities p1 = p2 =
0.499 and p3 = 0.002. Person B, however, is ignorant to the fact that a coin
has been tossed and is only aware of that there are three possible outcomes
and that the di�erent trials (tosses) are logically independent. B must
therefore use the principle of indi�erence and assigns p1 = p2 = p3 = 1/3.

Now we want to evaluate the hypotheses of A and B against one another6.
Which one is most plausible? The Bayesian solution is simple:

P(HA|D)
P(HB|D)

=
P(HA)
P(HB)

P(D|HA)
P(D|HB)

=
P(D|HA)
P(D|HB)

. (2.44)

Here, D = {n1, n2, n3} and the probabilities for the respective hypothe-
ses are considered to be the same. Because of the independence we have
P(D|H) = pn1

1 pn2
2 pn3

3 . The ratio (2.44) is readily found to be about 483.5,
supporting person A's hypothesis.

Note that in the above, we just invoked the usual Bayes' theorem. How-
ever, since we are only interested in calculating the ratio between the two
probabilities, we save ourselves the trouble of calculating the prior for the
data.

Orthodox statistics based on a frequentist approach has no tools for calcu-
lating probabilities for hypotheses; hypotheses cannot be regarded as ran-
dom variables and so even talking about probabilities for hypotheses is
considered an abomination. Instead, orthodox statisticians have invented a
range of signi�cance tests for comparing hypotheses. The most common of
these is the so called χ2-test. We calculate the factor

χ2 =
n∑

k=1

(nk − npk)2

npk
(2.45)

6What are the hypotheses? We shall later see that in independent experiments, there
is an exact correspondence between probabilities and observed long run frequencies. The
hypotheses here is therefore that the frequencies of outcomes that will be observed over a
long time are the respective pk



32 Chapter 2. Bayesian inference

for both cases and see which one gives the lowest value:

χ2
A = 2

(14− 29× 0.499)2

29× 0.499
+

(1− 29× 0.002)2

29× 0.002
= 15.33,

χ2
B = 2

(14− 29× 0.333)2

29× 0.333
+

(1− 29× 0.333)2

29× 0.333
= 11.66,

which supports person B's hypothesis, that each outcome should account
for one third of the tosses in the long run. We see that Bayesianism and
frequentist reasoning express di�erent opinion about which hypothesis is
the most likely. The reason is that the χ2-test is very sensitive to unex-
pected data. In this case, even given the hypothesis of person A it was a
bit unexpected to see the coin stand on edge once in just 29 tosses (On
performing more �batches� of 29 tosses, we would only expect the coin to
stand on edge in about one of 18 such batches). For example, if the data
had been n1 = 14, n2 = 15, n3 = 0, the result of the two approaches would
have been nearly the same.

We have seen that the two perspectives � Bayesianism and frequentism �
take quite di�erent attitudes towards the probability concept. Frequentism
has an ontological perspective and takes probabilities to be real physical
entities. Bayesianism, on the other hand, takes an epistemological stand,
claiming that probability expresses the state of knowledge of an individual.
Jaynes often warns against what he refers to as the mind projection fallacy,
that a person's private thoughts are mistaken for actual existing physical
reality. Quoting Jaynes [1, p. 75]:

�Anyone who believes that he is proving things about the real
world, is a victim of the mind projection fallacy.�

Having decided to adhere to the Bayesian view, we must then pose an in-
evitable question. The frequentist's statement about a physical parameter
can certainly be validated by careful measurements, but how do we validate
the Bayesian's statement that is not about the real world, but merely one
about a person's state of knowledge?

2.9 Validation

Cox's derivation of the rules of inference calculus originated from the axioms
of classical logic. To these he added a plausibility measure along with a
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few rules to which such a measure must conform. Hence were conceived the
sum and product rules. These rules had up until then been employed by
both frequentists and Bayesians simply because they seemed reasonable, but
only by Cox's derivations were they derived as the only consistent rules for
conducting plausible inference. Since these rules are the only ones that are
used in Bayesian probability theory � unlike frequentist theory which con-
sists of a vast number of ad hoc methods � we know with certainty that the
result produced by Bayesianism is always logically consistent with the infor-
mation that was put in, that is the data, the mathematical model relating
the parameter(s) of interest with the data, and the prior(s)7.
Additionally, if the posterior pdf for the parameter of interest as derived

by Bayesian theory would turn out to be incredibly sharply peaked with all
its mass collected at one single value, then not only would it be logically
consistent with whatever information was o�ered to the calculations, but it
would also make a strong statement about the actual physical reality if we

have full con�dence in the accuracy of the model. This presents us with two
distinctive ways of validating the result of a Bayesian probability calculation:

Logical consistency

Since all results sprung from Bayesian calculations are logically consistent
with the information presented to the calculations, they need not be vali-
dated against measured data. If we believe in the information put into the
equations � the data, the model, the priors � strongly enough that virtually
no evidence would make us lose con�dence in them, then we know also the
result to be correct. Thanks to the rules of probability theory, we know with
certainty that any result derived from strict application of these rules will
conform to any extreme test of logical conformity we can put it to.

Physical prediction

In very special cases it might be that some pdf involved in the calculations
turn out extremely narrow. We have then in e�ect made a prediction without
uncertainty about the real world. But this can only occur if we also put
certainty into the equations, in the form of prior distributions.
It is clear that if we use Dirac functions for prior distributions for some

parameters, then that expresses absolute certainty about those parameters.
The inference process might then collapse into pure deductive logic which
lacks all elements of uncertainty. But there is another case, relevant to the
present problem in digital communications, in which there is a risk that we

7Whenever frequentism yields an answer that di�ers from the Bayesian result, we know
for a fact that it is not consistent with the information put in. The result then contradicts
the desiderata in one way or another.



34 Chapter 2. Bayesian inference

inadvertently put in certainty. It has to do with observed long run frequen-
cies. We study it next.

2.10 Probability/frequency correspondence

We saw earlier that the particular choice of the function p(·) as a repre-
sentative for the probability concept is arbitrary in the sense that any other
monotonic mapping f ◦p(·) will act as an equally valid representative, as long
as we remember also to adjust the sum and product rules. But in this section
we will see that the function p implies an interesting correspondence between
probability and observed frequency. We will examine which implications the
assignment of independent pdf:s has on a person's state of knowledge about
long run frequencies. I start with investigating the consequences, then I
comment on the relevance.
Assume that our hypothesis space for a certain experiment consists of K

propositions which we denote Xk. For one reason or another � it is not
relevant in this context � we have made the prior assignment

P(Xk|I) = pk, k = 1, . . . K (2.46)

We assume that the circumstances allow us to perform an inde�nite number
of experiments, and that the outcome of one experiment does not provide us
with any relevant information about the outcome of the next. This means
that we should assign independent distributions to all experiments. Let us
investigate what this means for the prior information we have about ob-
served frequencies as we perform more and more experiments. That is, what
probability do we implicitly assign to the event that, say, X1 comes up 15
percent of the cases when we carry out a large number of experiments?
Let us say we perform a total of N trials. The number of ways in which

we can combine f1N apples, f2N oranges, f3N pears and so on is given
by the multinomial coe�cients. fk is the fraction of times that proposition
Xk takes place. The probability for a certain combination of frequencies is
therefore given by

p(f1 . . . fK |I) =
N !

(f1N)! . . . (fKN)!
pf1N
1 . . . pfKN

K (2.47)
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Using the Stirling approximation log x! ≈ x log x we get8

log p(f1 . . . fK |I) ≈ N log N + N
∑

k

fk[log
pk

fk
− log N ]

= N
∑

k

log
pk

fk
.

(2.48)

But the inequality log x < x − 1 shows that the above sum is less or equal
to zero, with equality only when fk = pk (Gibbs' inequality). Hence, in
the limit when N →∞, the probability for observed frequencies f1 . . . fK is
unity at the point p1 . . . pK and zero otherwise.
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Figure 2.1: The pdf for observed frequencies when there are three and four
di�erent possible outcomes, respectively. The pdf:s have support in the
plane

∑
fk = 1. In the case K = 4, the tetrahedron with corners at the

tips of the 4-D unit vectors has been projected onto a 3-dimensional space.
The size of each cube indicates the value of the pdf at that point. As the
number of trials N gets larger, the mass of the pdf concentrates to the
point f1 = p1, . . . , fK = pK . In the left �gure, p = [0.5, 0.3, 0.2]. In the
right �gure, p = [0.1, 0.1, 0.3, 0.5]. Here, N = 15.

This shows that the assignment of independent priors results in a con-
centration of mass in the pdf for observed long-run frequencies. The mass
gathers at a point which represents the prior for one single experiment. This

8Actually, the Stirling approximation contains a few more terms which are needed to
fully appreciate the limit : log x! ≈ x log x− x + log

√
2πx +O(1/x). It is easily seen that

the additional terms tend to zero in this case.
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is illustrated in Figure 2.1. Already after just 15 independent trials, the pdf:s
for observed frequencies are sharply peaked around the mean value for a sin-
gle trial. As the number of trials increases, the pdf:s will rapidly approach
a dirac distribution, which we have to interpret as `absolute certainty'. But
this suggests that the assignment of independent trials is not � as one might
expect � an expression of ignorance, but contrary one of enlightenment. The
following examples will illustrate this.

Example 2.4 Probability/frequency mismatch

Person A assembles an in�nite sequence of ones and zeros by block-wise
mixing 750 zeros and 250 ones. This means that the �rst 1000 `bits' consist
of exactly three quarters ones and one quarter zeros, and the same goes for
the next 1000 bits, and the next and so on.

Now person A gives these bits, one by one, to person B for as long as B
desires. Person B is not aware of the scheme that person A has used to
construct the sequence, just that it will consist of just ones and zeros and
that it will go on inde�nitely. We call this `information I'.

What probability does B assign to the event the next bit will be a zero? B
wants to be as conservative as possible, since virtually no information exists,
so he sets p(`next comes a zero'|I) = 0.5, and the same with `next comes a
one'. He states that the probability is one half for any future bit being zero,
given outcomes up to the present. He lets di�erent bits be independent,
since he has no reason to believe otherwise.

This might seem very reasonable and conservative. B could for example
calculate the probability that bits number ten and eleven from now will both
be zeros, and �nd the answer to be one fourth. This certainly expresses a
lot of uncertainty, which should be the case.

But what happens if person B looks at the probability for the ratio of
zeros in the next, say, N bits? The expression is easily found to be

P(`ratio of zeros is k/N '|I) = 2−N

(
N

k

)
. (2.49)

Studying the ratio of zeros in just a few bits, we see that the uncertainty is
quite large, centred at 0.5. But as the number of bits increases, we see that
the curve claims that we should become increasingly certain that the ratio
is exactly 0.5. It rapidly approaches something that we have to interpret as
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Figure 2.2: The probability of observing k zeros in a sequence of N bits,
as given by the model p(`zero'|I) = 0.5. The cases N = 5, N = 15, and
N = 40 are shown.

`absolute certainty'. Mathematically, this is easily seen if we use the normal
approximation of the binomial function9,

2−N

(
N

fN

)
≈
√

2
πN

exp
(
−2N(f − 1

2
)2
)

, (2.50)

where f is the frequency k/N .

But how could this be? If we study the bits that person B has already got,
then, as he gets more and more, we will discover that the ratio of zeros will
be exactly three quarters when we have studied an integer multiple of 1000
bits (remember that person A mixed 750 zeros with 250 ones). In between
whole blocks, the ratio will vary a little around 3/4, but as B collects more
and more it will settle down to that steady value. So the `certain' result
that B gets from his probability calculations certainly does not represent
what really will happen!

We see now that person B's attempt to represent very little knowledge
back�red and turned out to express much more knowledge than he had!

The message is that the assignment of independent priors is a hazardous
undertaking. Assigning independent priors to an inde�nite number of pa-
rameters always implies claiming full knowledge about the long run frequency
distribution (which is a physical parameter). As mentioned in Section 2.4.3,
the gaussian representation of noise is often motivated by using maximum
entropy and claiming knowledge of the �rst two moments (mean value and
variance). Then, using independent pdf:s between samples is motivated by

9Note that these are proper probabilities and not probability densities. As N → ∞,
the probability for any f goes to zero. However, the probability density, calculated by
multiplying the expression with N , goes to in�nity for f = 1/2 in the limit.
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lack of further information about the noise. But we have seen in this section
that independence implies full knowledge about long-run frequencies, and
this can never be defended by an absence of knowledge. In the case of ther-
mal white noise, independent samples are well motivated since it is known
that the underlying physical mechanism consists of a lot of similar physical
processes, but in other cases we have to be careful when using independent
pdf:s.
The speci�c relevance in the present context, apart from the representation

of thermal noise, is when linear models are used. Such models claim certainty
about long run frequencies. Before investigating this phenomenon I will
make a more formal introduction of the gaussian distribution than hitherto
has been made.

2.11 The gaussian distribution

The gaussian distribution will be used extensively in the forthcoming chap-
ters. It is therefore convenient to introduce a compact notation for it. For
a complex parameter x with mean value µ and variance σ2 equally divided
between the real and imaginary parts, I will use the abbreviation

CN (x;µ, σ2) ,
1

πσ2
exp(−|x− µ|2/σ2), (2.51)

CN denoting complex normal. I then assume independence between the real
and imaginary parts. To allow for correlation between them, we have to
write x = xr + jxi and use a vector-valued real distribution:

p(x|µ,Σ, I) =
1

2π|Σ|1/2
exp

(
−1

2
(x− µ)∗Σ−1(x− µ)

)
, (2.52)

where

x =
[

xr

xi

]
, µ =

[
µr

µi

]
, Σ =

[
σ2

r σ∗ri

σri σ2
i

]
, (2.53)

are the real-valued vector representations of the complex parameters. Note
that one gets (2.51) by setting Σ = σ2/2 · I in (2.52).
The multivariate complex gaussian distribution is written

CN (x;µ,Σ) , π−n|Σ|−1/2 exp
(
−1

2
(x− µ)∗Σ−1(x− µ)

)
, (2.54)

where x and µ are now vectors of length n. Again, the real- and imaginary
parts are assigned to be independent and the variance is divided equally
between them.
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2.12 Linear models

In the forthcoming chapters I will use state space models to mimic the be-
haviour of time-varying radio channels. The states (to be introduced later)
are modelled by

xt+1 = Fxt + Gut (2.55)

where the (generally vector-valued) so called process noise ut is assigned a
gaussian distribution, independent between samples, so that

p(ut|I) = CN (ut; 0, Q) (2.56)

and
p(utuτ |I) = p(ut|I)p(uτ |I), t 6= τ. (2.57)

The model matrices F and G may be time-varying but I am here considering
a time-invariant model.
Imagine now that we believe in the �correctness� of the linear model (2.55)

inde�nitely. Since the process noise ut is white, so that we hence claim
to know its frequency distribution with certainty, this implicates that we
also claim knowledge about the long-term frequency distribution of XT =
{x0, x1, . . . , xT }. For example, we will �nd that

lim
T→∞

∑
X/T = 0, (2.58)

and that
lim

T→∞

∑
XX∗/T = Π̄, (2.59)

where Π̄ solves the Lyapunov equation

Π̄ = F Π̄F ∗ + GQG∗. (2.60)

It may not have been the intention of the person who constructed the model
to build in that kind of cogent information. Again we have to conclude that
the assignment of independent pdf:s must be undertaken with utter care.





Chapter 3
The modelling of a single tap

In the forthcoming chapters I will apply the Bayesian probability theory
treated in Chapter 2 to radio channel estimation and prediction, the moti-
vation of which is given below. The modelling of a radio channel usually
amounts to modelling several scalar complex-valued radio channel descrip-
tors called taps. The present chapter is restricted to the modelling of one
single tap. A linear model will be used to represent the fading statistics of
the tap. This approach requires the assumption that a number of parameters
are known to exact precision. Here I will therefore assume that estimates of
high quality of such parameters are provided by stand-alone estimators.
Taps rotate with time in the complex plane (a phenomenon which is called

fading). Tap behaviour is characterised by the frequencies with which the
fading can occur. To exemplify the tap modelling procedure, I describe in
this chapter how to construct one particular model. The model described
is very cautious and has only the restrictions imposed by vehicular velocity
built into it. All other fading frequencies are set to be equiprobable so that
no kind of behaviour is favoured before any other. It is later shown that such
a cautious stand is very costly for system performance. Considerable e�ort
should therefore be put into estimation of the fading behaviour.
The present chapter also serves as a very brief introduction to digital com-

munication theory for the uninitiated reader. I examine both single carrier

systems and multi carrier systems and establish that optimal detection of
digitally transmitted information essentially is a problem of geometric char-
acter.

41
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3.1 Adaptive multiuser systems

Most of present day wireless multiuser systems assign radio resources among
users regardless of their current instantaneous radio channel conditions1. The
systems instead perform averaging over the unknown conditions by utilising
diversity in various dimensions (time, frequency, polarisation, and space).
However, there is a lot to be gained in taking an opportunistic approach, in
which a user gets assigned resources when its channels conditions are good,
an rests idle to the bene�t of other users when its channel conditions are
bad.
In such systems, users would compete for the resources by signalling their

respective temporal channel quality to a central scheduler. This scheduler
would then distribute the resources among the users based on these qualities,
and possibly also on some kind of fairness criteria. However, since there
would inevitably be some delay involved in the signalling and the scheduling
process, the users would have to predict the channel quality. The prediction
horizon would typically be a few microseconds long. This is the prediction

problem. The estimation problem is that of estimating the most probable
transmitted bit sequence at the time instant when data arrives to a speci�c
user, so that payload data may be recovered as well as possible.
To tackle the estimation/prediction problem, we need a model for the sit-

uation under study. In the present chapter I lay out the �rst part of the
modelling process, which ultimately is about describing the fading behaviour
of time variant radio channels. The next chapter presents the second part,
in which an entire system is modelled.

3.2 Digital communication systems

Schematically, a communication system is constructed as depicted in Fig-
ure 3.1. The principle is the same for most types of digital communications
systems; information units � bits � are grouped together and mapped onto
symbols. The amount of symbols available � the size of the symbol constella-
tion or the symbol alphabet � is determined by the size of these groups. For
example, if bits are grouped three by three, then there are eight symbols in
the constellation.
The constellation also has a certain dimensionality, so that each symbol

1There are exceptions. For example, the standards EDGE (Enhanced Data rates for
GSM Evolution) and HSDPA (High Speed Downlink Packet Data Access) are adaptive to
some extent.
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Figure 3.1: Schematic description of a digital communication system.

is represented by combinations of one, two, or several unit vectors. The
number of available unit vectors determines the dimensionality of the signal
space.
Each of the unit vectors is associated with a waveform from a set of or-

thonormal signals, so that the transmitted waveform associated with a sym-
bol is simply a weighted sum � a superposition � of signals from this set. The
orthogonality is meant with respect to a certain time interval. This interval
need not be the same as the symbol duration, that is the time interval be-
tween each new symbol. The important thing is that the signal set is chosen
so that orthogonality holds not only between di�erent members of the signal
set, but also between any one member and a time-delayed copy of itself, if
the delay is an integer multiplicative of the sampling period.
The model described here is valid for linear modulation formats. There

are also nonlinear modulation formats, such as Continuous Phase Frequency
Shift Keying (CPFSK), but they will not be considered in this thesis.
One symbol duration apart, a new symbol is released from the transmitter.

On its way to the receiver, the signal is distorted by nonlinear ampli�ers and
by noise and multipath propagation. At the receiver, the signal is passed
through a bank of �lters, each �lter corresponding to a unit vector in the
signal space. These �lters are called cross correlators or simply correlators.
If the impulse responses of the correlators are the same as the respective
waveforms � and I shall assume this in this thesis � then we say that they
are matched �lters. A matched �lter maximises the signal-to-noise ratio at
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the output of the �lter.
The output of a cross correlator is sampled at a certain rate. This rate

is usually the symbol rate but may in some cases be higher depending on
the characteristics of the channel. If the channel distorts the signal only by
introducing additive (white) thermal noise, we say that we have an additive

white gaussian noise (AWGN) channel.
In the AWGN case, we would then receive at the output of each cross

correlator a signal r(t) described by

r(t) =
∑

k

akp(t− kTs) + n(t). (3.1)

Here, n(t) is the �ltered noise, the {ak} are the symbol amplitudes (the
coordinate) for this particular dimension, Ts is the symbol duration, and
p(t) is the �ltered waveform or the pulse shape. The pulse shape may be
chosen so that time-adjacent symbols do not interfere with one another.
This means that at the sampling instant, p(t− kTs) = 0 for all k but k = 0.
A natural choice for p(t) is a rectangular pulse of width Ts. However,

such a pulse produces high spectral side lobes because of the sharp �anks.
Instead, one may choose from a class of pulses of long time duration called
Raised Cosine (RC) pulses. These share with the rectangular pulse the
property of zero crossings at the sampling instant, but have better spectral
properties. To ensure that the pulse shape after the cross correlator is an
RC pulse, one would use Square Root Raised Cosine �lters for pulse shaping
at the transmitter and for the cross correlators, so that their total impulse
response is an RC pulse.
As a short side note, we may set this into relation with the relevance of prior

information. Assume a noiseless situation so that n(t) = 0. Then if the pulse
shape p(t) is known, we may reconstruct the continuous signal r(t) perfectly
only from knowledge of the samples p(kTs) = ak/p(0). But according to
the Nyquist theorem, a signal can only be reconstructed from samples if its
single side bandwidth is strictly less than the Nyquist frequency 1/2Ts. In
our case, the bandwidth of r(t) is given by the power spectral density (psd)
of p(t) (if the {ak} are white), and this psd may be arbitrarily wide. And still
we reconstruct the signal perfectly from samples taken with period Ts. This
illustrates that if cogent prior information is available, signal reconstruction
may be possible even if the requirements for the Nyquist theorem are not
met.
The sampled output of each cross correlator represents how much of a cer-

tain unit vector is �contained� in the received signal. The collected samples
from all correlators mark a point in the signal space. Ideally, that point
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would be one of the points in the symbol constellation, but the noise will
disturb the sampled outputs, causing a displacement to occur. It is the re-
sponsibility of the detector to decide which symbol is likely to be the correct
one, and hence which bit pattern the sender had in mind.
When the distortion is restricted to AWGN alone and all symbols are

equiprobable, the optimal detection scheme reduces to simply deciding which
symbol representation in the signal space is closest to the received point. We
may think of each point corresponding to a transmitted symbol as being sur-
rounded by a cloud of gaussian density. The density at a certain point cor-
relates to the probability of the received symbol to end up at that particular
point.
Distortions of a more complex character than AWGN introduces depen-

dencies between samples. So called equalisation is used to combat this phe-
nomenon, but we may also have to sample the signal at a higher rate than
the symbol rate in order to achieve a high detection performance. The op-
timal detection algorithm may then become extremely complicated, forcing
the system designer to use suboptimal schemes.

3.2.1 Coding and other functionality

It is often the case that we want to make our information bits resistant
to a reasonable percentage of transmission bit errors. This is achieved by
introducing redundancy into the bit sequence. For example, we may map k
information bits onto n coded bits, where n is larger than k (we say that we
apply an n/k block code). By applying clever algorithms at the receiving
side, such an n-block may then be decoded to the correct k-block, even
though one or a few of its bits have been subjected to errors.
The optimal decision strategy can be understood in many ways. I will here

give a �geometric� explanation. To study a speci�c case, let us say that we
use a 7/4 block code and that our symbol alphabet has eight symbols and
two dimensions. Then 12 information bits are mapped onto 21 coded bits
which in turn are mapped onto 7 symbols. This means that we can think of
the encoder as directly mapping the 12 bits onto one of 212 = 4096 symbols
in an �expanded� signal space. We may call the symbols residing in this
space supersymbols. We then detect the received supersymbol as usual, by
picking the nearest proper supersymbol. The expanded signal space would
in this case have 14 dimensions, since one supersymbol corresponds to seven
regular symbols, each having two dimensions. This example is more closely
investigated in Appendix B.
Supersymbols are constructed is such a way that coding and other func-
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tionality only a�ect bits and symbols within the same supersymbol. Another
way of expressing it is to say that one supersymbol corresponds to one code-
word. By construct, a supersymbol is therefore always received in AWGN.
Needless to say, this way of looking upon a communications system quickly
becomes complicated when we continue to introduce more and more func-
tionality so that the size of the codeword grows. For example, utilising a so
called convolutional encoder instead of a block code, in which every coded
bit is related to the other in endless succession, would force us to regard
the whole information bit sequence as one single supersymbol, since no nat-
ural subdivisions in the information bit stream exist. Needless to say, this
abstraction then becomes useless.
The natural and common thing to do is of course to regard the encoder

/ decoder mechanism as a separate pair of blocks inserted before the mod-
ulator and after the demodulator, respectively (and accordingly for other
types of functionality such as encryption, spectral spreading etc). Treating
them separately may however yield suboptimal solutions, as Appendix B
illustrates.

3.3 Multicarrier systems

Communications systems can roughly be divided into two groups: multi-
carrier systems and single carrier systems, both of which will be studied
presently. We start with multicarrier systems.
The wave propagation through the air can do little to our signal than to add

noise and to �smear� it out, that is to split it up into an in�nitude of echoes
of di�erent time lags and attenuations. Hence the channel � by which I mean
the total system consisting of the pulse shaping �lters at the transmitter, the
wave propagation, and the �lters (correlators) at the receiver � constitutes
a linear system, though however it is generally a time varying linear system
for mobile users2.
A linear system has eigenfunctions on the form ejωt. Complex exponentials

are therefore an excellent choice for the orthogonal set of waveforms. To
guarantee orthogonality, all waveforms need to have an integer number of
periods in the symbol time (we here take the symbol time to be the time
over which orthogonality should hold). Hence we choose the set of N complex

2This requires us to omit certain phenomena that might be present in reality but which
we hope will be negligible. Apart from nonlinear behaviour of ampli�ers, metal oxidation
such as rusty fences might cause nonlinear scattering of radio signals.
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waveforms

ej(ωc+n∆ω)t, 0 ≤ n ≤ N − 1, 0 ≤ t < Ts (3.2)

where ωc is the system's centre angular frequency. ∆ω = 1/2Ts, and Ts is
the symbol duration. Of course, we cannot use complex signals, so we have
to resort to using pairwise signals on the form sin(ωt) and cos(ωt) instead.
The `smearing interval�, that is the duration of the channel's impulse re-

sponse, will however impose a problem. For time-adjacent symbols not to
overlap, we need to introduce a guard time between each symbol. We may
refrain from transmitting anything in the guard time, but this will mean that
not all energy will be captured from those symbols that arrive late, which
destroys orthogonality.
Orthogonality between the complex exponentials regardless of time of ar-

rival can instead be preserved by letting the waveforms continue to sound
also in the guard time. This is e�ciently accomplished by �rst constructing
the symbol in the usual way, by adding together waveforms of a symbol dura-
tion, and then copying a small part of its end (of the guard time's duration)
and adding it to the beginning of the symbol.
By choosing the above set of orthogonal signals and adding this cyclic pre-

�x, we have in e�ect constructed an orthogonal frequency division multiplex

(OFDM) system. The OFDM system is an example of a multicarrier system.
There are other kinds, but the OFDM system is the one that most e�ciently
utilises the radio spectrum.
Since the signal cannot cross over between di�erent complex correlators

even when the channel introduces multipath propagation, it is not necessary
to regard the entire bandwidth as one single channel. Instead, we may
look upon each frequency in the set of, say, N eigenfunctions as a separate
subcarrier, over which symbols from a 2D signal space travel independently
of symbols sent over other subcarriers.
The independence of the subcarriers makes OFDM an excellent system de-

sign choice. Firstly, it opens up possibilities for adaptation because di�erent
modulation formats may be used on di�erent subcarriers depending on indi-
vidual subcarrier quality. Secondly, it makes OFDM well suited to be used
in a multiuser environment, since di�erent users may be assigned di�erent
subcarriers, and this allocation may also change over time. Hence, users in
a multiuser OFDM system share both time and bandwidth.
Observe that each sampled symbol in OFDM marks a point in a 2N -

dimensional signal space, where N is the number of subcarriers in the system.
Twodimensional cross sections of this space correspond to the individual sub-
carriers. Hence we observe that OFDM is a modulation format of very high
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dimensionality. The symbol rate, on the other hand, is low in OFDM sys-
tems; to avoid wasting most of the transmitted energy on overhead, the cyclic
pre�x needs to be short compared to the symbol period. The symbol period
is therefore considerably longer than the maximum length of the channel
impulse response. OFDM thus stands in sharp contrast to many other kinds
of modulation methods, where signals from a low-dimensional signal space
are transmitted at a high rate. Such systems will be studied in the next
section.
Having to split up the received signal and sending it through a bank of 2N

cross correlators may seem unfeasible, given that the number N of subcarriers
could very well be several thousands, and it would indeed be unfeasible if we
had to do it. Luckily, we don't; sampling the output of N parallel complex
correlators once every symbol, is equivalent to sampling the signal at N times
the symbol rate and taking the Fast Fourier Transform (FFT) of N samples
at a time. This means that we only need one receiving �lter which operates
on the whole system bandwidth, from whose output we can produce all 2N
metrics in O(N log N) operations.
Brie�y described, an OFDM detector splits the received signal in blocks,

cuts away the cyclic pre�x, and performs an FFT on the remaining sequence,
thus producing the N complex outputs.
The phase shift/attenuation for a certain subcarrier n for a certain symbol

t will be denoted the time-frequency tap hn,t. Hence we have the relationship

rn,t = hn,tsn,t + vn,t (3.3)

between the transmitted symbol sn,t and the received symbol rn,t, where
vn,t denotes the noise contribution at symbol time index t and subcarrier n.
The complex number hn,t is hence associated with the channel perceived by
exactly one time-frequency symbol.
A few assumptions are needed for (3.3) to be valid. Firstly, I have assumed

that the cyclic pre�x is indeed longer than the channel impulse response, and
that time syncronisation between transmitter and receiver is perfect. Sec-
ondly, is is implicitly assumed that also the carrier synchronisation between
transmitter and receiver is perfect. If this is not the case, energy will leak
over into adjacent subcarriers.
We now turn to study systems in which one single carrier bears all infor-

mation.
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3.4 Single carrier systems

In the OFDM system, we gave the transmitted symbols some margin of
arrival through the cyclic pre�x, ensuring that an OFDM symbol delayed
in time due to the in�uence from the channel will not leak over into the
next OFDM symbol period. If we instead choose to design the system so
that the symbol duration is short compared to the length of the channel's
impulse response, then consecutive symbols will overlap, causing intersymbol
interference (ISI) to occur.
ISI may seem very troublesome, especially when the delay of a particular

�echo� of the signal is not a multiple integer of the symbol duration. Then,
during one symbol interval, the receiver will perceive that echo not as one
isolated symbol, but as two joined fragments of adjacent symbols. We now
investigate what implications this has on the received signal.
Let us say that the signal that we transmit is limited to a (baseband) band-

width W/2. Denote the transmitted signal by s(t) and its Fourier transform
by S(f). The signal is sent over a channel with impulse response c(t) and
frequency response C(f). Following [12], we then have

s(t) =
∞∑

l=−∞
s(l/W )sinc(Wt− l) (3.4)

and

S(f) = 1/W

∞∑
l=−∞

s(l/W )e−j2πfl/W , if |f | ≤ W/2 and zero otherwise

(3.5)
We here only look at baseband signals, but the theory holds also for bandpass
signals. The received signal r(t) becomes

r(t) =
∫ ∞

−∞
C(f)S(f)ej2πftdf

= 1/W

∞∑
l=−∞

s(l/W )
∫ W/2

−W/2
C(f)ej2π(t−n/W )df

= 1/W

∞∑
l=−∞

s(l/W )
∫ ∞

−∞
C ′(f)ej2π(t−n/W )df

=
∞∑

l=−∞
s(l/W )c′(t− l/W ),

(3.6)
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Figure 3.2: The impulse response of an echoing channel, c(t) = δ(t) +
0.7δ(t− 0.6), and the corresponding tapped delay line model when the re-
ceiver �lter is matched to the signal bandwidth W = 1/2T . The coe�cients
of the resulting tapped delay line model stretch far beyond the echo at 0.6T .
Ideal Nyquist (sinc) pulses where used, which allows symbols to be trans-
mitted with period T . Other pulse shapes reduce the length of the sampled
impulse response, but also forces a reduction of the symbol rate.

where c′(t) is the impulse response of a channel with the same frequency
response as c(t) within the frequency support region |f | ≤ W/2 and zero
otherwise. The result could also be produced by directly convolving (3.4)
with the channel impulse response c(t).
We see that the received (noiseless) signal can be constructed from the

transmitted signal sampled with frequency W . The resulting impulse re-
sponse c′(t) may however be long and the ISI severe, depending on the choice
of pulse shape. Still, the fact that some echoes enter the correlator �out of
synch� does not cause any strange e�ect other than possibly a long discrete
impulse response.
Figure 3.2 illustrates the �lter coe�cients of the tapped delay line model

resulting from a direct path and one echo. An important conclusion is that
the �lter taps stretch far beyond the echo, which occurs fairly close in time
to the primary ray, at 0.6T . The �lter model illustrated in Figure 3.2 is
non-causal. In practice, one would use a pulse shape that is truncated and
delayed, producing a causal tapped delay line model.
The equality (3.6) holds for any bandlimited signal s(t). If s(t) is a mod-

ulated information signal on the form

s(t) =
∞∑

k=−∞
αkp(t− kTs), (3.7)

we would rather represent r(t) in terms of the {αk} than in terms of samples
taken at a frequency W . To write the received signal as a weighted sum of
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the transmitted symbols {αk}, we go back and rewrite Equation (3.4) as

s(t) =
∞∑

l=−∞
s(lT )p(t− lTs), (3.8)

where p(t) is the pulse shape. Following the previous derivation, we �nd

r(t) =
∞∑

l=−∞
s(lTs)c ? p(t− lTs) (3.9)

If ideal Nyquist pulses are used, then W = 1/T and the two results (3.6)
and (3.9) become identical.
The derivations in this section show that a tapped delay line (single carrier)

channel can be modelled by

rt = h0,tst + h1,tst−1 + . . . + hNCP−1,tst−NCP +1 + vt (3.10)

where

hm,t = c ? p(t−mT − tdelay) (3.11)

(3.12)

with a su�cient delay tdelay to prevent non-causality. Here, NCP is the
(maximum) length of the channel impulse response.
Note that, in this section I use hm,t to denote taps (the mth tap in the

channel impulse response at time t), whereas in the previous section I used
hn,t to denote time-frequency taps (the nth subcarrier at time t). There will
be no need to use di�erent notations for the two; the meaning will always
be clear from the context.
This concludes the short introduction to digital communications. The rest

of this chapter is devoted to the modelling of one tap.

3.5 Making inferences from observed data

The objective of a communications system is to infer on the receiving side
the bits transmitted from the sender. In the adaptive multiuser systems
considered here, we also want to schedule resources opportunistically to the
user that is temporarily able to utilise them the best.
The general problem facing us is as follows. The measurement equation

yt = ϕ∗t ht + vt (3.13)
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expresses how symbols ϕt distorted by the channel ht are measured in gaus-
sian noise vt. In a multiuser system the measurements will comprise several
carriers at each time instant. The measurement yt will then be a vector
and ϕt will be a diagonal matrix holding the transmitted symbols. In the
single carrier scenario the transmitted symbols will be stacked in a vector
ϕt, rendering the measurements scalar. The symbol vector/matrix ϕt is as-
sumed to constitute an entire supersymbol, so that the {ϕt} are mutually
independent. Given that the encoding used is a block code, this can always
be achieved by making the dimensionality of the measurements su�ciently
large.
Considering the estimation problem, we seek the most probable transmit-

ted symbols given the measurements, which is accomplished by �nding the
maximum a posteriori value (the peak) of the distribution

p(ϕt|YtI), (3.14)

where Yt represents all passed measurements yt, yt−1, yt−2 and so on. Apply-
ing the rules of probability theory, we have

p(ϕt|YtI) =
∫

p(ϕt|YthtI)p(ht|YtI)dht

∝ p(ϕt|Yt−1htI)
∫

p(yt|ϕthtYt−1I)p(ht|YtI)dht

= p(ϕt|I)
∫

p(yt|ϕthtI)p(ht|YtI)dht

(3.15)

Since ϕt corresponds to a codeword, the distribution p(ϕt|Yt−1htI) reduces
to the prior p(ϕt|I). The pdf for ht given passed measurements is very di�-
cult to compute since it will require marginalisation over all unknown trans-
mitted symbols. Instead, by approximating p(ht|YtI) with a pdf p(ht|ȲtI)
based on a subset Ȳt of all measurements Yt, the problem is transformed into
feasible form. Ȳt is based exclusively on known transmitted symbols which
are commonly termed pilot symbols. As will be demonstrated in Chapter 5,
p(ht|ȲtI) will then turn out to be gaussian with some mean value ĥt|t and
some covariance matrix A. The pdf that we seek is now written

p(ϕt|YtI) ∝ p(ϕt|I)
∫

p(yt|ϕthtI)p(ht|YtI)dht

≈ p(ϕt|I)
∫

p(yt|ϕthtI)p(ht|ȲtI)dht

= p(ϕt|I)
∫
CN (yt;ϕ∗t ht, R)× CN (ht; ĥt|t, A)dht

(3.16)



3.5. Making inferences from observed data 53

One may assume that the uncertainty in the tap estimation as expressed by
A is very low at the moment of detection. Letting A go to zero, the second
gauss distribution in 3.16 will approach a Dirac distribution and hence we
have that p(ϕt|YtI) is approximately proportional to

p(ϕt|I)× CN (yt;ϕ∗t ĥt|t, R)

∝ p(ϕt|I)× exp
(
−1

2
(yt − ϕ∗t ĥt|t)

∗R−1(yt − ϕ∗t ĥt|t)
)

(3.17)

How do we use this to �nd the most probable transmitted sequence ϕt? First,
let us look at an OFDM system where the measurements are vector valued
and where each symbol is a�ected by one time-frequency tap only. The
symbol ϕ∗t then represents a diagonal matrix with the transmitted symbols
along the diagonal.
To proceed we rewrite the vector ϕ∗t ĥt|t. Swapping vector and matrix

structures, we may express this vector as h̄t|tϕ̄t, where the bars indicate the

changes in structure. h̄t|t is here a matrix with the elements of ĥt|t along its
diagonal, and ϕ̄t is a column vector holding the transmitted symbols (note
that ϕ̄t and ϕ∗t contain the same values; the conjugate operator is closely
associated with transposing and is therefore unsuited for use on column
vectors).
We now have

p(ϕt|I)× exp
(
−1

2
(yt − ϕ∗t ht)∗R−1(yt − ϕ∗t ht)

)
= p(ϕt|I)× exp

(
−1

2
(yt − h̄t|tϕ̄t)∗R−1(yt − h̄t|tϕ̄t)

)
= p(ϕt|I)× exp

(
−1

2
(h̄−1

t|t yt − ϕ̄t)∗h̄∗t|tR
−1h̄t|t(h̄

−1
t|t yt − ϕ̄t)

)
(3.18)

The estimation (detection) problem is to �nd the peak of p(ϕt|YtI) which
is now trivial; we choose the sequence ϕ̄ in the set of all possible sequences,
expressed by the prior p(ϕt|I), that is closest to the mean h̄−1

t|t yt if the gauss

distribution. If the noise covariance R is diagonal and p(ϕt|I) allows any
combination of symbols, then, since the matrix h̄∗t|tR

−1h̄t|t is also diagonal,
we get the following algorithm for choosing the most probable transmitted
sequence:

arg max p(ϕt|YtI) = elementwise hard decisions on h̄−1
t|t yt (3.19)



54 Chapter 3. The modelling of a single tap

That is, all we have to do is to �derotate� the received signal with the esti-
mated channel, and then round to the nearest proper symbol sequence.
Consider now instead a TDMA system where ϕt is a vector. Looking at

(3.17), one might think that ϕt should be straighforward to �nd also in this
case. Unfortunately, intuition de�es fact at this point, and the most likely
sequence can only be found by thoroughly searching through a large set of
candidates. If the noise is uncorrelated between di�erent taps so that R is
diagonal, this search need not be exhaustive. One may instead use the Viterbi
algorithm to �nd the correct sequence, which has exponential complexity in
the length of the sequence.
We turn now to the prediction problem. Some measure of error, such

as packet error, symbol error, bit error, is calculated and used as basis for
resource scheduling decisions made by a centralised scheduler. Exactly how
this is done depends among other things on how much feedback information
one can tolerate on the radio link. In this thesis I imagine yes-or-no answers
for whether the expected bit error rate is below some prede�ned limit being
signaled to the base station. This way, only one bit of information needs to
be transmitted per user and candidate modulation/coding format3.
For the cases considered here, error rates are always functions of the mag-

nitude of the channel taps; the better the channel, the lower the error rate.
Hence we have some function of, say, the bit error rate

Pb(|h|) (3.20)

that decreases with increasing |h|. For single carrier systems where the chan-
nel impulse response has many taps, all taps have to be taken into account
in Pb(|h|). For example, it is much easier to get a good error rate perfor-
mance if the impulse response energy is concentrated to a few taps than if
it is spread out over the whole impulse response.
Marginalising over the unknown tap(s), we have

p(Pb|Y I) =
∫

Pb(|h|)p(h|Y I)dh (3.21)

Again, we see that we need the distribution p(h|Y I), which we also here ap-
proximate with p(h|Ȳ I). However, we will here be concerned with predicting

the error rate (and hence the channel) a few steps ahead, to compensate for

3The size of the feedback information is actually less than that. In a system where each
user can choose from a set of eight modulation/coding formats, only the best of these that
can be used needs to be signalled back to the base station. This means that the feedback
information constitutes three bits, not eight.
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the delay introduced by the control loop. Luckily, as we will see in Chapter
5, channel prediction and estimation �t into the same framework.
The above discussion shows that both the estimation and the prediction

problems may be solved by inferring the channel taps. The large part of the
remainder of this thesis will therefore be concerned with channel estimation
and prediction.

3.5.1 Tap modelling

Inference begins with constructing a model, and so I therefore commence by
constructing a model for one single channel tap. In Chapter 4 I will expand
this model to account for multiple taps in multiuser systems. The actual
inference is then considered in Chapter 5.
What does an adequate model for a fading tap look like? We could attempt

to build the model ab initio, directly using the laws of physics (Maxwell's
equations mainly) and the uncertainty we have about whatever parameters
are included. A model built from �rst principles is very powerful in the
respect that it will always yield reasonable answers, heedless of whatever
extreme questions we may ask. There is no risk of getting a results that
is caused by modelling errors. Its weakness is that it is rarely possible to
construct such a model at all, since a fully correct physical description of
a situation almost always is to complicated to design; this is indeed the
situation that we face here.
At the other end of the scale is phenomenological modelling. Phenomeno-

logical modelling is done by �rst observing (measuring) the process of in-
terest, followed by the construction of a model that mimics the process'
behaviour.
In practice, we use something in between the two methods of modelling:

phenomenological modelling supported by physical reasoning. For radio
channel modelling, it is common to let the chain of reasoning leading to
a model start at physical principles, and every now and then along the route
make simpli�cations and abstractions based on observations of the actual
process (the radio channel). See e.g. [13], [14].
For illustration, I will here begin closer to the phenomenological end of the

scale. Figure 3.3 shows the complex impulse response of a radio channel mea-
surement in suburban Stockholm. The channel, sampled at approximately
9.1 kHz, clearly contains many taps, although it is dominated by only a few.
The taps rotate around the origin with an angular frequency depending on
the angle of arrival of the respective rays. The strongest tap moves about
90◦ in 16 samples and thus makes one revolution in about 7 ms. One revo-
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Figure 3.3: Impulse response measurements of a 1800 MHz radio channel
in suburban Stockholm. The received signal was correlated with the known
transmitted sequence. The �gure has no particular scaling, but both axes
span the same range.

lution around the origin means moving through one wavelength, which here
is 3 · 108/1.8 · 109 m. This corresponds to about 85 km per hour, which is
probably the velocity of the vehicle taking the measurements. Details re-
garding the measurements can be found in [14]. Although this particular
measurement concerns a single carrier system, the general behaviour of each
individual tap doesn't deviate from those in an OFDM system.
The most obvious feature of the time varying impulse response is the ten-

dency of the taps to rotate about the origin. This is quite expected; when
the receiver moves one wavelength in the direction of the propagation path
corresponding to a certain tap, then, accordingly, that tap will make one
revolution. A �rst attempt to model a tap ht could then be

ht+1 = αte
j∆ωtht, (3.22)

where ∆ωt would be a function of the mobile unit's velocity (including direc-
tion), and the attenuation αt would usually be slowly varying, determined
in large by the velocity with which the receiver approaches or moves away
from nearby re�ectors. Uncertainty about ∆ωt and αt needs to be taken
into consideration according to the Bayesian methodology, which makes the
model (3.22) nonlinear.
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Figure 3.4: Schematic illustration of the structure of an optimal, Bayesian
tap estimator/predictor.

The tap model (3.22) is, directly or indirectly, dependent on parameters
such as the velocity v, the tap power σ2

h, and suitable fading statistics de-
scriptors. A correct application of Bayesian theory would take into account
all prior knowledge about these parameters to produce optimal inferences of
ht from measurements of some sort. This is illustrated in Figure 3.4.
However, as indicated by Equation (3.22), such parameters enter the model

in a nonlinear way. This makes the inference problem hard, because each
pdf update as given by Bayes' theorem would generally yield a new type of
pdf. The number of parameters required to describe each new pdf would grow
without limit. Using some kind of intermediate approximation/simpli�cation
step would be crucial for the utility of such a model.
Had the model instead been linear, then, quite remarkably, Bayes' prop-

agation would yield gaussian distributions all the time, keeping the degrees
of freedom constant. I describe this in detail in Chapter 5.
We can �force� the model to become linear by neglecting to propagate the

uncertainties about the �nonlinear� parameters, and instead separate optimal
or suboptimal estimators for the nonlinear parameters from the linear tap
model. These estimators will then occasionally update the linear model with
point estimates of the nonlinear parameters. This is illustrated in Figure 3.5.
How big is the di�erence between the suboptimal model illustrated in Fig-

ure 3.5 and the optimal scheme depicted in Figure 3.4? If the parameter
estimates are very accurate (of low uncertainty), then the suboptimal model
will agree extremely well with the optimal model. In this thesis I will assume
that such accurate point estimates are available.
As is shown in [14], a fading radio channel may be accurately modelled

by an autoregressive moving average (ARMA) model. For the remainder of
this chapter, I will restrict the model used to a general autoregressive (AR)
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Figure 3.5: Schematic illustration of the structure of the sub-optimal tap
estimator/predictor used in the present thesis.

model, which may approximate an ARMA model arbitrary well by making
the model order su�ciently large. However, the modelling principle to be
described is valid for general ARMA models.
A linear AR tap model of order K can be described on transfer function

form:

ht = −a1,tht−1 − a2,tht−2 − . . .− aK,tht−K + ut−1 (3.23)

The process noise ut−1 is zero mean gaussian and independent between time
samples (white). Its variance implicitly determines the variance of the tap ht.
For practical reasons that will be evident in Section 3.5.3, I lag the process
noise one time sample compared to the modelled tap. For the behaviour of
the process ht, this is of no importance since ut is white.
It should also be pointed out that the time variability of the coe�cients

{αk,t} will be much slower than that of the process ht, which makes the task
easier for the stand-alone estimators that provide the coe�cients.
The model (3.23) is actually well capable of representing the prior knowl-

edge that we wish to put into the model. We would have to be in possession
of quite speci�c prior information for it to be inadequate. The gaussian
property of the plant noise will cause also ht to be gaussian. This is well
motivated by the fact that the tap can be seen as the sum of in�nitely many
radio propagation paths. Although we do not know which pdf correctly
represents our state of knowledge about one single path, we know from the
central limit theorem that what we know about the sum of paths is correctly



3.5. Making inferences from observed data 59

represented by a gaussian pdf.
How do we choose the {ak,t} so that it accounts for our prior knowledge

about the channel conditions? Assuming a static surrounding and that we
know the velocity v, the standing wave pattern formed around the mobile
unit is composed of a set of wavelengths having the carrier wavelength as
upper limit. This causes the perceived channel taps to fade with a frequency
no greater than fD = fc · v/c0, where fc is the carrier frequency and c0 is
the speed of light.
The frequencies with which a model allows a tap to fade are given by the

model's doppler spectrum. Taking the z-transform of model (3.23) (skipping
the time index),

H(z) =
z−1

1− a1z−1 + . . . + aKz−K

=
z−1

(1− p0z−1)(1− p1z−1) . . . (1− zK−1z−1)
, (3.24)

allows us to place the poles {pk} so as to correctly represent our prior knowl-
edge about the channel behaviour (The doppler spectrum for normalised
frequencies f , so that −1 < f < 1, is then given by S(f) = |H(j2πf)|2).
The o�-line estimators may now be designed to provide estimates of the

coe�cients {ak,t} or the poles {pk,t} directly, or they may produce estimates
of physical parameters, which implicitly gives the values of {ak,t}. In the
example that will be given here, I use the latter approach and employ a
model that is determined by the vehicular velocity only.
A commonly used fading model is the so called Jakes model. It is de-

rived from the assumption that radio wave scatterers are distributed on the
circumference of a circle around the mobile unit. This produces the Jakes
doppler spectrum4:

SJakes(f) =

{
1√

1−(f/fD)2
|f | < fD

0 otherwise
, (3.25)

which strongly favours frequencies near the maximum doppler frequency fD.
See �gure 3.6(a).

4Normalisation is not important here, since the integral of the doppler spectrum de-
pends on the total �power� of the signal (if we consider the fading channel tap to be a
signal) which varies from case to case. Commonly, the doppler spectrum is normalised
so that the integral evaluates to unity. One then has to add a normalising constant with
value 1/πfD.
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Figure 3.6: Doppler spectra for di�erent models.

Environments such as urban surroundings dominated by streets, in which
sideways scatterers are closer than scatterers located in the direction of move-
ment, will produce a doppler spectrum that is more �at than the Jakes'
spectrum. Estimation and prediction on such models is necessarily more
di�cult than on the Jakes' model, since no single frequency dominates over
any other. As this model represents a kind of �worst case�, I will use it as a
case study.

3.5.2 A �at doppler spectrum

A perfectly �at model, as well as the Jakes' model, would have a doppler
spectrum with a discontinuity at f = ±fD, but this cannot be described by a
linear model such as (3.23). We necessarily need to resort to approximations.
A good candidate is the Butterworth �lter. The power frequency response
for the Butterworth �lter (which corresponds to the doppler spectrum in
channel modelling) is given by

SButterworth(f) =
1

1 + (f/fD)2K
. (3.26)

Of all linear �lters, it is the one that has least amount of ripple in the
passband.
A (continuous-time) Butterworth �lter has poles distributed on a semicircle

around the origin with a radius given by the normalised cut-o� frequency:

pc,k = 2πfD exp
(

j
(K + 2k + 1)π

2K

)
, k = 0..K − 1 (3.27)

Note that the cuto� frequency in the present context is the same thing as
the doppler frequency.



3.5. Making inferences from observed data 61

Discretising a continuous-time �lter to a model with sampling time Ts in-
evitably involves approximations. We may calculate the time discrete model
poles {pk} by directly taking pk = exp(pc,kTs)(this is called the matched

z transform), but this introduces aliasing by repeatedly wrapping the fre-
quency axis around the unit circle. Alternatively, we use the bilinear trans-
formation

pk ≈
1 + pc,kTs/2
1− pc,kTs/2

, (3.28)

which preserves features but distorts frequencies. Here I will use the latter.
Since the bilinear transform causes frequency distortion in the conversion

from the time continuous domain to the time discrete domain, one usually
�prewarps� essential frequencies so that they come out correctly after the
transform. A frequency f is prewarped through

fp.w. =
2
Ts

tan(πfTs) (3.29)

Hence we �nd the poles of a model that represents a �at doppler spec-
trum by calculating the doppler frequency fD = fcv/c0 from the velocity
v, prewarping fD according to (3.29), calculating the continuous-time poles
pc,k from (3.27), and �nally applying the bilinear transformation (3.28) to
calculate the discrete-time model poles {pk}.
The �lter order K determines the rollo� of the �lter (which can be shown

to be −6K dB per octave). See Figure 3.6(b). It is however important not
to make the �lter �anks too steep. The reason is that the strict absence
of frequencies outside −fD < f < fD is true only in a static environment.
In reality, moving objects which surround the mobile unit will cause the
doppler spectrum to spread outside the ±fD limits. For examples of doppler
measurements that illustrate this fact, see [14]. The linear model's inability
to represent a box-shaped doppler spectrum therefore actually turns to our
advantage, since it constitutes a better representation of our prior knowledge.
Note that the di�erence between using a third-order �lter and a fourth-order
�lter is small, and that di�erence gets even smaller as the model order is
increased. As we shall see later, the �lter order a�ects the computational
complexity quite severely. A �lter of order three or four should be adequate
for our purposes.
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3.5.3 State space model

The model (3.23) is easily translated to state-space representation by use of
e.g. the controllable canonical form

xt+1 =


−a1,t −a2,t . . . −aK,t

1 0
. . .

...
1 0


︸ ︷︷ ︸

F

xt +


1
0
...
0


︸ ︷︷ ︸

G

ut

ht =
(

1 0 . . . 0
)︸ ︷︷ ︸

H

xt

(3.30)

The reason for earlier lagging the process noise ut one time sample is now
evident; doing so allows us to construct a state space representation of lowest
possible order.
For several reasons (complexity, stability, ease of �nding process noise co-

variance) it is convenient to have a diagonal F matrix. We construct a
�diagonal form� by diagonalising F by means of eigenvalue decomposition.
Skipping time indices to ease the notation, we have

F = V ΛV −1, (3.31)

where V are the eigenvectors and Λ is a diagonal matrix consisting of the
eigenvalues of V . By constructing new states through xnew = V −1xold and
multiplying (3.30) with V −1 from the left, we have

xt+1,new = Λxt,new + V −1Get

ht = HV xt,new

(3.32)

This means that our new diagonalised form is given by Fnew = Λ, Gnew =
V −1Gold, and Hnew = V Hold.
When we now have the model poles pk, we have only to expand the de-

nominator of (3.24) and insert the resulting {ak} into the state space form
(3.32). It is desirable to avoid having to perform the eigenvalue decomposi-
tion (3.31) every time the model is updated. I will therefore present closed
form expressions for the matrices in the diagonal state space form.
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The eigenvalue decomposition on the companion form turns out to be

Λ =


p0

p1

. . .

pK−1

 , V =


rpK−1

0 pK−1
1 . . . pK−1

K−1
...

...
p0 p1 . . . pK−1

1 1 . . . 1

 ,

(3.33)
where V is a so called Vandermonde matrix.
The inverse V −1 is somewhat more involved. Equation (3.34) shows V −1

for the particular case K = 4.

V −1 =


1

(p0−p1)(p0−p2)(p0−p3) − p1+p2+p3

(p0−p1)(p0−p2)(p0−p3)
1

(p1−p0)(p1−p2)(p1−p3) − p0+p2+p3

(p1−p0)(p1−p2)(p1−p3)
1

(p2−p0)(p2−p1)(p2−p3) − p0+p1+p3

(p2−p0)(p2−p1)(p2−p3)
1

(p3−p0)(p3−p1)(p3−p2) − p0+p1+p2

(p3−p0)(p3−p1)(p3−p2)

p1p2+p3p2+p1p3

(p0−p1)(p0−p2)(p0−p3) − p1p2p3

(p0−p1)(p0−p2)(p0−p3)
p0p2+p3p2+p0p3

(p1−p0)(p1−p2)(p1−p3) − p0p2p3

(p1−p0)(p1−p2)(p1−p3)
p0p1+p3p1+p0p3

(p2−p0)(p2−p1)(p2−p3) − p0p1p3

(p2−p0)(p2−p1)(p2−p3)
p0p1+p2p1+p0p2

(p3−p0)(p3−p1)(p3−p2) − p0p1p2

(p3−p0)(p3−p1)(p3−p2)

 (3.34)

For general matrix sizes 0 ≤ i, j ≤ K − 1, the individual elements of the
respective matrices are

Λ[i, j] = piδij

V [i, j] = pK−1−i
j

V −1[i, j] = (−1)j

∑
(
∏

All combinations of ({pk}\ri))∏
k 6=i(pi − pk)

(3.35)

Now we just have to carry out the appropriate matrix multiplications to
formulate the diagonal form (3.32). This gives

F =


p0

p1

. . .

pK−1

 , G =


1

(p0−p1)(p0−p1)···(p0−pK−1)
1

(p1−p0)(p1−p2)···(p0−pK−1)
...
1

(pK−1−p0)(pK−1−p1)···(pK−1−pK−2)


H =

(
pK−1
0 pK−1

1 · · · pK−1
K−1

)
(3.36)
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The diagonal K × K-matrix F and the vectors G and H now constitute
the single tap model that we sought for. To complete the model it is also
necessary to compute the variance for the process noise ut, so that the model
generates the variance of ht that we desire (just as with the velocity and the
fading statistics, this variance is assumed to be given by estimators external
to the linear model). This problem will however have to be considered in
a larger context, where the covariance between di�erent taps are taken into
account. I therefore postpone the issue of determining the process noise
variance to the next chapter.
Finally, it is worth repeating that the above derivation of the model for

one (time-frequency) tap requires us to know the values of a few parameters
exactly. These are the variance of the tap, the velocity of the mobile unit,
and suitable descriptors of the fading statistics (here represented as the poles
{pk}). Needless to say, we cannot know them exactly. The correct Bayesian
way would be to take into account also the uncertainties that we have about
the above parameters. Unfortunately they would enter the model equations
nonlinearly (for the case of the velocity, this is indicated by Eq. (3.22)),
which would e�ectively terminate our attempts to infer the channel taps.
It is therefore crucial that the algorithms that provide our model with

estimates of above parameters, operates with such an accuracy that the
uncertainties are virtually zero.

3.6 Summary

The present chapter discusses the construction of a state space model for
one single fading tap. It is assumed that o�-line estimators provide a linear
tap model with highly accurate estimates of the model parameters. These
parameters may be the coe�cients or poles and zeros of the linear model, in
which case the state space representation is constructed according to (3.36)
(the example given here is for an AR model, but the structure generalises
straightforwardly also to ARMA models).
The estimated parameters may also be of a more direct physical character.

In this chapter a very cautious model is suggested, which assigns approxi-
mately the same probability to all frequencies of fading up to the maximum
doppler frequency. The algorithm for �nding the poles for this model is given
by the following steps:

• Achieve an estimate of high accuracy of the velocity v.

• Calculate the doppler frequency : fD = fcv/c0, where fc=carrier fre-
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quency and c0=speed of light.

• Calculate the discrete time (normalised) doppler frequency : ΩD =
2πfDTs.

• Calculate the prewarped time continuous doppler frequency : fD,p.w. =
2/Ts tan(πfDTs).

• Calculate the Butterworth poles : pc,k = 2πfD,p.w. exp jθk whit argu-
ments θk = π(2k + 1 + K)/2K, k = 0 . . .K − 1.

• Make a bilinear mapping of the poles to the discrete time domain :
pk = (2/Ts + pc,k)/(2/Ts − pc,k).





Chapter 4
The modelling of frequency-selective

channels for many users

Chapter 3 was devoted to the construction of a model for a single fading
tap, either subcarrier channel hn,t in a multicarrier system, or an impulse
response tap hm,t in a single carrier system. A linear model for a tap h,

xt+1 = Fxt + Gut,

ht = Hxt,
(4.1)

was conceived under the assumption that optimal or suboptimal estimators
of parameters such as the mobile unit velocity, the tap power, and suitable
descriptors of the fading environment (for example in the form of a doppler
spectrum), are available and ready to update the linear model when condi-
tions change.
In this chapter I generalise the single tap model to represent general mul-

tiuser single carrier and multicarrier systems. As before, a linear model is
feed with certain parameter estimates from �external� estimators. It is im-
portant to realise that this model is suboptimal and cannot lead to optimal,
Bayesian inferences unless these parameter estimates are extremely accurate.
The actual algorithm used for conducting the inferences � the Kalman �lter
� is introduced in Chapter 5.
To allow for e�cient inference in later chapters, state space models are

used here. A problem that usually faces the state space model constructor
is the determination of the process noise covariance, given that the actual
process covariance is known. For the model structures considered here, I
give an explicit formula for determining this covariance.

67
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Before I delve into the details of modelling the channels for multiple users,
a few words on the notation is appropriate. The matrices used in this chap-
ter will be of block diagonal type. There will be a hierarchical structure
built into the models that we are about to construct, the levels being, in
ascending order, the tap/subcarrier level, the user level, and the time level.
A matrix representing some part of our state of knowledge about a speci�c
tap therefore needs to be identi�ed by indices for all three of these levels,
whereas the corresponding �entire system� matrix only needs the time index.
However, since all matrices in a model refer to the same time instant, for
most cases the time index will be dropped to reduce notational clutter. The
superscript (t) will be used to indicate the tap/subcarrier level, and (u) will
indicate the user level. Hence I will use the notation

X
(t)
n,u Matrix referring to the time-frequency tap n for user

u

X
(t)
m,u Matrix referring to the impulse response tap m for user

u

X
(u)
u Matrix referring to all taps for user u
X Matrix referring to the entire system

Also, when we look at downlinks (that is, the link from the base station to
the mobile unit), the inference will be carried out on the mobile unit side.
We may therefore drop also the u index in the downlink case, since there is
only one user to consider.
Throughout this thesis, I assume the use of only one antenna at both the

transmitter and receiver. The formalism is however equally valid for multiple
antennas, since each antenna may be look upon as an individual �user�,
competing for resources against antennas at other users but also against
other antennas at the same user.

4.1 General system model

Thus far I have only described how to correctly represent the knowledge that
we have about the behaviour of one single tap. In a communication system
we will experience the in�uence from many taps at the same time, how many
and in which way depending on which kind of system we are examining.
Representing several taps is generally accomplished by constructing a block-
diagonal state space. To exemplify, assume a one-user system (so that the
u index may be dropped). A convenient state space representation of all its
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taps would be

xt+1 =


F

(t)
1

F
(t)
2

F
(t)
3

. . .


︸ ︷︷ ︸

F

xt +


G

(t)
1

G
(t)
2

G
(t)
3

. . .


︸ ︷︷ ︸

G

ut

ht =


H

(t)
1

H
(t)
2

H
(t)
3

. . .


︸ ︷︷ ︸

H

xt

(4.2)

Each triplet of blocks F (t), G(t), and H(t) is a model constructed in accor-
dance with Chapter 3, and ht is now a vector holding all modelled taps.
The block-diagonal forms introduced above will be so commonly employed

that we need a compact notation. In the case where all blocks are the same
we could use the Kronecker product, here indicated by ⊗, in combination
with the identity matrix. Hence would a matrix consisting of �ve identical
blocks be denoted by I5 ⊗X. Our needs are more general, so I will use the
notation

diag(Xl, l = 1..L) ,


X1

X2

. . .

XL

 (4.3)

to indicate a general L-block matrix. In many cases the number of blocks
will be obvious, so it will su�ce to use the short notation

diag(Xl) , diag(Xl, l = 1..L) (4.4)

It is now a simple matter to construct a model for the fading taps of U
users having channels of M fading taps each:

xt+1 = diag(diag(F (t)
m,u,m = 1..M), u = 1..U)xt

+ diag(diag(G(t)
m,u,m = 1..M), u = 1..U)ut

= Fxt + Gut

ht = diag(diag(H(t)
m,u,m = 1..M), u = 1..U)xt

= Hxt

(4.5)
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To be able to make inferences about the taps h, we need some kind of
measurements, but before introducing these, we need to make sure that the
elements of the vector h are scaled correctly.

4.1.1 The process noise covariance

Recall that we require estimators of a number of parameters to operate beside
the linear model, feeding it with new estimates whenever conditions change.
Among those are the tap variances (or tap powers) {σ2

m}. Actually, what
we need is the entire covariance matrix Rh for the taps. However, often one
assumes that the taps fade independently, and so will Rh be diagonal with
the {σ2

m} along its diagonal. In any case, henceforth I will assume Rh to be
known.
The model (4.5) is �driven� by the white (generally vector valued) process

noise u. The covariance Q for the process noise need to be adjusted so
as to produce the correct Rh. For a general model, this is an extremely
di�cult problem. However, the special case considered here possesses special
properties that yields a direct solution. We use the fact that

• the vectors h and u have the same dimensions,

• the matrices G and H are block diagonal, and

• the matrix F is diagonal.

Calculating the covariance matrices of h and x from (4.5), we have

Rh = HΠH∗, (4.6)

where Π is the covariance of the states x solving the Lyapunov equation

Π = FΠF ∗ + GQG∗ (4.7)

Since all matrices are block diagonal the Lyapunov equation can be written
on block form: Π1,1 Π1,2 · · ·

Π2,1 Π2,2
...

. . .

 =

 F1Π1,1F
∗
1 F1Π1,2F

∗
2 · · ·

F2Π2,1F
∗
1 F2Π2,2F

∗
2

...
. . .

+

 q1,1G1G
∗
1 q1,2G1G

∗
2 · · ·

q2,1G2G
∗
1 q2,2G2G

∗
2

...
. . .

 , (4.8)
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where the {qm,n} are the elements of Q.
Since F is diagonal, we may rewrite the product FΠF ∗ as

FΠF ∗ = Π⊗ ff∗ (4.9)

Here, f is a vector holding the diagonal elements of F , and ⊗ is the elemen-
twise multiplication operator. We may now solve the Lyapunov equation:

Π = GQG∗ � (1− ff∗), (4.10)

where � denotes elementwise division. The symbol 1 stands for a matrix in
which all elements are ones.
Finally, using (4.6) and (4.10) and the fact that also H is block diagonal,

we have the element (m,n) of Rh:

[Rh]m,n = qm,nHm(GmG∗
n � (1− fmf∗n))H∗

n, (4.11)

and so we may calculate Q in one fell swoop:

Q = Rh � H(G1G∗ � (1− ff∗))H∗ (4.12)

We will study several di�erent types of systems, but the process noise co-
variance can always be calculated according to (4.12).

4.1.2 The measurements

We now add the measurement equation, which explicitly expresses the form
in which we receive new information. Generally, the measurements con-
sist of transmitted symbols or some transformation of transmitted symbols,
distorted by the channel (which is the centre of attention here). The mea-
surements also contain an additive element of noise. Hence we have a mea-

surement equation that typically is

yt = ϕtDht + vt = ϕtDHt︸ ︷︷ ︸
Ct

xt + vt = Ctxt + vt, (4.13)

although the exact form varies between systems as we shall see shortly. The
measurement yt may be a scalar or a vector, depending on system design.
Due to pulse shaping and/or a sparse impulse response, the energy contri-
bution from the taps may be distributed over several samples. The matrix
D is a mapping from the vector of taps, h, to the actual impulse response
caused by the tap delays and the pulse. The structure of the regressor ma-
trix ϕt depends on which kind of system we are looking at. We will study
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several di�erent structures below. However, in order for us to make inference
from the equations, ϕt needs to be known (otherwise we have to carry out
a marginalisation which will take us into the nonlinear domain). We will
therefore make the restriction that the �lter will only operate on pilot sym-

bols. Pilot symbols are symbols known to both sender and receiver (hence
they do not carry any information). It is a delicate problem to balance the
ratio

pilot symbol rate

payload (information) symbol rate

for an optimal trade-o� between system throughput and channel prediction
performance.
To aid the �lter, we will thus scatter pilot symbols over the radio resource.

The measurement signal will be designed in such a way that it only �sees�
pilot symbols.
The measurement noise is caused by thermal noise and by inference from

other systems or from adjacent cells in the same system. In most cases it
will be proper to assign independence between the noise contributions on the
di�erent components of the measurement vector. In these cases we let the
noise covariance matrix R be

R = σ2
nI, (4.14)

with the noise power σ2
n being given by an estimator operating outside of the

linear model. In some cases a nondiagonal noise covariance matrix may be
more appropriate. The o�-line estimator then needs to estimate the entire
matrix. This is discussed in Section 4.6.
We now have the general tools for constructing speci�c system models. To

summarise, we want to construct a model

xt+1= Fxt + Gut, var(ut|I)= E(utu
∗
t |I) = Q

ht= Hxt

yt= ϕtDHxt + vt = Cxt + vt, var(vt|I)= E(vtv
∗
t |I) = R

(4.15)

The matrices F , G, and H are built from blocks constructed according to
Chapter 3. The noise covariance R was discussed above and the covariance
matrix Q is set according to (4.12). It remains to determine the tap covari-
ance matrix Rh, the pilot information ϕt, and the energy distribution matrix
D. They are all system speci�c, and we will therefore commence to study
speci�c systems. For later convenience, we would also like to summarise all
matrices between the states x and the measurements y into one single output
matrix C so that

yt = Ctxt + vt. (4.16)
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Di�erent systems will require the construction of matrices of di�erent sizes
and structures, as we will see presently. All matrix sizes and structures are
summarised in Tables 4.1 and 4.2.

4.2 The TDMA downlink

We begin by looking at single carrier systems. Having just one carrier means
that any one user utilises the whole systems bandwidth during transmission.
The bandwidth allocation need not be exclusive. For example, Code Division
Multiple Access (CDMA) is a technique where many users share the same
bandwidth at the same time. In this thesis I will however assume that single
carrier systems use exclusive allocation. Hence we regard time as the only
resource and slot the signal into time frames. The purpose of prediction
is then to provide the centralised scheduler with foundations for taking the
right decisions. A time-slotted multiuser system is called a Time Division

Multiple Access (TDMA) system. First we look at the downlink, which is the
access link from the base station to the mobile unit. The estimator/predictor
then resides on the mobile terminal, and from its perspective we have a single
user system.
As always, we construct a block diagonal model:

xt+1 = diag(F (t)
m )xt + diag(G(t)

m ),

ht = diag(H(t)
m )xt,

yt = ϕtD diag(H(t)
m )xt + vt,

(4.17)

where we have �xed the number of taps in the model to M .
Estimators residing outside the linear model provide the terminal velocity

(maximum doppler frequency) and doppler spectrum needed to construct

the blocks {F (t)
m , G

(t)
m ,H

(t)
m } (see Chapter 3).

We have also assumed that estimates of the tap variances {σ2
m} are avail-

able. Assuming that the taps fade independently, we set

Rh = diag(σ2
m,m = 1..M), (4.18)

and determine Q from (4.12). The noise covariance matrix R is set according
to Section 4.1.2.
Along with estimates of the tap powers we will also have estimates of the

delays {δm} of the respective taps. We also know the pulse shape p(t) used
by the system. Hence we can create a mapping from the M -vector of tap
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values, to the actual impulse response:

D =


p(0− δ0) p(0− δ1) · · ·

p(Ts − δ0)
...

p(2Ts − δ0)
...

p((N − 1)Ts − δ0) p((N − 1)Ts − δ1)

 (4.19)

Here, Ts is the symbol time. Apart from in�uencing the matrix D, the
symbol time Ts also a�ects the tap model as described in Chapter 3. The
symbol time is generally much shorter in a TDMA system than in an OFDM
system. Note that the pulse p(t) is time-shifted so that p(t) = 0 for t < 0.
The number N must be chosen so that the total impulse response duration
NTs becomes longer than the duration of the pulse p(t) plus the delay of the
last tap in the model (δM−1).
We now have

Channel impulse response = Dht,

in which are included both transmitter and receiver �lters. The impulse
response should then be convoluted with the transmitted pilots to produce
the received signal yt (save the noise).
The measurement yt does not have to be scalar; we may also choose to

collect data blockwise. To be general, let us say that we collect W data
points at a time. Then N +W − 1 consecutive pilots need to be transmitted
in the corresponding time slot in order for the regressor matrix ϕt to be
known (see Figure 4.1). Denoting the pilot symbols by {s}, we set

ϕt =


s0 s−1 · · · s2−N s1−N

s1 s0 s−1 · · · s2−N

s2 s1 s0 s−1 · · ·
...

. . .
. . .

. . .
. . .

sW−1

 , (4.20)

which is Toeplitz and therefore performs convolution.
The TDMA downlink model is now complete, and the output matrix in

(4.16) is

C = ϕtDH, (4.21)

with dimension W × KM , where K is the tap model order, and H =
diag(Ht

m) in accordance with (4.17).



4.3. The TDMA uplink 75
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N+W-1 symbols t

Figure 4.1: Example of pilot distribution in a single carrier system.

4.3 The TDMA uplink

Modelling the uplink � the link from the mobile terminal to the base station
� may seem a harder problem than modelling the downlink. It is however
easily accomplished by means of our block-diagonal structures. Extending
the downlink model by one level, we get

F = diag(diag(F (t)
m,u,m = 1..M), u = 1 . . . U),

G = diag(diag(G(t)
m,u,m = 1..M), u = 1 . . . U),

H = diag(diag(H(t)
m,u,m = 1..M), u = 1 . . . U)

(4.22)

The covariances Q and R are set as before, with the diagonal tap covariance

Rh = diag(diag(σ2
m,u,m = 1..M), u = 1..U), (4.23)

if the impulse response taps fade independently, and the energy distribution
matrix is block-diagonal:

D = diag(Du, u = 1..U), (4.24)

where Du is the impulse response matrix for user u, chosen as (4.19).
It is however not clear how the pilots should be distributed. One could cer-

tainly choose to transmit pilots exclusively, so that users take turns in send-
ing pilots. This would impede heavily on the system performance though,
since only one user would send pilots at any one time, while the other users
would have to be quiet.
Instead I will here suggest the use of overlapping pilots, meaning that all

users transmit pilots at the same time (the same time-frequencies in OFDM
systems). Designing the measurement equation to account for overlapping
pilots is straightforward:

ϕt = [ϕ1,t ϕ2,t . . . ϕU,t] , (4.25)

which is a W × KNU matrix. Here, ϕu,t is the pilot matrix for user u,
designed according to (4.20). Note that the measurement equation still has
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Figure 4.2: Example of pilot distribution in an OFDM system.

dimension W , since the contribution from all users add together. The total
W ×KMU output matrix in (4.16) for the TDMA uplink is

C = ϕtDH, (4.26)

with ϕt, D, and H given by (4.25), (4.24), and (4.22), respectively.

4.4 The OFDM downlink

Turning to multicarrier multiuser systems, we now study the OFDM down-
link. Contrary to the TDMA systems, we here consider both the time domain
and the frequency domain as resources to be distributed among users. The
total radio resource can be viewed as a grid, each element holding one time-
frequency symbol, where time runs horisontally (divided in OFDM symbols),
and frequency runs vertically (divided into subcarriers). Pilot symbols are
distributed over this grid according to some prede�ned pattern. This is il-
lustrated in Figure 4.2. We will make sure that the measurement equation
will only take into consideration those time-frequency slots that hold pilots.

In an OFDM system, the received baseband signal is collected in blocks
after which the cyclic pre�x � which is at least as long as the channel im-
pulse response � is cut away. The remaining part of length N is fourier
transformed. As we saw in Section 3.3, this is equivalent to sampling the
output of 2N cross correlators. It should be noted that, whereas N in the
TDMA systems corresponded to the length of the channel impulse response,
in the OFDM systems N is the block length. It should be set to a value
corresponding to a considerably longer period than the maximum impulse
response length to minimise the relative overhead caused by the cyclic pre�x.
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De�ne the N ×N fourier matrix

F =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

1 ωN−1 ω2(N−1) ω(N−1)(N−1)

 , (4.27)

where ω = e−2πi/N . The inverse fourier transform is simply given by its
conjugate transpose, so that

F−1 = F∗. (4.28)

Now de�ne as the partial fourier matrix a number W of rows from the fourier
matrix. For example, we could choose

FW =
1√
N


1 ω105 ω210 · · · ω105(N−1)

1 ω110 ω220 · · · ω110(N−1)

...
...

...

1 ω100+5W ω(100+5W )×2 · · · ω(100+5W )(N−1)

 , (4.29)

where I have made the speci�c choice to start at row 105 and then pick every
�fth row. In the way the partial fourier matrix will be used, this corresponds
to taking the �rst measurement at the 105th subcarrier in a system where
pilots are located at every �fth subcarrier. To better assess the properties
of the partial fourier transform, note that FWF∗

W = I, and that F∗
WFW is

the linear operation that cancels out all frequencies in an N -vector, except
those frequencies represented by the rows of FW .
OFDM systems may be modelled in a few di�erent ways. Since we will

use near-Bayesian algorithms for conducting the inferences, system perfor-
mance will be independent of this choice. The only signi�cant reason for
choosing one model over another is numerical complexity, an issue that will
be addressed in the next chapter.

4.4.1 Model in time, measure in frequency

Identically to the TDMA downlink case, set

xt+1 = Fxt + Gut = diag(F (t)
m )xt + diag(G(t)

m )ut,

ht = Hxt = diag(H(t)
m )xt,

(4.30)
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and set Q according to (4.12) (the tap covariance is still diagonal as given by
Equation (4.18)). Note that ht is still the same vector as in (4.17), holding
time-domain impulse response taps.
The energy distribution matrix D is chosen as (4.19). If we assume, ide-

alistically, that the pulses p(t) have zero crossings at all integer multiples
of the symbol time Ts except for its peak, and that the duration {δm} of
the impulse response taps are multiple integers of the symbol time, then all
the energy from any given tap in the impulse response arrive at one single
sample and we may set

D =



1 · · · · ·
· · · · · ·
· 1 · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · 1 · · ·
...

...
...


, (4.31)

where the symbol · indicates a zero and the position of the ones is determined
by the tap delays {δm}, analogous to (4.19). Note that D is dimensioned so
that it accounts for the entire block of length N . Since the actual impulse
response will be much shorter than this, a large portion of the lower rows of
D will all be null.
It should also be noted that it is common to assume that rectangular pulses

are used in OFDM. This however refers to the pulses used in each separate
subcarrier. These pulses are rectangular in the sense that the harmonic
waveform transmitted over a subcarrier starts suddenly at t = 0 and ends
suddenly at (N + NCP Ts), where NCP is the number of samples in the
cyclic pre�x. This generates spectral sidelobes, but the bandwidth of each
subcarrier is so small compared to the total system bandwidth that this does
not matter. The �system� pulse shape p(t), corresponding to a sampling
rate that is N +NCP times higher than Ts, will however determine the total
system bandwidth and should therefore be selected carefully.
In OFDM, the frequency-domain measurements yt consist of W parallel

subcarriers in�uenced by pilots. How to distribute the pilots is a matter for
the system designer to decide. Once this is done, the partial fourier matrix
FW is set according to (4.29). Since we have the channel impulse response
Dht, the time-frequency taps on these subcarriers take the value FW Dht.
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Multiplying elementwise with the frequency-domain pilots

ϕt =

 s0

. . .

sW−1

 (4.32)

gives the measurement equation

yt = ϕtFW Dht + vt, (4.33)

so that the output matrix C in (4.16) for the OFDM downlink modelled in
time and measured in frequency is

C = ϕtFW DH. (4.34)

An important special case

All matrices involved in the ongoing discussion are time variant. The pilot
matrix ϕt is however varying on a much faster time scale than the rest of the
matrices; whereas the latter change when the fading statistics or the velocity
changes � which happens relatively seldom compared to the sampling rate
of the measurements � ϕt will generally change at every sample (this is
indicated by the subscript t in (4.32)). Keeping ϕt constant for long periods
would cause spectral spikes, which would make it di�cult for ampli�ers to
process the signal without introducing distortion.
Still, a time invariant model (over a period spanning several measurements)

is to prefer for complexity reasons, as we shall see in the forthcoming chapter.
It is therefore interesting to note that we may take advantage of the fact
that ϕt is quadratic. If we let all pilots have modulus one, for example we
could let them be QPSK symbols, then ϕ−1

t = ϕ∗t . If we now multiply the
measurement equation with ϕ∗t from the left, we get

ϕ∗t yt = FW DHxt + vt (4.35)

Thus we may replace the measurement yt with the �adjusted measurement�
ϕ∗t yt. The output matrix then becomes (nearly) time invariant:

C = FW DH (4.36)

We also need to adjust he noise covariance matrix:

R 7→ ϕ∗t Rϕt (4.37)
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4.4.2 Model in frequency, measure in frequency

Instead of modelling the M taps in the channel impulse response, we may
directly model the W time-frequency taps that we are actually interested in:

xt+1 = diag(F (t)
w , w = 1..W )xt + diag(G(t)

w , w = 1..W )ut,

ht = diag(H(t)
w , w = 1..W )xt,

(4.38)

where ht now represents W taps at the OFDM symbol with time index t.
The individual taps are still modelled as described in Chapter 3, but we have
to reconsider the value of the tap covariance matrix Rh. Since the mapping
from the time taps to the time-frequency taps is given by FW D, we have

Rh = FW D × diag(σ2
m,m = 1..M)×D∗F∗

W (4.39)

The process noise covariance Q is then calculated from (4.12) and (4.39).
The measurement equation is straightforward since we now have the time-

frequency taps straight from the model:

yt = ϕtht + vt = ϕtHxt + vt (4.40)

Evidently, the output matrix in (4.16) for the OFDM downlink modelled
and measured in frequency is

C = ϕtH, (4.41)

which has dimensions W ×KW , where K is the tap model order.
As in the previous section, we may use the fact that ϕt is square to make

the output matrix time-invariant. We then have

C = H. (4.42)

4.4.3 Model in time, measure in time

If the pilots are distributed in such a way that every time-frequency symbol
in a particular OFDM symbol is a pilot, then that entire OFDM symbol is
known to the receiver. We may then omit the fourier transform, and instead
regard the received block as a known time-domain signal of N samples, and
then model the channel as we did for the TDMA downlink. We denote this
known time domain signal

[s0 · · · sN−1] (4.43)
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(note that {s} are the transformed time-frequency pilots) and construct the
pilot matrix ϕt:

ϕt =


s0 sN−1 · · · sN−NCP

payload symbols
s1 s0 sN−1 · · · sN−NCP

payload symbols
...

. . .
. . .

. . .

sN−1 sN−2 · · · s0

 ,

(4.44)
where NCP is the number of samples in the cyclic pre�x. It may seem
troublesome that unknown payload data enter the pilot matrix. This is
however not a problem since there is at most NCP non-zero elements in the
impulse response, so that the last N −NCP rows of the energy distribution
matrix D are null. The payload symbols will therefore not in�uence the
measurements.
Hence we may either cut away the last N − NCP columns of ϕt and the

last N −NCP rows of D, or make it simple and set

ϕt = Circulant([s0, sN−1, . . . , s1]), (4.45)

where Circulant(x) is a circulant square matrix whose �rst row is x. I will
assume the latter, to keep consistency in the matrix dimensions, although it
will introduce some redundant numerical overhead.
In (4.44) I have chosen to measure the whole OFDM symbol as one block.

This means that we keep the sampling frequency of the original OFDM
system (sample once per OFDM symbol), but that the dimensionality is
huge (N). This will inevitably generate a huge numerical complexity. But
just as in the TDMA downlink, we are perfectly free to increase the sampling
frequency and at the same time decrease the block size. At the extreme end,
we would have a scalar measurement sampled at the full system sampling
rate. Such an approach may very well reduce the total numerical complexity
of the inferential process considerably. Numerical complexity is studied in
Chapter 5.
The state space model and the measurement equation are now constructed

exactly as for the TDMA downlink. Again, we have

C = ϕtDH. (4.46)

Sparse pilots

In the above it was assumed that the measured signal during an interval of
one OFDM symbol's length consists of only known pilots. In many system
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one would prefer to interleave pilots with payload data, so that, say, every
fourth subcarrier is a pilot. Seemingly, one would then have to perform the
following steps in order to remove the (unknown) in�uence from the payload
symbols:

• Transform the received time domain signal to the frequency domain
(FFT).

• Null out all symbols but the pilot symbols.

• Transform back to the time domain (IFFT).

Fourier transforms are expensive, so this may discourage anyone from using
OFDM time modelling and measuring. A closer examination will however
reveal that the above steps are easier to carry out than one might expect.
Remember that the partial fourier matrix (4.29) may be used to �lter out

certain frequencies by forming the product F∗
WFW . Now we construct a

particular kind of a partial fourier matrix, where the spacing between the
frequencies are N/W , so that its row covers all the N frequency bands. I
denote this matrix by F̄W . Examining the product F̄∗

W F̄W , we �nd

F̄∗
W F̄W =

W

N



W︷ ︸︸ ︷
1 · · · · ·

· 1
. . . ·

...
. . .

. . . ·
· · · 1

1 · · · · ·

· 1
. . . ·

...
. . .

. . . ·
· · · 1

· · ·

1 · · · · ·

· 1
. . . ·

...
. . .

. . . ·
· · · 1

1 · · · · ·

· 1
. . . ·

...
. . .

. . . ·
· · · 1

· · ·

...
...

. . .



, (4.47)

which I formalise with the following theorem:

Theorem 1 F̄∗F̄ is a band matrix where the bands are separated by W
elements and the band elements all have the value W/N .

Proof. Let F̄W be the partial fourier matrix with spacing N/W between
each row, so that its elements are given by

F̄W [m, n] = ωmnN/W /
√

N, 0 ≤ m < W, 0 ≤ n < N, (4.48)
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and ω = exp(−2πi/N). Note that

W−1∑
w=0

ωwcN/W =
W−1∑
w=0

exp(−2πiwc/W ) =

1− exp(−2πic)
1− exp(−2πic/W )

= 0, c ∈ Z but c/W /∈ Z (4.49)

If c/W ∈ Z, then
W−1∑
w=0

ωwcN/W = W (4.50)

The element (m, n) of F̄∗F̄ now evaluates to

(F∗F)[m,n] =
1
N

W−1∑
w=0

ωwmN/N−wnN/W =

W−1∑
w=0

ωw(m−n)N/W =
{

W/N if (m− n)/W ∈ Z
0 otherwise

(4.51)

What does this mean? It means that in a system in which the pilot fre-
quency spacing is N/W , all we have to do to rid the received N -block yt of
the in�uence from payload, is to form the product

F∗
WFW yt, (4.52)

and this simply amounts to form a new time-domain signal where each ele-
ment is a sum of every W :th element in the originally received block. Since
we then remove every in�uence from the payload data, we may use this new
signal as measurement signal.

4.5 The OFDM uplink

Extending the OFDM downlink model to a representation of the uplink,
where the channels from U users are simultaneously tracked, is done by
following the same convention as we did for the TDMA systems. By adding
a level, we get

F = diag(F (u)
u , u = 1 . . . U),

G = diag(G(u)
u , u = 1 . . . U),

H = diag(H(u)
u , u = 1 . . . U),

(4.53)
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where the models F
(u)
u , G

(u)
u , and H

(u)
u for the individual users are given by

Section 4.4.
The partial fourier matrix, when needed, is constructed in the same straight-

forward way:

FW = IU ⊗FW,signle user, (4.54)

where ⊗ here represents the Kronecker product. This special case can be
used instead of diag(· · · ), since there is no reason for the individual blocks to
di�er. Note that the dimension of FW is now WU ×NU . The subscript W
thus indicates the property of each block, not the dimension of the matrix.
The covariances Q and R are set as before, with the diagonal tap covariance

Rh = diag(Rh,u, u = 1..U), (4.55)

and the impulse response matrix is block-diagonal:

D = diag(Du, u = 1..U), (4.56)

where Rh,u and Du are the respective matrices for user u.
The question of how to distribute the pilots for the di�erent users is more

or less open-ended. We could allocate exclusive time-frequency locations for
each user, in which only one user transmits symbols and everyone else is
quiet. As previously noted, this scheme is however very costly in the respect
that a lot of resources are spent on pilots. Nevertheless, if we choose to take
that approach, each user will in e�ect experience a one-user system which
means that the system representation for the uplink will be the same as that
for the downlink.
Another approach is to let all users transmit pilots at the same time-

frequency locations (overlapping pilots). The pilot matrix is then constructed
from stacking the pilot matrices from the individual users:

ϕt = [ϕ1,t ϕ2,t . . . ϕU,t] , (4.57)

As before, the output matrix C is equal to ϕtFW DH if we model in time
and measure in frequency, ϕtH if we model in frequency and measure in
frequency, or ϕtDH if we model in time and measure in time.

4.6 Parameter estimation

I close this chapter with brie�y discussing how to produce the �external�
parameter estimates needed by the linear model.
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4.6.1 Frequency o�set

Throughout this thesis I assume that the time and frequency synchronisation
is perfect. While timing is more or less straightforward to recover based on
pilot sequences, frequency synchronisation requires more e�ort. A Bayesian
approach to frequency synchronisation can be found in [15].

4.6.2 The mobile unit velocity

Since there is a direct relationship between the velocity and the maximum
doppler frequency, velocity estimation amounts to estimating the doppler
spread/doppler shift of a pilot sequence. This is most simply accomplished
if the pilot sequence is a steady tone. The estimation algorithm can be
primitive; a simple FFT-based estimator will probably su�ce to produce a
very accurate estimate. A component of the frequency shift may be due to
drifting oscillators, but the �virtual velocity� induced by this phenomenon
should be considered just as seriously as the real velocity. There is no need
to discriminate between the two.

4.6.3 The noise power and the noise covariance matrix

Assuming additive white gaussian noise, the noise power σ2
n is most easily

estimated by measuring the channel during a short period of radio silence.
Such periods will naturally impede on the total system performance, but
would on the other hand appear rarely, since measurement noise statistics is
expected to vary slowly.
Taking N measurements D = {yt} over a silent period, we would then have

E(σ2
n|DI) =

∫ ∞

0
σ2

nP(σn|I)
P(D|σnI)
P(D|I)

dσn =∫∞
0 σ2

nσ−1
n (2πσ2

n)−N/2 exp(−Ny2/2σ2
n)dσn∫∞

0 σ−1
n (2πσ2

n)−N/2 exp(−Ny2/2σ2
n)dσn

=
Ny2Γ

(
N
2 − 1

)
2Γ
(

N
2

) , (4.58)

where I have used Je�rey's prior and assigned Ny2 =
∑

y2
t . Also, N > 2 is

needed for the integral to converge. If N/2 ∈ N we have

E(σ2|DI) =
Ny2(N/2− 2)!

2(N/2− 1)!
=

N

N − 2
y2 ≈ y2, (4.59)

which should be quite expected.
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As noted in Section 4.1.2, there may be circumstances under which the
entire noise covariance matrix will have to be estimated. This is not all
that trivial, especially since one then needs to consider the assignment of a
prior distribution on the set of all non-negative hermitian matrices. For a
comprehensive treatise on this subject, see [16].
We may however note that we here require the estimate to be extremely ac-

curate. This means that the prior does not play a crucial part in the estima-
tion process; the data needs to produce a sharp likelihood, which renders any
uninformative prior irrelevant. We therefore seek the maximum-likelihood of
the covariance matrix in a zero-mean, generally multidimensional gaussian
distribution. It can be shown (see e.g. [17]) that this estimate is given by

1
N

N∑
n=1

yny∗n, (4.60)

where N is the number of (vector-valued) samples yn taken over a silent
period.

4.6.4 The power delay pro�le

The power delay pro�le is easily and near-optimally estimated from a known
transmitted sequence; correlating the received signal with the pilot sequence
produces an estimate of the channel impulse response. Repeating the mea-
surement several times over a short time period will naturally improve the
estimate.



R ϕt FW D H F G Q/Rh

TDMA downlink W×W W×N - N×M M×KM KM×KM KM×M M×M

OFDM downlink,
t-model, t-meas.

W×W W×N - N×M M×KM KM×KM KM×M M×M

OFDM downlink,
t-model, f-meas.

W×W W×W W×N N×M M×KM KM×KM KM×M M×M

OFDM downlink,
f-model, f-meas.

W×W W×W (W×N) (N×M) W×KW KW×KW KW×W W×W

TDMA uplink W×W W×NU - NU×MU MU×KMU KMU×KMU KMU×MU MU×MU

OFDM uplink,
t-model, t-meas.

W×W W×NU - NU×MU MU×KMU KMU×KMU KMU×MU MU×MU

OFDM uplink,
t-model, f-meas.

W×W W×WU WU×NU NU×MU MU×KMU KMU×KMU KMU×MU MU×MU

OFDM uplink,
f-model, f-meas.

W×W W×WU (WU×NU) (NU×MU) WU×KWU KWU×KWU KWU×WU WU×WU

Table 4.1: Summary of matrix dimensions used in di�erent systems. The
matrices are listed according to causality, with matrices associated with the
process noise to the right, and matrices associated with the measurements
to the left. Adjacent matrices therefore have matching dimensions. Paren-
thesised matrices are associated with the process noise and should therefore
be thought of as being located to the far right.
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R ϕt FW D H F G Q/Rh

TDMA downlink diag.
full

(Toeplitz)
-

nearly full
or sparse

bl.diag. diag. bl.diag. diag.

OFDM downlink,
t-model, t-meas.

� � - � � � � �

OFDM downlink,
t-model, f-meas.

� diag. full � � � � �

OFDM downlink,
f-model, f-meas.

� � � � � � �
full

(hermit.)

TDMA uplink � full - bl.diag. � � � diag.

OFDM uplink,
t-model, t-meas.

� � - � � � � �

OFDM uplink,
t-model, f-meas.

� sparse bl.diag. � � � � �

OFDM uplink,
f-model, f-meas.

� � � � � � �
full

(hermit.)

Table 4.2: Summary of matrix structures used in di�erent systems.
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Chapter 5
Inference

Thus far we have modelled all fading taps in a multiuser environment as well
as measurement of these taps through pilot symbols:

xt+1= Fxt + Gut, var(ut|I)= E(utu
∗
t |I) = Q

ht= Hxt

yt= Cxt + vt, var(vt|I)= E(vtv
∗
t |I) = R

(5.1)

The focus of our interest here are the channel taps ht, which we want to infer
with aid of the measurements yt. For the estimation problem, we want to
calculate p(ht|yt, yt−1, . . . , I). For the prediction problem, we are interested
in calculating p(ht+L|yt, yt−1, . . . , I), where L is the prediction horizon in the
current system.
As explained in Chapter 4, the dimensionality of ht, that is the number

of taps that we model, depends on which kind of system we are looking at.
In TDMA systems for U users we model M (time-domain) taps for each
user, which means that the vector ht has length MU . The time-domain
taps, constituting the impulse response, are also what we are interested in
in TDMA systems, because the bit error rate will here be determined by the
performance of the channel equaliser, which in turn will be decided by the
properties of the impulse response and the signal-to-noise ratio.
In OFDM systems we may choose to model the M time-domain taps in

the impulse response model (producing a vector ht of length MU), or to
model W parallel time-frequency taps in the competition band that we are
currently looking at (ht then has WU elements). Bear in mind, though,
that it is always the time-frequency taps that are ultimately determining the
performance in an OFDM system; each subchannel is subjected to �at fading
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only (meaning that the radio channel for that subchannel is characterised
by one tap only), so equalisation is trivially carried out by �derotating� the
received time-frequency symbol with the estimated time-frequency tap.
Let us now �nally turn to the question of how to actually carry out the

inference.

5.1 Kalman's great discovery

Let us say that we have constructed a linear model of a generally vector-
valued process xt that we here shall be calling the states:

xt+1 = Ftxt + Gtut, p(ut|I) = CN (ut; 0, Qt), (5.2)

where we call the white noise u the process noise. ut is the �driving force�
behind the changes of {xt}.
Further, the states {xt} are measured in AWGN and we model the mea-

surements by

yt = Htxt + vt, p(vt|I) = CN (vt; 0, Rt) (5.3)

Following [18], we denote all measurements up to time t by

Yt , yt, yt−1, yt−2, . . . (5.4)

Let us say that at some point t we know that p(xt|YtI) = CN (xt; x̂t|t, Pt|t).
To calculate what we know about the next x when we get a new measure-
ment, we apply Bayes' theorem and marginalise over nuisance parameters
(as always). Conditioning everything on YtI, we get

p(xt+1|Yt+1I) = p(xt+1|yt+1YtI) = p(xt+1|YtI)
p(yt+1|xt+1YtI)

p(yt+1|YtI)
=∫

p(yt+1|xt+1I)p(xt+1|xtI)p(xt|YtI)dxt∫∫
p(yt+1|xt+1I)p(xt+1|xtI)p(xt|YtI)dxtdxt+1

(5.5)

and from the model (5.2) and (5.3) we see, after some consideration, that

p(yt+1|xt+1I) = CN (yt+1;Ht+1xt+1, Rt+1)
p(xt+1|xtI) = CN (xt+1;Ftxt, GtQtG

∗
t )

(5.6)

and we knew already that

p(xt|YtI) = CN (xt; x̂t|t, Pt|t) (5.7)
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But the gaussian function CN (·; ·, ·) has remarkable properties. Firstly, the
product of two (generally multidimensional) gaussians is a gaussian. Sec-
ondly, integrating a multidimensional gaussian over one or more of its free
variables also yields a gaussian.
These properties makes it possible to solve Equation (5.5) analytically.

Since we now know that the left side of the equation (the posterior) is also
gaussian, we may directly express its two (generally multidimensional) de-
grees of freedom � the mean x̂t+1|t+1 and the covariance matrix Pt+1|t+1 �
in terms of the right hand side parameters. The expressions turn out to be
somewhat involved so using a few intermediate expressions simpli�es mat-
ters. An exercise in algebra reveals (see e.g. [18], [19])

x̂t+1|t = Ftx̂t|t

Pt+1|t = FtPt|tP
∗
t + GtQtG

∗
t

Re,t = Rt + HtPt|t−1H
∗
t

Kf,t = Pt|t−1H
∗
t R−1

e,t

x̂t+1|t+1 = x̂t+1|t + Kf,t+1(yt+1 −Ht+1x̂t+1|t)

Pt+1|t+1 = (I −Kf,t+1Ht+1)Pt+1|t

(5.8)

The �intermediate� matrix Re is the covariance matrix for the measurement
at time t, given the measurements up to time t− 1. The matrix Kf is called
the Kalman gain. It expresses to which extent one should take into account
new data, and to which extent to extrapolate older estimates.
This is what Kalman discovered in his seminal 1960 paper, that when

the underlying model is linear and all parameters are gaussian (given the
information at hand), then there are closed form expressions for Bayes prop-
agation. It is interesting to note that the most elegant formulation of the
pdf p(xt+1|Yt+1I) involves calculating the pdf p(xt+1|YtI) with mean x̂t+1|t
and variance Pt+1|t as intermediate steps. In fact, the one-step prediction
p(xt+1|YtI) is so common in linear �lter theory that we henceforth will use
the short-hand notations

x̂t+1 , x̂t+1|t

Pt+1 , Pt+1|t
(5.9)

Rearranging the order of (5.8), we produce the equations for propagating
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the one-step predictions:

Re,t = Rt + HtPtH
∗
t

Kf,t = PtH
∗
t R−1

e,t

x̂t|t = x̂t + Kf,t(yt −Htx̂t)

Pt|t = (I −Kf,tHt)Pt

x̂t+1 = Ftx̂t|t

Pt+1 = FtPt|tF
∗
t + GtQtG

∗
t

(5.10)

By repeated application of the last two equations we get a recursive formula
for the pdf of the many-steps prediction p(xt+L|YtI) :

x̂t+L|t = Ft+L−1x̂t+L−1|t

Pt+L|t = Ft+L−1Pt+L−1|tF
∗
t+L−1 + Gt+L−1Qt+L−1G

∗
t+L−1

(5.11)

Explicitly, this means the the MMSE prediction x̂t+L|t is calculated through

x̂t+L|t = Ft+L−1Ft+L−2 . . . Ftx̂t|t (5.12)

and simply
x̂t+L|t = FLx̂t|t (5.13)

if the model is static. The error covariance Pt+L|t however has to be updated
iteratively.

5.2 Channel estimation and prediction

5.2.1 Estimation

The quest for optimal channel estimation and prediction has now come to
and end. From the mean value (expectancy) and covariance matrix of the
states x, as given by the Kalman recursions, we can now calculate the full
joint pdf of the taps h:

p(h|Y I) = CN (h;Hx̂,HPH∗) (5.14)

I have deliberately left out all subscripts; if we are interested in, say, ht+10|t,
then we apply (5.10) and (5.11) accordingly to produce x̂t+10|t and Pt+10|t.
These are then inserted into (5.14) which yields the pdf that we sought for.
Equation (5.14) illuminates a useful property of linear models: Once we

have the pdf of the states, which is fully described by (x̂,P ), changing
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variables to another variable z = Ax simply yields the pdf p(z|Y I) =
CN (z;Ax̂,APA∗).
As far as channel estimation is concerned, where the objective is to recover

payload data as well as possible, one should always use as much data as
possible. This means that the �lter estimate ht|t should be used. If one can
accept a certain delay in the bit stream recovery, one can also use smoothing,
where all data up to time t is used to estimate older taps (for example ht−4|t).
The recursions needed to produce smoothing estimates are not presented in
this thesis. The interested reader is recommended [19].
We may now summarise the procedure for inferring the transmitted bit

stream:

• Use the Kalman recursions and the measurements to infer the states x
of time-frequency positions or time instants containing payload data.

• Calculate the tap estimates ĥ = Hx̂.

• Equalise the channel based on the tap estimates.

• Detect the bits. The decisions are usually based on decision regions.

This is admittedly somewhat simpli�ed; separating equalisation and detec-
tion is only optimal if the tap estimates are highly accurate (of low uncer-
tainty), and if the received symbol sequence does not constitute an entire
supersymbol (so that it corresponds to only a fraction of a codeword), then
one may have to do joint equalisation and detecting to get a good perfor-
mance even if the tap estimates are of high quality.
Equalisation is much easier in an OFDM system than in a TDMA system.

In the former, all we have to do is �derotate� the received symbol on a
subcarrier with the estimated channel tap for that particular subcarrier. In
the latter, we will have to regard all taps in the impulse response.
I should also make clear the following. The measurement equation as

constructed in Chapter 4 will only observe those symbols that are known
pilot symbols. Naturally, these are not the symbols that we want to infer,
since they are already known. Instead it is the payload symbols located in
between the pilots whose value we seek. It is certainly possible to use the
Kalman formulation to produce optimal estimates of these from the states
estimates of the pilot locations, but a simple interpolation of the tap values
at the pilot locations works almost as well if the channel variability between
the pilots positions is small.
For example, let us say that we have an OFDM system with pilots on every

�fth subcarrier and every second OFDM symbol. If we then look at a �frame�
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of 20 subcarriers by ten OFDM symbols, the measurement equation will be
constructed so that it samples the frame at �ve distinctive times, each time
taking four parallel subcarriers into account. The 200 − 20 = 180 payload
symbols in the frame are then detected by interpolation of the 5× 4 taps at
the pilot locations.

5.2.2 Prediction

What, then, about channel prediction? As previously concluded, the Kalman
recursions are su�ciently general that (5.14) can be used for prediction just
as well as for estimation.
But the prediction problem doesn't end here, because the relationship be-

tween predicted bit error rate and predicted channel quality is intricate. In
the channel estimation case, one can assume that the estimation accuracy is
high (by using smoothing if necessary). The values of estimated taps then
bear a direct correspondence to the success of the bit detection. When chan-
nel prediction is considered, it is necessary to take into consideration both
the estimated values and their accuracy.
We shall study the changing of variables from the channel taps to the bit

error rate presently. However, research in the �eld of channel prediction often
stops at this point � as indeed its name indicates � and I shall acknowledge
this convention and pause for a few results.

5.2.3 Simulation versus analysis

Needless to say, it is highly important to assess the performance of the pre-
dictor algorithm. Prior to setting up the state space model, one has to
consider the problem of how actual performance results are to be produced.
In academic research we rarely have a real system at our disposal, into which
we can implement the channel predictor and then take it for a test drive in
a real fading environment. The road ahead forks o� into two distinctive
directions: simulation and analysis.
Simulation is a very powerful technique in that it allows any algorithm to

be evaluated. By that I mean that the algorithm to be scrutinised need not
be subjected to any kind of adaptation to �t the evaluation process, but may
be processed �as is�. It is generally relatively straightforward to carry out a
simulation; the algorithm is constructed just the way it would be in the real
application, and it is then run on arti�cial data.
A simulation does not allow any element of uncertainty. What one in e�ect
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calculates by running a simulation is

p(`performance measure'|tap values, noise samples, . . . , I), (5.15)

which always yields an absolute certain result (that is, we may see it as that
it outputs a pdf in the form of a Dirac distribution) since all parameters (in-
cluding data and pseudo-random noise sequences) are known. A simulation
takes a �snapshot� in the space of all possible outcomes of an experiment. It
may be di�cult to know whether that snapshot in some sense is represen-
tative of the overall behaviour of the algorithm. In any case, it will not tell
how representative it is.
As a contrast to this, one could attempt to undertake a full Bayesian

analysis of the algorithm. Such an analysis would establish exactly how
any prior uncertainty about governing parameters would propagate through
every step of the algorithm. We are free to choose which parameters are
uncertain and which are given, so that we could calculate

p(`performance measure'|tap values, I), or p(`performance measure'|I),
(5.16)

or put any combination of parameters on the right side of the conditioning
bar (which means that a simulation in a sense is a �degenerate� case of
a Bayesian analysis). The drawback is that a full analysis is hardly ever
possible to carry out for most algorithms. The mathematics simply becomes
too involved. When it is possible to conduct, though, it will give a complete
description of the situation.
`Precision' is the keyword here. To fully describe the details about the

result of a simulation, one has to account for the precise value of every
tap value and every noise sample used throughout the simulation. On the
other hand, a Bayesian analysis conditioned on only, say, the channel power
delay pro�les, fading statistics, velocities, and signal-to-noise ratios, can be
described precisely by presenting only those values.
It so happens that the algorithm considered here allows itself to be analysed

for unknown noise and unknown tap values. If we set up a model according to
Chapters 3 and 4, and assume that conditions do not change over the course
of many �lter samples, then the state error covariance Pt will be iterated by

Pt+1 = FPtF
∗ + GQG∗ − FPtH

∗(HPtH
∗ + R)−1HPtF

∗, (5.17)

as seen by studying (5.10). The sequence of covariance matrices {Pt} will
eventually � usually quickly � settle down on a steady value P̄ (the Discrete
Algebraic Riccati Equation (DARE)). The same is true for the state covari-
ance, here denoted Πt, which settles down to the solution of the Lyapunov
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equation

Π̄ = F Π̄F ∗ + GQG∗. (5.18)

But, as we saw at the end of Chapter 2, since the model is static, we are
now injecting absolute certainty into it by claiming exact knowledge about
the frequency distributions of the process noise ut and the measurement
noise vt. This certainty propagates through the model so that we know with
absolute certainty all frequency distributions in the model. So, for example,
will we know that the frequency distributions of the states x and the errors
x̃ = x−x̂ � x̂ being the predictions � are Π̄ and P̄ respectively. From these we
may easily calculate the frequency distribution of the taps h, the frequency
distribution of the prediction errors, h̃, and the frequency distributions of
the predictions, ĥ:

fr(h) = CN (h; 0,HΠ̄H∗),

fr(h̃) = CN (h; 0,HP̄H∗),

fr(ĥ) = CN (h; 0,HΣ̄H∗),

(5.19)

where Σ̄ = Π̄− P̄ is the covariance for the predicted states.
Note that I am no longer talking about probability densities; the symbol

fr(·) is to be regarded as a physical entity, just like mass or length, whose
value we may assess with more or less certainty. Here, no uncertainty exists,
and just as we by

p(d|DI) = δ[d, 123] (5.20)

would express that some data D and some piece of information I give us
reason to be absolutely sure that a distance d is 123 units of length, so could
we here write

p(fr(h̃)|I) = δ[fr(h̃), CN (h; 0,HP̄H∗)], (5.21)

and so on, to express the fact that we are certain about frequency distribu-
tions. This notation however has a look of uncalled-for complexity, and I
will refrain from using it.
Note also that the statement about the frequency distribution of h̃ was

made without saying anything about whether data (taps, noise) were avail-
able or not. It is a property of the Kalman �lter that the error covariances
are independent of the measurements. This is quite amazing, because it
allows us to calculate the frequency distribution, and hence the prediction
performance, without the need of marginalising over large data sets.
Hence the scheme for producing channel prediction results look like this:
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• Set up the model, given pilot patterns, power delay pro�les, fading
statistics, velocities, and noise power.

• Calculate the stabilising solution to the DARE (5.17).

• Calculate the variances of the prediction errors of the respective taps.
These now appear on the diagonal of HP̄H∗. They are usually nor-
malised with their respective tap variances {σ2

m} (which are known).

What the result then says is exactly this: Over the course of a long time,
these are the error variances (or the normalised error variances) that one will
experience, given that the parameter values were correct.
The procedure will allow us to perceive details in the results, which if they

were given by a simulation, we would not now whether they were caused by
the particular data series used.

5.3 Case study: The WINNER system

Although up to this point I have made considerable e�orts to treat both single
carrier and multicarrier systems, I will in the examples below look at OFDM
systems exclusively. The reason is that frequency-adaptive transmission in
OFDMA (Orthogonal Frequency Division Multiple Access) downlinks is of
high interest in the research community, for example in the ongoing 3GPP
long-term evolution (LTE) standardization e�ort [20], for WiMAX and in
the European beyond-3G WINNER project [21].
Recall that we model a multiuser OFDM system by

xt+1= Fxt + Gut, var(ut|I)= E(utu
∗
t |I) = Q

ht= Hxt

yt= Cxt + vt, var(vt|I)= E(vtv
∗
t |I) = R,

(5.22)

with block-diagonal model matrices F , G, and H as described in Chapter
4. Choosing to model in frequency and measure in frequency according to
Section 4.4.2, we set the output matrix C = ϕtH, with

ϕt = stackU [ϕu,t] = [ϕ1,t ϕ2,t . . . ϕU,t] , (5.23)

where stack[·] is the horizontal stacking operator and ϕu,t is a diagonal matrix
with the (generally time-varying) pilots for user u along its diagonal.
The prediction performance will be evaluated with respect to the baseline

system design of the WINNER FDD mode [22]. This design has a system
sampling period of 12.5 ns, giving a FFT bandwidth of 80 MHz. The signal
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bands are 45 MHz in both uplinks and downlinks. Each OFDM symbol
is 2048 samples plus an additional 256 samples for the cyclic pre�x. The
subcarrier width is 39.06 kHz and the OFDM symbol + guard duration is
28.8 µs. The centre (carrier) frequency is 3.7 GHz.
The time-frequency radio resource is divided into �frames� of 8 subcarriers

(312.5 kHz) by 12 OFDM symbols (345.6 µs). A frame duration is denoted
a slot. These frames constitute the unit for frequency-adaptive resource
allocation. As in any OFDM system, the frame size is selected to make the
channel moderately �at within frames. Uplink pilot symbols known to the
receiver facilitate the prediction. They are here assumed located on one of
the 12 OFDM symbols. This entire OFDM symbol is allotted to pilots so
that no payload data is transmitted here. We assume a full-duplex FDD
uplink, so uplink pilots will be transmitted within each slot.
To prepare for frequency adaptive uplink transmission, the terminal is allo-

cated a competition band and begins to send pilots in that band. Estimators
of the noise variance, the velocity, fading descriptors, and channel power de-
lay pro�le aid in the setup of a model of the fading taps as well as a model
of the channel measurements through pilots.
Channel predictions are then produced for this users channel. When a

packet for uplink transmission arrives, the terminal sends a transmission
request during slot j. The scheduler may grant the request and sends the
allocation information over a downlink control channel during slot j+1. The
transmission then commences over the uplink in slot j + 2. The required
prediction horizon is two slots, or 0.7 ms, or L = 2 channel samples. This
tight control loop requires the update of the channel prediction from the last
measurement in slot j, the scheduling and the downlink control transmission
to be executed within less than 1.5 slot durations (0.5 ms).
The results in this section are evaluated on two channel models: A �at

(frequency non-selective) channel, and a frequency selective non-line-of sight
channel for urban environments (WINNER C2 channel) with power delay
pro�le

Delay[ns] Power[dB]
0, 5, 135, 160, 215,
260, 385, 400, 530,
540, 650, 670, 720,
750, 800, 945, 1035,
1185, 1390, 1470

-0.5, 0.0, -3.4, -2.8, -4.6,
-0.9, -6.7, -4.5, -9.0, -7.8,
-7.4, -8.4, -11.0, -9.0, -5.1,
-6.7, -12.1, -13.2, -13.7,
-19.8

When not explicitly stated otherwise, we set the velocity of the terminals
to 50 km/h, the average signal-to-noise ratio Es/N0 to 12 dB, and the �lter
width W to 8 subcarriers (one chunk width). The estimation horizon is set to
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Figure 5.1: Filter performance versus �lter width for widths 4, 8, and 16.
Solid lines show the performance on a �at fading channel. Dashed lines for
the frequency selective WINNER C2 non-line-of sight channel.

two steps (slots) and the fading statistics is set to the �at doppler spectrum
described in Chapter 3. Performance is expressed either in terms of the mean
value over all W × U channel taps of the signal-to-estimation error power
ratio (SER), or by the normalised mean square error NMSE = (SER)−1.

5.3.1 The impact of �lter width

One may adjust the dimensionality W of y (the �lter width), i.e. the num-
ber of simultaneous subcarriers to be tracked, depending on the perfor-
mance/complexity tradeo�. A competition band that comprises c predicted
subcarriers will then require the use of int[c/W ] Kalman predictors run in
parallel.
An increased �lter width W should increase the performance. For a �at

fading channel with noise without frequency correlation (R = σ2
nI), the �lter

performance as measured by the signal-to-error ratio (SER) will increase by 3
dB when the �lter width is doubled. The improvement is not as pronounced
when the channel is frequency selective. We illustrate this in Figure 5.1.



100 Chapter 5. Inference

5.3.2 The choice of pilots

The pilots {φt} are also design parameters. Should the pilot symbols trans-
mitted by each user be placed on all W subcarriers that are tracked, hence
making the pilots from the di�erent users overlap? Or should one instead use
dedicated pilots, so that each user concentrates its pilot energy to one single
subcarrier, not transmitting anything on the remaining W − 1 subcarriers?
Assuming that the number of users U in the competition band is less or

equal to the number of subcarriers W , we may represent the pilots by a
W × W -matrix Φ, where each column contains the complex-valued time-
frequency pilots for one user. The diagonal of the diagonal pilot matrices
{φu} are then constructed from the columns of Φ.
The choice of pilots is crucial to achieve a high performance. We here

evaluate two pilot schemes:

• Dedicated pilots, where each user puts pilots only on one subcarrier
out of the W subcarriers tracked by one �lter, with zero energy on the
subcarriers used by other users.

• The use of overlapped pilots, where all users place pilots on all W
subcarriers. We here use Walsh sequences to ensure that these pilots
are orthogonal as long as the number of users U is less than or equal
to W .

Dedicated pilots are simply obtained through Φ =
√

W IW , where I de-
notes the identity matrix. Overlapping pilots are constructed through Φ =
hadamard(W ).
Although complex hadamard matrices are possible to �nd, they have no

advantage over real matrices. We will here use Sylvester's construction which
yields pilot symbols of either −1 or 1, that is BPSK symbols. Hence we
construct a 2n × 2n Hadamard matrix by setting H0 = 1 and iterating

Hn+1 =
(

Hn Hn

Hn −Hn

)
(5.24)

It is not possible to construct more than W real or complex-valued or-
thogonal pilot sequences. If the number of users is greater than the �lter
width W , we therefore need to construct additional non-orthogonal pilot se-
quences from the orthogonal set Φ. There is no general scheme for how to
do this optimally. In this experiment we construct new pilots by pairwise
combining pilots from the original set and multiplying the sum with 1/

√
2

to preserve energy. The matrix used here that maps 8 orthogonal pilots onto
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16 non-orthogonal pilots is I8

α α · α · · α ·
α · α · α · · α

· α α · · α · ·
· · · α α α · ·
· · · · · · α α

3×8 zeros

 (5.25)

where I8 is the 8× 8 identity matrix, and α = 1/
√

2.
We compare the performance of overlapped pilots against the performance

of dedicated pilots. Figure 5.2 shows SER versus number of users U when the
channels experienced by the users are �at and the �lter width is set to W = 8.
Here we turn our attention only to the case U ≤ W . All subcarriers fade in
unison and the pilots for users 1 through 8 are completely orthogonal. In the
noise-free case, the W measurements provided at time t would then provide
a solvable linear system of equations with respect to the U ≤ W di�erent
channel coe�cients. This holds regardless of whether we use overlapped
(black, solid line) or dedicated pilots (grey, dashed line), which may be seen
by letting

ht = diagU (IW )h̄t, (5.26)

where h̄t = (h̄(1)
t , . . . h̄

(U)
t )T , where h̄

(j)
t is the �at-fading scalar channel co-

e�cient for user j and 1W is a column vector of W ones. In the noise-free
case, we then have

yt = stackU (φj,t)ht = stackU (φj,t)diagU (IW )h̄t = ΦW×U h̄t ,

where ΦW×U equals the �rst U columns of the matrix Φ which, by construc-
tion, will have full rank U . When the channels are �at fading we therefore
have the result that

• the choice of pilots is irrelevant as long as the pilots are orthogonal,
and

• the performance does not degrade with an increasing number of users
U as long as U ≤ W .

The situation is vastly di�erent when the channels are frequency selective.
The importance of measuring over the entire �lter bandwidth is evident
when we study Figure 5.3 for users 1�8. For the particular working point
Es/N0 = 12 dB studied here, the gain is about 3 dB for one user, and
decreases when the number of simultaneous users increases.
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Figure 5.2: Prediction performance versus number of users for dedicated
(dashed line) and overlapped (dolid line) pilots on �at fading channels.
The lines overlap. Average Es/N0 = 12 dB. The prediction horizon is 2
steps.

The curves merge at the point U = 8, indicating that the choice of pilots
is unimportant when the orthogonal set has been �lled. This conclusion
should however be drawn with care, because in the dedicated pilots case, the
SER will vary considerably, from high (on the carrier over which pilots are
transmitted), to low (on carriers far from the pilot carrier). Since modulation
format is selected per frame, one would prefer a more even distribution of
the SER, such as is produced by the overlapping pilots.
The reason for the performances for dedicated pilots (grey, dashed) actually

increasing with U is due to the way the pilot subcarriers have been allocated
to users in this experiment. The �rst user here puts pilot energy on the �rst
subcarrier, which is on the border of the �lter bandwidth, while users 4 and
5 invest their pilots in the middle of the bandwidth. The latter is the better
tactic when we rate performance based on the mean value of the SER over
all subcarriers. This is the reason for the performance increase when users
2, 3 and so on are added to the system.
This illustrates that if dedicated (and time static) pilots are to be used,

then one should assign one of the middle subcarriers to the �rst user to enter
the system, and only assign border subcarriers when necessary.
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Figure 5.3: Prediction performance versus number of users for dedi-
cated (dashed line) and overlapped (dolid line) pilots on frequency selec-
tive channels. WINNER C2 channel model and time-invariant pilot pat-
terns. Kalman estimators track W = 8 adjacent subcarriers. Average
Es/N0 = 12 dB, velocity 50 km/h, 3.7 GHz carrier. The prediction horizon
is 2 steps.

5.3.3 Time varying pilot patterns

When the number of users U to share a certain bandwidth is larger than the
corresponding �lter width W , it is not possible to �nd a set of U orthogonal
pilots. As presented earlier, we then construct new pilots from the original set
of W orthogonal pilots by weighing together them two by two. Restudying
Figures 5.2 and 5.3, we note two facts. One is that the performance drop
when we go from orthogonal to non-orthogonal pilots (U = 8 to U = 9) is
considerable. The other fact is that the performance is una�ected by the
choice of dedicated versus overlapping pilots.
The performance can be improved by providing the �lter with more infor-

mation about the time variability of the channels. We have seen that the
�ltering performance increases if we spread out the pilot energy and let the
pilots vary over the di�erent frequencies in the frequency band. In the same
manner we may design the pilots to make optimal use of previous channel
samples. In the case of noiseless, frequency-selective but time-invariant chan-
nels (i.e. immobile terminals), we would obtain a linear system of equations
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Y = Ah (5.27)

where

A = [stackU (φj,t)T . . . stackU (φj,t+W−1)T ]T ,

Y = (yT
t , . . . , yT

t+M−1)
T , and

ht = h.

(5.28)

If a set of orthogonal pilots is cycled over time so that A obtains full rank
WU , the system (5.27) becomes solvable. That should improve the estima-
tion also for time-varying channels and noisy measurements.
For dedicated pilots, this property is obtained for M = 8 by simply rotating

the original Φt=0 =
√

8I8 one step left every time step, hence producing all
eight time steps.
Time varying overlapping pilots are constructed as follows. We here study

the speci�c case U ≤ 8. For the �rst time step we use the same Hadamard
matrix as used for the static pilots:

Φt=0 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


=
[

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

]
,

(5.29)

where Φi is the pilot pattern used by user i at time t = 0. This Hadamard
matrix is then used a second time to construct all time steps. In the resulting
matrix below, each row correspond to one time step t = 0, 1, . . . 7.

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

Φ1 −Φ2 Φ3 −Φ4 Φ5 −Φ6 Φ7 −Φ8

Φ1 Φ2 −Φ3 −Φ4 Φ5 Φ6 −Φ7 −Φ8

Φ1 −Φ2 −Φ3 Φ4 Φ5 −Φ6 −Φ7 Φ8

Φ1 Φ2 Φ3 Φ4 −Φ5 −Φ6 −Φ7 −Φ8

Φ1 −Φ2 Φ3 −Φ4 −Φ5 Φ6 −Φ7 Φ8

Φ1 Φ2 −Φ3 −Φ4 −Φ5 −Φ6 Φ7 Φ8

Φ1 −Φ2 −Φ3 Φ4 −Φ5 Φ6 Φ7 −Φ8


(5.30)
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Figure 5.4: Prediction performance versus number of users for dedicated
(dashed line) and overlapped (dolid line) pilots on frequency selective chan-
nels. Conditions as in Figure 5.3, but here the pilot patterns of each user
cycle over time with period 8. The prediction horizon is 2 steps.

The impact of using cyclic pilots is studied in Figure 5.4. When the number
of simultaneous users U is less or equal to eight, we see an improvement of
about 1 dB for the dedicated pilots and somewhat less for the overlapped
pilots, as compared to the case when static pilots were used (Figure 5.3).
When U ≥ 9 the improvement is more dramatic. The steep performance

drop at U = 9 is now gone. We conclude that the use of cyclic pilots is highly
important to maintain a high estimation performance when the number of
users competing for a frequency band is larger than the bandwidth W .

5.3.4 The impact of fading statistics

The Doppler spectrum, caused by the angular distribution of local scatterers
around each terminal, relative to its direction of travel, has a crucial impact
on the channel predictability. So far we have used a fading model with
Doppler spectrum that is almost �at for frequencies less than the maximum
Doppler frequency fD. This corresponds to a situation where scatterers
are placed mainly sideways relative to the direction of travel, e.g. due to
buildings along streets. We evaluate the prediction performance for di�erent
signal-to-noise ratios (Es/N0) over a wide range of prediction horizons. The
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Figure 5.5: The predictor performance for �at Doppler spectrum measured
by the NMSE, versus prediction horizon measured in wavelengths. The
signal-to-noise ratio Es/N0 goes from 0 dB (upper curve) to 25 dB (lower
curve) in steps of 5 dB. U = 8 users with overlapping pilots, W = 8,
WINNER C2 channel model.

result for a �at Doppler spectrum is presented in Figure 5.5.
An opposite extreme case is illustrated for the same situation as in Fig-

ure 5.5, but for a Doppler spectrum modelled by four poles close to the unit
circle. This corresponds to a situation dominated by re�ectors in front of or
behind the terminal. This results in very good predictability. See Figure 5.6.

Originally, my own stand on the matter of how to choose fading model,
was that one should be cautious and always use the �at Doppler spectrum
derived in Chapter 3. From the above results it is evident that one cannot
a�ord to do this; the fading statistics has far too great an impact on the
system performance.

5.3.5 Complexity

To evaluate the feasibility of using optimal �lters as proposed here, we need
to assess the complexity of the Kalman �lter (KF). The complexity is mainly
determined by the number of states n, which is the product of the fading
model order K, the number of modelled taps X, and the number of users
U . The value of X depends on how the modelling is carried out: If time-
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Figure 5.6: The predictor performance for oscillative AR4 Doppler spectrum
measured in NMSE, versus prediction horizon measured in wavelengths.
The signal-to-noise ratio Es/N0 goes from 0 dB (upper curve) to 25 dB
(lower curve) in steps of 5 dB. U = 8 users with overlapping pilots. W = 8,
WINNER C2 channel model.

domain prediction of M taps is used, we set X = M . Otherwise we use
frequency-domain prediction and choose X = W . Both cases are covered
below.
The KF has to produce channel tap estimates (update the state estimates

x̂), predictions of the channel taps, as well as updates and predictions of the
state error covariance matrix P . Due to the block diagonal structures used
in this paper, the complexity is reduced considerably as compared to the
general KF. It can be shown (see Appendix G) that the number of complex
operations required for one KF update is

(3/2 + W/2)n2 + (KW + W 2)n P update
+KW 2/2 + W 3/6

3n2/2 P prediction
(W + 1)n + KW x̂ update
n x̂ prediction

To cover a competition band that contains c predicted subcarriers, int[c/W ]
KFs are run in parallel. The solid lines in Figure 5.7 display the number of
real operations required per update versus number of users for C = 160
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Figure 5.7: Total numerical complexity vs. number of users k for predicting
a competition band containing 160 predicted subcarriers, using either 40
KFs of �lter width W = 4 (lower) or 20 KFs with width W = 8 (upper).
Solid lines represent a general choice of pilots. Dashed lines represent the
use of dedicated pilots and k decoupled KFs for each set of W subcarriers.

predicted subcarriers and K = 4 uplink users per competition band, for
designs with W = 4 or W = 8. An operation represents one multiplication
and one addition. Furthermore we assume that one complex operation has
the same complexity as four real operations.
The above calculations hold for general choices of pilot symbols, but the

complexity may be decreased further by considering only dedicated pilots
(as opposed to overlapping pilots). The measurement equation is then com-
pletely decoupled between di�erent users, which makes the state error co-
variance matrix P block diagonal. This, in turn, means that we may run a
separate KF for each user without losing performance, which means that the
complexity increases only linearly with the number of users. In that case,
the complexity is easily computed by setting n = KX instead of n = KXU
in the above expressions, and then multiplying the �nal result by U . The
dashed lines of Figure 5.7 show the number of real operations required for
one update for �lter widths W = 4 and W = 8 when these decoupled KFs
can be used.
The WINNER baseline system would require a new prediction for each

slot of duration 0.34 ms for vehicular users. To assess the feasibility of the
required computational complexity, we here investigate the consequences of
setting 1010 real operations per second as a target for feasibility for uplink
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predictors realised in the base station.1 This would correspond to a limit to
3.4 · 106 operations per update (0.345 ms). As is evident from Figure 5.7
(solid), using eight parallel subcarriers would then be infeasible, while four
parallel subcarriers touches upon the limit. For the decoupled case (dashed),
the total complexity of �lters of width 4 falls well within our boundary while
W = 8 is on the limit for k = 4. The use of Kalman-based uplink prediction
seems feasible under these assumptions.
The numerical load imposed by the KF is dominated by the covariance

matrix update. However, P usually converges very quickly to a stationary
value (the solution to the Discrete Algebraic Riccati Equation) when the
model matrices are kept constant. This holds also when cyclic pilots are
used, in the sense that P will then approach a cyclostationary state in which
the same value reoccurs with the same period as the cyclic pilots. In the
experiment performed in this paper, P converged to a �xed value2 in a few
tens of iterations, and for most cases the iteration count was below 20.
Therefore, Kalman iterations only need to be performed burst-wise when

fading models or number of users change, due to the fast convergence of P .
This reduces energy consumption relative to the case of continuous updates.

5.4 Channel gain prediction

It is commonly suggested that the squared magnitude of the channel taps
(that is, the channel gain or the channel power) should function as basis for
scheduling decisions. See e.g. [23], [24],[25].
Producing the optimal estimate of the channel gain is straightforward. Let

z = |h|2 for a tap h. Then, using well-known results3, a change of variables
reveals

p(h|Y I) = CN (x; ĥ, σ2) ⇒ p(|h|2|Y I) = χ2(|h|2; |ĥ|2 + σ2, 2|ĥ|2 + 4σ2)),
(5.31)

where χ2(·) is the non-central χ2-distribution with mean value and variance
in the second and third argument. The optimal mean value tap power esti-
mate is hence the squared magnitude of the complex tap estimate plus the
error variance:

E(|h|2|Y I) = |ĥ|2 + σ2 (5.32)

1Lower targets would be realistic for predictors located in terminals.
2We consider P to have converged when the maximum element-wise relative change in

magnitude between iterations is below one percent.
3See Appendix C for a proof.
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This result was obtained with considerably more e�ort in [24] and [14], with-
out the appreciation of its optimality.
When h is a vector we simply have

E(|h|2|Y I) = diagonal elements of H(x̂x̂∗ + P )H∗. (5.33)

However, it turns out that the channel gain alone does not serve very well
as a basis for scheduling decisions. Before making this clear, we have to
consider how to actually predict the bit error rate.

5.5 Bit error rate prediction

The bit error rate, here denoted Pb, is conveniently measured versus the ratio
bit energy (Eb) to noise spectral density (N0). That way, di�erent modulation
formats/encoding schemes can be justly compared to one another4.
The bit error energy Eb is related to the symbol energy Es through Eb log2 M =

Es. Here, M is the number of symbols in the symbol constellation. In an
OFDM system, I will denote the energy of the total OFDM symbol by Ēs.
The symbol energy on each subchannel, Es, relates to Ēs through NEs = Ēs,
where N is the number of subcarriers in the system. The received OFDM
symbol energy is Ēs = S|h|2, where S is the transmitted signal energy per
OFDM symbol, and the tap power |h|2 should be thought of as the mean
value over all subcarriers in this context.
The AWGN has a spectral power density of N0/2 over all frequencies (nat-

urally, this model is invalid for very high frequencies). When the cross cor-
relators at the receiver are matched to the transmitted pulses, then we have
the relation σ2

n = N0/2 between the variance σ2
n of the noise samples and the

noise power spectral density. This relation holds for each cross correlator, so
if each symbol constellation has two dimensions � as is the case here � then
the total variance for the sampled noise is σ2

n = N0.
In total, we have the following relation between the tap power |h|2 for a

subcarrier and the Eb/N0:

Eb

N0
= |h|2 S

Nσ2
n log2 M

(5.34)

Note that |h|2 is regarded the only unknown parameter since σ2
n is given by

the noise power estimator.

4This is a simpli�cation. Eb/N0 in combination with Pb does not show the whole
picture. For example, bandwidth and algorithmic complexity are properties that are not
expressed.
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Henceforth I will denote

γ0 ,
Eb

N0
(5.35)

for convenience.
As noted in Appendix B, there is a functional relationship between Pb and

γ0. For simple cases it is possible to derive this relationship analytically,
whereas one may need to use simulation for more complicated problems.
Once the function Pb(γ0) has been retrieved, it can be approximated by

Pb(γ0) ≈
∑

ck exp{−α′kγ0} =
∑

ck exp{−αk|h|2}, (5.36)

for suitable values on {ck} and {αk}. Note that the {αk} incorporate the
scaling factor in Equation (5.34). Focusing on the taps rather than on Eb/N0,
we thus can write

Pb(|h|2) =
∑

ck exp{−αk|h|2} (5.37)

and I deliberately sacri�ce rigour (Pb(γ0) and Pb(|h|2) are di�erent functions,
not the same function with di�erent arguments) to the bene�t of readability.
In (5.37) it was assumed that the bit error rate depends on one tap alone.

This is only true in uncoded OFDM systems, where each time-frequency
symbol is the same as a supersymbol. In all other types of system, one
would have to extend the expression to take many taps into account:

Pb(|h1|2, . . . , |hX |2) =
∑

x

∑
k

ck,x exp{−αk,x|hx|2}, (5.38)

where X is the number of taps a�ecting the supersymbol. In practice, how-
ever, this will not be necessary for OFDM systems, since they are dimen-
sioned in such a way that the channel is moderately �at within a received
block, so that all time-frequency taps have approximately the same value. If
coding is introduced only within the received block itself, then (5.37) can be
used. Single-carrier systems will however have to use (5.38).
In most systems one can �nd a bit error rate TBER that is the highest

tolerable that still allows the system to function properly. I will make this
assumption in what follows. Consequently, TBER is regarded as a given
system design parameter.
To solve the bit error rate prediction problem, two approaches present

themselves: We may, given the pdf for a tap5, calculate the expected value

5Taken that the unit for scheduling decisions is a �frame� of some size (time in TDMA,
time-frequency in OFDM), this tap should be the �worst� tap within that frame.
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of Pb for each of the candidate modulation formats. The highest modulation
format whose expected Pb conforms to the bit error rate requirement is then
signalled to the base station.
The other approach is to instead calculate the probability of Pb being lower

than TBER for each modulation format. The highest format whose proba-
bility is higher than, say, 90%, is signalled to the base station.
Based on requested modulation formats from each user and possibly fair-

ness criteria, the base station will then distribute resources among the users.
The decisions are signalled back to the terminals, either on control symbols
intertwined with the pilots and the payload symbols, or on a separate control
channel.
Next, the two bit error prediction methods are studied more closely.

5.5.1 Expected bit error rate

We here look at a particular time-frequency tap in an OFDM system. Look-
ing at the time-frequency taps one by one mean that we are in e�ect consider-
ing uncoded systems, since coding introduces dependencies between di�erent
taps which therefore have to be considered jointly. The exposition following
here will be restricted to the uncoded case.
The mean value ĥ of its gaussian distribution is taken from the vector Hx̂.

The variance σ2 is taken from the corresponding diagonal element in HPH∗.
The expected value of Pb can now be calculated:

E(Pb|Y I) =
∑

ck

∫
C

exp{−αk|h|2}CN (h; ĥ, σ2)dh

=
∑

ck

∫
C

1
2πσ2

exp{−|h− ĥ|2

σ2
− αk|h|2}dh

=
∑

ck
exp(−αk|ĥ|2/(1 + αkσ

2))
2(1 + αkσ2)

(5.39)

The expected value (5.39) is calculated for each modulation format (each
having a unique set of values {ck}, {αk}). The highest format for which
E(Pb) < TBER is signalled to the base station.
For TDMA systems, the situation is slightly more complicated. The bit

error rate Pb is now a function of more than one tap. It will not su�ce then
to take into account the most recent tap ht, but one must also regard the
pdfs of ht−1, ht−2 and so on. I will not treat this issue here.
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5.5.2 Probability of bit error rate

We want to calculate
P(Pb < TBER|Y I) (5.40)

for all modulation formats and signal back to the base station those who have
a higher probability than, say, 90%. Again, we consider only the uncoded
case. Since Pb is a decreasing function of b, where b = |h|, we might just as
well calculate

P(b > f(TBER)|Y I) =
∫ ∞

f(TBER)
p(b|Y I)db, (5.41)

where f(TBER) is found by numerical inversion of (5.37). It is well-known
that if the pdf of h is gaussian with mean ĥ and variance σ2, then the pdf
of b is a Rice distribution:

p(b|Y I) =
b

σ2
exp−(b2+ĥ2)/2σ2

I0(bĥ/σ2) (5.42)

(To see this, make a straightforward change of variables in the non-central
χ2-distribution derived in Appendix C). The expression (5.42) may seem
complicated, but the integral (5.41) is conveniently expressed by means of
the Marcum Q function. Below, I de�ne it and show an e�cient algorithm
for calculating it.

The Marcum Q function

The Marcum Q function is de�ned

Q1(a, b) =
∫ ∞

b
xe−(x2+a2)/2I0(ax)dx (5.43)

An e�cient approximation of Q1(a, b) is given in [26]. I reproduce it here
for convenience:

Q1(a, b) =

{
αN
2βN

e−(a−b)2/2 if a < b

1− αN
2βN

e−(a−b)2/2 if a ≥ b
(5.44)

in which

αn = dn +
2n

ab
αn−1 + αn−2

βn = 1 +
2n

ab
βn−1 + βn−2

(5.45)



114 Chapter 5. Inference

are iterated until N = 5(1 +
√

ab), using

dn+1 = dnd1, α−1 = 0, β−1 = 0, β0 = 0.5, (5.46)

and

α0 = 1, d1 = a/b if a < b

α0 = 0, d1 = b/a if a ≥ b
(5.47)

Hence we have

P(Pb < TBER|Y I) =
1
σ

Q1

(
ĥ

σ
,
b

σ

)
, (5.48)

which completes the solution of the prediction problem.
Note that the fact that (5.42) requires only a few hundred �oating point

operations, means that the total numerical complexity is completely domi-
nated by the Kalman �lter.
Whether we should use the criterion E(Pb) < TBER or the criterion

P(Pb < TBER) > 90% to decide which users and modulation formats are
candidates for resource allocation depends on which properties one wishes
for the system. The expectancy criterion guaranties that the total bit error
rate is TBER, whereas the second criterion makes sure that the bit error
rate over 90% of the time is lower than TBER. Which one to prefer is left
as an open question in this thesis.
Let us �nally study the relation between predicted bit error rate and pre-

dicted gain. We will do so by studying a speci�c example. It will show
why I think it is a bad idea to use predicted channel gain as foundation for
scheduling decisions.

Example 5.1 Channel gain versus bit error rate

We here calculate the predicted expectations of Pb for the particular mod-
ulation format Di�erential Phase Shift Keying (DPSK) and compare it to
predictions of the channel gain. DPSK has the nice property of �tting the
format (5.37) precisely:

Pb =
1
2
e−Eb/N0 , (5.49)

meaning that

c0 =
1
2

and α0 =
S

Nσ2
n log2 M

=
S

Nσ2
n

, (5.50)
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Figure 5.8: The expected bit error rate versus predictor uncertainty for
DPSK.

since log2 M = 1 for binary modulation formats. Inserting this into (5.39),
we get

E(Pb) = c0
exp(−α0|ĥ|2/(1 + α0σ

2))
1 + α0σ2

=
1
2

exp(−α0|ĥ|2/(1 + α0|ĥ|2 × σ2/|ĥ|2))
1 + α0|ĥ|2 × σ2/|ĥ|2

,

(5.51)

where α0|ĥ|2 = γ0 and σ2/|ĥ|2 is the normalised prediction variance. A
typical value for the former would be between 0 dB and 20 dB. The latter
should stay below 1 but may be higher under di�cult circumstances.

We now investigate how E(Pb) varies for varying σ2 but static |ĥ|2. Setting
α0 = 10 and |ĥ|2 = 1, we plot E(Pb) versus σ. See Figure 5.8.

It is evident that good bit error rates will be attained for both high and
low values of σ, as long as it stays away from 1 (a high σ in combination
with a low |ĥ| usually means that the data is unable to support a decision,
but that the prior knowledge is that the channel has an overall high quality).

As a contrast to this we study a predictor that predicts the channel
gain. Such a predictor will always favour a high σ before a low, since
E(|h|2) = |ĥ|2+σ2 as we saw earlier. Using the predicted channel gain alone
is therefore inadequate, since it does not tell how the energy is distributed
among the squared tap prediction |ĥ|2 and the tap prediction uncertainty
σ2. A certain �xed tap gain prediction can therefore correspond to many
di�erent predicted error rates.
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5.6 System design

The details of how to apply the present algorithm have now been described,
both regarding estimation and prediction. But there are more to investigate.
Just as we examined the channel prediction performance in Section 5.3, we
would want to do the same thing for bit error rate prediction.
In Section 5.3 we investigated the channel prediction performance for a

speci�c system. However, we saw later that both complex channel tap pre-
dictions and predictions of the squared channel magnitude generally corre-
spond poorly with bit error rate predictions. We would therefore like to
develop a tool for analysing the bit error rate prediction performance of a
system, or rather, given the predictors developed in this thesis, we would
like to assess the resulting bit error rates for the respective users in a speci�c
system.
However, this is a work in progress, and I will only here be able to outline

a few vague ideas on how to pursue this goal.
Let me �rst reiterate what the objective is here. We want to examine a

system � the system being characterised by number of users, fading statis-
tics, pilot patterns, and so on � under static conditions. In a real scenario
such parameters as signal-to-noise ratios and fading statistics will change
over the course of time. These parameters will be updated by �o�-line� esti-
mators that feed the linear channel model with high-quality estimates. The
transition between one set of parameters and another will however usually be
swift due to the fast convergence of the DARE. When the o�-line estimators
update the linear model, the uncertainty P of the states x will then quickly
settle down to a steady value. The system will spend most of its time in
such a steady state which is why the steady state scenario is what we are
most eager to investigate.
Section 5.2.3 showed that a steady state induces certainty about frequency

distributions. If, for example, we would use a prediction horizon of one time
step and hence use the one-step predictions, we would have the frequency
distributions

fr(h)= CN (h; 0,HΠ̄H∗), Π̄= F Π̄F ∗ + GQG∗

fr(h̃)= CN (h; 0,HP̄H∗), P̄= FP̄F ∗ + GQG∗ − K̄pR̄
−1
e K̄∗

p

fr(ĥ)= CN (h; 0,HΣ̄H∗), Σ̄= F Σ̄F ∗ + K̄pR̄
−1
e K̄∗

p ,

(5.52)
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Figure 5.9: An attempt to illustrate a polydisc in two complex dimensions,
de�ned by |h1| < r1, |h2| < r2. Since the number of real dimensions is four,
this has to be done by using cross-sections in one dimension. The leftmost
block has (nearly) Re(h2) = −r2, and the rightmost block has (nearly)
Re(h2) = r2. The cylinders should be solid.

where h is the vector of the actual taps, ĥ is the predictions, and h̃ is the
errors in the predictions so that h = ĥ + h̃. For longer horizons we simply
apply (5.11) to P̄ and use Π̄ = Σ̄ + P̄ . Note that Π̄ describes the actual
fading of the taps and hence does not change with a changing horizon.
As means for deciding whether a user should compete for a resource or not,

I have proposed two methods. The expected bit error rate criterion ensures a
certain bit error rate over a long time period. The bit error rate probability
criterion makes sure that the bit error rate over a speci�ed fraction of time
stays below some limit.
A steady state scenario has a �xed P matrix, which means that the variance

of the pdf of each tap is �xed. The predicted bit error rate will then be a
decreasing function of the squared magnitude of the tap prediction, regardless
of which method is used. It is therefore possible to �nd �decision boundaries�

Ωr1r2...rU = {c1,r1 ≤ |ĥ1|2, . . . , cU,rU
≤ |ĥU |2}, (5.53)

which each de�nes the set of tap prediction vectors for which a certain com-
bination of modulation formats will be claimed to be useful. A number k
written in base M + 1, so that each of its digits ru has a value between 0
and M , will therefore be a convenient way to de�ne each such set; Ωk is
the manifold in which a user u claims to be able to use at least modulation
format ru.
The complement to Ωk is called a polydisc. A polydisc is a Cartesian

product of discs. Think of constructing a polydisc in n complex dimensions
as �rst constructing a circle in (real) dimensions 1 and 2 and �lling it, then
letting the centre of the disc move in a new circle in dimensions 3 and 4 and
successively �lling the cylinders between the discs, then having the centre of
this four-dimensional body move in a circle in dimensions 5 and 6 and so on.
Figure 5.9 attempts to display a polydisc in two complex dimensions.
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We may also de�ne the set

Λk = Ωk − Ωk+11...1, (5.54)

where k = r1r2 . . . rU . Λk is then the manifold in which a user u claims to
be able to use modulation format ru, but not format ru + 1.
The number k is conveniently called the state of the system. We now have

that the fraction of time that the system spends in state k is given by

tk =
∫

Λk

fr(ĥ)dh, (5.55)

where h is a vector holding the U taps, and U is the number of users (in
systems other than uncoded OFDM systems, one has to consider more than
one tap per user).
Using the model (5.37), we may also calculate the average bit error rate in

state k:

Pb,k =
∑

ck

∫
Λk

exp{−αk|h|2} × fr(h)dh

=
∑

ck

∫
Λk

∫
CU

exp{−αk|h̃|2 − αk|ĥ|2 − αkh̃ĥ∗ − αkh̃ĥ∗}

× fr(h̃)× fr(ĥ)dh̃dĥ

(5.56)

Note that both (5.55) and (5.56) are integrals over gaussian distributions.
By integrating multidimensional gaussian functions over the volumes Λk,

which is ultimately the same as integrating over polydics, we may therefore
calculate the average bit error rate for each user in the system. Moreover,
we will see how much time is spent in each state, so that we will know how
�balanced� the system is with respect to di�erent modulation formats.
How easy is it to integrate zero-mean gaussian functions over polydiscs?

Unfortunately, no closed form expression exists. There do exist expressions
for approximations of integrals over balls, although they are complicated and
expressed on series form. It may be possible to ��ll� the volumes {Λk} with
balls and calculate the associated integrals that way.
More feasibly, one may attempt to do the corresponding thing with �boxes�;

oriented along the eigenvectors of the gaussian function, the volume of a box
is simply given as a product of error functions, or as a product of di�erences
between error functions when the box is not centred at the origin.
The question of how to e�ciently tessellate the polydiscs so as to �ll them

e�ciently with as few boxes as possible, I leave open for the time being.
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Another issue also needs to be addressed. To make a diagnosis of a system,
we seemingly need to calculate integrals over all volumes {Λk}. But there
is an awful lot of them. In fact, they may easily be counted in trillions! I
do not think this is a big problem, though, because for most of them, the
corresponding times tk will be negligibly small.
One could therefore start by calculating the integrals for a state in which

the system should spend a lot of its time. Say, for example, that the system
in question has �ve modulation formats and four users. Then one could
begin by calculating t3333 and Pb,3333. According to some algorithm, one
would then continue to examining the states �around� k = 3333, for example
k = 4333, k = 4433, k = 4443 and so on. My guess is that, much like the
�mass concentration� in Section 2.10, one would quickly cover almost the
entire gaussian distributions. Monitoring the accumulated sum of the times
tk, it is possible that one would �nd

∑
tk = 0.999 only after a few hundred

or a few thousand integrations, which would mean that further integration
would be pointless.
Of course, these intuitive guesses may be wrong, and in any case it might

be quicker to run a pseudo-random simulation to assess the system per-
formance. Whether this is true or not depends on how many iterations a
simulation would require to give a good numerical resolution, and how eas-
ily and swiftly the above integrations can be carried out. These questions
cannot be answered before the matter has been further investigated.





Chapter 6
Future work

During the work leading up to this thesis, many suggestions for future work
have presented themselves.

Chapter 2

Probability theory as an extension to logic has been used in this thesis. It is
however evident that frequentist theory, whose range of application is smaller
that that of Bayesianism, often works equally well as Bayesianism in channel
estimation and prediction theory, provided that the Kalman �lter is allowed
to be used.
It is therefore much more interesting, and rewarding, to apply Bayesian

theory to other �elds. I expect that the use of Bayesian theory will increase
especially in such �elds as medicine and economy in a short future.

Chapter 3

In Chapter 3, a cautious auto-regressive (AR) one-tap model was designed,
that assigns equal probability to all frequencies of the fading. The design
procedure may be extended to include also autoregressive moving average
(ARMA) models, but some thought is required to correctly include model
zeros into the state space model.

Chapter 4

Chapter 4 describes how multi-tap channels in multiuser systems are mod-
elled. It is assumed that model parameters are �xed (that is, given without
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uncertainty) by stand-alone estimators. The channel predictor performance
is later evaluated given that these model parameters are correct, but the
question of how sensitive prediction performance is to the correctness of
these parameters is left unanswered.
It would be interesting to conduct a sensitivity study by maintaining the

idea of avoiding simulations, and instead try to assess error rates from a
model structure that takes two state space models into account: one that
describes the actual system, and one that describes the system as given by
the model parameter estimators.

There is no hope of using optimal model parameter estimators. However,
given a set of di�erent estimators and some actual measurements, they may
be evaluated against one another by performing model selection of the dif-
ferent state space models that they yield (see Section 2.6). The algorithm
for how to do this is described in Appendix F.

The block structures used in Chapter 4 may easily be extended to include
multiantenna (MIMO) systems.

Chapter 5

The system evaluation and design procedure is in its infancy and requires a
great deal of research and work.



Appendix A
The non-uniqueness of the

probability function

The function P(·), with its sum and product rule, is usually used as de�nition
of probability. Obviously, one might just as well use some other function
Q(·) = f ◦ P(·), where f is a one-to-one mapping. The sum and product
rules,

P(A|B) + P(A|B) = 1,

P(A|BI)P(B|I) = P(B|AI)P(A|I),
(A.1)

will then transform into other forms. In this appendix we will investigate
how the rules of probability theory may turn out if we use a function Q(·)
rather than P(·) for measuring what we then might call qrobability.

Example A.1 Alternative probability definition

Let P(·) be the usual function that represent probabilities. We measure the
constant x, which we happen to know is either −1 or 1, in some noise e, so
that the measured value y is

y = x + e. (A.2)

To allow for a simple analysis we will let the noise e have a discrete and
somewhat constructed density function. It is most easily explained illus-
trated � see Figure A.1. If we let the proposition E1=`e takes the value
−3/2', then P(E1|I) = 1/10 and so on.

123
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Figure A.1: The probability distribution of the noise e.

The only thing we know about x is that it is either −1 or 1, so the principle
of indi�erence demands us to set

P(X1|I) = P(X2|I) = 1/2, (A.3)

where X1=`x is −1' and X2=`x is 1'. The question is: How is our knowledge
of x updated when we get the measurement y? Let us say that we measure
the speci�c value 1/2, so that the proposition Y is `y equals 1/2'. If we
choose to concentrate on the proposition X1 (i.e. that x=1), we may easily
update our state of knowledge from P(X1|I) to P(X1|Y I) through the use
of Bayes' theorem :

P(X1|Y I) = P(X1|I)
P(Y |X1I)
P(Y |I)

, (A.4)

where the factors on the left side may be readily calculated :

P(X1|I) = 1/2
P(Y |X1I) = P(`e=-1/2'|I) = 2/10
P(Y |I) = P(Y |X1I)P(X1|I) + P(Y |X2I)P(X2|I)

= 1/2 · (2/10 + 1/10) = 3/20

(A.5)

Inserting this into Bayes' theorem, we get

P(X1|Y I) = 2/3. (A.6)

That is the probability of X1 being true increases slightly from 1/2 to 2/3
when we get the measurement y=1/2.

What happens if we choose to transform P(·) with a mapping f so that
with instead look at the qrobability Q(·) = f ◦P(·)? Let us make the speci�c
choice

Q(x) = log
P(x)

1− P(x)
. (A.7)
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To simplify notation, we'll use the short-hand forms

Pn = P(Xn|I), Pn,y = P(Xn|Y I)
Py,n = P(Y |XnI), Py = P(Y |I)

, (A.8)

and accordingly, Qn = log pn/(1 − pn). What we have to do next is to
transform the rules. Starting with the sum rule, we get

(N − 1)eQ1+...+QN + (N − 2)(eQ2+...+QN + eQ1+Q3+...+QN + . . .)

+ (N − 3)(eQ3+...+QN + eQ2+Q4+...+QN + . . .) + . . .+

+ (eQ1+Q2 + eQ1+Q3 + . . .) = 1. (A.9)

(The terms with coe�cient (N − k) have (N − k + 1) terms in the expo-
nent). Evidently, the sum rule becomes quite complicated when we use the
transformation. Note however that for the particular case N = 2, the sum
rule looks very attractive :

Q1 + Q2 = 0. (A.10)

Although already the general form of the sum rule is fairly involved, things
are getting worse. The transformed Bayes' theorem is

Qn,y = log
(

eQy + 1
eQy(eQn + eQy,n + 1)− eQn+Qy,n

)
+ Qy,n + Qn, (A.11)

and for general number of propositions the transformed marginalisation
formula is so complicated that we will restrict ourselves to the case N = 2:

Qy =

log

(
e
Q1+Qy,1 (1+eQ2+e

Qy,2 )+e
Q2+Qy,2 (1+eQ1+e

Qy,1 )+2α

eQ1+e
Qy,1+eQ2+e

Qy,2+eQ1+Q2+e
Q1+Qy,2+e

Q2+Qy,1+e
Qy,1+Qy,2+1−α

)
,

with α = eQ1+Qy,1+Q2+Qy,2 .

Now we have only to transform our prior knowledge about e and apply
the transformed rules:

Q(X1|I) = Q(X2|I) = 0
Q(Y |X1I) = Qy,1 = log 1/4, Q(Y |X2|I) = Qy,2 = log 1/9
Q(Y |I) = Qy = log 3/17, (by transformed marginalisation)

⇒ Q(X1|Y I) = Q1,y = log 2

(A.12)
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(Of course we could just as well have used the regular rules (A.1) and
then transformed the result with (A.7), but that would miss the point).
The result is in agreement with the result obtained with the traditional
probability measure, since log( 2/3

1−2/3) = log 2. We see that when we measure
our state of knowledge using this qrobability, the measurement increases
from Q(X1|I) = 0 to Q(X1|Y I) = log 2 upon receiving y=1/2. Whether
this is little or much is hard to say; the proportional increase is indeed
in�nite.

There are two points to be made in this example. Firstly, it is evident
that the function P(·) is preferable to Q(·) from an algebraic point of view.
Secondly, it is important to understand that there is nothing fundamentally
more correct about P as compared to Q. The only thing that Cox�s theorem
states is that any measure of belief is isomorphic to a probability measure1.
To me, this is reminiscent of Euclids �ve postulates of geometry; four of
them seem very basic and it is obvious to anyone that they are needed to
axiomatise geometry. The �fth postulate � the parallel postulate � however
seem unnecessarily complicated and for two and a half millennia people tried
to derive it from the other four. It was not until the 19th century that it
was proven that the parallel postulate is indeed needed to de�ne standard
geometry, and that digressions from it yield new types of geometries.
In just the same way we need the three desiderata of Chapter 2 to �nd the

de�nition of a measure of belief, but to make it unique we also need a fourth
��fth postulate�:

(IV)
When applicable, probabilities and frequencies should take the

same value,

1In mathematics, a probability measure is in e�ect a function obeying the rules of
probability (Eq. A.1), although it is de�ned in a somewhat more rigid manner.
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or,

(IV) The rules of inference should be as simple as possible,

however one would formalise that last requirement. Without it, we do not
know whether to use P(·) or any of the in�nite possibilities of Q(·). Unlike the
case of Euclid's postulates, digression from it will not unveil wonderful new
theories which Dutch artists may turn into intricate images of interlocking
lizards. Since all rules will transform along with any transformation of P(·),
decisions will necessarily be independent on which theory is used. The lesson
taught is that caution must be taken when interpreting absolute values of
probability.
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Appendix B
Supersymbols

Here we exemplify the concept of �supersymbols� by examining the use of a
7, 4 block code and a 2D modulation format of eight symbols and studying
it from the geometric viewpoint proposed in Chapter 3. A good choice for
the code is a so called (7,4) Hamming code. It is �optimal� in the sense that
its 16 (24) 7-bit patterns (called codewords) are spread out evenly, so that
the di�erence in bit pattern between each pair of codewords � the Hamming
distance � is always 3 or 4. Hamming codes exist for all block sizes (2m −
1, 2m − 1 −m) where m ≥ 2. A 2D 8-ary modulation format is gray coded
8PSK. All eight symbols have the same energy and are evenly distributed
around a circle in the two-dimensional signal space. The gray coding ensures
that adjacent symbols only di�er in one bit, which also makes it �optimal�
in a sense.
If we view this code/modulation combination as an �extended� modulation

of �supersymbols� in 14D-space, then how are the supersymbols distributed?
It's di�cult to depict a 14-dimensional cluster of points on a two-dimensional
sheet of paper, but plotting the Hamming distance versus the signal distance
for each signal pair will tell a great deal about the properties of transmission
method; the performance of a communication system is largely dependent
on how well separated the symbols are and how many bits di�er between
close symbols. See Figure B.1(a).
Could we come up with a better alternative? We have 4096 symbols to

distribute in a 14D space. An obvious choice would be to place the sym-
bols on the corners of a 12D cube (and leave the two remaining dimensions
unused). We plot the corresponding curve for this �hypercube� modulation
and compare it to the Hamming+8PSK method. See Figure B.1(b). One
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(a) The symbol distribution in a sys-
tem that uses a Hamming (7,4) code
in combination with 8PSK modula-
tion. The asymmetry degrades the
performance compared to the �hyper-
cube� modulation.
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(b) The distribution of symbols when
each symbol is located on the corner
of a 12D hypercube. The symmetry
gives a good performance.

Figure B.1: Hamming distance versus signal distance for Hamming (7,4)
encoded 8PSK and the �hypercube� modulation. The hamming distance is
measured in bits. The signal distance is measured in units of the supersym-
bol energy.

might expect � and one would expect correctly � that the hypercube alter-
native yields better performance, despite that it seems considerably more
simple and straightforward when we view the communication system from
the geometric level discussed in Section 3.1. This shows how it might be
bene�cial to abstractly remove elements from the system when evaluating
its performance.
Further we may compare the two methods by deriving the bit error rate

expression for the hypercube modulation.
First we note that the bit error rate (Pb) versus bit energy/noise power

spectral density ratio (Eb/N0) for Hamming (7,4)+8PSK can be approxi-
mated by (See e.g. [12])

Pb,8PSKcoded ≈
7∑

i=2

i + 1
n

(
n

i

)
pi(1− p)7−i, p =

2
3
Q(
√

24
7

Eb

N0
sin

π

8
). (B.1)

Here, Q(·) is a common function i digital communications and is de�ned

Q(x) =
1√
2π

∫ ∞

x
e−t2/2dt. (B.2)

We need it every time our signal is subjected to AWGN, which is more or
less always, and we want to evaluate the probability that the output from
a correlator is misinterpreted as the wrong symbol, that is the risk that a
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received symbol is displaced beyond a decision boundary xb that separates
the respective decision regions of two symbols. We then need to calculate
the area of the tail of a gaussian distribution, which through a simple change
of variables can be expressed in terms of the Q-function :

1√
2πσ2

∫ ∞

xb

e−
(x−x0)2

2σ2 dx = Q

(
xb − x0

σ

)
. (B.3)

The noise variance is commonly described in terms of the single-sided noise
spectral density N0 : σ2 = N0/2. Moreover, if we by d denote twice the
signal distance between the undistorted symbol and the decision boundary
so that xb − x0 = d/2, we get the simple formula

Q

(
d√
2N0

)
=
The probability that the output of a
correlator is displaced beyond a de-
cision boundary.

(B.4)

We can use this result to derive the performance of the hypercube mod-
ulation. The most sound way to associate bit patterns with symbols is to
let symbols that are close to each other represent bit patterns of little di�er-
ence. Hence we let bit patterns of symbols that share all but one dimension
di�er in only one bit, and those symbols that di�er in two dimension have
bit patterns with two di�ering bits and so on. With respect to any given
symbol, there are

(
N
k

)
other symbols that di�er in k dimensions. This gives

us the bit error rate for the hypercube modulation. The symbol energy is
the squared distance from the centre of the cube to a corner. The distance d
between two adjacent symbols constitutes the length of one side, so we have√

Es =
√

NEb =
d

2

√
N ⇒ d = 2

√
Eb. (B.5)

Now we can calculate the bit error rate (note that a detection error where
k dimensions come out erroneously generates k/N bit errors). Let Q =
Q(d/

√
2N0) = Q(

√
2Eb/N0):

Pb,Hypercube =
N∑

k=0

k

N

(
N

k

)
Qk(1−Q)N−k

=
N∑

k=1

k

N

(
N

k

)
Qk(1−Q)N−k

= Q
N∑

k=1

(
N − 1
k − 1

)
Qk−1(1−Q)(N−1)−(k−1)

= Q(
√

2Eb/N0) (B.6)
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Figure B.2: The bit error rate of the two communication schemes versus
Eb/N0. The �hypercube� modulation, which turns out to be nothing more
than a generalisation of regular BPSK or QPSK, outperforms coded 8PSK.

It might seem strange that the bit error rate is the same regardless of the
dimensionality N . For those already familiar with digital communications
this is however of little surprise; What we have done here is to send our
12 bits, two by two, in consecutive time slots. But this is the same as
sending bits in blocks of two using quadrature phase shift keying (QPSK), a
modulation type for which the bit error performance is the well known result
(B.6). We compare the bit error performances of the two modulation types
studied here in Figure B.2.
Normally there are more things than merely the bit error probability to

consider when one chooses modulation/coding format, such as complexity
and bandwidth requirements. The hypercube format suggested in this ex-
ample will actually require less bandwidth than the 8PSK+Hamming com-
bination, but the aim here is only to illustrate the merits of looking at the
communications system from a geometrical perspective.



Appendix C
Posterior distribution for the

channel power

I here show that the pdf of the squared magnitude of a tap h having a
gaussian pdf is the non-central χ2-distribution.
Denoting the real and imaginary part of a tap by hr and hi, respectively,

we seek the pdf for the channel power z = h2
r + h2

i , conditioned on that we
have the mean value µ = µr + jµi and the variance σ2 of hr + jhi. This is
easily done by calculating P (t < z|µσI) and then taking the derivative with
respect to z. Assume that hr and hi are uncorrelated and that the variance
is split equally between them. Let f(z) = p(z|µσI). Then∫

t<z

f(t)dt =
∫

h2
r+h2

i <z

p(hr|µσI)p(hi|µσI)dhrdhi

=
∫

h2
r+h2

i <z

1
πσ2

e(−(hr−µr)2−(hi−µi)
2)/σ2

dhrdhi.

This can be rewritten by use of the law of cosines, which says that the sides
in a triangle relates as a2 = b2 + c2 − 2bc cos θ, where θ is the angle between
sides b and c. Changing to polar coordinates, we now have

∫
t<z

f(t)dt =

√
z∫

0

2π∫
0

1
πσ2

e(−|µ|2−r2+2|µ|r cos θ)/σ2
dθrdr.

Using I0(z) = 1
π

∫ π
0 exp(z cos θ)dθ, where I0(z) is the modi�ed Bessel func-
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tion of the �rst kind, the above evaluates to

∫
t<z

f(t)dt =

√
z∫

0

e−(|µ|2+r2)/σ2
2I0(2|µ|r/σ2)/σ2rdr.

Finally, taking the derivative with respect to z and noting that d/dz
∫ √z

f(t)dt =
f(
√

z)/2
√

z, we have

p(z|µσI) = e−(|µ|2+z)/σ2
I0(2|µ|

√
z/σ2)/σ2.

This is the non-central χ2-distribution with mean value |µ|2+σ2 and variance
2|µ|2 + 4σ2. Note that µ and σ are the mean value and standard deviation
of the complex gaussian distribution p(hr + jhi|σµI).



Appendix D
The central limit theorem

Here it is shown that the pdf of the sum of variables, each having pdf P(x),
approaches a gaussian distribution as the number of terms grow large.
Let x =

∑N
n=1 xn/N . The proof it found by taking the fourier transform:

F [P(x)](ω) =
∫ ∞

−∞
P(x)e−jωxdx

=
∫ ∞

−∞
P(x)

∞∑
k=0

(−jωx)k

k!
dx

=
∞∑

k=0

(−jω)k

k!

∫ ∞

−∞
xkP(x)dx

=
∞∑

k=0

(−jω)k

k!

∫ ∞

−∞
N−k(x1 + . . . + xN )kP(x1) . . .P(xN )dx1 . . .dxN

=
∫ ∞

−∞

∞∑
k=0

(
−jω(x1 . . . xN )

N

)k 1
k!

P(x1) . . .P(xN )dx1 . . .dxN

=
∫ ∞

−∞
e−jω(x1...xN )/NP(x1) . . .P(xN )dx1 . . .dxN

=
(∫ ∞

−∞
e−jωx1/NP(x1)dx1

)
× . . .×

(∫ ∞

−∞
e−jωxN/NP(xN )dxN

)
=
(∫ ∞

−∞
e−jωx1/NP(x1)dx1

)N
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=

(∫ ∞

−∞

[
1 +

(
−jω

N

)
x1 +

1
2

(
−jω

N

)2

x2
1 + . . .

]
P(x1)dx1

)N

=
(

1 +
−jω

N
〈x1〉+

(−jω)2

2N2
〈x2

1〉+O(N−3)
)N

= exp
(

N log
(

1 +
−jω

N
〈x1〉+

(−jω)2

2N2
〈x2

1〉+O(N−3)
))

= exp
(

N

(
−jω

N
〈x1〉+

(−jω)2

2N2
〈x2

1〉 −
(−jω)2

2N2
〈x1〉2 +O(N−3)

))
= exp−

(
jω〈x1〉+ ω2 〈x2

1〉 − 〈x1〉2

2N
+O(N−2)

)
= exp−

(
jωµ + ω2 σ2

x

2N
+O(N−2)

)

(D.1)

Neglecting higher order terms and taking the inverse Fourier transform, we
arrive at the answer

⇒P(x) ≈ 1
2π

∫ ∞

−∞
exp

(
jω(x− µ) + ω2 σ2

x

2N

)
dω

=
1√

2πσ2
x/N

exp
(
−(x− µ)2

2σ2
x/N

) (D.2)



Appendix E
Bayesians, frequentists, and

pragmatists

The notations and expressions used in Bayesianism can di�er quite a bit from
those used in frequentist theory, which may cause confusion when scholars
in the two �elds try to share research and experience.
But the problems do not stop there, because although the bayesian solution

may coinside with a frequentist method, there are many frequentist methods
yielding di�erent answers. Moreover, it is often the case that researchers
take a pragmatic stand towards a problem and invent new methods unheard
of in either bayesian or frequentist litterature.
We will study such a case here. The example is taken from [14]. A fading

complex channel tap ht is modelled with a time invariant linear model. The
tap is measured in noise over n samples,

ϕ(t) = [ht + nt, ht−1 + nt−1, . . . , ht−n+1 + nt−n+1]T . (E.1)

A time invariant model is conveniently expressed as the covariance function
rh(t) for the tap, the covariance function rϕ(t) for the data, and the cross-
covariance rhϕ(t) between the tap and the measurements. The objective here
is to predict the squared magnitude of a future tap, |ht+L|t|2.
It is known that the optimal procedure for making inference for parameters

from a linear gaussian model is given by the Kalman recursions. When the
model is time invariant, the solution converges towards the Wiener in�nite
impulse response (Wiener IIR) solution as more and more data is collected.
The convergence is in general rapid and the approximation will usually be
good after only a few data points. If the Wiener IIR solution yields a short

137



138 Appendix E. Bayesians, frequentists, and pragmatists

impulse response, then the Wiener �nite impulse response (Wiener FIR)
solution will also be close to optimal. Ekman [14] makes this assumption
and so he uses the minimum mean square (MMSE) estimate

ĥ
t+L|t = βϕt, (E.2)

where β is a row vector containing the optimal weights given by the Wiener
FIR solution. But we know more than this, because �lter theory gives us
the entire pdf:

p(ht+L|ϕtI) = N (ht+L;βϕt, rh(0)− rhϕRϕrϕh). (E.3)

The solution now follows readily from a change of variables; any statistical
textbook tells us that if a parameter x is gaussian with non-zero mean, then
|x|2 has a non-central χ2-distribution. More precisely,

p(x|DI) = CN (x;µ, σ2) ⇒ p(|x|2|DI) = χ2(|x|2; |µ|2 + σ2, 2|µ|2 + 4σ2),
(E.4)

where the �rst and second arguments are the mean and variance, respectively
(a derivation is given in Appendix C). The MMSE estimate of the squared
magnitude is simply given by the mean of the χ2-distribution:

E(|ht+L|2|ϕtI) ≈ |βϕt|2 + rh(0)− rhϕRϕrϕh. (E.5)

The relation is not exact since the Wiener FIR estimate is not optimal. Note
that the above solution is not bound to Bayesianism. The process {ht} is
considered to be stochastic and so the solution is good also for frequentists.
But frequentism has many solutions to the same problem, and in general

they all give di�erent answers. One alternative is to use a so called unbiased
estimate. Imagining that we search for an estimate of a parameter θ, we
pick an estimator θ̂(D), more or less out of thin air. Then we make sure
that its mean value is equal to the true value θ. For θ to appear at all in
our expressions, we must take the mean value over the sampling distribution
p(D|θI). Hence we act as though we already knew the value of θ and make
sure that

E(θ̂(D)|θI) = θ. (E.6)

In the present example, one might attempt to simply square the estimate
of the tap and use that as a �rst rough estimator.

ĥ
t+L|t,biased(ϕt) = |βϕt|2 (E.7)
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The next step is to adjust this so that it becomes unbiased. This is most
easily done by simply adding the appropriate constant. To �nd this constant,
we must calculate the expectancy

E(|βϕt|2||ht+L|2I), (E.8)

and the best way to do this is probably to start by seeking the pdf

p(ϕt||ht+L|2I), (E.9)

and then calculating the pdf for the squared linear combination by changing
variables. But already calculating (E.9) is exceedingly di�cult and a research
project on its own. The procedure would be to start by calculating

p(ϕt|ht+LI), (E.10)

which would have to be done by running a Kalman �lter backwards in time
from the point t + L and setting the initial uncertainty P0 to zero. The
exact procedure can easily be derived by generalising the procedure out-
lined in Appendix F. Once this is done, we need to marginalise over the
unknown phase of ht+L, which probably cannot be done analytically. Find-
ing E(|βϕt|2||ht+L|2I) is indeed a di�cult problem.
In any case, the method of unbiased estimators was recognised as �awed a

long time ago, the reason for which can be seen by algebraically manipulating
the variance of the error over the sampling distribution:∫

(θ̂(D)− θ)2p(D|θI)dD =∫
θ̂(D)2p(D|θI)dD + θ2 − 2θE(θ̂(D)|DI) =[

E(θ̂(D)|DI)
]2

+ θ2 − 2θE(θ̂(D)|DI)+∫
θ̂(D)2p(D|θI)dD +

[
E(θ̂(D)|DI)

]2
− 2

[
E(θ̂(D)|DI)

]2
=(

E(θ̂(D)|DI)− θ
)2

+
∫ [

θ̂(D)− E(θ|DI)
]2

p(D|θI)dD =(
E(θ̂(D)|DI)− θ

)2
+ var(θ̂(D)|DI)

(E.11)

The original motivation for using unbiased estimators was to minimise the
variance of the error, but from the above expression we see that although
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(
E(θ̂(D)|DI)− θ

)2
cancels by choosing E(θ̂(D)|DI) = θ, it is not evident

how var(θ̂(D)|DI) is a�ected by this choice.
Ekman attempts to calculate the unbiased estimate of the squared tap

magnitude. However, frequentists unually do not specify the conditions when
evaluating mean values, and so Ekman tries to evaluate the �bias compen-
sation� over the prior distribution instead of over the sampling distribution.
He �nds that

E(|βϕt|2|I) = βE(ϕtϕ
∗
t |I)β∗ = βRϕβ∗. (E.12)

To complete the compensation, he calculates the true squared magnitude,
again over the prior distribution:

E(|ht + L|2|I) = rh(0) (E.13)

The �nal �unbiased� estimator is now

ĥ
t+L|t = |βϕt|2 + rh(0)− βRϕβ∗, (E.14)

which is equal to the expression (E.5).
How is it possible for a faulty application of a �awed method to give the

correct answer? Well, this is in many ways typical for simple problems where
all parameters are gaussian and relationships are linear.
Optimal estimators often evaluate to sums of means and variances of model

parameters, and so there are not many combinations to choose from if one
would pick a blind guess. It is therefore a fairly good chance that suboptimal
methods accidentally stumble upon the correct solution.
However, we may easily study cases where ad hoc procedures do not work

out that well. One such case is constructed if we simply remove the squaring
in the example above, so that we seek to estimate |ht+L| from ϕt.
Analogous to before, a change of variables takes us from the gaussian dis-

tribution to a Rice distribution (I drop the subindex t + L):

p(|h||ϕI) =
|h|
σ2

exp{−(|h2| − |βϕt|2)/2σ2}I0(|h||βϕt|/σ2) (E.15)

But the expected value now look considerably more complicated and contains
a Laguerre polynomial (L1/2 below):

E(|h||ϕI) = σ
√

π/2L1/2(−|βϕ|2/2σ2), (E.16)

This result can be derived as easily as (E.5) straight from schoolbook results,
both by Bayesians and frequentists, but hardly through the use of ad-hoc
methods.



Appendix F
Model selection for linear models

Given a set of data Y = y0, y1 . . . yN−1, model selection amounts to deciding
which model Mk from a prede�ned set of models yields the highest proba-
bility. Assuming that all models are assigned the same prior probability, we
have

p(Mk|Y, I) ∝ p(Y |Mk, I), (F.1)

and the problem reduces to calculating the likelihood L(Mk) = p(Y |Mk, I).
An important class of models is the linear model structure in which all

parameters are gaussian. Such a model can always be expressed in state
space form :

xi+1 = Fixi + Giui,

yi = Hixi + vi.
(F.2)

The covariances and mean values are assumed given as prior information:

E(

 ui

vi

x0

 ,
[

u∗j v∗j x∗0 1
]
|I) =

 Qiδij 0 0 0
0 Riδij 0 0
0 0 Π0 0

 . (F.3)

In order to calculate the likelihood, we write

p(Y |Mk, I) = p(yN−1, . . . , y0|Mk, I)
= p(yN−1|yN−2, . . . , y0,Mk, I)× p(yN−2, . . . , y0|Mk, I)
= p(yN−1|yN−2, . . . , y0,Mk, I)× p(yN−2|yN−3, . . . , y0,Mk, I)
× . . .× p(y1|y0,Mk, I)× p(y0|Mk, I),

(F.4)
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noting that the above is a product of the pdf:s of the one-step predictions
for the process y. These pdf:s are given by the Kalman recursions :

Re,i = Ri + HiPiH
∗
i

Kf,i = PiH
∗
i R−1

e,i

ei = yi −Hix̂i

x̂i|i = x̂i + Kf,iei

Pi|i = (I −Kf,iHi)Pi

x̂i+1 = Ftx̂i|i

Pi+1 = FiPi|iF
∗
i + GiQiG

∗
i

(F.5)

The pdf for the one-step prediction for y is given by

p(yi|yi−1, . . . , y0,Mk, I) = CN (yi;Hix̂i, Re,i). (F.6)

Considering the expression for a gaussian distribution, we may hence update
the likelihood L(Mk) alongside the Kalman recursions through

log Li+1(Mk) = log Li(Mk)− p log π − 1
2

log |Re,i| −
1
2
e∗i R

−1
e,i ei, (F.7)

where p is the dimensionality of the measurements y. Comparing di�erent
models, one would then choose the model that yields the highest likelihood.
Note that the algorithm requires � apart from the usual recursions � a

determinant and an inverse to be calculated at each time update. If the
measurement y has a high dimensionality it might be a better idea to update

R
−1/2
e,i instead of Re,i. R

−1/2
e,i here refers a so-called square-root factor1. It

is non-unique but can be made unique by for example our requiring it to be
lower triangular. Hence we de�ne the square root A1/2 of a matrix A to be
a lower triangular matrix satisfying

A = A1/2A∗/2, (F.8)

where the last factor refers to the conjugate transpose of A1/2. The re-
striction that the square root should be triangular is particularly suited for
the present purpose, since its determinant can then be calculated simply by

multiplying its diagonal elements. A recursion for updating R
−1/2
e,i can be

constructed through use of an array algorithm as follows (it is here assumed

1The terminology is a historical quirk. A more correct term would be Choleski factor.
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that Fi and Ri are invertible). Construct a particular matrix (the left hand
side below) and use QR decomposition to form (see [19, Sec. 12.8.5])

R
−∗/2
i 0 0

−F−∗
i H∗

i R
−∗/2
i F−∗

i P
−∗/2
i 0

Q
∗/2
i G∗

i F
−∗
i H∗

i R
−∗/2
i −Q

∗/2
i G∗

i F
−∗
i P

−∗/2
i I

−y∗i R
−∗/2
i x̂∗i P

−∗/2
i 0



= Θ


R
−∗/2
e,i −K∗

p,iP
−∗/2
i+1 (∗)

0 P
−∗/2
i+1 (∗)

0 0 (∗)
−e∗i R

−∗/2
e,i x̂∗i+1P

−∗/2
i+1 (∗)

 ,

where Θ is a unitary matrix satisfying ΘΘ∗ = I. The (∗) are elements

whose values need not be calculated. Evidently, R
−1/2
e,i is extracted as the

upper left p×p-block of the QR decomposition, and e∗i R
−∗/2
e,i constitutes the

lower left 1 × p vector. Note also that P
−∗/2
i+1 is used in the next iteration.

In combination with the above QR decomposition, we can now iterate the
likelihood:

log Li+1(Mk) = log Li(Mk)− p log π + tr(log R
−1/2
e,i )− 1

2
e∗i R

−∗/2
e,i R

−1/2
e,i ei.

(F.9)
Keep in mind that QR decomposition is numerically quite cumbersome.
Which approach to use is therefore not obvious. However, the array al-
gorithm has an advantage over the usual recursions in terms of numerical
robustness.
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Appendix G
Numerical complexity

The Kalman �lter (KF) recursions requires signi�cant numerical e�ort. The
computations are either dominated by the multiplications of the large matri-
ces Fi and Pi, or by the matrix inversion R−1

e,i , depending on how di�cult the
latter is to implement on the available hardware architecture. Below follows
a thorough analysis of the number of arithmetic operations needed to iterate
the KF.

G.1 Matrix multiplications

The multiplication of two matrices, one of dimension m × n and the other
of dimension n× p, takes n multiplications and n− 1 additions per element,
hence requiring a total of about mnp arithmetic operations (one arithmetic
operation being equal to one multiplication and one addition). The left-over
addition means that in an expression such as A+BCD, we need not consider
the matrix addition, but need only count the matrix multiplications. In the
KF expressions it is also common that a hermitian (conjugate symmetric)
matrix is multiplied from the left with a certain matrix, and from the right
with the same matrix conjugated, so that we know the total result to also
be hermitian. Then we need only carry out half of the arithmetic operations
in the last multiplication. Which of the two multiplications to regard as the
last naturally depends on which one saves us the most operations.

145



146 Appendix G. Numerical complexity

G.2 Matrix inversions

To most people it is surprising to see that a general matrix inversion only
takes n3 operations, which is the same as it takes to square the same matrix[27,
p. 33]. Moreover, inverting a hermitian matrix takes only n3/6. There is
however a big di�erence between matrix multiplications and matrix inver-
sions. Whereas matrix multiplications are tailored for implementation on
most DSP:s, which e�ectively pipeline alternating additions and multiplica-
tions, the numerical e�ort taken by a matrix inversion depends very much
on the speci�c architecture of the system on which the algorithm is to be im-
plemented. In the below numerical complexity calculations, I have therefore
chosen to express the complexity of an inversion as a function call, minv(n3).
I use the argument n3 instead of n to indicate that the operation is gener-
ally an O(n3) operation. Assuming the most e�cient implementation, one
should equate minv(n3) with n3/6.

G.3 Complexity of the Kalman �lter

Assume a general state space model :

xi+1 = Fixi + Giui,

yi = Hixi + vi.
(G.1)

The covariances and mean values are given as prior information:

E(

 ui

vi

x0

 ,
[

u∗j v∗j x∗0 1
]
|I) =

 Qiδij 0 0 0
0 Riδij 0 0
0 0 Π0 0

 . (G.2)

Let n be the dimensionality of the states x, let m be the dimensionality of
the process noise u, and let p be the dimensionality of the measurements y.
We then have the following matrix dimensions:

F, P : n×n, G : n×m, H : p×n, Q : m×m, R,Re : p×p, Kf : n×p
(G.3)

The KF recursions, needed for updating the �ltered pdf {x̂i|i, Pi|i} or the
one-step prediction pdf {x̂i, Pi}, and their corresponding numerical complex-
ity, are given in Table G.5. The total number of arithmetic operations, one
operation being one addition and one multiplication, sums to

3n3/2 + (3p/2 + m/2)n2 + (3p2/2 + m2)n + minv(p3), (G.4)

in agreement with [19, p. 475] and close agreement with [28]1. To be

1Verhaegen et al [28] has an extra 3pn2/2 term.
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consisted with the references, I have in the above expression neglected the
�quadratic� terms in the {x̂i|i, x̂i+1} update.
The model matrices presented in this thesis are block structured so that

only K elements per row/column are non-zero. This gives rise to a tremen-
dous relaxation of the numerical complexity, which is also presented in Table
G.5. The total count is (3K/2 + p/2)n2 + (pK + p2)n + p2K/2 + minv(p3)
arithmetic operations. I have then also assumed that the matrix product
GiQiG

∗
i has been precomputed.

G.4 Complexity of alternativ KF formulations

Apart from the block-structures of the model matrices, the channel estima-
tion problem considered in this thesis has other structural properties that
may reduce the numerical complexity. So, for example, will we observe that
the fading statistics induced from a mobile unit's moving about in an ur-
ban or suburban environment, will be constant for long time periods, hence
imposing static model matrices for large periods of time.
By restricting the matrices to be constant, the KF can be formulated in

a way which reduces its complexity considerably. This formulation is called
the CKMS algorithm after its developers Chandrasekhar, Kailath, Morf, and
Sidhu. Instead of propagating Pi|i and Pi directly, the CKMS formulation
propagates four smaller matrices Ki, Li, Re,i, and Rr,i. The matrices Li and
Rr,i are initiated at i = 0 by a spectral factorisation

−L0R
−1
r,0L∗0 = FΠ0F

∗ + GQG∗ −K0R
−1
e,0K

∗
0 −Π0, (G.5)

with K0 = FΠ0H
∗ and Re,0 = R+HΠ0H

∗. The spectral factorisation yields
a matrix L0 of size n × α, and a matrix Rr,0 of size α × α. The lower the
α, the more bene�cial the use of CKMS as compared to the standard KF
formulation. The exact CKMS recursions and their corresponding numer-
ical complexity is presented in Table G.5. Unfortunately, as is clear from
the table, the CKMS recursions do not bene�t very much from the block-
structures of the model matrices. The reason is that the iterated matrices
immediately become full which means that no savings can be made in the
multiplications. Therefore, in the speci�c application considered here, the
CKMS recursions are actually more computationally demanding than the
original KF formulation.
The Kalman �lter can also be implemented as an array algorithm. One

then updates so called square-root factors of Pi|i or Pi. Array algorithms can
be implemented in such a way that they take virtually the same number of
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arithmetic operation to iterate as the standard KF. However, they too su�er
from not being able to exploit the block-structures of the matrices presented
in this thesis. One array algorithm is brie�y presented in Appendix F. For
more information on array algoritms, see [19].

G.5 KF complexity vs. number of taps and users

So far I have only considered the updating of the P matrix. In order to
study the complexity of a real �lter we must also consider the updating of
the mean value x̂ as well as the complexity of the many-steps predictions
needed for the channel state feedback. The complexity of the latter is de-
termined by the number of steps to predict (the prediction horizon). It is
carried out by simply iterating the recursions for x̂i+1 and Pi+1. Taking into
account the block-structured model (4.2) where K represents the block size,
the complexity budget required for one KF iteration hence looks like this:

(3/2 + p/2)n2 + (pK + p2)n + p2K/2 + minv(p3) P update
(p + K)n + pK x̂ update
3n2/2×# prediction steps P prediktion
n×# prediction steps x̂ prediction

(G.6)

This deviates immensely from the e�ort needed to iterate the general Kalman
�lter. Due to the di�culties in exploiting the block structures in alternative
KF formulations, it is not very likely that this complexity can be reduced
further to any considerable extent.



Table G.1: Numerical complexity of the general Kalman �lter and the cor-
responding relaxations emerging from block-structured matrices. The term
unchanged refers to the fact that the expression in question is the same as
for the general case.

Operation # arithmetic ops. (general case) # arithmetic ops. (block structures)

Ai = HiPi pn2 pnK
Re,i = Ri + HiPiH

∗
i = Ri + AiH

∗
i

1
2p2n 1

2p2K

Kf,i = PiH
∗
i R−1

e,i = A∗
i R

−1
e,i p2n + minv(p3) unchanged

Pi|i = (I −Kf,iHi)Pi = Pi −AiR
−1
e,i A

∗
i = Pi −Kf,iA

∗
i

1
2pn2 unchanged

Pi+1 = FiPi|iF
∗
i + GiQiG

∗
i

3
2n3 + 1

2mn2 + m2n 3
2n2K or 3

2n2

x̂i|i = x̂i + Kf,i(yi −Hix̂i) pn + pn pK + pn

x̂i+1 = Fix̂i|i n2 nK or n
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Table G.2: Numerical complexity of the general CKMS algorithm and the
corresponding relaxations emerging from block-structured matrices. The
term unchanged refers to the fact that the expression in question is the
same as for the general case.

Operation # arithmetic ops. (general case) # arithmetic ops. (block structures)

Ui = FLi αn2 αnK
Vi = HLi pαn pαK

Kp,i = KiR
−1
e,i p2n + minv(p3) unchanged

Ki+1 = Ki − UiR
−1
e,i V

∗
i p2n + 1

2pn2 unchanged

Li+1 = Ui −Kp,iVi pαn unchanged

Re,i+1 = Re,i − V ∗
i R−1

r,i V ∗
i pα + 1

2p2α + minv(α3) unchanged

Rr,i+1 = Rr,i − V ∗
i R−1

e,i Vi pα2 + 1
2p2α unchanged

Pi+1 = Pi − LiR
−1
r,i L∗i

1
2αn2 + α2n unchanged
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