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ABSTRACT

This work considers tracking of time-varying parameters and automatic tuning of the step-
size for the Simplified Wiener LMS algorithm (SWLMS). When tracking time-varying
parameters in applications where the rate of change of the time-varying parameters and
the noise level may change frequently, it is of interest to adjust the adaptation gain, or the
step-size, on-line. The reason for this is that proper manual tuning of the step-size in these
cases often is very time consuming, or maybe even impossible. The purpose of this work
has been to find a promising step-size updating algorithm to be used in combination with
the SWLMS algorithm in order to create an almost self-tuning algorithm that can be used
only with little help from the system designer. Various step-size candidates are evaluated
and compared in different tracking scenarios.

In addition to the comparison of the different step-size algorithms, a small study concern-
ing two other tracking issues is also performed. The first issue deals with the potential
performance gain obtained by introducing individual step-size control of the different
time-varying parameters. The second issue concerns the useof specific information,
available to the designer, about the time-varying parameters and the characteristics of
signals passed through the time-varying system, that maybecan be applied to improve the
overall tracking performance.

In the end, a small case study is performed. Here the most promising algorithms are
implemented in a realistic communication scenario. It is shown that the proposed methods
are widely superior compared to the traditional constant gain algorithms.
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Preface

During the last year of my undergraduate education I was totally confidentnot to
end up at the university. I was going to move from Uppsala like most of my friends,
and start a carrier at one of the hi-tech companies in Stockholm. That was the plan!
However, since you are reading this, something must have happened somewhere
along the track. No one really knows what made me change my mind, but it has
something to do with the courseAdaptive Signal Processing, given at the Signals
and Systems Group at Uppsala University. For some reason, me and fourother
students, out of a class of sixteen, decided to participate in this course although we
did not have the slightest clue what it was about, but it sounded interesting.

Signal processing... most people I talk to refer to trains and traffic lights when they
here those words - it turned out to be something else! However, due to the low
number of students on the course, i.e. three (one gave up!), we developed a nice
relationship with the different teachers giving the course. (To be honest, there were
actually more teachers than students!). Anyway, this, I guess, was a turning point
where I realized that I had found a subject that I really liked. It was a combination
of creative thinking, mathematics, programming, and maybe most important of all
- it was useful and easy to apply in real applications.

Then one day about a year after finishing the course, when me and my friend
Mathias Johansson were looking for a Master thesis, we returned to the Signals
and Systems Group asking for suitable projects. We were then asked to investigate
the possibility to enhance the quality of sound reproduction systems with the help
of signal processing. This, finally, turned out so well that we were ableto start
a company,Dirac Research AB, partly based on the results from our thesis. The
company was started together with some colleagues, and our supervisors,Anders
Ahlén and Mikael Sternad. However, after finishing the Master thesis we were
offered to continue our studies at the university as graduate students, enhancing
our knowledge in the art of signal processing. This work is the result ofmy studies.
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Chapter 1
Introduction

To be able totrack or follow different things has always been important for peo-
ple . In fact, it may actually start already in the beginning of the day. In order to
get ready for work we need to; wake up, hopefully get our breakfast, then, maybe
listen to the news to follow what is happening in the world. After that we might
take the car and drive to our work, which involves keeping track of the road when
driving. Then, when we finally arrive at work we need to follow up uponwhat
to do in order to make sure that our work is on the right track. We probably also
follow the progress of our savings day by day by listening to the daily economical
reports. These ”tracking problems” are very simple to understand and solve, in
fact, we probably don’t even think about them as ”tracking problems” because the
they are part of our daily routines.

In this work we will consider another type of tracking problems -parameter track-
ing in time variable systems. This means that our goal is to follow the variations
of certain parameters in a system that changes its behavior over time. Examples of
such systems might be

• Communication systems

• Process control systems

• Economical systems

We will in this work regard the first one,Communication systemsas our main tar-
get for the results produced hereafter.

1



2 Chapter 1. Introduction

Over the years, many different methods of how to track or follow time-varying
parameters have been developed see eg. [1],[2],[3]. These methods are called
adaptive algorithmsand are frequently used in many applications. One of the most
famous adaptive algorithms is the so calledLeast Mean Squareor LMSalgorithm
[3] introduced by Widrow and Hoff in the sixties. The fame of the LMS algorithm
is explained by its simplicity. However, due to this simplicity the algorithm suf-
fers from some drawbacks which might restrict its use in some applications. One
of these drawbacks is theslow convergenceof the algorithm. This problem has
generated interest among researchers to modify the LMS algorithm such that the
problem is alleviated. The slow convergence problem originates from the fact that
the LMS algorithm, as well as many other algorithms of low complexity, uses a
constant adaptation gain, or step-size1. Then in order to solve this problem it is
common to introduce some sort of automatic step-size mechanism that controls the
adaptation gain. These mechanisms have been shown to work well in situations
where theconstantgain LMS would do less well.

In [4], a framework of how to design tracking algorithms based on Wiener filter-
ing theory was developed. One of the resulting algorithms in this work is called
The Simplified Wiener LMSalgorithm, or SWLMS. This is an adaptive algorithm
characterized by its good tracking performance, low complexity and ease of use. It
is related to the well known LMS algorithm. Unfortunately, like many other adap-
tive algorithms the SWLMS algorithm uses a constant adaptation gain which may
lead to suboptimal tracking in some time-varying environments. This, together
with some of the the different automatic step-size schemes developed for the LMS
algorithm [5],[6],[7] has motivated us to investigate the possibility to equip the
Simplified Wiener LMSalgorithm with an automatic step-size adjustment in order
to enhance the tracking performance and to make it less sensitive to changes in
the tracking environment. Although the original motivation for the automatic step-
size algorithms was to improve the convergence properties of the LMS algorithm,
our motivation to use them together with the SWLMS is somewhat different. The
driving force in our case has been to simplify the work of the system designer,
since tuning of adaptive algorithm in real applications might be a time consuming
process. Automatic tuning is therefore of great interest.

In this thesis we will investigate some of the step-size algorithms designed for
the LMS algorithm, as well as develop a completely new algorithm based on the
SWLMS algorithm in order to find the best candidate to be used in combination
with the SWLMS algorithm.

1The adaptation gain or the step-size will be explained in more detail in Chapter2.
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In addition to the comparison of the different step-size algorithms, a small study
concerning two other tracking issues is also performed. The first issue deals with
the potential performance gain obtained by introducing individual step-size con-
trol of the different time-varying parameters. This means that, instead of using
the same step-size parameter for all time-varying parameters an individual time-
varying step-size parameter is assigned to each one of the parameters thatare to be
followed. The second issue concerns the use of specific information, available to
the designer, about the time-varying parameters and the characteristics ofsignals
passed through the time-varying system, that maybe can be applied to improve the
overall tracking performance.

1.1 Outline

Chapter 2

In this chapter the tracking problem is introduced. Here suitable notation is intro-
duced and the problem is approached mathematically. An introduction to adaptive
parameter estimation is first given, then the focus is changed towards the tracking
problem. Common adaptive tracking algorithms are introduced as well as the per-
formance measures used in tracking. This chapter serves as the base in order to
understand the rest of the work.

Chapter 3

This chapter starts with an overview describing why automatic tuning of the SWLMS
algorithm is of interest. Then, common step-size methods used for automatic tun-
ing of the LMS algorithm is introduced, these are then combined with the SWLMS
algorithm in order to create a number of candidates used for evaluation in Chapter
4. Finally, a completely new step-size scheme based on the SWLMS algorithm is
developed. The complexity for the different algorithms are finally presented in the
end of the chapter.

Chapter 4

Here, the different algorithms from Chapter 3 are evaluated in differenttracking
scenarios. The aim is here to find the best candidate to be used in combination
with the SWLMS algorithm. In the end, recommendations based on the different
simulations are given in order to provide a potential user with information of how
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to use an automatic step-size algorithm together with the SWLMS algorithm. In
this chapter the two other tracking issues described above are also investigated.

Chapter 5

In this chapter, the most promising algorithms from Chapter 4 are evaluated as
parts of a real communication system (EDGE). The algorithms are implemented
in an adaptive equalizer as a channel tracker in order to compensate fornegative
effects imposed by the wireless channel.

Chapter 6

Here we discuss further studies.



Chapter 2
The Tracking Problem

2.1 The system and the linear regression model

Consider a relation between a set of variables. Let us assume that a scalar output
signalzt is produced as

zt = g(ϕt, ht), t = 0, 1, 2 . . . . (2.1)

Here,g(·) is a function depending on the variablesϕt andht, whereϕt represents
input signals andht the model parameters. The indext indicates that we are work-
ing with signals sampled in discrete time. This can be considered as a general
discrete-time model with no restrictions on the system parameters or the input sig-
nals. Therefore, the model (2.1) covers both nonlinear and linear systems, dynamic
systems and static relations, as well as real and complex signals. In this workthe
discussion is restricted to a system that is linear in the parameterht, described by
the scalar linearregression

zt = ϕ∗
tht, t = 0, 1, 2 . . . (2.2)

in which the time varying parameter vectorht is multiplied on the input variable
vectorϕ∗

t producing the scalar output signalzt. Both signals and parameters may
be complex valued. In this model the components ofϕ∗

t are called regressors,
and constitute input signals which are known at timet. Here bothht andϕt have
dimensionnh|1. The superscript ”*” denotes complex conjugate transpose. We
will in this model refer to the parametersht as thetrue parametersdescribing
the characteristics of the linear system. The signalzt is therefore assumed to be
generated by some mechanism based on these parameters. The actual values of

5



6 Chapter 2. The Tracking Problem

ht are only available to us in situations where we analyze different methods or
algorithms by computer simulation, not in real situations. Therefore, if we want to
measure, and maybe later modelzt byestimatingthe assumed ”true” hidden system
parameters, we have to use some apparatus designed to obtain data samples from
the signalzt. However, no matter how good this apparatus is, there will always
exist some limitations that prevents us from obtaining an error free measurement
of the signalzt. Thus, in the description of the measured version of the signalzt
we will have to add an additional term representing this imperfection. We therefore
replace (2.2) by

yt = ϕ∗
tht + vt. (2.3)

The noise termvt represents everything in the signalyt that can not be explained by
the linear regression model (2.2). We will further assume that the noisevt has zero
mean and is statistically independent of both the vectorht and of the regressorsϕ∗

t .
Equation (2.3) is illustrated by Figure 2.1.

+ϕ∗
t ht

vt

yt

Figure 2.1: A linear regression with additive noise describing the relationship
between an input and an output signal disturbed by noise. This representation will
be used for the true system that is assumed to generate the scalar measurement
time-seriesyt.

Let us now introduce the followinglinear regression model

yt = ŷt + εt (2.4)

ŷt = ϕ∗
t ĥt. (2.5)

Hereŷt represents an estimate of the measured signalyt. The column vector̂ht of
dimensionnh|1 is an estimate of the true time varyinght. Theestimation erroris

εt = yt − ŷt . (2.6)

Furthermore, we also define theparameter tracking error

h̃t = ht − ĥt (2.7)
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as the difference between the true parameter vectorht and the estimated parameter
vector ĥt. Our goal is to adjust the time varying parameter (the elements ofĥt),
so that either the estimation error (2.6) or the parameter tracking error (2.7), is
minimized in some sense. The adjustment of the parametersĥt is to be performed

+

+

System

Model
 Adaptive

 algorithm

 Adaptive

 algorithm
Filterϕt

yt

ŷt εt

ĥt

ϕt

yt

ŷt εt

ĥt

Figure 2.2: The regression model (2.4) illustrated asdirect adaptation(upper dia-
gram) andsystem identification(lower diagram).

recursively by a suitable adaptation algorithm, based on the information contained
in the error signalεt. The regression model (2.4) is of use in two types of problems,
eitherdirect adaptationwhereŷt is the output of a filter that is to be tuned so that
it follows yt, or problems where (2.5) is a linear regression model that describes a
measured signalyt. See Figure 2.2.

EXAMPLE 2.1

An example of the linear regression model (2.4) is the second order finite impulse
response (FIR) model

yt = ĥ0
tut + ĥ1

tut−1 + ĥ2
tut−2 + εt (2.8)

= ϕ∗
t ĥt + εt, (2.9)

where
ϕ∗

t = (ut ut−1 ut−2) ; ĥt = (ĥ0
t ĥ

1
t ĥ

2
t )

T , (2.10)

where the regression vector in (2.10) consists of delayed known input signalsut.
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2.2 Performance measures and adaptive parameter esti-
mation

A common criterion used in the design of adaptive algorithms is the mean-square
value of the estimation error. Substituting (2.5) into (2.6) yields

εt = yt − ϕ∗
t ĥt . (2.11)

By taking the absolute value and squaring (2.11), we obtain

|εt|
2 = |yt|

2 + ĥ∗tϕtϕ
∗
t ĥt − 2Re{ϕ∗

t y
∗
t ĥt} . (2.12)

Then, the mean square estimation error (MSE) is expressed as the expected value
of (2.12)

MSE = E|εt|
2 =

(

E|yt|
2 + ĥ∗tRĥt − 2ℜ{p∗ĥt}

)

(2.13)

where the averageE(·) is taken with respect to the properties of all regressor vari-
ables andvt in (2.3). The criterion based on the MSE can then be defined as

J =
1

2
MSE . (2.14)

The regressor vectorϕt is assumed to have zero mean and covariance matrix

R = E{ϕtϕ
∗
t } . (2.15)

The use of (2.12) and introduction of the cross correlation vector between the re-
gressors and the output,

pt = E{ϕtyt} , (2.16)

gives the last equation of (2.14). The parameter valuesĥt that minimize the crite-
rion J are obtained by differentiating (2.14) with respect toĥt . We then obtain the
well known least square solution

ĥt = R
−1pt. (2.17)

The solution to this equation can be found either by direct calculation or recur-
sively, by means of adaptive algorithms. Direct calculation works well fortime-
invariant systems whereas adaptive recursive solutions are more suitedfor time-
varying scenarios. In addition to the criterion (2.14), another performance measure

E |h̃t+k|
2 = E |ht+k − ĥt+k|t|

2 , (2.18)

will be used in the algorithm design later in this chapter. Hereĥt+k|t is an estimate
of ht+k at timet representing filtering (k = 0), prediction (k > 0), or fixed
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lag smoothing (k < 0). This measure differs from (2.14), since the goal is here
to minimize the mean-square of theparameter tracking error, instead of the mea-
surement signalestimation error(2.6).

Now, let us introduce a class of adaptation algorithms described by

ĥt+1 = ĥt + µf(ϕt, εt). (2.19)

Here,µ is denoted thestep-sizeof the algorithm, andf(ϕt, εt) is a vector function
operating on the regressorϕt and the error signalεt. It is assumed to have the
property that the norm off(·) vanishes for smallεt. The step-sizeµ controls the
adjustment of the parametersht from one time-step to the next by appropriate scal-
ing of f(ϕt, εt). Whenĥt is close toht i.e. whenf(ϕt, εt) is small, due to a small
errorεt, the adjustment will be small and vice versa. Specific such algorithms and
in particular the step-sizeµ will be further discussed in subsequent sections. For
now we will only use (2.19) when we need to refer to an adaptive algorithm in
general.

Regarding the properties of the adaptive algorithm, we are here mostly interested
in the convergence rate and the excess mean square error (EMSE).

• The convergence rateis a measure of the rate for the adaptive algorithm
to approach the optimal parameters valuesht, starting at an initial position
ĥt,init, usually set to zero.

• Theexcess mean square erroris defined as the difference between the mean
square errorJ produced by the adaptive algorithm and theminimumMSE
value,Jmin, produced by inserting the optimal parameter valuesht from the
LS solution (2.17) into equation (2.14) . This can be expressed as

Jex = J − Jmin. (2.20)

Since the adaptation of the parametersĥt is controlled by thestep-sizeµ of
an adaptive algorithm of the form (2.19), the steady state EMSE is to a large
extent determined by the value of this parameter.

Remark: When we in this thesis discussconvergence, we meanconvergence in
the mean square, see [1]

Consider a two-dimensional parameter vectorĥt = [ĥ1
t ĥ2

t ]
T , that is to be ad-

justed by the adaptive algorithm (2.19) such that the criterion (2.14) is minimized.
The minimum is attained at the solution to equation (2.17). To start with, we will
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assume that the system is time-invariant, i.e, the true parameter vectorht is not
changing over time. This is aparameter estimationproblem that we are about to
solve with an adaptive algorithm1

By evaluating equation (2.14) for a range of values of the parametersh1
t andh2

t we
obtain a quadratic error surface. Its minimum point, located at[h1

t , h
2
t ] is denoted

the MMSE point. The mission of our adaptive algorithm is to adjust the estimated
parameter vector̂ht = [ĥ1

t ĥ
2
t ]

T such that the MMSE point is reached.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

h
1

h 2

Figure 2.3: This figure illustrates the adaptation process of two parameters towards
the MMSE point of a performance surface generated by correlated regressors. The
coefficientŝh1 andĥ2 were initiated to zero at the beginning of the adaptation. The
LMS adaptation algorithm is used.

It is well known [1],[2],[3] that the shape of the performance surfaceis very im-
portant when its comes to the performance of the adaptive algorithm used to find
the minimum point. Since the shape of the performance surface is uniquely de-
termined by the eigenvalues and eigenvectors2 of the auto correlation matrixR,

1Parameter estimation can be performed in a number of different ways.If the system to be
estimated is not changing over time, within a considered time interval, then it is possible to use
off-line methods (batch methods) in order to find the estimates of the parameters.

2The eigenvectors of the autocorrelation matrixR define the principal axes of the performance
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the adaptation of the parameters vector[ĥ1
t ĥ

2
t ]

T towards the MMSE point will be
affected by the properties of the regressorsϕt. Figure 2.3 illustrates the trajectory
towards the minimum point for a well known adaptive algorithm called the LMS
algorithm3 in the case of correlated, or colored regressors. Here it can be noted
that the trajectory does not progress directly towards the minimum point. This is
a result of the combination betweencolored regressorsϕt, and the fact that the
LMS algorithm does not include information about this in its structure. In the case
of uncorrelated, orwhite regressors the trajectory would have progressed directly
towards the MMSE point.

However, use of knowledge of the structure of the adaptation algorithm improves
the convergence rate and enables the average trajectory ofĥt to be directed di-
rectly towards the MMSE point. The shape of the error surface might also change
over time. This will happen if the regressor statistics change during the adaptation
process and thus change the corresponding autocorrelation matrixR. In order to
deal with this problem, methods for updating the autocorrelation matrix, or its in-
verse, need to be included in the structure of the adaptive algorithm. This increases
the complexity of the algorithm.

2.3 Tracking time-varying parameters

So far we have discussed recursive parameter estimation fortime-invariantsys-
tems, i.e. where the parametersht do not change over time. We are now faced with
another type of parameter estimation problem, in which the parametersht change.

Adaptive parameter estimators can be viewed as a collection of different methods
used to find estimates of the unknown system parametersht, that may behave in
the following ways:

• Never changing, i.e static parameters

• Rarely changing, maybe by large amplitude

• Continuously changing

Trackingcan be seen as a subset of parameter estimation where the true parameters
are continuously changing.

surface. The eigenvalues of the autocorrelation matrixR define the slope of the performance surface
along the principal axes. See [3] for more information.

3This algorithm will be introduced later in this chapter.
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Since the ”true” parameters are changing with time, the position of the MMSE
point in the coordinate system will also change. Therefore, we are not only inter-
ested in finding the bottom of the bowl, our aim is also to track the changes of the
MMSE point caused by the continuously changing parameter vectorht. This is
illustrated by Figure 2.4.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Tracking of minima

h
1

h 2

Parameter trajectoria
Start position of minima
End position of minima

Figure 2.4: Tracking of two time varying parameters. The tracking process starts
at one point (o), then continues in the direction of the moving MMSE minimum
point until the end of the adaptation (*).

Regarding the tracking properties of adaptive algorithms, we will be mostly con-
cerned with the steady-state performance, i.e. how the algorithm behaves when
tracking the MMSE point after the initial transients have decayed. However, since
abrupt changes may also occur in tracking problems, fast initial convergence is also
an important property.

As a prerequisite for subsequent discussions we will regard abrupt changes and
smooth changes of the time varying parameter as two different situations that re-
sults in two different modes of the adaptation. The reason for this is that abrupt
changes of the parameter vectorht might change the appropriate tuning of the
adaptive algorithm completely.
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Important to note here is that these ”modes” are only used to describe different
phases of the adaptation, they are not properties of the adaptive algorithmitself or
clearly distinguishable in real tracking problems4.

2.3.1 The transient mode

Assume that the system is time-varying and suddenly may change its behavior.The
MMSE point will then move to a new position in the coordinate system due to the
new values of the true parameters5. This forces the algorithm to start search for the
new position of the MMSE point.

The algorithm is said to operate in the transient mode from when the true para-
meter valuesht jump to the new position and thereby moves the MMSE minimum
point to a new position until the algorithm has adapted to the new true parameter
valuesht.

In transientmode, we would like the tracking algorithm to use a large step-size
for fast adaptation to the sudden changes of the parameter values, this is illustrated
in Figure 2.5. This statement is based on algorithm structure (2.19) and that the
size off(ϕt, εt) in some sense represents the closeness to the MMSE point. If
the value off(ϕt, εt) is large, then the algorithm is far from the minimum and
therefore needs the large step-size to quickly approach the minimum. However,
a large step-size results in a large EMSE in steady state. This is clearly observed
in the lower plot of Figure 2.5 where the trajectory is seen to fluctuate aroundthe
MMSE point. This in turn means that the variance of estimated parametersĥt is
large (Figure 2.5, upper diagram). Therefore, we would like the algorithmto use a
smaller step-size as soon as the transient phase is over, since this will decrease the
EMSE and the variance of the parametersĥt in steady state. This, however, results
in a slower convergence rate, see Figure 2.6. The smaller fluctuations around the
MMSE point due to the smaller step-size is depicted in the lower plot of Figure 2.6.

2.3.2 The tracking mode

When the tracking algorithm has passed through the transient phase and entered
a steady-statebehavior it is said to operate intracking mode. This is typically

4Different adaptation modes can, of course, be included in the design ofthe adaptive algorithm
such that the algorithm switches between the modes depending on the current situation. See [8].

5The variations of the parametersht are here assumed to normally be fairly smooth such that an
abrupt change of the parameter values clearly deviates from their pastbehavior.
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Figure 2.5: Upper diagram: Abrupt changes of the parameter vectorht. First
parameterh2 changes its value from−0.5 to −1.5 then parameterh1 changes its
value from0 to 1.5. The goal of the adaptive algorithm is to reach the vicinity
of the new parameter values as fast as fast as possible. Here,fast adaptation is
obtained by a large step-size (µ = 0.1) at the price of a large EMSE. Lower
diagram: The corresponding ”jump” in the MMSE minimum pointcaused by the
parameter changes in the upper figure. The adaptation is initiated at the origin and
we can clearly see the behavior of the algorithm in the beginning of the adaptation
and after the abrupt parameter change where the estimated parameter trajectory
aims for the new MMSE minimum.

the ”normal” operating mode of the algorithm. In this case the parameters are
undergoing small changes between the sampling instants, and no abrupt changes or
changes of underlying dynamics governing the parameter variations are assumed.
The parameters are assumed to change as in Figure 2.7 or in Figure 2.8.

In tracking problems, things tend to be more complicated as compared to static
parameter estimation since we are dealing with a parameter vector that is contin-
uously changing. The value of the step-size that produces the smallest error6, is
now depending on the rate of change of the time-varying parameters. For analy-

6At this point we only say ”error”, since we have not yet specified whichone of the different
errors: the estimation errorεt, or the parameter tracking errorh̃t, that we strive to minimize.
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Figure 2.6: Upper diagram: Abrupt changes of the parameter vectorht. First
parameterh2 changes its value from−0.5 to −1.5, then parameterh1 changes its
value from0 to 1.5. The goal of the adaptive algorithm is to reach the vicinity
of the new parameter values as fast as fast as possible. Here,a small EMSE is
obtained by a small step-size (µ = 0.005) at the price of slow adaptation. Lower
diagram: The corresponding ”jump” in the MMSE minimum pointcaused by the
parameter changes in the upper figure. The adaptation is initiated at the origin and
we can clearly see the behavior of the algorithm in the beginning of the adaptation
and after the abrupt parameter change where the estimated parameter trajectory
aims for the new MMSE minimum.

sis purposes, the total parameter errorh̃t produced by the adaptive algorithm is
sometimes divided into two parts,

h̃t = h̃t,lag + h̃t,noise

1. The weight vector noisẽht,noise: the difference between the estimated para-
meter valuêht and the expected value of the estimated parameter valueĥt

due to the adaptation of the parameters, see Figure 2.9.

h̃t,noise = E{ĥt} − ĥt (2.21)

2. The lag-error̃ht,lag: defined as the difference between the optimal parameter
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Figure 2.7: Upper diagram: This figure illustrates trackingof two AR(2)parame-
ters. The goal of the adaptive algorithm is to follow the timevarying parameters as
well as possible. Lower diagram: Illustration of the movingMMSE point caused
by the parameter variations in the upper plot.

valueht and the expected value of estimated parameter valueĥt, see Fig-
ure 2.9.

h̃t,lag = ht − E{ĥt} . (2.22)

Here the expected valueE{ĥt} is taken over an ensemble of estimates of the pa-
rameterŝht based on different realizations of the noisevt and the regressorsϕ∗

t in
(2.3). The weight vector noise is present in both estimation of static parameters and
tracking problems, whereas the lag-error only appears in tracking problems due to
the time-varying nature of the parametersht. The lag-error for tracking problems
can be compared to the bias in a system identification problem for static parame-
ters.

A dilemma, regarding the performance of the tracking algorithm is that it is not
possible to minimize these two types of errors simultaneously. The reason for this
is that a large step-size produces a small lag-error but results in a large weight
vector noise and vice versa. Therefore, a trade-off between the lag-error and the
weight error noise is necessary when calculating the optimal step-size.
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Figure 2.8: Upper diagram: This figure illustrates trackingof two parameters
evolving as random walks. Lower diagram: Illustration of the moving MMSE
point caused by the parameter variations in the upper plot.

2.4 Search and tracking strategies

Adaptive methods for adjusting the parameter vectorĥt can be thought of as a
numerical search for the true parameter vectorht that minimizes the criterionJ in
(2.14). There exist a number of different search strategies that can be used in the
adaptation process. The common property for these methods is that they compute
adjustment vectors∆ht to an assumed model

ĥt+1 = ĥt + ∆ht (2.23)

in order to decrease the value ofJ , on average. Recall the adaptive algorithm
(2.19). In that case the adjustment vector∆ht was expressed asµf(ϕt, εt), where
the step-sizeµ was used as scaling factor. Among the many different adaptive
methods [1],[2],[3] used to adjust the parameter vectorĥt, it is natural to first con-
sidergradientalgorithms, such as the steepest descent, see [1]. In these methods
the update steps∆ht are on average taken in the direction of the negative gradient
of the parameter surface in order to minimizeJ . The gradient vector is perpen-
dicular to the level curves of the performance functionJ . For a given possibly
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Figure 2.9: Upper diagram: Weight vector noise due to a largestep-size. Lower
diagram: Lag-error due to a small step-size.

complex-valued fixed parameter vectorht = h, the gradient vector of the criterion
(2.14) can be calculated as [1]

∇h = 2

(

∂J(h)

∂h∗

)

= 2

(

∂

∂h∗
1

2
[E{(yt − ϕ∗

th)
∗(yt − ϕ∗

th)}]

)

(2.24)

= 2
1

2

∂

∂h∗
[E{y∗t yt − ytϕ

∗
th− h∗ϕtyt + h∗ϕtϕ

∗
th}] (2.25)

= E{[−ϕtyt + ϕtϕ
∗
th]} (2.26)

= −E{ϕt[yt − ϕ∗
th]} (2.27)

= −E{ϕtεt} (2.28)

By using (2.27) the negative gradient can also be written in terms of the auto-
correlation matrixR of the regressorsϕt and the cross-correlationp between the
input and output signals as

∇h = Rht − pt . (2.29)

If it would have been possible to obtain an exact measure of the gradient (2.28), i.e.
if we knew the true parametersht, which we do not, we could design a recursive
algorithm that decreases the criterion function (2.14) by changing the parameters
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ĥt along the negative gradient direction according to

ĥt+1 = ĥt − µt∇h (2.30)

Here, we have introduced the possibly time-varying step-size parameterµt which
scale the steps taken in the direction of the negative gradient. Normally,µt is a
scalar parameter, however, it is also possible to substituteµt with a diagonal matrix
with different values along the diagonal in order to individually tune the element
in the parameter vectorht. This increases the flexibility of the algorithm and can
be used if the parameters are assumed to vary at different rates.

A drawback with gradient algorithms such as the steepest descent is that they suf-
fer from slow convergence if the performance surface is skew due to correlated
regressors. This problem motivates more advanced algorithms such as theNewton
method. Here, theHessian, i.e. the second derivative at the pointht = h becomes
useful. The Hessian is obtained as follows

∂

∂h

(

∂J(h)

∂h∗

)

=
∂

∂h
[−E{ϕt(yt − ϕ∗

th)}] = E{ϕtϕ
∗
t } . (2.31)

We here note that this equals the autocorrelation matrixR of the regressors for lin-
ear regression models with correct structure. By multiplying the negative gradient
with the inverse of the Hessian, we obtain Newton’s method,

ĥt+1 = ĥt + µtR
−1E{ϕt εt} . (2.32)

By using the inverse ofR in (2.32) the search direction will always be towards
the minimum ofJ which is not the case in general for steepest descent. This can
be explained by thinking of the inverse ofR as a tool to transform the elongated
performance surface (see Figure 2.3) produced by colored regressors back into a
circular performance surface as in the case of uncorrelated regressors.

2.4.1 The LMS algorithm

Since we are not able to measure the exact gradient∇h due to the lack of knowl-
edge about the true parametersht it is not possible to realize the algorithm (2.30).
In order to circumvent this problem an approximation of the exact gradienthas to
be used. The estimate,

∇̂h = ϕtεt , (2.33)

called theinstantaneous gradient of the criterionJ with respect to the parameters
h, will on average coincide with the exact gradient (2.28) [1]. In situationswith
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high noise variance, this approximation of the gradient is very uncertain. By using
(2.33) in (2.30) we obtain, by using a fixed step-size, the famous LMS algorithm7

[3]

εt = yt − ϕ∗
t ĥt|t−1 (2.34)

ĥt+1|t = ĥt|t−1 + µϕtεt, (2.35)

which was introduced in the 1960’s by Widrow and Hoff. The LMS algorithmhas
since its introduction been frequently used in various applications due to its low
complexity. It is often a first choice among designers and it has also becomethe
standard algorithm against which other algorithms are benchmarked.

In a time-invariant case it is well known [1],[3] that the LMS algorithm suffers
from slow convergence in situations where the eigenvalue spread of the regressor
covariance matrix is large. This has to do with its simple structure which only
takes into account an approximation of the exact gradient. In its original form
(2.35) the main focus is on simplicity, nothing else. In the literature, many different
modifications of the LMS algorithm exist, and common to all these variants is that
they in one way or the other strive to improve the performance of the originalLMS
algorithm at the price of increased complexity. One example is the LMS/Newton
method

εt = yt − ϕ∗
t ĥt|t−1 (2.36)

ĥt+1|t = ĥt|t−1 + µR−1ϕtεt, (2.37)

which solves the slow convergence problem for correlated input signals. However,
it requires that the inverse ofR is known. Another frequently used version of the
LMS algorithm is the so callednormalizedLMS algorithm. Here, the step-size
µt is normalized by the squared norm of the regressors in order to make the algo-
rithm performance independent of the size of the input signal. The normalization
is performed as

µt =
µ0

α+ ϕ∗
tϕt

. (2.38)

The parameterα is normally a small number used to prevent division by zero. For
a thorough description of LMS-like and other adaptive algorithms, see e.g [1], [2],
or [3].

7We here introduce the notation̂ht+1|t to emphasize that the estimate ofht+1 depends on mea-
sured data up to timet.
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2.5 Parameter model based tracking

When it comes to tracking of time varying parameters it is of interest to incorpo-
rate knowledge about the dynamics of the parameters into the adaptive algorithm
to improve the tracking performance. This possibility is of particular interest in
applications such as e.g communication over fading radio channels where thechar-
acteristics of the channel is well known. This is not possible in the presentform of
the LMS algorithm. We shall therefore discuss more powerful alternativesto the
LMS algorithm next. However, we will first start by introducing the concept of hy-
permodels, i.e, the way we represent prior knowledge about parameter variations.

2.5.1 Hypermodels

A Hypermodel is a mathematical model that is used to describe the dynamics of a
time-varying parameter. The use of hypermodels in adaptive algorithms has been
discussed previously by e.g. Benveniste et al in [5], Grenier in [9], Kitagawa and
Gersch in [10] and Lindbom et al in [4],[11],[12],[13],[14].

In the beginning of this chapter we assumed that the signalyt was generated by
thetrue time varying parameter vectorht together with the regressorsϕ∗

t . We will
now regard the parametersht as time series generated by

ht = H(q−1)et . (2.39)

where the rational matrixH(q−1) of dimensionnh|nh denotes thehypermodel,
andet is a noise vector. In most problems,et is assumed to have zero mean and
to be stationary. It has covariance matrixRe. Here,q−1 is the backward shift
operator, i.e.q−1xt = xt−1. The purpose of this model is to represent the designers
knowledge, or assumptions, about the second order moments of the time-varying
parametersht. It can be noted that a more general form of the hypermodel (2.39)
is when the matrixH is time-variable. The matrixH(q−1) describes the second
order moments of the variations ofht as well as the correlation between different
elementshi

t andhj
t in the parameter vectorht. A special case of (2.39) is when

H(q−1) is diagonal. Each componenthi
t of ht is then represented by a separate

scalar ARMA model.

Di(q−1)hi
t = Ci(q−1)eit , i = 1, ... nh , (2.40)

whereDi(q−1) andCi(q−1) are polynomials in the backward shift operator. By
modeling the true parametersht like this, i.e. as stochastic processes, it is possible
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to describe the variations ofht in a convenient way by the choices of the polynomi-
alsCi(q−1) andDi(q−1)8. The correlation between the components are furthermore
described by the covariance matrix of the driving noise

Re = E[ete
∗
t ] . (2.41)

In this work, we will however restrict the class of hypermodels to

H(q−1) =
C(q−1)

D(q−1)
I , (2.42)

where we have equal transfer functions along the diagonal. This means that the
components ofht are modeled to have the same dynamics. This might at first seem
to be a severe restriction. However, it is often a good compromise between gener-
ality and complexity of the resulting tracking algorithm.

One of the key issues in the design of tracking algorithms based on parameter
models is to obtain information about the parametersht such that a hypermodel,
H(q−1), can be established and included in the design. In applications where the
dynamics of the parametersht are assumed to be stationary, off-line estimation is
possible. In systems where the dynamics change over time, on-line estimation is
required. If estimation of the hypermodel is not possible, then the designeris faced
with the problem of choosing a hypermodel that works well on average.

In [4],[14], possible hypermodels representing different parameter variations are
discussed. These can be summarized as:

• RW (Random walk): Obtained by choosing

C(q−1) = 1, D(q−1) = 1 − q−1 . (2.43)

This choice represents that the designer hasno informationabout the incre-
ments of the parametersht. By ”no information” we mean that if this hyper-
model is used, then we assume that the parameters are evolving as random
walks, i.e. without any correlation between incrementsht+1 − ht.

• FRW (Filtered Random Walk):

C(q−1) = 1, D(q−1) = (1 − q−1)(1 − aq−1) (2.44)

8When considering a time-varying hypermodelHt, equation (2.40) becomes changed into
Di,t(q−1)hi

t = Ci,t(q−1)ei
t. This form may also include on-line tuning of the polynomials

Ci,t(q−1) andDi,t(q−1) in order to adjust for changes of the parameter statistics.
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with |a| ≤ 1. Here, the parametera controls the assumed correlation be-
tween the parameter increment, and the smoothness of the assumed variation
of the parameters. Values close to one represents slow variations. In the case
of a = 1, the integrated random walk (IRW) is obtained. This model with
a > 0, is appropriate if the parameters are assumed to evolve in the same
direction for a short time.

• AR2 (Autoregressive second order model): If the parametersht are oscillat-
ing according to some known or estimated frequency it is possible to design
the hypermodel to fit these oscillations by choosing

C(q−1) = 1, D(q−1) = 1 − 2p cos(ω)q−1 + p2q−2 . (2.45)

Here,ω, denotes the oscillation frequency andp is the pole radius, which
represents the damping.

An exact representation of thetrue hypermodel is of course not possible to obtain
in reality. Some degree of uncertainty is always present in the hypermodel.De-
pending on the size of this uncertainty more or less inaccurate information will be
included in the resulting algorithm. The problem of uncertainty in hypermodels is
considered in [4],[15] where a design methodology to cope with this problemis
developed.

The parameter based adaptive algorithms presented next aim to estimateĥt+k|t for
different choices of the time-lagk by minimizing the criterion (2.18) based on a
given hypermodel.

2.5.2 The Kalman estimator

Let
H(q−1) = H(I − q−1

F)−1
G (2.46)

whereH, G, andF are given by the state-space model

xt+1 = Fxt + Get+1

ht = Hxt (2.47)

denote the hypermodel (2.39). Then the optimal linear MMSE estimator, the
Kalman estimator, fork > 0, can be expressed as

εt = yt − ϕ∗
t ĥt|t−1 (2.48)

x̂t|t = x̂t|t−1 + Ktϕtεt (2.49)

ĥt+k|t = HF
kx̂t|t = Hx̂t+k|t (2.50)
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whereKt represents the Kalman prediction gain. In (2.47),xt is the state vector
at timet of dimensionnx|1 andF, G, H are matrices of appropriate dimensions.
The matrixKt is determined via Riccati difference equations, see [4] for details.
The design of the Kalman estimator requiresH, G, F as well as knowledge of the
covariance matrixRe and the variance of the measurement noise,σ2

v = E|v2
t |. In

the case of random walk modeling, i.e.F = G = H = I, and small parameter
drift-to-noise ratios(tr(Re)/σ

2
v << 1), it is shown in [16] that the Kalman gain

is proportional toR1/2
e /σv in steady-state. The iterations of the Riccati difference

equations require a substantial amount of calculations even when considering low
model orders.

2.5.3 The Wiener LMS (WLMS) algorithm

The major drawback with the Kalman estimator is its complexity. This often lim-
its its use in applications where low complexity is important. With this in mind,
a framework for designing tracking algorithms based on Wiener filtering theory
has been developed in [4]. This design methodology provides a systematic way
of utilizing prior information in the form of hypermodels to obtain optimal adjust-
ment of the adaptation under prescribed complexity constraints. Here the tracking
problem is formulated as a Wiener filtering problem, where the optimal Wiener
estimator is obtained by solving a spectral factorization and a linear diophantine
equation9. This method of designing tracking algorithms is flexible since the same
basic theory can be used to solve problems of varying computational complexity.
Different assumptions about the time varying parameters will result in different
levels of complexity for the resulting algorithm.

Given the hypermodel

H(q−1) =
C(q−1)

D(q−1)
I , (2.51)

and measurements described by the linear regression (2.3), the WLMS adaptation
algorithm can be expressed as [4]

εt = yt − ϕ∗
t ĥt|t−1 (2.52)

ĥt|t = ĥt|t−1 + µR−1ϕtεt (2.53)

ĥt+k|t = Pk(q−1)ĥt|t . (2.54)

9Here the polynomial method described in [17] is used to solve the Wiener filtering problem.
Readers not familiar with this way of obtaining the Wiener solution might gain substantial under-
standing by considering some of the basic examples in [17].
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Here,Pk(q−1), also called thecoefficient prediction-smoothing filter, is constrained
to be a diagonal rational matrix with equal stable and causal transfer functions
along the diagonal,

Pk(q−1) =
Qk (q−1)

Q0 (q−1)
I . (2.55)

This filter is specified by the polynomialsQk (q−1) andQ0 (q−1) in the backward
shift operatorq−1. Above, ĥt+k|t is an estimate ofht+k at sample timet, which
may involve prediction(k > 0), filtering (k = 0) or fixed-lag smoothing(k < 0).
The filter polynomialsQk(q−1), Q0(q−1) in (2.55) are given by the solution to the
spectral factorization

rβ(q−1)β∗(q) = γ C(q−1)C∗(q) +D(q−1)D∗(q) , (2.56)

which provides a polynomialβ(q−1) and a scalarr, followed by solving the dio-
phantine equation

qkγC(q−1)C∗(q) = rQk(q−1)β∗(q) + qD(q−1)Lk∗(q) , (2.57)

which providesQk(q−1), together with a polynomialLk∗(q).

In (2.57) the parameterγ denotes theparameter drift-to-noise ratioand is defined
as

γ =
trRe

trRη
(2.58)

whereRe andRη are the covariance matrices of the driving noiseet in (2.39) and
of a noise calledthe gradient noisedefined as

ηt = (ϕtϕ
∗
t − R)h̃t|t−1 + ϕ∗

t vt . (2.59)

For more information about the gradient noise, see [4],[11],[12],[13].By introduc-
ing the signalηt and considering it as white and uncorrelated withht, adjustment
of the WLMS algorithm can be expressed as a Wiener filter design problem [4],
see Figure 2.10, whereW(q−1) = Qk(q−1)/β(q−1).
The scalar drift-to-noise ratio parameterγ and the polynomialsC(q−1) andD(q−1)
are the design variables of the WLMS algorithm and are used for tuning the algo-
rithm. They can be adjusted to minimize the MSE of the parameter tracking error
(2.18) if the hypermodel (2.51), and the parameter drift-to-noise ratioγ (2.58), is
assumed known10. If WLMS-Newton is considered, i.e when using the Hessian

10Knowledge about the parameterγ is hard to obtain since it is not trivial to estimate the covariance
matrix of the parameterηt. However, in [11] and [13] an iterative design method used to calculateηt

is presented.
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ĥt+k|t

h̃t+k|t

Figure 2.10: The WLMS algorithm expressed as a Wiener filter.

(2.31), in order to improve the convergence rate of the algorithm, then alsoR
−1

need to be known. The optimal step-sizeµ, in (2.53), is obtained from the first
coefficient,Q0

0, of the polynomialQ0(q−1) according to

µ = Q0
0 = 1 −

1

r
, (2.60)

wherer is given by the solution to the spectral factorization (2.56). The close
relationship between the WLMS equations (2.52)-(2.54) and the classical Wiener
filter formulation is presented in Appendix A. For more details, and the theory
behind the reformulation of the tracking problem to a Wiener filtering problem,
see [4],[13].

2.5.4 The Simplified Wiener LMS (SWLMS) algorithm

The nameSimplified Wiener LMSis related to the initial assumptions about the
time-varying parametersht and the corresponding hypermodelH(q−1) used in the
design of the algorithm. These assumptions can be summarized as

1. The maximum order of the polynomialsC(q−1) andD(q−1) in the hyper-
model is restricted to two.

2. All elements of the parameter vectorht are governed by the same dynamics.

If these assumptions are relaxed, then we have to consider more powerful algo-
rithms such as theWiener LMSalgorithm of Section 2.5.3 , theGeneralized Wiener
LMSalgorithm, see [13],[4], or theGeneral Constant Gainalgorithm, see [11], [4].
Due to the design restrictions in the SWLMS algorithm it is possible to calculate
the coefficient/prediction filterPk(q−1) in (2.54) in a much simpler way than for
the WLMS algorithm. By reducing the hypermodel to order two, it is possible to
obtain a closed form solution for the optimal polynomialsQk (q−1) andQ0 (q−1),
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see Result 3.6 in [4], or Theorem 2 in [13].

Let
C(q−1) = 1 (2.61)

and
D(q−1) = 1 + d1 q

−1 + d2 q
−2 (2.62)

defineH(q−1) in (2.42). Given the hypermodelH(q−1) (2.42) and a step-sizeµ we
can then calculateQk (q−1) andQ0 (q−1) as

Qk (q−1) = µ(1 q−1)

(

−d1 1
−d2 0

)k (

1
p

)

(2.63)

for k ≥ 0, where the scalarp is defined as

p =
d1d2(1 − µ)

1 + d2(1 − µ)
. (2.64)

In the WLMS solution, the parameterγ was needed to solve the spectral factoriza-
tion and the Diophantine equation, cf (2.56) and (2.57), in order to obtainQk (q−1)
andQ0 (q−1). The step-size parameterµ serves that purpose in the SWLMS al-
gorithm. However, as can be noted from (2.63) there exist a direct and simple
relationship betweenµ, the design variablesd1 andd2 and the optimal polynomial
Qk (q−1). This makes the SWLMS algorithm tractable from a computational point
of view. The step-size parameterµ can therefore be seen as the tuning knob which
controls the optimal adjustment of the SWLMS algorithm for a given hypermodel.
It should also be noted that this algorithm reduces to the classical LMS algorithm
for d1 = 1 andd2 = 0, i.e. when the hypermodel is a random walk model.

2.6 Optimal tuning of tracking algorithms

In order to obtain optimal tracking performance based on the criterion (2.18) it is
easy to realize that there is a lot of information that needs to be available for the
system designer. In the case of the Kalman estimator, the state-space model, the
covariance matrixRe and the varianceσ2

v need to be known. In the WLMS and
the SWLMS case, the hypermodelH(q−1), the parameter drift-to-noise ratioγ, and
the correlation betweenηt andht need to be known. When it comes to the clas-
sical LMS algorithm it requires the noise varianceσ2

v and the ratio between the
covariance matrices of the regressorsϕt and the driving noiseet, see [1], [2]. If
the Newton direction is to be used in these algorithms, then of course alsoR

−1 is
required. Since these important parameters may be hard to obtain, direct on-line
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tuning of the step-sizeµ would be of great interest, in algorithms whereµ is a main
tuning parameter.

By this introduction to the tracking problem and various adaptive algorithms we
will now turn our attention towards the SWLMS algorithm and especially the au-
tomatic tuning of it. From now on this will be the main focus of this work.



Chapter 3
Step-size adaptation

3.1 Introduction

In the previous chapter we learned that it was possible to achieve optimal tun-
ing of the SWLMS algorithm if the parameter drift-to-noise ratioγ, the correla-
tion between the gradient noiseηt and the parametersht were known and perfect
agreement between the true parameter variations and the hypermodel was assumed.
However, in a real situation it is quite clear that perfect knowledge aboutthese vari-
ables is not available since the parameter drift-to-noise ratioγ and the dynamics of
the time-varying parametersht may change over time. Optimal tracking is there-
fore difficult to achieve. In such cases, it is up to the system designer to choose
appropriate values for the design variables in order to adjust the algorithmto the
most likely scenario. However, if the changes in the environment occur very fre-
quently, then the design variables would also need to be updated at the same pace.
Unfortunately, as we pointed out in the introduction to this work, it is very com-
mon to use a constant step-size together with the LMS- or the SWLMS algorithm
when applying them in real applications. This is of course not compatible with
the time-varying scenario described above. Our aim in this chapter is therefore to
construct aself-tuning version of the SWLMS algorithm. By that we mean that the
assumptions about the environment that are made in order to tune the algorithm
should be reduced to a minimum. The algorithm should be able to adapt to the
present situation almost without the help from the system designer. However, if
necessary information is available, then it should be used in the best possible way.

The problem of designing self tuning algorithms is not new. Of particular interest
in our case is a special class of algorithms aimed for automatic tuning of the step-

29
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size in LMS algorithms see e.g. the work in, [18],[19],[6],[20],[21],[22],[23],[24].
These algorithms are calledVariable Step-size algorithmsand are often denoted
VS-algorithms. The motivation for these algorithms was originally to improve the
convergence rate while at the same time decreasing the steady state MSE of the
LMS algorithm. This is obtained by using a larger step-size in the beginning of
the adaptation and then gradually decreasing the step-size when approaching the
minimum1. This procedure solves the dilemma mentioned in Chapter 2, when we
had to choose between fast adaptation or a small remaining estimation error when
choosing the optimal step-sizeµ.

The common problem when it comes to variable step-size algorithms ishow to
adjust the step-sizeµ in order to be flexible enough to handle many different track-
ing situations. This can, of course, be done according to many differentstrategies
(algorithms), some of which are presented next. These algorithms contains one or
several design parameters that need to be adjusted. However, the intention is that
it should be easier to adjust these parameters than the step-sizeµ so that the algo-
rithm will work in various tracking scenarios without the help from the designer.
In this study we also assume that the step-sizeµ is real valued and non negative.

3.2 Overview of variable step-size (VS) LMS algorithms

Continuously Decreasing Step-Size (CDSS):Here the step-size is initiated to a
large value at the beginning of the adaptation, it is then decreased according
to a predefined function

µt = f(t)µ0 (3.1)

wheref(t) is some decreasing function of the time indext. For stochastic
gradient algorithms it is common to useµt = µ0/t since this fulfills the nec-
essary conditions for stability outlined in [25]. This method works well for
estimation of time-invariant parameters since the resulting estimation error
becomes very small if the step-size is decreasing. However, this method is
not aimed for tracking problems since the lag-part of the parameter tracking
errorh̃t will increase as the step-size decreases.

Design variable:f(t)

Error based Variable Step-Size (VSS):In this method, proposed in [20], the idea
is to connect the adjustment of the step-sizeµ directly to the size of the in-

1The gain of the Kalman filter behaves in this way
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stantaneous estimation errorεt. The equation

µt+1 = αµt + δ|εt|
2 , (3.2)

where the design parameters0 < α < 1 andδ < 1 are used for the step-
size adjustment. This method is often referred to as thevariable step-size
algorithm or simply VSS. This updating scheme has been criticized for its
sensitivity to noise [18].

Design variables:α, δ

Remark: This method can be interpreted as a low-pass filter with a pole
in α < 1 driven by the squared error signal|εt|

2. If the the error signal
|εt|

2 → 0 then the step-sizeµt → 0 ast → ∞. The sensitivity to noise can
be explained by writing the instantaneous estimation error,εt, as

εt = yt − ŷt = ϕ∗
tht + vt − ϕ∗

t ĥt = ϕ∗
t (ht − ĥt) + vt . (3.3)

The error can be divided in two parts. One part,ϕ∗
t (ht − ĥt), depending on

the tracking error̃ht = ht − ĥt and one partvt, represented by the measure-
ment noise. Therefore, a large|εt|2 might give the illusion that the parameter
estimation errorht − ĥt is large, when the real reason for the large error is
due to a dominating noisevt.

Modified (Correlation-based) Variable Step-Size (MVSS):Due to the sensitiv-
ity to noise in the VSS algorithm the following updating scheme, often de-
noted the Modified Variable Step-Size (MVSS) algorithm, was proposed in
[18]:

µt+1 = αµt + δ|pt|
2 (3.4)

pt = βpt−1 + (1 − β)εtε
∗
t−1 (3.5)

This algorithm is based on the assumption that the steady-state estimation
errorεt at adjacent time-stepsεt andεt−1 are uncorrelated, i.e. white, while
they are correlated during the convergence phase. Therefore, it is possible
to use the time-averaged estimate (3.5) of the autocorrelation at adjacent
time-steps in order to adjust the step-size. This method has been shown to
work well in situations where the optimal step-size is small i.e. where the
time variations of the parametersht are slow, or maybe static. However, the
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tuning of the parameters in this algorithm has turned out to be rather sensitive
to the present tracking conditions.

Design variables:α, β,δ

Remark: This method is useful in the case of uncorrelated measurement
noise. However, in situations where the measurement noise may be corre-
lated, e.g. echo cancelation problems, see [26] ,E{εtεt−1} is not sufficient
as an indicator of the closeness to the minimum of the criterionJ .

Robust Modified (correlation-based) Variable Step-Size (RMVSS):Due to the
problem of correlated measurement noisevt in the MVSS algorithm the fol-
lowing algorithm was proposed in [26]

µt+1 = αµt + δ|pt|
2 (3.6)

pt = βpt−1 + (1 − β)εt(εt−1 + εt)
∗ (3.7)

Here, not only the correlation of the estimation errorεt at adjacent time-lags
is included in the adjustment equation, but also the squared magnitude,|εt|

2,
of the instantaneous error is used to sense the closeness to the minimum.
This improvement robustifies the performance of the algorithm in the pres-
ence of correlated measurement noisevt.

Design variables:α,β,δ

Remark: It should be emphasized that this step-size update, as well as the
MVSS algorithm using onlyE{εtε

∗
t−1} in the adjustment of the step-size,

suffer from the fact that the noisevt still may mislead the adaptation.

We will from now on refer to the algorithms above as theError Based(EB) meth-
ods. These algorithms are simple in their structure and base the updating of the
step-sizeµ mainly on the instantaneous errorεt or the correlation of this error.

3.3 Gradient based VS-LMS Algorithms

These methods [6],[21],[27],[28] are based on a recursive gradient descent tech-
nique (similar to the LMS algorithm) to adjust the step-size parameterµ in order to
minimize the error criterium (2.14). Compared to the methods described above we
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have found this step-size adjustment technique superior in our search for a suitable
candidate to be used together with the SWLMS algorithm. The concept behind this
method will now be explained more in detail.

In order to avoid the problem with sensitivity to the noise termvt in the algorithms
described above we need to base the adjustment of the step-size on something more
than just the instantaneous estimation errorεt. Here, the adjustment of the step-
sizeµ is obtained by estimating the gradient of the error criterionJ with respect
to the step-size parameterµ. As we will see in the next chapter, this will sig-
nificantly change the behavior of the algorithm as compared to the algorithms pre-
sented above. In order to fully understand the concept behind this step-size method
we will start by giving a detailed description of a gradient based method first pro-
posed by Benveniste and co-workers in [5]. This step-size updating method, based
on the LMS algorithm, will then serve as the base when we later in Section 3.5
develop a new adjustment method for the SWLMS algorithm.

3.3.1 VS-LMS-Benveniste

The idea with this gain adjustment method is to recursively find an estimate of the
step-size valueµ that minimizes the error (2.14).

Consider the WLMS algorithm (2.52)-(2.54), for the special caseP1(q−1) = I, i.e.
the LMS algorithm. Let

∇µ
∆
=
∂J

∂µ
(3.8)

denote the scalar gradient of the criterionJ in (2.14) with respect to the step-size
parameterµ. In order to recursively adjust the step-size parameterµ in (2.53) we
introduce the gradient search

µt+1 = µt − ρ∇µ , (3.9)

whereρ is the parameter that controls the rate of change forµt. Here, the scalar
gradient∇µ of the criterionJ with respect to thestep-sizeparameterµ consists
of the gradient of the criterionJ with respect to theparameterh, ∇h = ϕtεt,
multiplied by the gradient of the parameter vectorĥt|t−1 with respect tothe step-
sizeµ. As shown in Appendix C, this can be expressed as

∇µ = −ℜ{ψ∗
tϕtεt} . (3.10)

Hereℜ represents the real part and the vector of dimensionnh|1,ψt, is the gradient
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of the parameter vector̂ht|t−1 with respect to the step-sizeµ, defined as

ψt =
∂ĥt|t−1

∂µ
. (3.11)

In Appendix C it is shown thatψt is obtained from measured signals via the recur-
sion

ψt = [I − µϕt−1ϕ
∗
t−1]ψt−1 + ϕt−1εt−1 . (3.12)

In order to obtain a self tuning algorithm, we combine (2.52)-(2.53), (3.9), (3.10)
and (3.12) forR = I into one scheme

εt = yt − ϕtĥ
∗
t|t−1 (3.13)

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (3.14)

ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt (3.15)

ĥt+1|t = ĥt|t−1 + µ̂t+1ϕtεt . (3.16)

Remark: Observe the order of updating the equations. In the literature, e.g. [7]
the valueµ̂t is often used to updatêψt+1. This, however, is not the best we can do
since we can use the latest estimation of the step-size,µ̂t+1 to updateψ̂t+1. Fur-
thermore, note also thatψt+1 is replaced byψ̂t+1. The reason for this is that the
instantaneous value of the gradient∇µ, i.e. ∇̂µ(t) is used in (3.9). For details, see
Appendix C.

Design variable:ρ

The main reason why the gradient descent method is considered more interesting
than the other step-size schemes mentioned above, is that the updating of the step-
size in this case is based on a minimization of a design criterion, rather than an
ad-hoc strategy. Also, since our goal is to design an algorithm that is to be tuned
almost without any help from the system designer, the number of design variables
should be kept to a minimum. For this particular class of adjustment schemes we
only have to consider the value of the parameterρ.

This might however seem strange to some readers. We first start with an algorithm
with only one design variableµ. Then, we replace this variable, by another de-
sign variableρ! However, as mentioned before, the whole idea with this is that it
should be easier to choose an appropriate value of the parameterρ than to select an
appropriateµ. This will be investigated in the following chapter.
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3.3.2 Other VS methods based on the gradient descent technique

In [7] a nice summary of different gradient descent methods is presented. Beside
the method presented above a few other interesting variants are mentioned.

1. A multiplicative version of Benveniste’s algorithm. This adjustment scheme
is written as

µ̂t+1 = µ̂t[I + ρℜ{ψ̂∗
tϕtεt}] (3.17)

ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt . (3.18)

This method is, according to the authors of [7], superior in convergencecom-
pared to the linear updating scheme (3.14),(3.15) above. This statement was
also verified in preliminary simulations by ourself, and we will therefore use
the multiplicative version in the following simulations instead of the linear
one.

Design variable:ρ

2. A simplification of Benveniste’s multiplicative algorithm, first proposed in
[7], can be written as

µ̂t+1 = µ̂t[I + ρℜ{ψ̂∗
tϕtεt}] (3.19)

ψ̂t+1 = αψ̂t + ϕtεt . (3.20)

Here, the parameter̂ψ is obtained by low-pass filtering of the signalϕtεt.
The filtering is performed by a first order low-pass filter with a pole ina < 1.
The degree of low-pass filtering is here controlled by the value of the para-
meterα. This value is normally set close to 1.

Design variables:ρ, α

Remark: By usingα instead of[I − µ̂t+1ϕtϕ
∗
t ], c.f (3.18), the explicit

dependence onµt and the time variability caused by the regressorsϕt in
ψ̂t+1 are excluded. This may work well in situations where the step-sizeµ
is assumed to change slowly, or in cases where we have enough information
about the approximate value of the optimal step-size so that an appropriate
value ofα could be used. In situations where the step-sizeµ is large, and the
chosen value ofα is close to one, a deviation from the optimal steady state
step-sizeµ will be introduced. This phenomenon will be investigated in the
following chapter.
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3.4 Simplified Wiener LMS with automatic tuning of the
step-size

The first step towards a self tuning SWLMS algorithm is to combine the variable
step-size schemes above together with the SWLMS equations from Chapter 2. This
results in the following algorithms

VS-SWLMS-Benveniste (Multiplicative):

εt = yt − ϕ∗
t ĥt|t−1 (3.21)

µ̂t+1 = µ̂t[I + ρℜ{ψ̂∗
tϕtεt}] (3.22)

ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt (3.23)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (3.24)

ĥt+k|t = Pk(q−1)ĥt|t (3.25)

VS-SWLMS-Simplified Benveniste (Multiplicative):

εt = yt − ϕ∗
t ĥt|t−1 (3.26)

µ̂t+1 = µ̂t[I + ρℜ{ψ̂∗
tϕtεt}] (3.27)

ψ̂t+1 = αψ̂t + ϕtεt (3.28)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (3.29)

ĥt+k|t = Pk(q−1)ĥt|t (3.30)

Here, only the GB algorithms are presented. The other conceivable algorithms with
LMS-based step-size adjustments are summarized in Appendix D.

The performance of these algorithms will be investigated in the next chapter.Fur-
thermore, in Appendix F the flexibility of the automatically tuned SWLMS al-
gorithm is illustrated by solving the Wiener filtering problem from Appendix A
without any knowledge about the parameter drift to-noise ratioγ.

3.4.1 VS-SWLMS

With Section 3.3 in mind we will now present a new updating scheme based on the
SWLMS algorithm. The algorithms above are based on the structure of the LMS
algorithm. An algorithm derived from the SWLMS equations will look somewhat
different. Of special interest is in what way the coefficient prediction-smoothing
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filter Pk(q−1) from (2.54) will propagate into the adjustment equation of the step-
size and what effect this will have on the tracking performance. Compared to the
VS-LMS-Benveniste algorithm described above, the major difference in the new
algorithm due to the filterPk(q−1) will show up in the calculation of the gradient
∇µ.

The starting point is the SWLMS adaptation algorithm (2.52)-(2.55) for the AR2-
hypermodel (2.61), (2.62). Minimizing the criterionJ in (2.14) with respect to the
step-size parameterµ yields the VS-SWLMS algorithm2:

εt = yt − ϕ∗
t ĥt|t−1 (3.31)

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (3.32)

p = 1/(1 + d2(1 − µ̂t+1)) (3.33)

b̂0 = −d1p (3.34)

b̂1 = −d2 (3.35)

â1 = −d2(1 − µ̂t+1)b̂0 (3.36)

ĉ = d2b̂0p (3.37)

Zt = R
−1ϕtεt (3.38)

Xt = R
−1ϕtϕ

∗
t (3.39)

P1 = (b̂0 (I − µ̂t+1Xt) − â1) (3.40)

P2 = b̂1 (I − µ̂t+1Xt−1) (3.41)

ψ̂t+1 = P1 ψ̂t + P2 ψ̂t−1 + (ĉ µ̂t+1 + b̂0)Zt

+ b̂1 Zt−1 (3.42)

ĥt|t = ĥt|t−1 + µ̂t+1Zt (3.43)

ĥt+k|t = Pk(q−1)ĥt|t (3.44)

See Appendix E for a complete derivation of equations (3.31) to (3.44).

Remark: In order for the algorithm to work properly, stability of (3.42) is required.
SinceP1 andP2 are time varying the stability analysis is far from trivial. The sta-
bility conditions are not easily obtained and the issue is subject to further studies.

Now, comparing the equations (3.15) and (3.42) we observe the additionaldynam-
ics introduced by the coefficient prediction filterPk(q−1). This raises an interesting

2The derivation of this step-size scheme is based on the additive updating model to facilitate the
simple comparison with the derivation of the VS-LMS-Benveniste algorithm.
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question:

In what way will this affect the overall performance of the algorithm?

The following issues are interesting to study for different tracking scenarios:

• The convergence rate

• The steady state tracking performance

• Sensitivity to noise

• Sensitivity to abrupt changes in the parameter vector

If it turns out that the performance of the VS-SWLMS is superior to the SWLMS
algorithm used in combination with the step-size scheme derived for the LMS al-
gorithm, is it then worth the increased complexity? This question will be answered
in the next chapter where simulations corresponding to different trackingscenarios
will be conducted.

3.5 Comments about stability, convergence, and steady-
state behavior

In the literature e.g. [1],[2],[25] much can be read about the stability of the LMS
algorithm and the different versions of the self tuning, VS-LMS algorithms.The
problem of obtaining exact expressions and bounds for the stability has turned out
to be an extremely complicated task. Normally, when investigating the stability of
the LMS algorithm the so calledindependence assumptionis applied [1],[2]. This
can be summarized as:

• The regressorsϕt, ϕt+1...ϕt+k are assumed independent

• At time t, the regressorsϕt are assumed to be independent with all previous
samples of the signalyt.

• At time t, the signalyt is dependent only on the regressorϕt and independent
of all previous samples of the signalyt.

• The regressorϕt and the signalyt are jointly Gaussian

These assumptions are, of course, unrealistic in virtually every practicalsituation,
but they have shown useful, in situations where the rate of change of the time-
varying parameters is slow, i.e. when the optimal step-size is very small. However,
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when dealing with fast varying parameters these assumptions are simply not ap-
propriate. Signals may not be Gaussian, dependence among the signals mayoccur,
the signal statistics may change over time and so forth. This, together with a large
step-size severely complicates the stability and convergence analysis. Furthermore,
in the case of VS algorithms we also have an additional adaptation loop which fur-
ther complicates the analysis. A common way used in the literature, to ensure the
stability of the VS algorithms is to limit the step-size parameterµt by lower and
upper bounds,µmin andµmax, satisfying the stability criterion for the LMS algo-
rithm [1],[2],[7],[18],[20],[29]. If consecutive regressor vectorsϕt are independent
then it is appropriate to set these bounds to,0 and2/(3trR) [29] respectively, i.e.

0 < µ <
2

3trR
. (3.45)

Normallyµmin is set to a small value close to zero. This way of ensuring the stabil-
ity works well in most situations. However, in [29]3 the authors demonstrate that
the above assumption in general isfalse, since the independence assumption does
not normally hold, and that the stability issue for VS algorithms is something much
more complicated than that of the classical LMS algorithm and therefore requires
careful analysis. The problem is that the step-size is data dependent and therefore
does not fit into the structure normally used for stability analysis. In [29] theau-
thors also show that the stability regions for VS algorithms are smaller compared
to that of the traditional LMS algorithms. While caution is thus recommended, our
experience from simulations regarding the stability of the VS-LMS algorithms and
the new VS-SWLMS algorithm is that the stability bounds suggested in (3.45) are
valid in most cases.

When it comes to theconvergenceissue of the step-sizeµt of the VS algorithms,
different studies have been performed, see e.g. [18],[20],[21],[29],[30],[31] in or-
der to show that the adaptive step-size converges under certain givenassumptions.
However, as we see it, often these studies, [18],[21], neglect one very important
aspect -Is the step-size really converging to the optimal step-size predicted by the
theory?This is of course a fundamental issue when it comes to automatic adjust-
ment of the step-size, and can not be neglected. It is common to prove that the
VS algorithm as a whole converges in a mean square sense. This, however does
not guarantee that the step-size converges to a proper value which results in a good
tracking performance. In the literature, when it comes to comparative studies be-
tween different adaptive step-size schemes, the estimation MSE after convergence
of the parameter vectorht is often used to tune the different design parameters

3Here, exact expressions for the stability region of one-tap filters have been derived. In the multi-
tap case, bounds on the stability have been obtained in [29].
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in the competing algorithms [18],[20],[7],[26]. Then, the convergence ofthe esti-
mation MSE (also called the learning curve) is used as a measure to compare the
convergence rate of the algorithms. However, since the resulting estimation MSE
is very much depending on the time variability of the parametersht as well as on
the SNR, the process of finding appropriate values of the design parameters of the
different algorithms4 can be quite time consuming. This is of course not tractable
since we aim at an almost self-tuning algorithm.

When the steady-state tracking performance is evaluated among differentalgo-
rithms, it is often performed as follows. Starting with a certain parameter variation,
e.g. RW or AR, and a disturbing noise, the steady-state performance is measured
from the time the algorithms enter the tracking mode, i.e. when the initial tran-
sients are gone. Then the estimation MSE of the algorithms is plotted versus the
number of recursions, and finally a winner is chosen. Normally, slow parameter
variation is assumed, and the performance is evaluated at different SNR’s for vari-
ous input signals. However, environmental changes might require re-tuning of the
algorithms in order to cope with the new situation. Then, again, repeated tests have
to be performed in order to find suitable parameter values. This procedureis not
acceptable if these algorithms are to be used in real applications where the envi-
ronment might change. Then the whole idea with adaptive step-size algorithmsis
violated.

3.6 Complexity

Since the complexity of adaptive algorithms is very important when it comes to im-
plementation in real applications we will here (in Table 3.1) summarize the number
of calculations (real multiplications) needed to update the step-sizesµt for each
one of the presented VS algorithms. In this calculation, multiplication between
complex numbers is counted as four real multiplications, whereas multiplications
or divisions between a real and a complex number are counted as two multipli-
cations. The polynomialsD(q−1) in VS-SWLMS is assumed to have real-valued
coefficients.

Note that in Table 3.1, only the calculations for updating the step-size is presented.
In addition to these calculations the complexity for the constant gain algorithm,
such as LMS or SWLMS, needs to be added in order to get the total number of
multiplications. The complexity for the LMS algorithm and the SWLMS is pre-
sented in Table 3.2. Here we assume a complex linear regression with scalar out-

4This is especially true for the error based and the correlation based algorithms.
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VS-algorithm # of real mult.
VS-Benveniste 26 nh

VS-Benveniste-Simpl 18 nh

VS-SWLMS 54 nh

VSS 7 nh

MVSS 7 nh + 8
RMVSS 7 nh + 8
CDSS 2 nh

Table 3.1: The number of real multiplications required to update the VS algo-
rithms. Here,nh is the number of parameters in the vectorht.

put, complex-valued regressors,nh parameters, and a real-valuedD(q−1). These
complexity calculations concerns one-step predictors and are later to be considered
when the performance of the different algorithms is evaluated. For a complexity
comparison with the Kalman estimator, we refer to [11].

Algorithm # of real mult.
LMS 10 nh

SWLMS 16 nh

Table 3.2: The number of real multiplications required to update the LMS and
SWLMS algorithms. Here,nh is the number of parameters in the vectorht.

3.7 Conclusions

In this chapter we introduced the concept of automatic tuning of the simplified
WLMS algorithm. Different updating schemes were presented and a new adjust-
ment scheme was derived. The stability issue of variable step-size algorithmswere
also discussed and it turned out that this is a much more complex problem than
when dealing with the original LMS algorithm. Finally, the complexity for the
different adjustment methods were compared.
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Chapter 4
Simulation and performance
evaluation

4.1 Introduction

In Chapter 3 an overview of different step-size methods was given. Wewill in this
chapter study the performance of these step-size algorithms in various tracking sce-
narios in order to find the best candidate to be used together with the SWLMS algo-
rithm. Recall that the LMS algorithm is obtained as a special case of the SWLMS
algorithm by selecting the hypermodel asH(q−1) = 1/(1 − q−1), i.e. a random
walk model. Thus only SWLMS algorithms will be considered. Since no analyt-
ical results are presented for the algorithms, the following study will be based on
simulations. The algorithms that are subjects for the investigation are, thegradient
based methods(GB):

• Alg 1: VS-SWLMS-Benvenistes, (3.21)-(3.25)

• Alg 2: VS-SWLMS-Simplified Benvenistes, (3.26)-(3.30)

• Alg 3: VS-SWLMS, (3.31)-(3.44)

and, theerror based methods(EB):

• Alg 4: VSS-SWLMS, (Appendix D)

• Alg 5: MVSS-SWLMS, (Appendix D)

• Alg 6: RMVSS-SWLMS, (Appendix D)

43
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• Alg 7: CDSS-SWLMS, (Appendix D) .

Note that in Alg 4 to Alg 7 the SWLMS algorithm (2.52)-(2.54) is combined with
the step-sizeµ = µ̂t with µ̂t given by (3.2), (3.4)-(3.5), (3.6)-(3.7), and (3.1),
respectively. To start with, we will investigate the differences between theEB
methods and GB methods. Then, we will focus on the differences between the GB
algorithms. Of particular interest regarding the GB algorithms is the influence of
the parametersρ andα, and whether or not the newly derived VS-SWLMS (Alg
3) will perform better than the original VS-SWLMS-Benveniste (Alg 1) algorithm
and its simplification (Alg 2). We will start with simple adaptation problems and
then gradually move on to more realistic scenarios. The algorithms above will be
evaluated in the following scenarios:

• Estimation of static parameters.

• Tracking of sinusoidal parameters (slow and fast), at SNR, 5 dB and 15dB,
respectively.

• Tracking of Rayleigh fading parameters.

The comparative study will mainly focus on the behavior of the step-size adapta-
tion of the different algorithms. Here, one of the important questions to answer is
if the adaptive step-size will converge to the optimal value ofµ predicted by the
theory, i.e. the value of the step-size that solves the Wiener filtering problemin
Figure 2.10. This, also implies that the algorithm will produce the smallest para-
meter tracking error.

Apart from the comparative study of the different algorithms, we will also investi-
gate three other issues regarding tracking.

• Thefirst issue deals with individual step-size control for each parameter in
the vectorht. The parameters, i.e. the elements of the vectorht, are here
assumed to vary at different rates. Here we illustrate the flexibility of the
VS algorithm to individually adjust the step-sizeµt for each parameterhi

t

according to their rate of change ofhi
t.

• Thesecondissue deals with the problem of wether to use the Newton direc-
tion in tracking problems or not. As mentioned before, see Chapter 2, it is
well known that the Newton direction improves the convergence rate in sta-
tic parameter estimation problems compared to using the gradient direction.
Here we will investigate if this also is the case in tracking problems.
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• At the end of the chapter, we demonstrate the performance gain obtained
by using different hypermodels when tracking time varying parameters of
different kinds.

In most of the simulations aimed to describe the behavior of the adaptive step-size
algorithms, tracking of only one time-varying parameter will be considered. The
observed behavior is however valid also for higher order models. In thecompar-
isons between the algorithms we will focus either on the adaptation of the step-size
or the squared parameter tracking errorh̃2

t . In the simulations below, if nothing
else is said, the SWLMS algorithm is used in combination with the step-size algo-
rithms (1-7) presented above together with an integrated random walk hypermodel
(IRW)1.

4.2 Comparison between the EB and GB step-size algo-
rithms

Since the structure of the EB and GB algorithms is quite different we expect these
algorithms to also show different tracking properties. We start this comparison
by studying the convergence properties of the step-sizeµ̂t for Alg 1- Alg 7 when
estimating an unknown static parameter.

4.2.1 Simulation 1: Estimation of a static parameter:

Since the parameterht is time-invariant we expect the step-sizeµ̂t to decrease until
the lower limit of the step-size,µmin, here set to0.005, is reached. Figure 4.1 il-
lustrates the convergence of the step-size parameterµ̂t for the different algorithms.
The differences between the algorithm classes are obvious: All the EB algorithms
outperform the GB algorithms. Here, the design parameters in the differentalgo-
rithms are chosen to typical values normally used in order to produce good tracking
performance2. The rate of convergence for the GB algorithms is much slower than
that of the EB algorithms. The reason for this big difference is due to the fact that
the instantaneous gradient∇̂µ(t), used in the step-size updating equation for the
GB methods, is on average much smaller than the size of the squared instantaneous

1In order to completely study the behavior of the different step-size methods presented in the
previous chapter a hypermodel other than the Random Walk (RW) modelhas to be used. The reason
for this is that the SWLMS algorithm in the RW case reduces to the classical LMSalgorithm. Some
of the interesting features of the automatically tuned SWLMS algorithm would then vanish, and the
study would not be of any interest. We therefore applied the IRW model.

2Regarding the parameter values for the EB methods we approximately usethe values recom-
mended by the different authors.
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Figure 4.1: The convergence of the step-sizeµ̂t when estimating a static parame-
ter. The convergence rates for the EB methods are much fasterthan for the GB
methods.

error ε2t used in the EB methods. It would of course be possible to speed up the
convergence rate of these algorithms by increasing the value ofρ. However, this
would increase the parameter tracking error in steady-state. Furthermore, among
the GB methods, we observe that the convergence rate of Alg 3 is faster than that
of Alg 1 and its simplified version Alg 2. This is interesting since the same value of
the convergence-rate parameterρ in the multiplicative step-size updating equation

µ̂t+1|t = µ̂t[I + ρℜ{ψ̂∗
tϕtεt}] (4.1)

was used. The estimated gradientψ̂∗
t in the equation above is calculated according

to the following equations, previously presented in Chapter 3.

Alg 1) ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt (4.2)

Alg 2) ψ̂t+1 = αψ̂t + ϕtεt (4.3)

Alg 3) ψ̂t+1 = P1 ψ̂t + P2 ψ̂t−1 + (ĉ µ̂t+1 + b̂0)Zt + b̂1 Zt−1 (4.4)
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Considering the above equations, the magnitude ofψ̂t will differ among the algo-
rithms. According to Figure 4.1 we can conclude that the extra dynamics resulting
from the prediction filter in (4.4) clearly increased the magnitude ofψ̂t compared
to Alg 1, and therefore we obtained an improved convergence rate. We can also
see, due to the faster convergence rate in Figure 4.1, that the simplification by using
the parameterα3 in (4.3) also changed the convergence properties compared to the
original Alg 1.

As we suspected in the beginning of this chapter, the step-sizes of the different
algorithms converged into the the region ofµmin. However, large differences in
the convergence rate was observed. Therefore, if our goal is to findthe step-size
updating algorithm with the fastest convergence rate, then, we would probably
choose one of the EB algorithms. In this case Alg 7 would be the obvious choice
since it reached the optimum step-size faster than the other algorithms. However,
Figure 4.1 does not say much about the step-size convergence properties of these
algorithms in a tracking scenario. Therefore, we will now move on to trackingof
time varying parameters.

4.2.2 Tracking a sinusoidal parameter

Tracking a sinusoidal parameter

ht = ejωt (4.5)

will now be considered. In these examples we will study the behavior of the algo-
rithms for different values of the frequencyω as well as for different signal-to-noise
ratios. Tracking of sinusoids will be used in many of the following simulations in
order to compare the different algorithms. Other more realistic parameter varia-
tions will be used at the end of this chapter.

Simulation 2: Slow parameter variation, SNR = 15dB

Figure 4.2 illustrates tracking of a low frequency sinusoid withω = 0.00039, at
a medium SNR level (15 dB). The frequency is normalized to the sampling rate4.
In this situation we also expect the adaptive step-sizeµ̂t to converge to a rather
small value, since the time variability of the parameterht is rather slow. Here
we can clearly see that all of the algorithms converges into the region of the opti-
mal step-size0.007. The optimal step-size was calculated iteratively by evaluating

3In this simulationα = 0.95 was used.
4Sampling rate270000 Hz will be used in all of the following simulations.
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Figure 4.2: Tracking of a slowly varying sinusoid with frequencyω = 0.00039.
The upper diagram illustrates the optimal parameter variation of ht and the es-
timatesĥt for the different algorithms as a function of the number of iterations.
Here, it can be seen that the GB algorithms achieves faster convergence towards
the true parameters although the convergence ofµt for the EB algorithms is faster.
The lower diagram illustrates the adaptive step-size plotted versus the number of
iterations.

the parameter tracking MSE for different step-sizes, then the value ofµ that pro-
duced the lowest MSE was chosen as the optimal step-size. The differences, in
terms of the resulting step-size between the algorithms are shown to be very small.
However, as noticed in the previous example, the step-size of the GB algorithms
suffer from much slower convergence than that of the EB algorithms. Figure 4.3
illustrates the parameter tracking MSE of the different algorithms. The resulting
error is about the same due to the almost identical final step-size for all of the al-
gorithms. The differences between the GB algorithms are shown to be very small.
A closer study of these algorithms will be performed in a subsequent section.
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Figure 4.3: The parameter tracking error MSE for the different algorithms. Since
the resulting step-size in this case equals the lower bound of the allowed step-size
we can see that the MSE at the end of the adaptation is about thesame for all
algorithms.

Simulation 3: Fast parameter variation, SNR = 15dB

In order to observe the behavior of the algorithms in a different situation where
the environment has changed, let the values of the design parameters forthe al-
gorithms remain exactly the same as for the slower sinusoid and then increase the
frequencyω. This will, according to the theory [1],[2],[4], also increase the opti-
mal step-sizeµ since the algorithms must be more alert to changes in the parameter
vectorht. Then, what will be interesting to see, is if the algorithms will converge
to the step-size predicted by the theory, or if there will be a significant difference
between them. The results are shown in Figure 4.4. Here, we observe thatthere
exists a fundamental difference between the algorithms. The GB algorithms cope
with these faster parameter variations in a much better way than the EB algorithms.
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Figure 4.4: Tracking of a fast varying sinusoid,ω = 0.0078, SNR15 dB. The up-
per plot illustrates the optimal parameter variation ofht and the estimateŝht for
the different algorithms. In the lower plot the adaptive step-size is plotted versus
the number of iterations. Here we can clearly see that the gradient based meth-
ods converge approximately into the optimal step-size0.071. A small deviation
from the optimal step-size can be noticed for the simplified version of Benvenistes
method. This has to do with the value of the parameterα. The reason for this will
be explained in later sections

Figure 4.5 shows the parameter tracking MSE of the algorithms when tracking the
faster sinusoid. In this case we notice a remarkable difference between the algo-
rithms as compared to the previous example. This effect is explained by the lower
plot in Figure 4.4 where the adaptation of the step-sizes for the different algorithms
is illustrated. In this example the optimal step-size was calculated to0.071. As we
see in Figure 4.4, the GB methods Alg 1 - Alg 3 manage to converge towards the
optimal step-size predicted by the theory. This is however, not true for theEB
algorithms Alg 4 - Alg 7. Their step-sizes continue to decrease to a level that is
much smaller than the GB algorithms. The final value of these step-sizes, which
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Figure 4.5: The parameter tracking MSE of the algorithms when tracking a fast
varying sinusoid withω = 0.0078 and SNR15 dB. Due to the large differences of
the step-sizes between the EB and GB algorithms their resulting errors will differ
significantly. The MSE of the GB methods are much smaller thanthe MSE of the
EB methods since their step-sizes converge into the region of the optimal step-size
predicted by the theory. The individual differences between these algorithm are
however not noticeable in this case.

to a large extent is influenced by the choices of the parametersγ andα, see (3.2),
(3.4), and (3.6), may not correspond to the step-size predicted by the theory.

These differences between the algorithms are not unexpected. By analyzing the
design of the different step-size schemes, it becomes quite clear why theybehave
as they do. In the case of the GB methods, the design is based on the minimization
of the criteriumJt in Chapter 2. This, makes the adaptive adjustment scheme
search for the particular value of the step-sizeµ̂t that minimizes this criterium.
This important feature is not present in the EB methods where the adjustment of
the step-size is performed without involving the minimization of a suitable criteron.
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Simulation 4: Slow parameter variation, SNR = 5dB

One thing that might change the behavior of the algorithms drastically is the mea-
surement noise. In real applications it is very important that the adaptive methods
do not deteriorate to much if the noise increases. Therefore, we will now turn our
attention towards the signal-to-noise ratio. Recalling Simulation 1, we will now
perform exactly the same experiment but increase the noise level. These results are
shown in Figure 4.6. It is now possible to see the effect of the noise in the adapta-
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Figure 4.6: Tracking of a slowly varying sinusoid withω = 0.00039 and SNR5
dB. In this case the theoretical step-size is quite small dueto the large influence of
noise. We therefore expect that the different algorithms toconverge into this small
step-size. However, this is only true for Alg 2, the other GB algorithms suffers
from a bias of varying size. The reason for this will be discussed in later sections.
Regarding the EB methods, we see that they do not manage to findthe optimal
step-size either. Also noticeable is that the convergence rate of the GB methods
significantly increased due to the higher noise level.
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tion of the step-size. Since the noise increases the size of the gradient∇h = ϕtεt,
the convergence rate of the step-size will also increase due to the close connection
to the size of the instantaneous gradient∇µ(t). This is of course attractive, but,
unfortunately, together with this increasing convergence rate of the step-size µ̂t,
the fluctuations of the adaptive step-size becomes severe. In the case ofthe GB
methods, these fluctuations can be controlled by the parameterρ. A small value of
this parameter produces a small adjustment of the step-size in each iteration which
keeps the variance of̂µt at a low level. However, a small value of the parameter
ρ also severely decreases the convergence rate of the step-size, therefore a tradeoff
between the fluctuations and the convergence rate must be considered.

What can also be noted in Figure 4.6 is that none of the GB algorithms seem to
converge exactly to the optimal step-size, i.e0.005. A clearly noticeable bias is
present, especially for Alg 3 and Alg 1. The reason for this bias is not completely
known at present and requires further studies. However, when it comes to Alg 2
it almost manages to find the theoretical step-size. This is explained by the time-
invariant low-pass filtering of̂ψt used in Alg 25. Regarding the EB methods we
notice that their resulting step-sizes increased compared to Simulation 2, and also
that they failed to approach the optimal step-size0.005.

Figure 4.7 shows the corresponding parameter tracking MSE for the different al-
gorithms. Since the optimal step-size in this simulation equals the lower bound
µmin = 0.005, the smallest parameter tracking MSE is produced by Alg 7, which
adjustsµt to be closest to this bound, among the considered algorithms.

Simulation 5: Fast parameter variation, SNR = 5 dB

Here, we will keep the noise level from the previous experiment but increase the
frequency of the sinusoid. Now, by comparing Figure 4.8 and Figure 4.4 we notice
that the optimal step-size has decreased from0.071 to 0.046 due to the influence
of the noise. However, looking at the step-sizes of the EB methods we observe an
increasecompared to Figure 4.4. This behavior is not desirable. The reason for this
is that we in a noisy environment, would like an adaptive step-size algorithm to be
more cautious, i.e. to use a smaller step-size, than in a high SNR scenario. On the
other hand, looking at the step-sizes for the GB methods we observe adecreaseof
µ̂t, which is in correspondence with the theory [1],[2]. The variance of theadaptive
step-size is also shown to increase due to the higher noise level. Furthermore, we
also notice that the bias in the step-size for the GB methods present in Figure 4.6

5In this example the value of the parameterα was chosen to0.97. This assumes an optimal
step-size around0.03 and constant modulus regressors with amplitude one.
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Figure 4.7: The parameter tracking MSE for algorithms Alg 1 -Alg 7 when track-
ing the slow sinusoid in Figure 4.6 with an SNR of 5 dB.

is still present. This indicates that these methods overestimates the step-size asthe
noise increases. This will be further discussed in later sections.

Figure 4.9 illustrates the parameter tracking MSE of Simulation 5. Due to the
similar step-sizes shown in Figure 4.8 the resulting tracking MSE of the different
algorithms are about the same, except for Alg 7 which suffers from larger tracking
MSE due to a severe lag error (2.22).

We have so far seen that differences between the GB and EB methodsare present,
however, at this moment we do not exactly know when the differences becomes
significant. This will be investigated next.
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Figure 4.8: . Upper diagram: Tracking of a fast varying sinusoid with frequency
ω = 0.0078 and SNR5 dB. Lower diagram: The convergence of the step-sizeµt

for the different algorithms.

Simulation 6: Fast parameter variation, SNR = 25 dB

Since the optimal step-size is depending on the noise level and the rate of the time
varying parameter we will now illustrate the behavior of the algorithms under fast
variations and low noise conditions. In this example the frequency of the sinusoid
is the same as in Simulation 5, i.e.ω = 0.0078. However, the SNR is chosen to
25 dB and the optimal step-size is calculated to0.1080. Figure 4.10 illustrates
the sinusoidal parameter and the convergence of the step-size. The GB methods is
seen to converge into the region of the optimal step-size0.1080. However, the bias
of Alg 2 is here larger than in Figure 4.4. The reason for this will be discussed later
in Section 4.4. Also seen is that the step-sizes of the EB methods converge into
totally erroneous values not representable for tracking fast of varying parameters.
From this example we conclude that fast variations together with low noise cannot
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Figure 4.9: The parameter tracking MSE for the different algorithms in Figure 4.8
when tracking a fast sinusoid at SNR 5 dB.

be handled by the EB methods. The number of iterations is, in this simulation,
compared to the previous, increased from10000 to 20000 due to the slow conver-
gence rate of the GB methods at this noise level.

This scenario clearly illustrates the difference between the EB and GB algorithms.
By considering the lower plot of Figure 4.10 we conclude the following:

• In situations whereµopt is large due to rapidly varying parameters and/or a
high SNR, the EB algorithms seems incapable of finding the optimum value
of the step-size. Tracking fast varying parameters/sinusoids using these algo-
rithms in environments where the SNR is high is therefore not recommended.

• The GB methods Alg 1 and Alg 3 manage to converge to the step-size pre-
dicted by the theory6. With the exeption of generating a bias at low SNR,

6By theory, we mean the specific value of the step-size that produces the lowest tracking MSE
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Figure 4.10: Upper diagram: Tracking of a fast varying sinusoid with frequency
ω = 0.0078 and SNR25 dB. Lower diagram: The convergence of the step-sizeµt

for the different algorithms.

these methods cope with fast varying parameters in a satisfactory way.

In order to further study the behavior of the different algorithms in the presence
of noise we will conclude this section with a final example, where tracking of a
sinusoid with high frequency is considered. Here, the simulation interval is di-
vided into four segments in which the noise level is increased segment by segment.
In this simulation, see Figure 4.12, the effect of the noise becomes obvious.The
GB methods successfully decrease their step-size according to the increasing noise
level. This is a result of a decreasing correlation among the components in the
instantaneous gradient̂∇µ(t) used in the step-size updating equations for the GB
algorithms. The EB methods, on the other hand, erroneouslyincreasetheir step-

under the conditions given in the simulation, i.e. the rate of the time-varying parameter and the SNR.
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Figure 4.11: The tracking MSE for the EB and GB algorithms when tracking a
sinusoid with frequencyω = 0.0078 at SNR 25 dB. The GB methods are here
shown to outperform the EB methods since the tracking MSE is at least 100 times
smaller.

sizes when the noise becomes more dominant. The optimal step-size is plotted
according to the noise level in the first segment. The noise level in the different
segments is1.5, 2 and2.5 times the level in the first segment, which is15 dB.
What is interesting in Figure 4.13 is the development of the parameter tracking
MSE for the EB methods.Due to the fact that the noise level actually increases the
parameter tracking error is shown to decrease. This is explained by the fact that
their step-sizes by coincidence increase towards the optimal step-size, see Figure
4.12.

So far we have investigated the convergence properties of the step-sizefor the
different algorithms when tracking a sinusoid and a static parameter. In order to
illustrate the behavior of the different algorithms when the environment is chang-
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Figure 4.12: Tracking of a fast varying sinusoid in increasing noise. The noise
level in the different segments is1.5, 2 and2.5 times the level in the first segment,
which is 15 dB. In correspondence with the theory, i.e. when the measurement
noise increases, then the step-size of the GB algorithms areseen to gradually de-
crease. The EB algorithms on the other hand, increases theirstep-size when the
noise increases since they in this case, erroneously ’believe’, that the tracking of
the parameterht is bad due to the fact that the instantaneous errorεt becomes
larger.

ing, the design parameters of the algorithms have been the same in all simulations.
It would of course have been possible to improve the performance by changing
the design parameters for each simulation, however, this totally contradicts theau-
tomatic tuning concept we are about to investigate. Our intention by letting the
design parameters remain the same during the different simulations is to find out
how sensitive the different algorithms are based on a specific parameter setting.
Based on the above simulations, the performance of the GB methods seems very
promising. They have all shown a higher level of robustness to changesin the en-
vironment than the EB algorithms. Due to this superiority we will now leave the
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Figure 4.13: The corresponding tracking MSE when tracking afast varying sinu-
soid in noise with stepwise increasing variance. The interesting part in this figure
is that the MSE for the EB methods actually is shown to decrease although the
noise is gradually increasing. We also note that Alg 5 and Alg6 method is more
robust to noise than Alg 4.

EB methods and focus only on the GB algorithms.

4.3 GB algorithms and the parameterρ

To start with, we recall the equations (4.1)-(4.4). These equations represent the
core of the step-size adaptation for the GB methods. Common to these three meth-
ods is the parameterρ in (4.1), which controls the convergence rate of the step-size
as well as the resulting tracking MSE in steady-state. Our aim in this thesis is to
find a robust automatic step-size algorithm that does not need to be re-calibrated for
each new tracking scenario. Therefore, in order to work well in real applications,
the resulting automatically tuned SWLMS algorithm cannot be too sensitive to the
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choice of the parameterρ. In the following examples we will study the behavior
of the GB algorithms for different values of the parameterρ in different tracking
scenarios7. To start with, we will focus only on one of the GB algorithms in order
to illustrate the main behavior. Figure 4.14 shows the convergence of the step-size
for Alg 1 for four different values of the parameterρ when tracking a sinusoidal
parameter at the frequencyω = 0.0078 at two different signal-to-noise ratios, 5
and 15 dB, respectively. As mentioned in a previous section, the convergence rate
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Figure 4.14: The convergence of the step-sizeµ̂t for Alg 1 for different values
of the parameterρ when tracking a sinusoidal parameter at the frequencyω =
0.0078. In the case of SNR 15 dB (dashed) the different algorithms manage to
converge to the step-size predicted by the theory. However,in the case of SNR 5
dB (solid) a bias becomes noticeable if the value ofρ increases.

of the step-size becomes faster if the value of the parameterρ is large or if the SNR-

7In order to capture the initial behavior of the algorithm we here study the tracking scenario
during the first 5000 iterations
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level is low. The reason why the convergence rate increases with an increased noise
level is that the driving force behind the adaptation, i.e. the norm of the instanta-
neous gradient̂∇µ(t), becomes larger. This phenomenon also becomes visible if
we decreasethe frequencyω. Then, it will be easier for the algorithms to follow
the variations of the parameterht, thus, the parameter errorh̃t at each time-step
will be smaller than for a fast varying sinusoid. The driving force∇µ behind the
adaptation therefore becomes smaller. This results in a slower convergence rate as
well as smaller fluctuations of the step-size after convergence. These results are
depicted in Figure 4.15. Here we can clearly see that the convergence rates for the
step-sizes are much slower compared to those in Figure 4.14, where the frequency
of the sinusoid was higher. What also can be noted in Figure 4.14 is that in the
case of higher SNR, the different algorithms manage to converge to the step-size
predicted by the theory. This, however, is not true in the case of lower SNR where
the bias becomes noticeable. Furthermore, in the low SNR case, the bias seemto
increase as the size ofρ increases.

So far, we have only focused on one of the three GB algorithms in order to illus-
trate the typical behavior for different values of the convergence rateparameter.
We will now proceed with two final examples where we compare the three GB
algorithms: Alg 1, Alg 2 and Alg 3. In Figure 4.16 the convergence rates forthe
GB algorithms are illustrated for four values of the parameterρ when tracking a
sinusoidal parameter at SNR5 dB at two different frequencies. We can note that
an increased value of the parameterρ increase the convergence rate as well as the
variance of the step-sizêµt. We also notice that Alg 1 (upper diagram) is most
tolerant among the three algorithms against changes of the parameterρ. This is
observed by inspecting the variance of the step-size for the different algorithms
in Figure 4.16. When it comes to Alg 2 (middle), we notice that the variance of
the step-size is severely increased when tracking the faster parameter (blue curve).
However, we also observe that the bias present among the red curves for Alg 1
and Alg 3 is vanished since it converges towards the correct step-size.This is a
result of the time-invariant low-pass filtering of the gradientϕtεt performed by the
parameterα in Alg 2. However, in the case of the rapidly varying sinusoid (blue
curve), where the step-size is larger we notice that the low-pass filtering of ϕtεt
does not decrease the variance ofµ̂t. This is an effect of the design parameterα.
The influence of the parameterα will be discussed in the next section. For the Alg
3 (lower) we observe both an increased variance of the step-size and an increased
bias compared to that of Alg 1. Common to Alg 1 and Alg 3 in this simulation is
that the variance of̂µt increases if the frequency of the sinusoid increases and vice
versa. This is observed by comparing variance of the red and blue curves. How-
ever, it is also noticeable that the bias seems todecreasewith higher frequency.
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Figure 4.15: The convergence of the step-sizeµ̂t for Alg 1 for different values
of the parameterρ when tracking a sinusoidal parameter at the frequencyω =
0.00039 SNR = 15 dB dashed, 5 dB solid. The convergence of the step-size is
here slower than in Figure 4.14 due the lower frequency of thesinusoid. The bias
is also in this case clearly visible at the lower SNR.

This phenomenon is explained by Figure 4.17 where the parameter variation and
the instantaneous gradient∇̂µ(t) for Alg 1 when tracking a sinusoidal parameter at
two different frequencies,ω = 0.00039 andω = 0.0078 at SNR5 dB is illustrated.
Here we observe that the variance of the instantaneous gradient∇̂µ(t) for the fast
sinusoid is much smaller than for the slower sinusoid. The bias is believed to orig-
inate from this difference. The reason for this difference in the variance of ∇̂µ(t)
is explained as follows. We know from Chapter 3 that the instantaneous gradient
with respect to the step-sizeµt is defined as

∇µ = −ℜ[ψ∗
tϕtεt] . (4.6)

The size of these three components will depend on the variation of the parameter
ht and on the SNR level. Small variations of the parameterht, e.g. slowly varying
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Figure 4.16: Convergence of the step-sizeµ̂t for the GB algorithms for different
values (0.1, 0.06, 0.03, 0.01) of the parameterρ when tracking a sinusoidal para-
meter at two different frequencies,ω = 0.00039 (blue) andω = 0.0078 (red) at
SNR5 dB. It is noted that the step-sizes using a larger value of theparameterρ
results in a larger bias since the deviation from the optimalstep-size after conver-
gence becomes larger. Observe that the bias present among the red curves for Alg
1 and Alg 3 has vanished for Alg 2.

sinusoids, results in a dominant part represented byψ̂∗
t due to the similar values

of the parametersht at two adjacent time-steps. This, creates a larger variance of
∇̂µ(t). Conversely, less similarity between rapidly varyinght andht−1 results in
a smaller value of̂ψ∗

t which in turn results in a smaller variance of∇̂µ(t).

Figure 4.18 illustrates the same tracking problem as above but at an SNR of15 dB.
Here, the effects of the different values ofρ are not as visible as in the low SNR
scenario. This is partly due to that the convergence rate is slower for low values of
ρ. There are two noticeable effects. First, there are tendencies of unstable behav-
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Figure 4.17: The parameter variation and the variance of theinstantaneous gra-
dient ∇̂µ when tracking a sinusoidal parameter at two different frequencies,
ω = 0.00039 andω = 0.0078 at SNR5 dB. The variance of the instantaneous
gradient is here shown to be smaller when tracking a rapidly varying parameter.

ior in the beginning of the adaptation in the middle plot for the largest value ofρ.
Second, there is a bias of the step-size for Alg 2, due to an improper value of the
parameterα. Regarding Alg 1 and Alg 3, we observe that the convergence rate is
faster for the Alg 3 than for Alg 1 due to the increased norm of the instantaneous
gradient∇̂µ(t) introduced by the coefficient prediction filter through the gradient
ψ̃t, see (4.4).

We may now summarize our findings about the parameterρ as follows:

• The parameterρ controls the convergence rate of the step-size parameterµ̂t

and its variance after convergence.

• In noisy environments, the value of the parameterρ should not be chosen too
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Figure 4.18: The convergence of the step-size for differentvalues (0.1, 0.06, 0.03,
0.01) of the parameterρ when tracking a sinusoidal parameter at two different
frequencies,ω = 0.00039 (blue) andω = 0.0078 at SNR15 dB (red). Step-sizes
with a low value ofρ results in a slower convergence rate compared to step-sizes
with a high value ofρ. Here it is noted that the convergence rate of Alg 3 is
somewhat higher than for Alg 1 and Alg 2. Alg 2 also show signs of unstable
behavior in the beginning of the simulation.

large due to the increased variance of the resulting step-size and the corre-
sponding bias.

• Slower parameter variations requires a larger value of the parameterρ than
faster varying parameters in order to obtain fast convergence.

• Among the algorithms tested here, Alg 1 seems to be the one that is most
robust to different values of the parameterρ.
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4.4 Benveniste’s simplified multiplicative method and the
parameter α

We will now investigate the influence of the parameterα in Alg 2. Recall the step-
size equation of Alg 1 before and after the simplification, cf. (3.18) and (3.20), that
is,

ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt (4.7)

ψ̂t+1 = αψ̂t + ϕtεt . (4.8)

The simplification is performed by substituting the time-varying expression[I −
µ̂t+1ϕtϕ

∗
t ] with a constant gain matrixα I. As mentioned in Chapter 3, this leads

to a time-invariant filtering of the gradientϕtεt instead of a time-dependent fil-
tering. The consequences of this simplification will now be investigated in a few
tracking scenarios. Figure 4.19 illustrates the ’true’ value ofα, i.e. [I− µ̂t+1ϕtϕ

∗
t ]

for a one-tap parameter vectorht when tracking sinusoids of different frequencies8

at two values of the SNR. Since this, ’true’ value, is directly related to the step-size
µ̂t we notice that it will change according to the time variability of the parameter
ht and the SNR. Thus, by analyzing Figure 4.19 it becomes obvious that a fixed
value of the parameterα may lead to unwanted effects in the step-size adaptation.
Faster parameter variations require a smaller value ofα compared to slower vari-
ations due to the larger step-size. This means in terms of time-dependent filtering
that the cut-off frequency of the instantaneous low-pass filter (4.7) thatcontrols the
frequency components ofϕtεt will change according to the parameter variations.
Therefore, as we can see in Figure 4.16 (middle diagram), if the value ofα is not
tuned according to the noise level and the variations of the parameterht, i.e. to the
correct step-sizêµt, then the filtering ofϕtεt does not work properly. In Figure
4.16 this can be seen as an increased variance of the parameterµ̂t due to a noisy
gradient and a bias. Furthermore, care must be taken when combiningα andρ. Our
simulations indicates that a large value ofα, i.e. 0.97−0.99 combined with a large
value ofρ, i.e.∼ 0.1 may lead to an unstable behavior of the adaptive step-sizeµ̂t.
An example of this phenomenon can be observed in the middle plot of Figure 4.18.
Here the convergence of the step-sizeµ̂t for the simplified version shows signs of
unstable behavior in the beginning of the adaptation when usingρ = 0.1. Another
example of this behavior is observed in Figure 4.9 where the parameter tracking
MSE of the simplified algorithm (Alg 2) is clearly affected.

We summarize our findings about the parameterα as follows:

8Here the frequencies 0.00039, 0.0039, 0.0078 and 0.0155 are used.
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Figure 4.19: The ’true’ value of the expression[I−µ̂t+1ϕtϕ
∗
t ] at SNR,5 dB and15

dB and at different frequencies of the sinusoid. The thickercurves represents the
value ofα at SNR 15 dB. As seen, the value of the ’true’ alpha varies significantly
with the rate of the parameter variation or the SNR.

• The parameterα controls the time-invariant filtering of the gradientϕtεt in
(4.8)

• The smoothing of the gradient̂∇µ(t) works only in cases where the value
of the parameterα is correctly tuned, i.e. according to the speed of the
parameter variations and the SNR. In our simulations we have noticed that,
if the value ofα used in the simulations ishigher than the ´true´ or steady
state value of[I− µ̂t+1ϕtϕ

∗
t ], then an increase in variance ofµ̂t is obtained.

This also results in a bias, with a magnitude that depends on the SNR level
and the parameter variations ofht. On the other hand, if the simulated value
ofα is lowerthan the ´true´ value, a smoothing of the step-sizeµ̂t is obtained.
This reduces the bias in noisy conditions, or maybe in the best case, totally
eliminates it.
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The success of the simplification[I−µ̂t+1ϕtϕ
∗
t ] → α is therefore depending on the

relation between the optimal step-size, i.e, the SNR and the parameter variation,the
value of the parameterρ and the chosen value of the parameterα. By simulations
we have found that values in the region0.92−0.97 are appropriate. The value0.95
is normally used in our simulations.

4.5 Parameter Tracking MSE of the GB algorithms

So far we have mostly been concerned with the convergence properties of the step-
sizes for the different algorithms. We will now turn our attention to the parameter
tracking MSE,E{|h̃t|

2}. In the beginning of this chapter we illustrated the para-
meter tracking MSE for the GB methods together with the EB methods. In that
case the aim was to show the significant differences between the EB and GBfam-
ilies. However, in those MSE-figures, Figures 4.3, 4.5, 4.7 and 4.9 the differences
between the different GB algorithms were hardly noticeable. Therefore we will
now closer investigate the parameter tracking MSE for these algorithms. Based on
what we know so far about the GB algorithms and the behavior of their step-size
adaptation in different tracking situations we might suspect that they will differ
also when it comes to the parameter tracking MSE, since it is directly proportional
to the step-sizeµt. Figure 4.20 shows the parameter tracking MSE and the variance
of the instantaneous gradient∇̂µ(t) of the GB algorithms when tracking a rapidly
varying sinusoid at two different signal-to-noise ratios. In the case of the lower
noise level (SNR 15dB) we note that the algorithms perform about the same,only
small differences in the steady-state tracking MSE can be observed. However, if
the noise level increases, then, we observe that the MSE for Alg 3 deviates from the
other two GB algorithms. This is explained by looking at the lower plot of Figure
4.20 where the variance of the instantaneous gradient∇̂µ(t) is plotted versus the
number of iterations. Looking at the upper curves (5dB), we can clearlysee that
the variance of̂∇µ(t) for Alg 3 is larger than that of the other two algorithms. This
is, as mentioned before, a result of the dynamics from the coefficient prediction
filter. We also observe that the variance of the∇̂µ(t) for Alg 2 is larger than that
of Alg 1. This is explained by a too large value of the parameterα.

Now, continuing our study of the parameter tracking MSE we willdecreasethe
frequency of the sinusoid from the previous simulation. This is illustrated in Figure
4.21. Similar to the discussion above we observe that the algorithms perform about
the same at high SNR and that the differences show up at low SNR. However, in
this case we notice that Alg 2 produces the lowest tracking MSE in both situations.
This is explained by the lower diagram of Figure 4.21. Here, the effect ofthe low-
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Figure 4.20: Upper diagram: The parameter tracking MSE whentracking a rapidly
varying sinusoidal parameter at 5dB and 15dB, respectively. In the case of the
higher SNR hardly any differences apart from the convergence rate in the begin-
ning of the adaptation are noticed. All methods converge into the same steady-
state tracking MSE. However, at the lower SNR we notice that Alg 3 deviates
from the other two. Lower diagram: The variance of the instantaneous gradient
∇̂µ(t).

pass filtering ofϕtεt becomes visible. In this case the optimal step-size is quite
small due to the slowly varying parameter. This produces, as we know fromearlier
discussions, a large value of the ’true’α and since we are usingα = 0.95 which is
lower than the ’true’ value ofα, smoothing of̂µt takes place.

4.6 Tracking with individual step-size for each parameter

In the previous simulations we have only used one time varying parameter in order
to describe the behavior of the different algorithms. However, tracking of one pa-
rameter is of course not very realistic since tracking in real applications normally
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Figure 4.21: The parameter tracking MSE when tracking a slowsinusoidal pa-
rameter at 5 dB and 15 dB, respectively. Compared to the fast varying parameter
depicted in Figure 4.20 we here note that the variance of the instantaneous gradient
∇̂µ(t) (lower diagram) is larger and that Alg 2 produces a much lowertracking
MSE than the other algorithms at SNR 5 dB. No significant differences are ob-
served at 15dB.

involves more than one parameter. When it comes to tracking of several parameters
based on the algorithms presented in Chapter 3 we can choose to use the samestep-
size for all parameters or to use individual step-sizes. The latter is easily obtained
by replacing the scalar step-size parameterµt with a diagonal matrix containing
a variable step-size for each parameter. Tracking of several time-varying parame-
ters will increase the complexity of the adaptive algorithm. However, the increased
complexity is traded for better performance. For example, a typical situation where
individual adaptation of the step-size is motivated is when the parameters of inter-
est vary at different rates, and if they change their typical behavior over time. In
the case of the automatically tuned SWLMS algorithm, individual adaptation adds
another degree of freedom not included in the original SWLMS algorithm. This
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has to do with the restrictions of the SWLMS hypermodel. Since we use a di-
agonal hypermodel with thesametransfer functions along the diagonal, i.e., the
parametersht are assumed to be governed by the same dynamics, individual con-
trol of the parameters is not as flexible as in the WLMS algorithm. In the following
tracking scenario we will illustrate the performance gain introduced by usingindi-
vidual step-size adaptation when tracking four individually time-varying parame-
ters9. Figure 4.22 shows the parameter variations for the different parameters. The
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Figure 4.22: Tracking performed by Alg 1 of 4 individually time-varying sinu-
soidal parameters at SNR15 dB. In the diagrams, the red color illustrates the
common step-size and blue color illustrates the individualstep-sizes. It can be
noted in the bottom diagram, i.e. the slowest varying parameter h4

t , that the in-
dividual step-size is significantly smaller than the commonstep-size towards the
end of the simulation. This, results in a smaller parameter tracking MSE, see
Figure 4.24.

9Hypermodel IRW was used in this simulation.
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advantage of letting the step-size adjust itself individually to the time-varying para-
meters is obvious in the lower plot. In order to cope with the slowly varying fourth
parameter the individually tuned step-size converges to a much smaller value than
for the other parameters. This, clearly improves the tracking performancedue to
the smaller variance of the estimated parameterh4

t . The convergence of the step-
sizes is illustrated in Figure 4.23. Here, we can also see that the step-size for the
common step-size algorithm is slightly smaller than that of the first parameter in
the individual case. Figure 4.24 shows the parameter tracking MSE for thetwo
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Figure 4.23: The convergence of the step-size for individual and common step-
size. It can be noted that the individual step-sizes adjust themselves to the rate of
their time-varying parameter. In the case of the common step-size, the resulting
step-size adjust itself to the parameter that contribute the most to the resulting
tracking error, which in this case is parameter 1,

algorithms. As expected, the performance is significantly improved by individual
tuning of the different step-sizes. From our simulations we can conclude that
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Figure 4.24: Tracking MSE when tracking the four sinusoidalparameters with dif-
fering frequencies in Figure 4.22 at SNR15 dB. It is here clearly noted that the use
of individual step-size adaptation improves the tracking performance compared to
that of a common step-size.

• Individual step-size adaptation enhances the performance of the tracking al-
gorithm if the parameters are varying at significantly different rates.

• Individual step-size adaptation should be used if the extra complexity in-
volved is not a major problem.

4.7 Tracking in the Newton direction usingR
−1

It is well known that the convergence properties of adaptive algorithms such as
LMS is improved by using the Newton direction instead of the gradient direction
when estimating parameters in a situation with colored regressors. However,when
it comes to tracking, i.e. when we are dealing with a moving performance surface
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- Is is also true then? In order to answer this question we recallwhy the Newton
direction improves the convergence rate of the adaptation. For a non-moving per-
formance surface, this is simply explained by the fact that the search for the MMSE
point always proceeds in the direction of the minimum. However, when it comes
to tracking, and a moving surface, the Newton direction at one time-step might be
significantly different in the next time-step. To what extent this is true depends on
several things such as

• the shape of the performance surface, i.e. the correlation of the regressors.

• the rate of change of the time-varying parameters

• the variation, i.e. smooth or randomly varying, of the time-varying parame-
ters.

• the correlation between the time-varying parameters

First of all, if the performance surface in a static scenario is completely symmet-
rical in every direction due to uncorrelated regressors, then the gradient direction
and the Newton direction is the same and the use ofR

−1 in the algorithm provides
no advantage. It is when we are dealing with an elongated performance surface
that the use of the Newton direction might be of interest.

Secondly, when it comes to the rate of change of the time-varying parameters,
slowly varying parameters do not change the position of the MMSE point as much
as rapidly varying parameters do, therefore, problems with using the Newton di-
rection may only arise in the case of rapidly varying parameters. Thirdly, assum-
ing that we are dealing with rapidly varying parameters, then, the direction ofthe
movement of the performance surface becomes very important.

Thirdly, the moving direction of the performance surface is depending on the na-
ture of the time-varying parameters. For example, assume two uncorrelated ran-
dom walk parameters. These will change the position of the MMSE point in an
unpredictable way, see Figure 2.8. In this case, the Newton direction will change
dramatically from one time-step to another. Therefore, little is gained by includ-
ing the Newton direction. On the other hand, if we assume two uncorrelated IRW
parameters, then they will produce fairly smooth changes of the MMSE point,see
Figure 2.7. In that case, the probability that the Newton direction will changeto
an entirely new direction in the next time-step is much lower. Then, we might gain
something by using the Newton direction.
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Fourthly, since the movement of the performance surface also is affectedby the
correlationbetween the parameters this has to be taken into account. Now, assume
two rapidly varying parameters. If they are positively correlated, then they will
move the MMSE point diagonally along a positive slope in the parameter space
spanned byh1 andh2. If they are anti-correlated, then the slope will be negative.
See Figure 4.25 and Figure 4.26. Now to the interesting part. Whether the New-
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Figure 4.25: The trajectories for fast varying correlated parameters. In this case
the direction of the trajectories becomes orthogonal to theelongated direction of
the performance surface. The use of the Newton direction would here decrease
the tracking performance, i.e. increase the parameter tracking MSE as well as
decreasing the convergence rate, as compared to neglectingthe factorR−1

.

ton direction should be used or not is to a large extent depending on the direction
of the moving performance surface in combination with the shape of the surface,
due to the correlation between the regressor elements. In our simulations we have
found that, if the elongation of the performance surface agrees with the direction
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of the moving MMSE point, or, if the performance surface is elongated and the
parametersht are uncorrelated, then the Newton direction should be used. In other
situations, the use of the Newton direction may actually decrease the performance.
However, as always, when it comes to real applications the designer mightlack
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Figure 4.26: The trajectories for fast varying anti-correlated parameters. In this
case the direction of the trajectories agree with the elongated direction of the per-
formance surface. Therefore, the convergence rate will be improved by including
the factorR−1 due to the larger steps in the elongated direction.

important information about the parameters needed to decide wether to use the
Newton direction or not. This problem has to be treated from case to case.
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4.8 Performance gain obtained by hypermodels and step-
size adaptation

So far we have primarily focused on the details and the behavior of the different
versions of adaptive step-size methods. We will now turn our attention to the auto-
matically tuned SWLMS algorithm, as a whole, as a tool used to track parameters
of time-varying systems. We will here illustrate the performance gain obtained
by using automatic tuning of the step-size as well as how different levels of prior
information, i.e., differenthypermodels10 improve the tracking performance.

4.8.1 Tracking of Rayleigh fading parameters

In this subsection we consider tracking of one Rayleigh fading [32] channel para-
meter in a wireless communication scenario between a base station and a mobile
unit. Here, the time-variability of the channel parameter is caused by the relative
motion, i.e. the doppler frequency, between the mobile unit and the base station.
Other factors, such as the environment surrounding the mobile, except the SNR,
is not taken in to account. We will therefore focus on the doppler frequency as
the main factor influencing the time-varying channel. The simulation is performed
over 10000 iterations, where the first 7500 iterations represent a fastacceleration11,
then, an abrupt change occur and the acceleration is started again fromthe begin-
ning. The SNR level in the example is 15 dB. Figure 4.27 illustrates the tracking
performance of the following algorithms

1. LMS: SWLMS with hypermodel RW and no adaptation of the step-size. No
prior information about the parameters is included in the design. The step-
size (µ = 0.15) is optimized for a mobile speed of100 km/h.

2. VS-LMS: Automatic tuning is now added to the previous LMS algorithm.

3. SWLMS: SWLMS with hypermodel IRW and no adaptation of the step-size.
Information about smooth parameter behavior is now included. The fixed
step-size (µ = 0.08) is optimized for100 km/h.

4. VS-SWLMS-IRW (Alg 1 with hypermodel IRW) : Automatic tuning of the

10For a thorough description and analysis of the use of hypermodels together with the WLMS and
SWLMS algorithms we refer to [4], [11], [12], [13] and [14].

11Here the doppler frequency is changed from0 − 1000Hz. At the carrier frequency (1800Mhz)
in this example, and the sampling rate270000 Hz, this doppler shift corresponds to an acceleration
from 0 − 600 km/h in 0.0278 seconds. This is of course unrealistic, however, in this case it is used
to illustrates the behavior of the algorithms in an extreme situation.
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Figure 4.27: Tracking of a Rayleigh fading parameter. The doppler frequency is
gradually increasing from0− 1000Hz, then the parameter is exposed to an abrupt
change and the acceleration is started again.

SWLMS algorithm and information about smooth behavior of the parame-
ters is included, by using the IRW hypermodel.

5. VS-SWLMS-AR2 (Alg 1 with hypermodel AR2): Same as in 4, but, in this
case we also assume exact knowledge of the doppler frequency.

Remark: Note that Alg 1 is chosen in 4. and 5. in order to represent a
suitable VS-SWLMS algorithm. This choice is based on the results in the
previous simulations where Alg 1 has shown to be superior compared to the
other candidates.

In the early stage of the adaptation (iteration0 − 3000), the gain from the hy-
permodelling is visible in the parameter tracking MSE plot (lower diagram). The
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parameter tracking MSE for the algorithms using IRW and AR2 hypermodels is
significantly smaller than that of the LMS and the VS-LMS algorithms. However,
as the variation of the parameter increases, the effects of the variable step-size be-
comes more significant. The fixed step-size algorithms (LMS and SWLMS) clearly
suffers from a severely increasing parameter tracking MSE compared tothe VS al-
gorithms. The SWLMS algorithm is also shown to perform worse than the LMS
from iteration4500 until 7500. This is explained by the large lag-error due to its
smaller step-size. However, when the parameter variation slows down again, at
iteration 7500, the SWLMS recovers its superiority. From Figure 4.27 we notice
that the hypermodelling improves the performance compared to the classical LMS
algorithm and its variable step-size companion VS-LMS at doppler frequencies up
to approximately 400Hz. After that, the improvements obtained by the VS algo-
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Figure 4.28: Tracking of a Rayleigh fading parameter with the GB algorithms.
The tracking performance is about the same for all of the algorithms except for
the convergence rates and the unstable behavior of Alg 3 and Alg 2 directly after
the abrupt parameter change.
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rithms improves even further. Since the fixed step-sizes of LMS and SWLMSare
optimized for the speed100 km/h, i.e. a doppler frequency of∼ 170 Hz, they
cannot cope with the increasing variation of the parameter in the same way as the
VS algorithms do. When it comes to the information about the doppler frequency
used in the AR2 hypermodel compared to the IRW hypermodel, it clearly becomes
visible atfd ∼ 200 Hz that this enhances the performance. However, since the
difference is fairly small, we conclude that the IRW hypermodel works welleven
for very fast variations without this information. Furthermore, it is also known,
see [14], that, for parameter vectors of dimension> 1, the SWLMS algorithm is
significantly better than the classical LMS algorithm. Then, also different choices
of the hypermodel becomes more visible. In Figure 4.28, the same tracking sce-
nario as above is performed with the different GB algorithms (Alg 1 - Alg 3). In
accordance to what we have seen in the previous simulations, no significant differ-
ences between these algorithms are observed, except from the faster convergence
rate of the Alg 3 algorithm. The parameter tracking MSE of the algorithms are al-
most identical except for the convergence phase in the beginning of the adaptation
and after the abrupt change. However, after the abrupt parameter change, signs of
unstable behavior is present in both Alg 3 and Alg 2.

4.9 Concluding remarks

In this chapter a comprehensive simulation study of the step-size algorithms from
Chapter 3 has been performed. The algorithms have been investigated in various
scenarios designed to bring out their characteristic behavior. The purpose of this
study was to find the best candidate of the presented algorithms to be used together
with the SWLMS algorithm in order to obtain a self tuning tracking algorithm. We
will now, based on the simulations performed in this chapter, summarize and con-
clude our findings in order to give a potential user guidelines on how to apply a
suitable automatic step-size scheme in combination with the SWLMS algorithm.

In the beginning of this chapter a comparison between the error based (EB) algo-
rithms and the gradient based (GB) algorithms was performed. It was demonstrated
that the EB algorithms were working properly in situations where the parameter
vectorht was static or slowly varying. However, in cases where the rate of change
of the parameter vectorht was faster, limitations in the structure of the EB algo-
rithms precludes their use in such situations. This clearly favors the use of the GB
methods.

The different algorithms were also investigated under various noise conditions. It
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was shown that the EB algorithms were more sensitive to noise than the GB meth-
ods. In tracking situations involving a rapidly varying parameter vectorht and a
noise that may have varying power, we have through the performed simulations
seen that the GB algorithms are superior compared to the EB algorithms. Fur-
thermore, it should be noted that the EB algorithms never outperformed the GB
algorithms except from simulation 1, i.e. in the estimation of a static parameter.
From this we conclude that the GB algorithms can be used in situations where the
parameter vector is changing both slowly and rapidly.

Among the GB algorithms, we investigated three different step-size methods which
we called Alg 1, Alg 2, and Alg 3 (cf page 43). The first algorithm was based on
the classical LMS algorithm. The second algorithm was a simplification of Alg 1
in which the complexity was slightly reduced. Alg 3, was a completely new step-
size algorithm derived directly from the SWLMS equations. One of the primary
goals with this thesis was to answer the question, whether or not improved tracking
performance was possible to attain by deriving a new step-size adjustment method
based on the SWLMS equations, instead of using one of the step-size methods
previously derived for the LMS algorithm. It was shown that the new step-size
method possessed almost the same tracking performance as the other two step-size
methods. A small improvement of the convergence rate was discovered, but, this
came at the price of an increase of the complexity which could hardly be motivated
in a practical application.

Our recommendations when it comes to using an automatic step-size scheme to-
gether with the SWLMS algorithms are as follows:

• A simple gradient based method, based on the LMS algorithm works per-
fectly fine in order to automatically adjust the step-sizeµ on-line. In our
case,Benvenistesalgorithm is chosen as the winner among the investigated
algorithms. It is simple and has shown to be more robust against noise, as
compared to the other algorithms. However, its simplification possessed an
interesting property in terms of low-pass filtering of the instantaneous gra-
dient,∇̂µ(t), given that a suitable value of the parameterα was used. This
filtering reduced the deviation from the optimally calculated step-size other-
wise generated by a noisy gradient∇̂µ(t).

• If using the simplified version of Benvenistes algorithm, care must be taken
when deciding on the value of the parameterα. Approximate knowledge
about the rate of the variations of the parameter vectorht and the SNR is
recommended before setting the value ofα. In order to give one numerical
value that has worked well in most of our simulation, we would recommend
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α = 0.95. However, values in the interval0.92 − 0.97 are all possible. A
general rule is that if the parameter is rapidly varying, then a lower value of
α should be used.

• When it comes to the numerical value of the parameterρ we recommend the
region0.01 − 0.08. In most of the simulations we have used the value0.07.

At the end of this chapter we also investigated whether or not to use the New-
ton direction in tracking problem as well as the gain obtained by using individual
step-size adaptation for each parameter in the parameter vectorht. The recommen-
dations concerning the the Newton direction are as follows:

• When tracking rapidly varying parameters,do not use the Newton direction
if not enough information about the parameter variation, the correlation be-
tween the regressors, and the correlation between the parameters is available.

• When tracking slowly varying parameters, information about the correlation
of the regressors is the main factor influencing the choice of usingR

−1. If
this information is available or is easy to estimate, then the use ofR

−1 is
motivated.

When it comes to individual step-size adaptation our findings and recommenda-
tions are the following:

• If the available computing power allows for the extra complexity introduced
by the individual tuning, then it should definitely be used.

• The performance gain of individual tuning of the step-sizeµ increases with
the size of the parameters vectorht. Naturally, it also increases with the
difference in drift rate between different elements ofht. Therefore, if com-
plexity is an issue, then study the difference in the assumed drift rate between
the parameters and take into account the size ofht.

With these conclusions we will now move on to a real application in which the au-
tomatically tuned SWLMS algorithm is applied and compared with other adaptive
algorithms.
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Chapter 5
Adaptive Channel Equalization in
EDGE - A Case Study

5.1 Introduction

In this chapter we will investigate the performance of some of the previously pre-
sented algorithms in a realistic simulation of a specific application. We will here
consider a communication scenario where information is sent over a wirelesschan-
nel. The task of the adaptive algorithm is to compensate for negative effects in
transmission originating from the wireless channel.

5.2 EDGE

We shall evaluate the block error rate (BLER) performance of a delayeddecision-
feedback sequence estimator (DDFSE) [33] in conjunction with the proposed algo-
rithms on multipath fading channels associated with the EDGE [34] air interface.
This radio interface is based on GSM, which implies that the symbol rate and the
slot format (in terms of symbols) are the same, as illustrated in Figure 5.1. In
EDGE, the bit rate is adapted to the long-term channel conditions by selecting
one of nine different modulation and coding schemes (MCS). For MCS fiveand
higher, the modulation is 8PSK with linearized GMSK pulse shaping. In this study
we shall focus on a Rural Area (RA) scenario since in such cases differences in
tracking accuracy will be of particular interest.

An adequate single receiver antenna transmission model for short EDGE/GSM
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3 tail 58 data1 26 sync 58 data2 3 tail 8.25 guard

� 156.25 symbols (0.577ms) -

Figure 5.1: The Edge slot format.

channels, such as Rural Area propagations [35], can be expressed as

yt = ϕ∗
tht + vt, (5.1)

wherevt represents noise and interference,ht is a scalar time varying complex-
valued gain andϕ∗

t represents a scalar regressor, expressed as

ϕ∗
t =

M
∑

k=0

gkst−k . (5.2)

Above, gk andst denote channel taps and transmitted symbols, respectively. It
should be noted that the correct channel model normally is described by an M-tap
FIR-filter with time-varying taps and that the above model (5.1), (5.2) only serves
as a good approximation over an EDGE-slot. In the case of flat fading channels
the approximation error will vanish. For short EDGE channels, the intersymbol
interference modeled by (5.2) is mainly caused by the pulse shaping and the re-
ceiver (RX) filtering, whereasht models flat fading as well as impacts caused by
frequency offsets. In the case of a pure frequency offset,ωo, originating from a
deviation of the carrier frequency from the receiver oscillator frequency, the gain
ht is given by

ht = ejωot . (5.3)

For RA channels, the spectrum ofht is approximately described by a Rice model
[35],

Φh(ω) = Aδ(ω − 0.7ωD) +BΦJ(ω, ωD) , (5.4)

for some constantsA andB, whereΦJ(ω, ωD) represents the spectrum of Jakes
model [32] with a Doppler frequencyωD. In real scenarios, a combination of the
models (5.3) and (5.4) is normally used since both offset and fading need tobe
modeled.

The tapsgk are in this presentation estimated by Least Squares (LS) over the sync
data interval (Figure 5.1), under the assumption thatht = 1, and are then held
constant over the entire slot. The estimated channel taps relate to the slot synchro-
nization position that yield the smallest cumulative squared LS residuals. Tracking
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of the time varying tapht begins in the middle of the sync interval. Decision-
directed mode, where known sync symbols are replaced by detected symbols s̄t, is
used within the data blocks. The data2 block in Figure 5.1 is first detected in the
forward direction, and the data1 block is then detected in the backward direction
(time-reversal detection). Hence, the equalization will be performed on twohalf
slots. The considered detector structure is depicted in Figure 5.2. The tracker has
to performd-step prediction, since it works ond-step delayed data. The prefilter is
designed, for each slot half, as a feedforward filter of an MMSE decision-feedback
equalizer (DFE).1 In the simulations below, a square root raised cosine RX filter

yt- prefilter - DDFSE+SOVA

- q−d - tracker

ĥt|t−d

�
6 s̄t−d

-soft-outputs

Figure 5.2: Soft-output delayed decision feedback sequence estimator (DDFSE)
with d-step prediction tracking of a flat fading channel. The tracker operates on
pre-filtered data and delayed symbol decisionss̄t−d. Soft sample values for convo-
lutional decoding are here delivered by the soft-output Viterbi algorithm (SOVA)
[37].

with single-side bandwidth of150 kHz and roll-off factor of0.15 is used. Fig-
ure 5.3 shows the block error rate (BLER) when transmitting over a rather severe
fading channel in the 1800 MHz band. In this example, the prefilter consistsof 15
taps, the DDFSE consists of two maximum likelihood sequence estimate (MLSE)
taps and two feedback taps,M = 3 in (5.2), and a decision delayd of three sym-
bols is used. Ideal frequency hopping is assumed. For the tracking, ad-step ahead
VS-SWLMS prediction with adaptive and fixed step-size is used. The predictors
are designed for anintegratedrandom walk model (IRW)2. In the upper plot of
Figure 5.3 no frequency offset is assumed. The sender and the receiver are in this
case perfectly synchronized. Therefore the BLER for the differentalgorithms are
smaller than in the lower figure where an offset of 200 Hz is assumed. Compar-
ing the two cases we also notice that the differences between the algorithms using
adaptive step-size and the ones using fixed step-sizes are larger in the 200 Hz offset
case.

1This receiver structure is similar to the one used in [36] (single branch),but where we have
included one-tap tracking and use another soft-output scheme.

2The reason for this choice is a compromise between performance and complexity. The use of
a hypermodel that includes more information about the assumed parameter behavior would proba-
bly result in better performance. However, the IRW model captures thesignificant behavior of the
parameter and is therefore considered as a reasonable choice.
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The performance of the gradient-based (GB) VS-SWLMS algorithms fromChap-
ter 4 (Alg 1 -Alg 3) is here compared to algorithms without adaptive step-size,
here denoted SWLMS and NLMS3. Also the VS-LMS algorithm is evaluated. The
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Figure 5.3: Block error rate for modulation and coding scheme nr 7 (MCS-7)
and an RA channel at 1800MHz as a function of Eb/No, at a mobilespeed of
200 km/h with and without frequency offset. Comparison betweenVS-SWLMS
(Alg 1 - Alg 3), SWLMS with fixed step size, Variable Step-size LMS (VS-LMS)
and (normalized) LMS with fixed step size (NLMS).

design parameterρ in the GB algorithms is set to0.07, and the variable step-size
µt is adapted over the slots. The normalized LMS (NLMS) algorithm with fixed
gain here corresponds to a SWLMS withd1 = −1 andd2 = 0 (µ is normalized by
σ2

ϕ in order to make the algorithm independent of the magnitude of the regressors).

3The normalized version of the LMS algorithm is used in order to make the algorithm independent
of the magnitude of the regressors. The initial step-sizeµinit is set to0.15.
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The fixed step-sizes were optimized for zero frequency offset and a mobile speed
of 100 km/h and an SNR of 15 dB, which provides good performance on average
over vehicle speeds between zero and200 km/h. These values were also used as
initial values forµ = µ̄σ2

ϕ in the algorithms with adaptive step-size.

The VS-SWLMS algorithms overall provides superior performance compared to
that of the VS-LMS algorithm. However, no significant differences are observed
between the different GB algorithms (Alg 1 - Alg 3). At 200 km/h and 10% BLER
in the upper plot of Figure 5.3, we obtain an improvement of about3.6 dB in com-
parison with the VS-LMS algorithm. Note also that the SWLMS with incorrectly
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Figure 5.4: Block error rate for modulation and coding scheme nr 7 (MCS-7) and
an RA channel at 1800MHz, at a mobile speed of10 and200 km/h with frequency
offset 200Hz. This clearly shows that adaptation ofht improves the performance
in severely fading channels.

tuned (fixed) step-size will provide better performance than the VS-LMS algo-
rithm. This is a result of a the hypermodel. The use of an automatic step-size
scheme comes best to its right in situations where the environment may change
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frequently. In a communication scenarios this can be simulated by different speeds
of the mobile unit. Figure 5.4 illustrates the BLER of the different algorithms for
two different velocities of the mobile,10 km/h and200 km/h. The tuning of the
algorithms are exactly the same as in the previous figure. Here it becomes obvi-
ous that a fixed step-size tracker in the adaptive equalizer severely degrades the
performance of the communication system compared to the automatically tuned
equalizer. For slowly moving mobiles the differences are hardly noticeable.How-
ever, when the speed of the mobile increases, the fading becomes so fastthat the
step-size need to be changed to a totally new value. This is also performed bythe
VS algorithms and explains the large difference in BLER.

5.3 Conclusions

Our case study clearly shows the superiority of the variable step-size algorithm
in combination with the SWLMS algorithm. Even though a simple IRW hyper-
model was used to model the fading parameter, the VS-SWLMS algorithm was
shown to outperform both the NLMS algorithm and the VS-LMS algorithm. By
using more informative hypermodels, such as AR2-models tuned accordingto the
doppler spectrum of the fading parameter, the performance may be improved fur-
ther. However, this will be a topic for further studies.



Chapter 6
Further work

This thesis has investigated tracking of time varying parameters. The main focus
has been on investigating the possibility to equip the Simplified Wiener LMS al-
gorithm with a suitable automatic step-size scheme. The motivation to study this
has been to simplify the work of the designer in a real tracking scenario, where
the choice of a proper step-sizeµ might be a time-consuming process if the al-
gorithm is to be used in a time-varying environment where the noise level may
change frequently. We have studied the behavior and the performance of a few
known variable step-size algorithms as well as an entirely new step-size scheme
based on the SWLMS structure. In this work we have focused on some of the basic
features regarding the automatic tuning of the SWLMS algorithm. However, a lot
of interesting research regarding this problem remains do be done before a com-
plete picture about the behavior of the VS-SWLMS algorithm can be given.The
following tasks are subject for further studies:

• Theoretical studies of convergence and stability

• The validity between the automatically tuned step-size and the optimal step-
size for different prediction horizons and different number of parameters in
the vectorht.

• Reducing the complexity of the present algorithms by updating the step-size
less often; not at each iteration.

• Applying the concept of automatically tuned step-size in other applications
such as e.g. echo cancelation and active noise control.

• On-line tuning of the parametersd1 andd2 in the hypermodel.
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Appendix A
The relation between the classical
Wiener filter and the WLMS
algorithm

Here we will illustrate the relation between the classical Wiener filter and the struc-
ture of the WLMS algorithm for the particular case of estimating a signal in noise.
It will be shown that the WLMS algorithm in this case is just a different realization
of the Wiener solution, in the form of a feedback loop.

+ -et
C(q−1)
D(q−1)

ht

vt

yt
W(q−1)

ĥt+k

εt+k

Figure A.1: The Wiener filtering problem of estimating a signal in noise. The
signalyt is produced by the signalht disturbed by the noisevt. Here, the goal of
the Wiener filter is to produce an estimate of the signalht, given the noisy signal
yt.
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Consider the signals

ht =
C(q−1)

D(q−1)
et (A.1)

yt = ϕ∗
tht + vt = ht + vt . (A.2)

Here, the signalyt is a noisy measurement of the signalht, disturbed by the white
noisevt. Note also that the regressorϕ∗

t present in (A.2) is set to1 in order to
obtain a direct relationship with a time-invariant Wiener filter. Given (A.1) and
(A.2), it can be shown [4] that the Wiener filterW(q−1) in Figure A.1, estimates
ht+k based on the measurementyt

ĥt+k|t = W(q−1)yt =
Qk(q−1)

β(q−1)
yt . (A.3)

This solution to the Wiener filter is obtained by solving the spectral factorization

rββ∗ = γ CC∗ +DD∗ (A.4)

and the diophantine equation

qkγCC∗ = rQkβ∗ + qDLk∗ . (A.5)

where,γ, is the relationship between the process noiseet and the measurement
noisevt, expressed as

γ =
E{‖et‖

2
2}

E{‖vt‖2
2}

=
Re

Rv
, (A.6)

whereRe andRv are the autocorrelation matrices of the process noiseet and the
measurement noisevt, respectively. This method of calculating the optimal Wiener
filter is described more in detail in [38]. Now, in order to create the connection
between the WLMS and the Wiener filter we rewrite the steady-state solution (A.3)
as

ĥt|t =
Q0(q−1)

β(q−1)
yt (A.7)

ĥt+k|t =
Qk(q−1)

Q0(q−1)
ĥt|t (A.8)

where it can be shown1 thatQ0(z
−1) has all its zeros in|z| < 1. We also ex-

press the connection between the spectral factorβ(q−1) and the step-sizeµ in the
following way

β(q−1) =
(Q0(q−1) − q−1(1 − µ)Q1(q−1))

µ
. (A.9)

1See Lemma 2 and Appendix B in [13]
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For a derivation of (A.9), see Appendix B. Then, using the result (A.9)in (A.7)
gives us

(Q0(q−1) − q−1(1 − µ)Q1(q−1))ĥt|t = µQ0(q−1)yt (A.10)

which can be rewritten as

Q0(q−1)ĥt|t − q−1(1 − µ)Q0(q−1)ĥt+1|t = µQ0(q−1)yt (A.11)

by using the relation
Q0(q−1)ĥt+1|t = Q1(q−1)ĥt|t (A.12)

from (A.8). Now, given that the polynomialQ0 is time-invariant we obtain

q−1(1 − µ)Q0(q−1)ĥt+1|t = (1 − µ)Q0(q−1)ĥt|t−1 . (A.13)

SinceQ0 is stable it is possible to express the equation (A.11) as

ĥt|t = (1 − µ)ĥt|t−1 + µyt (A.14)

Finally, by introducingεt = yt − ĥt|t−1 we can express the Wiener filter as

εt = yt − ĥt|t−1 (A.15)

ĥt|t = ĥt|t−1 + µεt (A.16)

ĥt+k|t =
Qk(q−1)

Q0(q−1)
ĥt|t (A.17)

i.e. the WLMS structure. The WLMS structure is in this case a realization of the
Wiener filterW(q−1) in a form that uses the one-step prediction errorεt and the
one-step prediction̂ht|t−1 as intermediate results in a feedback loop. The step-size
µ to be used in the WLMS algorithm in order to produce the same result as the
classical Wiener filter is then obtained as

µ = 1 −
1

r
. (A.18)

wherer is given by the solution to the spectral factorization (A.4). The purpose
with this example has been to illustrate the relation between the Wiener filter and
the WLMS algorithm. However, what is also important to realize is that the opti-
mal performance of the WLMS algorithm is based on the knowledge of the signal
model (A.1) and the parameterγ. In Chapter 3 the Wiener filtering problem is fur-
ther discussed in order to illustrate an alternative solution based on less information
about the environment.
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Appendix B
The relation between the step-sizeµ

and the spectral factorβ(q−1)

The solutions to the diophantine equation (2.57) for different time-lagsk and white
noisevt can be obtained recursively fromQ0(q−1) andQ1(q−1) according to

Q1(q−1) = q(β(q−1) −D(q−1)) (B.1)

Qk+1(q−1) = q(Qk(q−1) −D(q−1)Qk
0(q−1)) (B.2)

Q0(q−1) = β(q−1) −D(q−1)
1

r
, (B.3)

for details see Corollary 1 in [4]. Then, the connection between the polynomials
Q1(q−1),Qk+1(q−1), β(q−1), and the step sizeµ is calculated as follows. Setk = 0
andQ0

0(q−1) = µ in (B.2). This gives

Q1(q−1) = q(Q0(q−1) −D(q−1)µ) . (B.4)

Then, solving forD(q−1) in (B.1) results in

D(q−1) = β(q−1) − q−1Q1(q−1) (B.5)

Now, by inserting (B.5) into (B.4) and solving forβ(q−1), we obtain (A.9),

Q1(q−1) = q(Q0(q−1) − (β(q−1) − q−1Q1(q−1))µ) (B.6)

q−1Q1(q−1) = Q0(q−1) − β(q−1)µ+ q−1Q1(q−1)µ (B.7)

β(q−1)µ = Q0(q−1) − q−1Q1(q−1) + q−1Q1(q−1)µ (B.8)

β(q−1) =
Q0(q−1) − q−1Q1(q−1) + q−1Q1(q−1)µ

µ
. (B.9)
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Appendix C
Derivation of Benvenistes VS-LMS
algorithm

The following derivation is performed in a similar way as in the book [1].
Let the error function be denoted

J =
1

2
E |εt|

2, (C.1)

whereεt is the estimation error,

εt = yt − ϕ∗
t ĥt|t−1. (C.2)

By differentiating the criterion functionJ with respect to the step-size parameter
µ, the scalar gradient∇µ(t) becomes

∇µ =
∂J

∂µ
=

1

2
E

[

∂εt
∂µ

ε∗t +
∂ε∗t
∂µ

εt

]

= E

[

ℜ{εt
∂ε∗t
∂µ

}

]

(C.3)

Then, the use of equation(C.2) gives

∂ε∗t
∂µ

=
∂

∂µ

(

yt − ϕ∗
t ĥt|t−1

)∗
= −

∂

∂µ
(ĥ∗t|t−1ϕt) = −ψ∗

tϕt (C.4)

where

ψt
∆
=

∂ĥt|t−1

∂µ
. (C.5)

The gradient∇µ can now be expressed as
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∇µ = −E [ℜ{εtψ
∗
tϕt}] = −E [ℜ{ψ∗

tϕtεt}] . (C.6)

In order to calculate (C.6), the derivativeψ∗ is needed. From (2.54) we obtain

ĥt+1|t = P1(q−1)ĥt|t = ĥt|t = ĥt|t−1 + µR−1ϕtεt . (C.7)

Note that we have used the fact thatPk(q−1) = I for k = 1 in the LMS case,
cf. (2.54), (2.55), (2.63), and (2.64). The derivative of (C.7) with respect to the
step-sizeµ is

∂ĥt+1|t

∂µ
=
∂ĥt|t

∂µ
=

∂

∂µ
(ĥt|t−1 + µR−1ϕtεt)

= ψt + R
−1ϕtεt + µR−1ϕt

∂εt
∂µ

= ψt + R
−1ϕtεt − µR−1ϕtϕ

∗
tψt

= [I − µR−1ϕtϕ
∗
t ]ψt + R

−1ϕtεt . (C.8)

Equation (C.8) can thus be expressed as

ψt+1 = [I − µR−1ϕtϕ
∗
t ]ψt + R

−1ϕtεt . (C.9)

The optimalµ could be obtained by setting∇µ in (C.6) to zero and solving for
µ. However, this is not feasible in an online situation. An iterative search of the
performance surface would be more appropriate. Thus introduce a gradient search
for µ as

µt+1 = µt − ρ∇̂µ(t) . (C.10)

where∇̂µ(t) is an approximation of (C.6) at time instantt. Here,∇̂µ(t) is ob-
tained by taking the instantaneous value of (C.6) while replacingµ with µ̂t in the
calculation ofψt. We thus obtain

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (C.11)

where
ψ̂t+1 = [I − µ̂t+1R

−1ϕtϕ
∗
t ]ψ̂t + R

−1ϕtεt . (C.12)

which is obtained by replacingµ with µ̂t+1 in (C.9).
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We can now summarize the VS-LMS algorithm for the caseR = I as follows

εt = yt − ϕtĥ
∗
t|t−1 (C.13)

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (C.14)

ψ̂t+1 = [I − µ̂t+1ϕtϕ
∗
t ]ψ̂t + ϕtεt (C.15)

ĥt+1|t = ĥt|t−1 + µ̂t+1ϕtεt . (C.16)

Note the order of updating the equations. Since we are able to update the step-size
µ̂t+1 with the last piece of information from the errorεt, µ̂t+1 is used to update the
derivativeψ̂t+1.
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Appendix D
VS-SWLMS algorithm candidates

VSS-SWLMS:

εt = yt − ϕ∗
t ĥt|t−1 (D.1)

µ̂t+1 = αµ̂t + δ|εt|
2 (D.2)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (D.3)

ĥt+k|t = Pk(q−1)ĥt|t (D.4)

MVSS-SWLMS:

εt = yt − ϕ∗
t ĥt|t−1 (D.5)

pt = βpt−1 + (1 − β)|εtε
∗
t−1| (D.6)

µ̂t+1 = αµ̂t + δp2
t (D.7)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (D.8)

ĥt+k|t = Pk(q−1)ĥt|t (D.9)

(D.10)

RMVSS-SWLMS:

εt = yt − ϕ∗
t ĥt|t−1 (D.11)

pt = βpt−1 + (1 − β)|εt(εt + εt−1)
∗| (D.12)

µ̂t+1 = αµ̂t + δp2
t (D.13)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (D.14)

ĥt+k|t = Pk(q−1)ĥt|t (D.15)
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CDSS-SWLMS:

εt = yt − ϕ∗
t ĥt|t−1 (D.16)

µ̂t+1 =
µ0

t
(D.17)

ĥt|t = ĥt|t−1 + µ̂t+1R
−1ϕtεt (D.18)

ĥt+k|t = Pk(q−1)ĥt|t (D.19)



Appendix E
Derivation of the VS-SWLMS
algorithm

The VS-SWLMS algorithm is here derived in a similar way as the variable step-
size LMS algorithm is derived in Appendix C. This will make it easy to compare
and understand the differences between the two algorithms.

Let the error function be denoted

J =
1

2
E |εt|

2, (E.1)

whereεt is the estimation error,

εt = yt − ϕ∗
t ĥt|t−1. (E.2)

By differentiating the criterion functionJ with respect to the step-size parameter
µ, the scalar gradient∇µ(t)

∇µ =
∂J

∂µ
=

1

2
E [
∂εt
∂µ

ε∗t +
∂ε∗t
∂µ

εt] = E [ℜ{εt
∂ε∗t
∂µ

}] (E.3)

is determined. Then, the use of equation(E.2) gives

∂ε∗t
∂µ

=
∂

∂µ

(

yt − ϕ∗
t ĥt|t−1

)∗
= −

∂

∂µ
(ĥ∗t|t−1ϕt) = −ψ∗

tϕt (E.4)

where

ψt
∆
=

∂ĥt|t−1

∂µ
. (E.5)
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The gradient∇µ can therefore be expressed as

∇µ = −E [ℜ{εtψ
∗
tϕt}] = −E [ℜ{ψ∗

tϕtεt}] . (E.6)

In order to calculate (E.6), the derivativeψ∗
t is needed. From (2.54) we obtain

ĥt|t−1 = P1(q−1)ĥt−1|t−1 , (E.7)

where

P1(q−1) =
Q1 (q−1)

Q0 (q−1)
=
b0 + b1q

−1

a0 + a1q−1
, (E.8)

and the coefficientsb0,b1,a0,a1 are obtained from (2.63) and (2.64) as

b0 =
−d1

1 + d2(1 − µ)
(E.9)

b1 = −d2 (E.10)

a0 = 1 (E.11)

a1 = −b0d2(1 − µ) . (E.12)

The coefficientsd1, d2 in (E.9)-(E.12) are given by the hypermodel

H(q−1) = 1/(1 + d1q
−1 + d2q

−1) . (E.13)

Equation (E.7) can now be rewritten as

ĥt|t−1 = −a1ĥt−1|t−2 + b0ĥt−1|t−1 + b1ĥt−2|t−2 . (E.14)

The derivative of (E.14) with respect to the step-sizeµ is calculated as

∂ĥt|t−1

∂µ
= −

∂

∂µ
(a1ĥt−1|t−2) +

∂

∂µ
(b0ĥt−1|t−1)

+
∂

∂µ
(b1ĥt−2|t−2)

= −(
∂a1

∂µ
ĥt−1|t−2 + a1

∂ĥt−1|t−2

∂µ
)

+ (
∂b0
∂µ

ĥt−1|t−1 + b0
∂ĥt−1|t−1

∂µ
)

+ (
∂b1
∂µ

ĥt−2|t−2 + b1
∂ĥt−2|t−2

∂µ
) , (E.15)
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where the derivative of the parametersa1 andb0 with respect to the step-size para-
meter is given by

∂a1

∂µ
=
∂b0
∂µ

=
−d1d2

[1 + d2(1 − µ)]2
∆
= c . (E.16)

Furthermore, from (2.53) we obtain

ĥt−1|t−1 = ĥt−1|t−2 + µR−1ϕt−1εt−1 , (E.17)

which gives us

∂ĥt−1|t−1

∂µ
=

∂

∂µ
(ĥt−1|t−2 + µR−1ϕt−1εt−1)

= ψt−1 + R
−1ϕt−1εt−1 + µR−1ϕt−1(−ϕ

∗
t−1ψt−1) .(E.18)

In order to simplify the expression we define

Zt
∆
= R−1ϕtεt (E.19)

Xt
∆
= R−1ϕtϕ

∗
t . (E.20)

We can now express equation (E.15) as

∂ĥt|t−1

∂µ
= −c ĥt−1|t−2 − a1ψt−1

+ c ĥt−1|t−1 + b0(ψt−1 + Zt−1 − µXt−1ψt−1)

+ 0 + b1(ψt−2 + Zt−2 − µXt−2ψt−2)

= c µZt−1 − a1 ψt−1

+ b0 ((I − µXt−1)ψt−1 + Zt−1)

+ b1 ((I − µXt−2)ψt−2 + Zt−2)

= (b0 (I − µXt−1) − a1)ψt−1

+ b1 (I − µXt−2)ψt−2

+ (c µ+ b0)Zt−1 + b1 Zt−2 . (E.21)

This expression can further be simplified by defining

P1 = (b0(I − µXt−1) − a1) (E.22)

P2 = b1(I − µXt−2) . (E.23)

Equation (E.21) can then be rewritten according to

ψt = P1ψt−1 + P2ψt−2 + (cµ+ b0)Zt−1 + b1Zt−2 . (E.24)
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The optimalµ could be obtained by setting∇µ in (E.6) to zero and solving for
µ. However, this is not feasible in an online situation. An iterative search of the
performance surface would be more appropriate. Thus introduce a gradient search
for µ as

µt+1 = µt − ρ∇̂µ(t) . (E.25)

where∇̂µ(t) is an approximation of (E.6) at time instantt. Here,∇̂µ(t) is ob-
tained by taking the instantaneous value of (E.6) while replacingµ with µ̂t in the
calculation ofψt. We thus obtain

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (E.26)

where

ψ̂t = P1 ψ̂t−1 + P2 ψ̂t−2 + (c µ̂t + b0)Zt−1 + b1 Zt−2 . (E.27)

In (E.27)ĉ is obtained by exchangingµ for µ̂t in (E.16).

We can now summarize the SWLMS algorithm with automatically updated step-
size (VS-SWLMS) as follows

εt = yt − ϕ∗
t ĥt|t−1 (E.28)

µ̂t+1 = µ̂t + ρℜ{ψ̂∗
tϕtεt} (E.29)

p = 1/(1 + d2(1 − µ̂t+1)) (E.30)

b̂0 = −d1p (E.31)

b̂1 = −d2 (E.32)

â1 = −d2(1 − µ̂t+1)b̂0 (E.33)

ĉ = d2b̂0p (E.34)

Zt = R
−1ϕtεt (E.35)

Xt = R
−1ϕtϕ

∗
t (E.36)

P1 = (b̂0 (I − µ̂t+1Xt) − â1) (E.37)

P2 = b̂1 (I − µ̂t+1Xt−1) (E.38)

ψ̂t+1 = P1 ψ̂t + P2 ψ̂t−1 + (ĉ µ̂t+1 + b̂0)Zt

+ b̂1 Zt−1 (E.39)

ĥt|t = ĥt|t−1 + µ̂t+1Zt (E.40)

ĥt+k|t = Pk(q−1)ĥt|t (E.41)



Appendix F
Solving a Wiener filtering problem
with the automatically tuned
SWLMS algorithm

In order to illustrate the flexibility of automatic tuning of the step-size we shall get
back to the Wiener filtering problem from Appendix A. There, we explainedthe
relation between the Wiener filter and the WLMS algorithm. This was illustrated
by verifying that the classical Wiener filter used to clean the signalyt from the dis-
turbing noisevt also was obtained by the recursive WLMS algorithm. We learned
that in order to calculate the optimal step-sizeµ for the recursive WLMS algo-
rithm, knowledge about: the hypermodel, the process noise and the measurement
noise, etc was needed. However, we will in this example show that the adaptive
step-sizeµt produced by Benveniste’s step-size method in combination with the
SWLMS algorithm actually converges1 into the optimal step-size predicted by the
theorywithout knowledge about the process noise and the measurement noise. We
will also show, by simulation, that this adaptive step-size method produces anre-
cursive solution the diophantine equation normally needed to calculate the optimal
step-size.

Recall the the signals

ht =
C(q−1)

D(q−1)
et (F.1)

yt = ht + vt . (F.2)

1Here we mean thatEµt → µopt ast → ∞
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In this numerical example we will useC(q−1) = 0.009, D(q−1) = [1 − 2 1], the
driving noiseet is white with variance0.000006 and the variance of the measure-
ment noisevt is 0.006. Then, the solution to the spectral factorization

rββ∗ = γ CC∗ +DD∗ (F.3)

where

γ =
E{‖et‖

2
2}

E{‖vt‖2
2}

=
Re

Rv
= 1.67 ∗ 10−4 , (F.4)

is given by

r = 1.0154 (F.5)

β = 1 − 1.9848q−1 − 0.9849q−2 . (F.6)

The optimal step-size for the SWLMS algorithm is then calculated to0.0151 by
the relation

µopt = 1 −
1

r
. (F.7)

Now, suppose that wedo not know the variances of the process noise or the mea-
surement noise, this means that we cannot calculateγ, and therefore, we will not
be able to solve the diophantine equation. However we circumvent this problem
by applying Benveniste’s step-size scheme. This will produce a recursive updating
of the step-sizeµ that hopefully converges into the same optimal value as above.
The result is illustrated in Figure F.1. Then, based on the recursive step-size above
we can also present the recursive solution to the diophantine equation using the
relation (A.9), i.e.,

βt(q−1) =
(Qt

0(q−1) − q−1(1 − µt)Q
t
1(q−1))

µt
. (F.8)

As we see in Figure F.2 the recursive solution manages to find the correct parame-
ter values of the polynomialβ. This example is interesting in that sense the the
adaptive step-size algorithm, in this case, Benveniste’s, correctly estimatesthe pa-
rametersr andβ without knowledge of the process noise or the measurement noise.
In other words, the automatically tuned SWLMS algorithm is able to estimate the
relationship between the process noise and the measurement noiseindirectly by
the relation between the instantaneous errorεt and the closed form expression for
the coefficient/prediction filter given in Chapter 2. This Wiener filtering problem
is very trivial in the sense that no regressors are used, and we are only estimating
the parameterht. However, we have seen through many different simulations that
this method of estimating the optimal step-size works well for non-trivial tracking
problems as well.
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Figure F.1: The convergence of the step-size and the corresponding value of the
parameterr when tracking an integrated random walk parameter disturbed by
noise. We can here clearly see that the iterative solution approaches the optimal
solution
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Figure F.2: Illustration of the adaptation towards the ”true” parameter values of
the polynomialβ.
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[14] L. Lindbom, A. Ahĺen, M. Sternad, and M. Falkenström, “Tracking of time-
varying mobile radio channels part II: A case study,”IEEE Transactions on
Communications, vol. 50, no. 1, pp. 156–167, Jan. 2002.

[15] M. Sternad, L. Lindbom, and A. Ahlén, “Robust Wiener design of adaptation
laws with constant gains,” inProceedings in IFAC Workshop on Adaptation
and Learning in Control and Signal Processing, Como, Italy, Aug. 2001.

[16] A. Benveniste and G. Ruget, “A measure of the tracking capability of re-
cursive stochastic algortihms with constant gains,”IEEE Transactions on
Automatic Control, vol. 27, no. 3, June 1982.

[17] A. Ahlén and M. Sternad, “Wiener filter design using polynomial equations,”
IEEE Transactions on Signal Processing, vol. 39, pp. 2387–2399, 1991.

[18] T. Aboulnasr and K. Mayyas, “A robust variable step-size LMS-type algo-
rithm: analysis and simulations,”IEEE Transactions on Signal Processing,
vol. 45, no. 3, pp. 631–639, Mar. 1997.

[19] Ang Wee-Peng and B. Farhang-Boroujeny, “Gradient adaptive step-size LMS
algorithms: past results and new developments,” inProceedings of IEEE
Adaptive Systems for Signal Processing, Communications, and Control Sym-
posium, 1-4 Oct. 2000.

[20] R.H. Kwong and E.W. Johnston, “A variable step size LMS algorithm,”,vol.
40, no. 7, pp. 1633–1642, July 1992.



BIBLIOGRAPHY 115

[21] V.J. Mathews and Z. Xie, “A stochastic gradient adaptive filter with gradient
adaptive step size,”IEEE Transactions on Signal Processing, vol. 41, no. 6,
pp. 2075–2087, Jun. 1993.

[22] J. Okello, Y. Itoh, Y. Fukui, I. Nakanishi, and M. Kobayashi, “A new modified
variable step size for the LMS algorithm,” inProceedings of the 1998 IEEE
International Symposium on Circuits and Systems, vol. 5, 31 May-3 June
1998.

[23] D.I. Pazaitis and A.G. Constantinides, “A kurtosis-driven variable step-size
LMS algorithm,” in Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 3, 7-10 May 1996.

[24] W.Y. Chen and R.A Haddad, “A variable step size LMS algorithm,” inPro-
ceedings of the 33rd Midwest Symposium on Circuits and Systems, vol. 1,
12-14 Aug. 1990.

[25] L. Ljung and T. S̈oderstr̈om, Theory and practice of recursive identification.
Cambridge, MA: MIT Press, 1983.

[26] P. Sristi, W.-S. Lu, and A. Antoniou, “A new variable-step-size LMSalgo-
rithm and its application in subband adaptive filtering for echo cancellation,”
in Proceedings of IEEE International Symposium on Circuits and Systems,
vol. 2, 6-9 May 2001.

[27] Y.K Shin and J.G Lee, “A study on the fast convergence algorithm for the
LMS adaptive filter design,”KIEE, vol. 19, no. 5, pp. 12–19, Oct. 1985.

[28] A. Sugiyama, “An interference-robust stochastic gradient algorithm with a
gradient-adaptive step-size,” inProceedings of International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 3, 27-30 April 1993.

[29] S.B. Gelfand, W. Yongbin, and J.V. Krogmeier, “The stability of variable
step-size LMS algorithms,”IEEE Transactions on Signal Processing, vol.
47, no. 12, pp. 3277–3288, Dec. 1999.

[30] P. Xue J.B. Evans and B. Liu, “Analyses and implemantation of variablestep
size adaptive algorithms,”IEEE Transactions on Signal Processing, vol. 41,
no. 8, pp. 2517–2535, Aug. 1993.

[31] A.I. Sulyman and A. Zerguine, “Convergence and steady-state analysis of
a variable step-size normalized LMS algorithm,” inProceedings of Seventh
International Symposium on Signal Processing and Its Applications, vol. 2,
July 1-4, 2003.



116 BIBLIOGRAPHY

[32] W.C. Jakes,Microwave Mobile Communications. New York: Wiley, 1974.

[33] A. Duel-Hallen and C. Heegard, “Delayed decision-feedback sequence esti-
mation,” IEEE Transactions on Communications, vol. 37, pp. 428–436, May
1989.

[34] A. Furusk̈ar, S. Mazur, F. Muller, and H. Olofsson, “EDGE: Enhanced data
rates for GSM and TDMA/136 evolution,”IEEE Transactions on Personal
Communication, vol. 6, pp. 55–66, June 1999.

[35] “GSM 05.05, radio transmission and reception, European Telecom. Standards
Institute ETSI,”.

[36] S. Ariyavisitakul, J. Winters, and N. Sollenberger, “Joint equalization and
interference suppression for high data rate wireless systems,”IEEE Journal
on Selected Areas in Communications, vol. 18, pp. 1214–1220, July 2000.

[37] J. Hagenauer, “Source-controlled channel decoding,”IEEE Transactions on
Communications, vol. 43, pp. 2449–2457, Sept 1995.

[38] A. Ahlén and M. Sternad, “Derivation and design of Wiener filters using
polynomial equations,”in Control and Dynamic Systems, C T Leondes, Aca-
demic Press, New York, NY, vol. 64, Stochastic Techniques in Digital Signal
Processing Systems, pp. 353–418, 1994.


