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ABSTRACT

This work considers tracking of time-varying parameters amtomatic tuning of the step-
size for the Simplified Wiener LMS algorithm (SWLMS). When tkang time-varying
parameters in applications where the rate of change of the-viarying parameters and
the noise level may change frequently, it is of interest fostdthe adaptation gain, or the
step-size, on-line. The reason for this is that proper miannang of the step-size in these
cases often is very time consuming, or maybe even impossitie purpose of this work
has been to find a promising step-size updating algorithnetoded in combination with
the SWLMS algorithm in order to create an almost self-tunilggiéthm that can be used
only with little help from the system designer. Various sgige candidates are evaluated
and compared in different tracking scenarios.

In addition to the comparison of the different step-sizedtgms, a small study concern-
ing two other tracking issues is also performed. The firsiégsgdeals with the potential
performance gain obtained by introducing individual ssere control of the different
time-varying parameters. The second issue concerns thefusgecific information,
available to the designer, about the time-varying paramseiad the characteristics of
signals passed through the time-varying system, that megiée applied to improve the
overall tracking performance.

In the end, a small case study is performed. Here the mostigirggnalgorithms are
implemented in a realistic communication scenario. It mahthat the proposed methods
are widely superior compared to the traditional constait giyorithms.
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Preface

During the last year of my undergraduate education | was totally confiderio

end up at the university. | was going to move from Uppsala like most of mydgge

and start a carrier at one of the hi-tech companies in Stockholm. That evpkatt
However, since you are reading this, something must have happened/iserae
along the track. No one really knows what made me change my mind, but it has
something to do with the courgedaptive Signal Processingiven at the Signals

and Systems Group at Uppsala University. For some reason, me andtifieur
students, out of a class of sixteen, decided to participate in this coursagtitihe

did not have the slightest clue what it was about, but it sounded interesting

Signal processing... most people | talk to refer to trains and traffic lights wiey

here those words - it turned out to be something else! However, due tovthe lo
number of students on the course, i.e. three (one gave up!), we detedopice
relationship with the different teachers giving the course. (To be haihese were
actually more teachers than students!). Anyway, this, | guess, wasiagyuoint
where | realized that | had found a subject that | really liked. It wasmalgoation

of creative thinking, mathematics, programming, and maybe most important of all
- it was useful and easy to apply in real applications.

Then one day about a year after finishing the course, when me and my frie
Mathias Johansson were looking for a Master thesis, we returned to thalSig
and Systems Group asking for suitable projects. We were then askeddtigate

the possibility to enhance the quality of sound reproduction systems with the help
of signal processing. This, finally, turned out so well that we were abktart

a companyDirac Research ABpartly based on the results from our thesis. The
company was started together with some colleagues, and our superisdess
Ahlén and Mikael Sternad. However, after finishing the Master thesis we wer
offered to continue our studies at the university as graduate studehtmang

our knowledge in the art of signal processing. This work is the resuaftyo$tudies.
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Chapter

Introduction

To be able tarack or follow different things has always been important for peo-
ple . In fact, it may actually start already in the beginning of the day. Inrde
get ready for work we need to; wake up, hopefully get our breékfiasn, maybe
listen to the news to follow what is happening in the world. After that we might
take the car and drive to our work, which involves keeping track of thd mwhen
driving. Then, when we finally arrive at work we need to follow up upamat

to do in order to make sure that our work is on the right track. We probdsty a
follow the progress of our savings day by day by listening to the daily evorad
reports. These "tracking problems” are very simple to understand dwe, so
fact, we probably don’t even think about them as "tracking problemsabse the
they are part of our daily routines.

In this work we will consider another type of tracking problenpgarameter track-
ing in time variable systemsThis means that our goal is to follow the variations
of certain parameters in a system that changes its behavior over time. Ezafiple
such systems might be

e Communication systems
e Process control systems
e Economical systems

We will in this work regard the first on€ommunication systenas our main tar-
get for the results produced hereafter.



2 Chapter 1. Introduction

Over the years, many different methods of how to track or follow time-varyin
parameters have been developed see eg. [1],[2],[3]. These metteodsalied
adaptive algorithmand are frequently used in many applications. One of the most
famous adaptive algorithms is the so callazhst Mean Squarer LMS algorithm

[3] introduced by Widrow and Hoff in the sixties. The fame of the LMS alganith

is explained by its simplicity. However, due to this simplicity the algorithm suf-
fers from some drawbacks which might restrict its use in some applicatioms. O

of these drawbacks is trow convergencef the algorithm. This problem has
generated interest among researchers to modify the LMS algorithm sudheha
problem is alleviated. The slow convergence problem originates fronathéHat

the LMS algorithm, as well as many other algorithms of low complexity, uses a
constant adaptation gain, or step-siz&hen in order to solve this problem it is
common to introduce some sort of automatic step-size mechanism that controls the
adaptation gain. These mechanisms have been shown to work well in situations
where theconstantgain LMS would do less well.

In [4], a framework of how to design tracking algorithms based on Wietier-fi

ing theory was developed. One of the resulting algorithms in this work is called
The Simplified Wiener LM&gorithm, or SWLMS. This is an adaptive algorithm
characterized by its good tracking performance, low complexity and déase olt

is related to the well known LMS algorithm. Unfortunately, like many other adap-
tive algorithms the SWLMS algorithm uses a constant adaptation gain which may
lead to suboptimal tracking in some time-varying environments. This, together
with some of the the different automatic step-size schemes developed favithe L
algorithm [5],[6],[7] has motivated us to investigate the possibility to equip the
Simplified Wiener LM&lgorithm with an automatic step-size adjustment in order
to enhance the tracking performance and to make it less sensitive to shange
the tracking environment. Although the original motivation for the automatic step-
size algorithms was to improve the convergence properties of the LMS algorith
our motivation to use them together with the SWLMS is somewhat different. The
driving force in our case has been to simplify the work of the system design
since tuning of adaptive algorithm in real applications might be a time consuming
process. Automatic tuning is therefore of great interest.

In this thesis we will investigate some of the step-size algorithms designed for
the LMS algorithm, as well as develop a completely new algorithm based on the
SWLMS algorithm in order to find the best candidate to be used in combination
with the SWLMS algorithm.

The adaptation gain or the step-size will be explained in more detail in ChHapter
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In addition to the comparison of the different step-size algorithms, a smaij stud
concerning two other tracking issues is also performed. The first issale @ith

the potential performance gain obtained by introducing individual stepesin-

trol of the different time-varying parameters. This means that, insteading us
the same step-size parameter for all time-varying parameters an individual time
varying step-size parameter is assigned to each one of the parametars tiodte
followed. The second issue concerns the use of specific informatiaitalale to

the designer, about the time-varying parameters and the characterissignais
passed through the time-varying system, that maybe can be applied to impgove th
overall tracking performance.

1.1 Outline

Chapter 2

In this chapter the tracking problem is introduced. Here suitable notation s intr
duced and the problem is approached mathematically. An introduction toaelapti
parameter estimation is first given, then the focus is changed towardsckimgra
problem. Common adaptive tracking algorithms are introduced as well asrthe pe
formance measures used in tracking. This chapter serves as the baderitoo
understand the rest of the work.

Chapter 3

This chapter starts with an overview describing why automatic tuning of theNd8VL
algorithm is of interest. Then, common step-size methods used for automatic tun-
ing of the LMS algorithm is introduced, these are then combined with the SWLMS
algorithm in order to create a number of candidates used for evaluatiorajpit€h

4. Finally, a completely new step-size scheme based on the SWLMS algorithm is
developed. The complexity for the different algorithms are finally presentthe

end of the chapter.

Chapter 4

Here, the different algorithms from Chapter 3 are evaluated in différanking
scenarios. The aim is here to find the best candidate to be used in combination
with the SWLMS algorithm. In the end, recommendations based on the different
simulations are given in order to provide a potential user with information wf ho
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to use an automatic step-size algorithm together with the SWLMS algorithm. In
this chapter the two other tracking issues described above are also iatetig
Chapter 5

In this chapter, the most promising algorithms from Chapter 4 are evaluated as
parts of a real communication system (EDGE). The algorithms are implemented
in an adaptive equalizer as a channel tracker in order to compensategative
effects imposed by the wireless channel.

Chapter 6

Here we discuss further studies.



Chapter

The Tracking Problem

2.1 The system and the linear regression model

Consider a relation between a set of variables. Let us assume that maapla
signalz; is produced as

zt:g(cpt,ht), t:0,1,2.... (21)

Here,g(+) is a function depending on the variablgsandh;, wherey; represents
input signals and; the model parameters. The indexdicates that we are work-

ing with signals sampled in discrete time. This can be considered as a general
discrete-time model with no restrictions on the system parameters or the input sig
nals. Therefore, the model (2.1) covers both nonlinear and lineansystlynamic
systems and static relations, as well as real and complex signals. In thigheork
discussion is restricted to a system that is linear in the pararhgtdescribed by

the scalar linearegression

zt:gofht,t:(),l,Q... (22)

in which the time varying parameter vectly is multiplied on the input variable
vectory; producing the scalar output signal Both signals and parameters may
be complex valued. In this model the componentsppfare called regressors,
and constitute input signals which are known at tiimélere bothh,; andy,; have
dimensionn,|1. The superscript "™*” denotes complex conjugate transpose. We
will in this model refer to the parametets as thetrue parametersdescribing

the characteristics of the linear system. The sigpa$ therefore assumed to be
generated by some mechanism based on these parameters. The acasbfalu

5
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h, are only available to us in situations where we analyze different methods or
algorithms by computer simulation, not in real situations. Therefore, if we toan
measure, and maybe later modgby estimatinghe assumed "true” hidden system
parameters, we have to use some apparatus designed to obtain data samples f
the signalz;. However, no matter how good this apparatus is, there will always
exist some limitations that prevents us from obtaining an error free measureme
of the signalz;. Thus, in the description of the measured version of the signal
we will have to add an additional term representing this imperfection. Weftrere
replace (2.2) by

Y = prhe + vy (2.3)

The noise termy; represents everything in the sigmathat can not be explained by
the linear regression model (2.2). We will further assume that the nplsss zero
mean and is statistically independent of both the velei@nd of the regressous'.
Equation (2.3) is illustrated by Figure 2.1.

Ut

¢f —> hy —’®—> Ye

Figure 2.1: A linear regression with additive noise desoghthe relationship
between an input and an output signal disturbed by noises. rfépresentation will
be used for the true system that is assumed to generate tlae semsurement
time-seriegy;.

Let us now introduce the followintinear regression model
Yy = Gtee (2.4)
U = @ih. (2.5)

Herey; represents an estimate of the measured signdlhe column vectoh, of
dimensionn, |1 is an estimate of the true time varyihg Theestimation erroiis

Et=Yt — Yt - (2.6)
Furthermore, we also define thbarameter tracking error
hy = hy — hy (2.7)
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as the difference between the true parameter végtand the estimated parameter
vectorh,. Our goal is to adjust the time varying parameter (the elemenizs)of
so that either the estimation error (2.6) or the parameter tracking error {2.7)
minimized in some sense. The adjustment of the paramktésso be performed

Ye
g | e :
Fil Adaptive
¥t ’ fter | algorithm
ht |
Yt
System
Pt—] N
Z Ut €t -
Model N Adaptive
~ algorithm
hy |

Figure 2.2: The regression model (2.4) illustratedigsct adaptationupper dia-
gram) andsystem identificatioffower diagram).

recursively by a suitable adaptation algorithm, based on the informationimedta

in the error signat;. The regression model (2.4) is of use in two types of problems,
eitherdirect adaptatiorwheregy; is the output of a filter that is to be tuned so that

it follows y;, or problems where (2.5) is a linear regression model that describes a
measured signaj. See Figure 2.2.

EXAMPLE 2.1

An example of the linear regression model (2.4) is the second order finitdsenpu
response (FIR) model

Yy = ﬁ?ut + ﬁ%utfl + ﬁfutd + &t (2.8)
= @ hy + ey, (2.9)

where R -
of = (ur w1 wg) 5 he=(h hi h})", (2.10)

where the regression vector in (2.10) consists of delayed known iignalsu,.




8 Chapter 2. The Tracking Problem

2.2 Performance measures and adaptive parameter esti-
mation

A common criterion used in the design of adaptive algorithms is the mean-square
value of the estimation error. Substituting (2.5) into (2.6) yields

Et =Yt — goﬁzt . (211)
By taking the absolute value and squaring (2.11), we obtain
led? = |yel® + hievpthe — 2Re{ @y I} (2.12)

Then, the mean square estimation error (MSE) is expressed as the dxysdate
of (2.12)

MSE = Ele)|? = (E]yt\Q + B RAy — 2§R{p*ﬁt}) (2.13)

where the averagg(-) is taken with respect to the properties of all regressor vari-
ables andy in (2.3). The criterion based on the MSE can then be defined as

1
J =5 MSE . (2.14)
The regressor vectas; is assumed to have zero mean and covariance matrix
R = E{owpi }t - (2.15)

The use of (2.12) and introduction of the cross correlation vector betiireere-
gressors and the output,

pt = E{owye} (2.16)

gives the last equation of (2.14). The parameter vaﬁuelgat minimize the crite-
rion J are obtained by differentiating (2.14) with respeckio We then obtain the
well known least square solution

hy =R 'p;. (2.17)

The solution to this equation can be found either by direct calculation or-recu
sively, by means of adaptive algorithms. Direct calculation works weltifoe-
invariant systems whereas adaptive recursive solutions are more fritéthe-
varying scenarios. In addition to the criterion (2.14), another perfocemareasure

B |hsk|® = E |hpsr — heppel® (2.18)

will be used in the algorithm design later in this chapter. HAQﬁEkn is an estimate
of hy. . at timet representing filteringi( = 0), prediction ¢ > 0), or fixed
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lag smoothingX < 0). This measure differs from (2.14), since the goal is here
to minimize the mean-square of tparameter tracking errarinstead of the mea-
surement signagstimation error(2.6).

Now, let us introduce a class of adaptation algorithms described by

ilt+1 = hy + wf (i) (2.19)

Here,. is denoted thetep-sizeof the algorithm, andf (¢, ¢¢) is a vector function
operating on the regressgy and the error signad;. It is assumed to have the
property that the norm of (-) vanishes for smalt;. The step-size: controls the
adjustment of the parametédtsfrom one time-step to the next by appropriate scal-
ing of f (¢, &t). Whenh, is close toh, i.e. whenf (¢, ;) is small, due to a small
errore,, the adjustment will be small and vice versa. Specific such algorithms and
in particular the step-size will be further discussed in subsequent sections. For
now we will only use (2.19) when we need to refer to an adaptive algorithm in
general.

Regarding the properties of the adaptive algorithm, we are here mostlysiteere
in the convergence rate and the excess mean square error (EMSE).

e The convergence ratés a measure of the rate for the adaptive algorithm
to approach the optimal parameters valtigsstarting at an initial position
hiinit, Usually set to zero.

e Theexcess mean square eriigrdefined as the difference between the mean
square errot/ produced by the adaptive algorithm and thenimumMSE
value,J,,;», produced by inserting the optimal parameter valuesom the
LS solution (2.17) into equation (2.14) . This can be expressed as

Jew = J — i (2.20)

Since the adaptation of the parameterss controlled by thestep-size. of
an adaptive algorithm of the form (2.19), the steady state EMSE is to a large
extent determined by the value of this parameter.

Remark: When we in this thesis discus®nvergencewe meanconvergence in
the mean squaresee [1]

Consider a two-dimensional parameter vedipr= [h} h2]7, that is to be ad-
justed by the adaptive algorithm (2.19) such that the criterion (2.14) is minimized
The minimum is attained at the solution to equation (2.17). To start with, we will



10 Chapter 2. The Tracking Problem

assume that the system is time-invariant, i.e, the true parameter vgdatonot
changing over time. This is parameter estimatioproblem that we are about to
solve with an adaptive algorithim

By evaluating equation (2.14) for a range of values of the paramietersdh? we
obtain a quadratic error surface. Its minimum point, locateldath?] is denoted

the MMSE point. The mission of our adaptive algorithm is to adjust the estimated
parameter vectalr, = [h} h2]7 such that the MMSE point is reached.

0.8

0.4 §

A

0 0.2 0.4 0.6 0.8 1

Figure 2.3: This figure illustrates the adaptation procéss@parameters towards
the MMSE point of a performance surface generated by cee@lggressors. The
coefficientsh, andh, were initiated to zero at the beginning of the adaptatiore Th
LMS adaptation algorithm is used.

It is well known [1],[2],[3] that the shape of the performance surfeceery im-
portant when its comes to the performance of the adaptive algorithm use to fi
the minimum point. Since the shape of the performance surface is uniquely de-
termined by the eigenvalues and eigenveétofsthe auto correlation matriR,

!Parameter estimation can be performed in a number of different wHythe system to be
estimated is not changing over time, within a considered time interval, then dsisilje to use
off-line methods (batch methods) in order to find the estimates of the péeesn

The eigenvectors of the autocorrelation malRxdefine the principal axes of the performance
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the adaptation of the parameters vedidr 1?]” towards the MMSE point will be
affected by the properties of the regressprsFigure 2.3 illustrates the trajectory
towards the minimum point for a well known adaptive algorithm called the LMS
algorithn? in the case of correlated, or colored regressors. Here it can be noted
that the trajectory does not progress directly towards the minimum point. This is
a result of the combination betweenlored regressorsy;, and the fact that the
LMS algorithm does not include information about this in its structure. In tee ca

of uncorrelated, owhite regressors the trajectory would have progressed directly
towards the MMSE point.

However, use of knowledge of the structure of the adaptation algorithnoirapr
the convergence rate and enables the average trajectdrytofbe directed di-
rectly towards the MMSE point. The shape of the error surface might aksoge
over time. This will happen if the regressor statistics change during theziidap
process and thus change the corresponding autocorrelation MRatiix order to
deal with this problem, methods for updating the autocorrelation matrix, or its in-
verse, need to be included in the structure of the adaptive algorithm. Théages

the complexity of the algorithm.

2.3 Tracking time-varying parameters

So far we have discussed recursive parameter estimatiotinferinvariantsys-
tems, i.e. where the parametéysdo not change over time. We are now faced with
another type of parameter estimation problem, in which the paranigteh&nge.

Adaptive parameter estimators can be viewed as a collection of differenbdseth
used to find estimates of the unknown system paraméteithat may behave in
the following ways:

e Never changing, i.e static parameters
e Rarely changing, maybe by large amplitude
e Continuously changing

Trackingcan be seen as a subset of parameter estimation where the true parameters
are continuously changing.

surface. The eigenvalues of the autocorrelation m&rokefine the slope of the performance surface
along the principal axes. See [3] for more information.
3This algorithm will be introduced later in this chapter.
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Since the "true” parameters are changing with time, the position of the MMSE
point in the coordinate system will also change. Therefore, we arentpirder-
ested in finding the bottom of the bowl, our aim is also to track the changes of the
MMSE point caused by the continuously changing parameter veégtof his is
illustrated by Figure 2.4.

Tracking of minima

S SC R

— —— Parameter trajectoria
O Start position of minima
* End position of minima

Figure 2.4: Tracking of two time varying parameters. Thekiiag process starts
at one point (0), then continues in the direction of the mgWWhVISE minimum
point until the end of the adaptation (*).

Regarding the tracking properties of adaptive algorithms, we will be mostly co
cerned with the steady-state performance, i.e. how the algorithm beh&ess w
tracking the MMSE point after the initial transients have decayed. Howswvere
abrupt changes may also occur in tracking problems, fast initial coemeegs also
an important property.

As a prerequisite for subsequent discussions we will regard abhapiges and
smooth changes of the time varying parameter as two different situation®that r
sults in two different modes of the adaptation. The reason for this is thapabr
changes of the parameter vectgr might change the appropriate tuning of the
adaptive algorithm completely.
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Important to note here is that these "modes” are only used to descrilierelrft
phases of the adaptation, they are not properties of the adaptive algatgbthor
clearly distinguishable in real tracking problefhs

2.3.1 The transient mode

Assume that the system is time-varying and suddenly may change its beféeor.
MMSE point will then move to a new position in the coordinate system due to the
new values of the true parameterZhis forces the algorithm to start search for the
new position of the MMSE point.

The algorithm is said to operate in the transient mode from when the true para-
meter values,; jump to the new position and thereby moves the MMSE minimum
point to a new position until the algorithm has adapted to the new true parameter
valuesh;.

In transientmode, we would like the tracking algorithm to use a large step-size
for fast adaptation to the sudden changes of the parameter values, thistiatidd

in Figure 2.5. This statement is based on algorithm structure (2.19) and ¢hat th
size of f(y4, ;) in some sense represents the closeness to the MMSE point. If
the value off(¢y,¢;) is large, then the algorithm is far from the minimum and
therefore needs the large step-size to quickly approach the minimum. Howeve
a large step-size results in a large EMSE in steady state. This is clearlyetser
in the lower plot of Figure 2.5 where the trajectory is seen to fluctuate artend
MMSE point. This in turn means that the variance of estimated parametéss
large (Figure 2.5, upper diagram). Therefore, we would like the algotithuse a
smaller step-size as soon as the transient phase is over, since this valskethe
EMSE and the variance of the parameﬂétrm steady state. This, however, results
in a slower convergence rate, see Figure 2.6. The smaller fluctuatiamsdative
MMSE point due to the smaller step-size is depicted in the lower plot of Figure 2.6

2.3.2 The tracking mode

When the tracking algorithm has passed through the transient phasetanede
a steady-statéehavior it is said to operate imacking mode This is typically

“Different adaptation modes can, of course, be included in the desitre adaptive algorithm
such that the algorithm switches between the modes depending on thet sittration. See [8].

®The variations of the parametéis are here assumed to normally be fairly smooth such that an
abrupt change of the parameter values clearly deviates from theiglaatior.
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Abrupt changes of the parameters h1 and h2 (step-size = 0.1)
T T T T T T T

Idets A At chotafMu Al — ~ True
| v l ¥¥| — - Estimated

1 i
~——— Parameter h1

h1,h2

Parameter h2

WA, 6 Lt W Al ALY, Vi A A0 1 g B
Y S e AP A R D vt IO TR

-2 L L L L I

I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations

Abrupt changes of the MMSE point (step-size = 0.1)
T T T T

T
— - True
051 Start of adaptation
Sa MMSE point 1 Estimated
-~

MMSE point 3 b

Figure 2.5: Upper diagram: Abrupt changes of the paramegetovh,. First
parameteh, changes its value from0.5 to —1.5 then parameteds, changes its
value from0 to 1.5. The goal of the adaptive algorithm is to reach the vicinity
of the new parameter values as fast as fast as possible. Hstgdaptation is
obtained by a large step-size & 0.1) at the price of a large EMSE. Lower
diagram: The corresponding "jump” in the MMSE minimum paéatised by the
parameter changes in the upper figure. The adaptationigtédtat the origin and
we can clearly see the behavior of the algorithm in the begénaf the adaptation
and after the abrupt parameter change where the estimatech@izr trajectory
aims for the new MMSE minimum.

the "normal” operating mode of the algorithm. In this case the parameters are
undergoing small changes between the sampling instants, and no alangéstor
changes of underlying dynamics governing the parameter variationssumed.

The parameters are assumed to change as in Figure 2.7 orin Figure 2.8.

In tracking problems, things tend to be more complicated as compared to static
parameter estimation since we are dealing with a parameter vector that is contin-
uously changing. The value of the step-size that produces the smatt@$t &

now depending on the rate of change of the time-varying parameters.n&lyr a

®At this point we only say “error”, since we have not yet specified whiok of the different
errors: the estimation erreg, or the parameter tracking errby, that we strive to minimize.
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Abrupt changes of the parameters h1 and h2 (step-size = 0.005)

Parameter hl

h1i,h2
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Abrupt changes of the MMSE point (step-size = 0.005)
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Figure 2.6: Upper diagram: Abrupt changes of the parametetovh;. First
parameteh, changes its value from0.5 to —1.5, then parametér,; changes its
value from0 to 1.5. The goal of the adaptive algorithm is to reach the vicinity
of the new parameter values as fast as fast as possible. &lereall EMSE is
obtained by a small step-size & 0.005) at the price of slow adaptation. Lower
diagram: The corresponding "jump” in the MMSE minimum pagatised by the
parameter changes in the upper figure. The adaptationistéttat the origin and
we can clearly see the behavior of the algorithm in the beégénaf the adaptation
and after the abrupt parameter change where the estimatech@r trajectory
aims for the new MMSE minimum.

sis purposes, the total parameter empmproduced by the adaptive algorithm is
sometimes divided into two parts,

ht = ht,l(zg + ht,noise

1. The weight vector noislét,noise: the difference between the estimated para-
meter valueh, and the expected value of the estimated parameter Value
due to the adaptation of the parameters, see Figure 2.9.

Et,noise = E{Bt} - }Alt (221)

2. The Iag-errorlﬁuag: defined as the difference between the optimal parameter
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AR(2) behavior of the parameters h1 and h2
T T T

— — True
—— Estimated
/

L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations

AR(2) behavior of the MMSE point

Figure 2.7: Upper diagram: This figure illustrates trackifigwo AR(2) parame-
ters. The goal of the adaptive algorithm is to follow the twvaeying parameters as
well as possible. Lower diagram: lllustration of the movMy/ISE point caused
by the parameter variations in the upper plot.

value h; and the expected value of estimated parameter Valusee Fig-
ure 2.9. ) A
htjag = he — E{h:} . (2.22)

Here the expected valug{h,} is taken over an ensemble of estimates of the pa-
rametersh; based on different realizations of the noiseand the regressors; in

(2.3). The weight vector noise is present in both estimation of static paranaeier
tracking problems, whereas the lag-error only appears in trackindgmnsldue to

the time-varying nature of the parametéys The lag-error for tracking problems

can be compared to the bias in a system identification problem for static parame-
ters.

A dilemma, regarding the performance of the tracking algorithm is that it is not
possible to minimize these two types of errors simultaneously. The reasorisfor th
is that a large step-size produces a small lag-error but results in a laigatw
vector noise and vice versa. Therefore, a trade-off between thertagand the
weight error noise is necessary when calculating the optimal step-size.



2.4. Search and tracking strategies 17

Random walk behavior of the parameters h1 and h2
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Figure 2.8: Upper diagram: This figure illustrates trackofgtwo parameters
evolving as random walks. Lower diagram: lllustration of thhoving MMSE
point caused by the parameter variations in the upper plot.

2.4 Search and tracking strategies

Adaptive methods for adjusting the parameter veétocan be thought of as a
numerical search for the true parameter veatathat minimizes the criteriod in
(2.14). There exist a number of different search strategies thatecasdd in the
adaptation process. The common property for these methods is that theyteomp
adjustment vectorah; to an assumed model

ilt—&-l = ]A”Lt + Ahy (223)

in order to decrease the value 6f on average. Recall the adaptive algorithm
(2.19). In that case the adjustment vectdr; was expressed asf (¢¢, £¢), where

the step-size, was used as scaling factor. Among the many different adaptive
methods [1],[2],[3] used to adjust the parameter veaioit is natural to first con-
sidergradientalgorithms, such as the steepest descent, see [1]. In these methods
the update stepAh,; are on average taken in the direction of the negative gradient
of the parameter surface in order to minimiZze The gradient vector is perpen-
dicular to the level curves of the performance functibn For a given possibly
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lllustration of weight vector noise
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Figure 2.9: Upper diagram: Weight vector noise due to a latgp-size. Lower
diagram: Lag-error due to a small step-size.

complex-valued fixed parameter vectqr= h, the gradient vector of the criterion
(2.14) can be calculated as [1]

Vi = 2 (%0) =2 (G Bl - iy - im)]) @29
~ %%[E{y:yt — yipth — By + ' oupihY] (2.25)
= E{[~ow + proihl} (2.26)
= —E{oiy: — pihl} (2.27)
— _E{pe) (2.28)

By using (2.27) the negative gradient can also be written in terms of the auto-
correlation matrixR of the regressorg, and the cross-correlatignbetween the
input and output signals as

Vh = Rht — Pt - (229)

If it would have been possible to obtain an exact measure of the gradiés) (i.e.
if we knew the true parametets, which we do not, we could design a recursive
algorithm that decreases the criterion function (2.14) by changing tlzeneters
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h, along the negative gradient direction according to
hivr = by — Vi, (2.30)

Here, we have introduced the possibly time-varying step-size parametdrich
scale the steps taken in the direction of the negative gradient. Normaliy,a
scalar parameter, however, it is also possible to subsjitutéth a diagonal matrix
with different values along the diagonal in order to individually tune the etéme
in the parameter vectdr;. This increases the flexibility of the algorithm and can
be used if the parameters are assumed to vary at different rates.

A drawback with gradient algorithms such as the steepest descent isahaiuth
fer from slow convergence if the performance surface is skew duertelated
regressors. This problem motivates more advanced algorithms suchNeviten
method Here, theHessiani.e. the second derivative at the polnt= h becomes
useful. The Hessian is obtained as follows

% <8E)]fif)> - ;[—E{@t(yt —oih)} = E{lowi}t . (231)

We here note that this equals the autocorrelation m&krof the regressors for lin-
ear regression models with correct structure. By multiplying the negatactiegrt
with the inverse of the Hessian, we obtain Newton’s method,

hiv1 = b + R E{pr &1} . (2.32)

By using the inverse oR. in (2.32) the search direction will always be towards
the minimum ofJ which is not the case in general for steepest descent. This can
be explained by thinking of the inverse Bf as a tool to transform the elongated
performance surface (see Figure 2.3) produced by colored segselsack into a
circular performance surface as in the case of uncorrelated reggsess

2.4.1 The LMS algorithm

Since we are not able to measure the exact gradigndue to the lack of knowl-
edge about the true parametéyst is not possible to realize the algorithm (2.30).
In order to circumvent this problem an approximation of the exact gratesto
be used. The estimate,

Vi =per (2.33)

called theinstantaneous gradient of the criteriohwith respect to the parameters
h, will on average coincide with the exact gradient (2.28) [1]. In situatiwitl
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high noise variance, this approximation of the gradient is very uncertginsBg
(2.33) in (2.30) we obtain, by using a fixed step-size, the famous LMSitigor

3]

e = Y — Pt (2.34)
hivre = hye—1 + pepeet, (2.35)

which was introduced in the 1960’s by Widrow and Hoff. The LMS algorities
since its introduction been frequently used in various applications due to its low
complexity. It is often a first choice among designers and it has also bettmme
standard algorithm against which other algorithms are benchmarked.

In a time-invariant case it is well known [1],[3] that the LMS algorithm stdfe
from slow convergence in situations where the eigenvalue spread cédhessor
covariance matrix is large. This has to do with its simple structure which only
takes into account an approximation of the exact gradient. In its origimal fo
(2.35) the main focus is on simplicity, nothing else. In the literature, many differe
modifications of the LMS algorithm exist, and common to all these variants is that
they in one way or the other strive to improve the performance of the origi8&l
algorithm at the price of increased complexity. One example is the LMS/Newton
method

& = yt—szv?ﬁtufl (2.36)
by = ht|t—1+NR_1(Pt5ta (2.37)

which solves the slow convergence problem for correlated input sigralsever,
it requires that the inverse @ is known. Another frequently used version of the
LMS algorithm is the so calledormalizedLMS algorithm. Here, the step-size
1 is normalized by the squared norm of the regressors in order to make tie alg
rithm performance independent of the size of the input signal. The nowmtializ
is performed as
Ho
p = ———— . (2.38)
a+ ©;pt

The parameted is normally a small number used to prevent division by zero. For
a thorough description of LMS-like and other adaptive algorithms, sed k.#],
or[3].

"We here introduce the notatidnﬂﬁ to emphasize that the estimate/of.; depends on mea-
sured data up to time
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2.5 Parameter model based tracking

When it comes to tracking of time varying parameters it is of interest to incorpo-
rate knowledge about the dynamics of the parameters into the adaptivihagor
to improve the tracking performance. This possibility is of particular interest in
applications such as e.g communication over fading radio channels wheteathe
acteristics of the channel is well known. This is not possible in the présentof

the LMS algorithm. We shall therefore discuss more powerful alternativése
LMS algorithm next. However, we will first start by introducing the cortaghy-
permodelsi.e, the way we represent prior knowledge about parameter variations.

2.5.1 Hypermodels

A Hypermodel is a mathematical model that is used to describe the dynamics of a
time-varying parameter. The use of hypermodels in adaptive algorithmseleas b
discussed previously by e.g. Benveniste et al in [5], Grenier in [9],g&i&a and
Gersch in [10] and Lindbom et al in [4],[11],[12],[13],[14].

In the beginning of this chapter we assumed that the signalas generated by
thetrue time varying parameter vectéy together with the regressogs. We will
now regard the parametelig as time series generated by

ht = ’H(qil)et . (239)

where the rational matrigi(¢—') of dimensionn;|n; denotes thénypermodel
ande; is a noise vector. In most problems,is assumed to have zero mean and
to be stationary. It has covariance matRy. Here,¢~! is the backward shift
operator, i.eq 'z; = z;_1. The purpose of this model is to represent the designers
knowledge, or assumptions, about the second order moments of the tigiregvar
parameterd;. It can be noted that a more general form of the hypermodel (2.39)
is when the matrixH is time-variable. The matrig{(¢—') describes the second
order moments of the variations bf as well as the correlation between different
elementsh! andh] in the parameter vectdr;. A special case of (2.39) is when
H(q¢~') is diagonal. Each component of h; is then represented by a separate
scalar ARMA model.

Di(gYhi = Ci(g Ve ,i=1,...ny , (2.40)

where D;(¢~') and C;(¢') are polynomials in the backward shift operator. By
modeling the true parametéeisglike this, i.e. as stochastic processes, it is possible
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to describe the variations éf in a convenient way by the choices of the polynomi-
alsC;(¢g~1) andD;(¢~1)8. The correlation between the components are furthermore
described by the covariance matrix of the driving noise

R, = Elee;] . (2.41)

In this work, we will however restrict the class of hypermodels to

_ ¢y (2.42)

H(q_l) - D(qil) )

where we have equal transfer functions along the diagonal. This meainthéh
components of; are modeled to have the same dynamics. This might at first seem
to be a severe restriction. However, it is often a good compromise betveeen-g
ality and complexity of the resulting tracking algorithm.

One of the key issues in the design of tracking algorithms based on parameter
models is to obtain information about the parametgrsuch that a hypermodel,
H(q™1), can be established and included in the design. In applications where the
dynamics of the parametehs are assumed to be stationary, off-line estimation is
possible. In systems where the dynamics change over time, on-line estimation is
required. If estimation of the hypermodel is not possible, then the desgfaeed

with the problem of choosing a hypermodel that works well on average.

In [4],[14], possible hypermodels representing different parametgatons are
discussed. These can be summarized as:

¢ RW (Random walk): Obtained by choosing
Clgh=1 DghH=1-q¢". (2.43)

This choice represents that the designerr@msiformationabout the incre-
ments of the parametehs. By "no information” we mean that if this hyper-
model is used, then we assume that the parameters are evolving as random
walks, i.e. without any correlation between increments, — h;.

e FRW (Filtered Random Walk):

Clg =1, Dig"=(01-q¢")(1-ag) (2.44)

SWhen considering a time-varying hypermods}, equation (2.40) becomes changed into
Di (g Yhi = Cii(qg ')ei. This form may also include on-line tuning of the polynomials
Ci.«(g~ 1) andD; (g~ ') in order to adjust for changes of the parameter statistics.
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with |a| < 1. Here, the parameter controls the assumed correlation be-
tween the parameter increment, and the smoothness of the assumed variation
of the parameters. Values close to one represents slow variations. kstne ¢

of a = 1, the integrated random walk (IRW) is obtained. This model with

a > 0, is appropriate if the parameters are assumed to evolve in the same
direction for a short time.

e AR, (Autoregressive second order model): If the paramétgese oscillat-
ing according to some known or estimated frequency it is possible to design
the hypermodel to fit these oscillations by choosing

Cle =1, D(g")=1—-2pcos(w)g ' +p*¢? . (2.45)

Here,w, denotes the oscillation frequency ands the pole radius, which
represents the damping.

An exact representation of thieie hypermodel is of course not possible to obtain
in reality. Some degree of uncertainty is always present in the hypermbael.
pending on the size of this uncertainty more or less inaccurate informationewill b
included in the resulting algorithm. The problem of uncertainty in hypermodels is
considered in [4],[15] where a design methodology to cope with this proidem
developed.

The parameter based adaptive algorithms presented next aim to es?t@m@ttéor

different choices of the time-lag by minimizing the criterion (2.18) based on a
given hypermodel.

2.5.2 The Kalman estimator

Let
H@H)=H(I-¢ 'F)"'G (2.46)
whereH, G, andF are given by the state-space model
Trr1 = Far+ Gepyq

denote the hypermodel (2.39). Then the optimal linear MMSE estimator, the
Kalman estimator, fok > 0, can be expressed as
€& = Ut — @Iﬁﬂt—l (2.48)
Ty = Typo1 + Keprer (2.49)
hegrp = HFFGy, = Hiy g, (2.50)
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whereK; represents the Kalman prediction gain. In (2.4%)js the state vector

at timet of dimensiomn;|1 andF, G, H are matrices of appropriate dimensions.
The matrixK; is determined via Riccati difference equations, see [4] for details.
The design of the Kalman estimator requil€sG, F as well as knowledge of the
covariance matriR, and the variance of the measurement naige= E|v?|. In

the case of random walk modeling, i.B. = G = H = I, and small parameter
drift-to-noise ratiogtr(R.)/02 << 1), it is shown in [16] that the Kalman gain

is proportional taR./? /o, in steady-state. The iterations of the Riccati difference
equations require a substantial amount of calculations even when comgitbev
model orders.

2.5.3 The Wiener LMS (WLMS) algorithm

The major drawback with the Kalman estimator is its complexity. This often lim-
its its use in applications where low complexity is important. With this in mind,
a framework for designing tracking algorithms based on Wiener filteringryheo
has been developed in [4]. This design methodology provides a systenastic w
of utilizing prior information in the form of hypermodels to obtain optimal adjust-
ment of the adaptation under prescribed complexity constraints. Here thenga
problem is formulated as a Wiener filtering problem, where the optimal Wiener
estimator is obtained by solving a spectral factorization and a linear diopbantin
equatiod. This method of designing tracking algorithms is flexible since the same
basic theory can be used to solve problems of varying computational cdtyplex
Different assumptions about the time varying parameters will result in difter
levels of complexity for the resulting algorithm.

Given the hypermodel
Clg™)
D)’

H(g™h) = (2.51)

and measurements described by the linear regression (2.3), the WL tEola
algorithm can be expressed as [4]

& = Ut — @?ﬁﬂt—l (2.52)
Bt|t = Bt|t—1 + R e (2.53)
ilt+k|t = ’Pk(qfl)ilt\t . (2.54)

®Here the polynomial method described in [17] is used to solve the Wieneiniijteroblem.
Readers not familiar with this way of obtaining the Wiener solution might garstsuntial under-
standing by considering some of the basic examples in [17].
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Here,P(¢~ 1), also called theoefficient prediction-smoothing filtes constrained
to be a diagonal rational matrix with equal stable and causal transfetidnac
along the diagonal,

Qk(q*I)I

-1
Qolg™")
This filter is specified by the polynomia(3;(¢~') andQy(¢") in the backward
shift operatorg—!. Above, h; 1, is an estimate ok, at sample time, which
may involve predictior{k > 0), filtering (k = 0) or fixed-lag smoothingk < 0).
The filter polynomialsQ. (¢~ 1), Qo(¢~!) in (2.55) are given by the solution to the
spectral factorization

rB(aB(q) = v ClaH)Ci(q) + D(g")Ds(q) , (2.56)

which provides a polynomiab(¢—) and a scalar, followed by solving the dio-
phantine equation

"vClgMC(q) = rQklg")B:(q) + ¢D(a ) Lix(q) . (2.57)

which provides)(¢~!), together with a polynomial..(q).

Prlg") = (2.55)

In (2.57) the parameter denotes th@arameter drift-to-noise raticand is defined

as
_ trRe

- trR,

whereR. andR,, are the covariance matrices of the driving naise (2.39) and
of a noise calledhe gradient noiselefined as

ne = (e — R)Et\tfl + @i (2.59)

For more information about the gradient noise, see [4],[11],[12],[B8]introduc-

ing the signal); and considering it as white and uncorrelated withadjustment

of the WLMS algorithm can be expressed as a Wiener filter design progm [
see Figure 2.10, whed(¢~1) = Qr(¢~1)/B(g™ ).

The scalar drift-to-noise ratio parameteand the polynomial§’(¢—!) andD(¢ 1)

are the design variables of the WLMS algorithm and are used for tunindgbe a
rithm. They can be adjusted to minimize the MSE of the parameter tracking error
(2.18) if the hypermodel (2.51), and the parameter drift-to-noise rafh58), is
assumed knowH. If WLMS-Newton is considered, i.e when using the Hessian

v (2.58)

%K nowledge about the parameteis hard to obtain since it is not trivial to estimate the covariance
matrix of the parametey;. However, in [11] and [13] an iterative design method used to calcylate
is presented.
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Up
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e—> D%Z_lg @ »(+) W(q 1) ? > ht+k|t
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Figure 2.10: The WLMS algorithm expressed as a Wiener filter.

(2.31), in order to improve the convergence rate of the algorithm, thenRatso
need to be known. The optimal step-sjzein (2.53), is obtained from the first
coefficient,, of the polynomialQ,(¢~—!) according to

, (2.60)

wherer is given by the solution to the spectral factorization (2.56). The close
relationship between the WLMS equations (2.52)-(2.54) and the classieaeYV
filter formulation is presented in Appendix A. For more details, and the theory
behind the reformulation of the tracking problem to a Wiener filtering problem,
see [4],[13].

2.5.4 The Simplified Wiener LMS (SWLMS) algorithm

The nameSimplified Wiener LM$s related to the initial assumptions about the
time-varying parameters, and the corresponding hypermod@dé{g—!) used in the
design of the algorithm. These assumptions can be summarized as

1. The maximum order of the polynomiad®(¢—!) and D(¢~!) in the hyper-
model is restricted to two.

2. All elements of the parameter vectarare governed by the same dynamics.

If these assumptions are relaxed, then we have to consider more poalgdu
rithms such as th&/iener LMSlgorithm of Section 2.5.3 , tH@eneralized Wiener
LMSalgorithm, see [13],[4], or th&eneral Constant Gaialgorithm, see [11], [4].
Due to the design restrictions in the SWLMS algorithm it is possible to calculate
the coefficient/prediction filteP (¢ ) in (2.54) in a much simpler way than for
the WLMS algorithm. By reducing the hypermodel to order two, it is possible to
obtain a closed form solution for the optimal polynomiéls(¢—') andQy(¢ 1),
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see Result 3.6 in [4], or Theorem 2 in [13].
Let
ClgH=1 (2.61)

and
Dig ) =1+4d ¢ ' +dyq? (2.62)

defineH(¢~1) in (2.42). Given the hypermode{(¢—!) (2.42) and a step-sizewe
can then calculat®;(¢—1) andQy(¢~!) as

k
—d; 1 1
1y —1 1
aah=ria (28 o) () 2.69
for k > 0, where the scalar is defined as
dida(1 — )

p= Tt (2.64)

In the WLMS solution, the parameterwas needed to solve the spectral factoriza-
tion and the Diophantine equation, cf (2.56) and (2.57), in order to otjgfga1)
andQy(¢~!). The step-size parametgrserves that purpose in the SWLMS al-
gorithm. However, as can be noted from (2.63) there exist a direct iamules
relationship between, the design variable$, andd; and the optimal polynomial
Qr(g~1). This makes the SWLMS algorithm tractable from a computational point
of view. The step-size parametercan therefore be seen as the tuning knob which
controls the optimal adjustment of the SWLMS algorithm for a given hyperinode
It should also be noted that this algorithm reduces to the classical LMStalgor
for d; = 1 andds = 0, i.e. when the hypermodel is a random walk model.

2.6 Optimal tuning of tracking algorithms

In order to obtain optimal tracking performance based on the criterion)(R.(3

easy to realize that there is a lot of information that needs to be availableefor th
system designer. In the case of the Kalman estimator, the state-space medel, th
covariance matriR,. and the varianceg need to be known. In the WLMS and

the SWLMS case, the hypermodé(q;—1), the parameter drift-to-noise ratig and

the correlation between, andh,; need to be known. When it comes to the clas-
sical LMS algorithm it requires the noise variangg and the ratio between the
covariance matrices of the regressgysand the driving noise,, see [1], [2]. If

the Newton direction is to be used in these algorithms, then of cours®alsis
required. Since these important parameters may be hard to obtain, dirioe on
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tuning of the step-sizg would be of great interest, in algorithms wherés a main
tuning parameter.

By this introduction to the tracking problem and various adaptive algorithms we
will now turn our attention towards the SWLMS algorithm and especially the au-
tomatic tuning of it. From now on this will be the main focus of this work.
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Step-size adaptation

3.1 Introduction

In the previous chapter we learned that it was possible to achieve optimal tun
ing of the SWLMS algorithm if the parameter drift-to-noise ratiothe correla-

tion between the gradient noigg and the parameters were known and perfect
agreement between the true parameter variations and the hypermodebwared.
However, in a real situation it is quite clear that perfect knowledge ahese vari-
ables is not available since the parameter drift-to-noise fadiod the dynamics of

the time-varying parametefs may change over time. Optimal tracking is there-
fore difficult to achieve. In such cases, it is up to the system designdroose
appropriate values for the design variables in order to adjust the algaudttine

most likely scenario. However, if the changes in the environment ocayrfres
quently, then the design variables would also need to be updated at the aeane p
Unfortunately, as we pointed out in the introduction to this work, it is very com-
mon to use a constant step-size together with the LMS- or the SWLMS algorithm
when applying them in real applications. This is of course not compatible with
the time-varying scenario described above. Our aim in this chapter isahetef
construct aself-tuning version of the SWLMS algorithBy that we mean that the
assumptions about the environment that are made in order to tune the algorithm
should be reduced to a minimum. The algorithm should be able to adapt to the
present situation almost without the help from the system designer. Howive
necessary information is available, then it should be used in the bestlposaip

The problem of designing self tuning algorithms is not new. Of particularester
in our case is a special class of algorithms aimed for automatic tuning of the step-

29
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size in LMS algorithms see e.g. the work in, [18],[19],[6],[20],[21],[22B],[24].

These algorithms are callédariable Step-size algorithmend are often denoted
VS-algorithms The motivation for these algorithms was originally to improve the
convergence rate while at the same time decreasing the steady state MSE of the
LMS algorithm. This is obtained by using a larger step-size in the beginning of
the adaptation and then gradually decreasing the step-size when dppgote
minimumt. This procedure solves the dilemma mentioned in Chapter 2, when we
had to choose between fast adaptation or a small remaining estimation eemr wh
choosing the optimal step-size

The common problem when it comes to variable step-size algorithrnevigo
adjust the step-sizein order to be flexible enough to handle many different track-
ing situations. This can, of course, be done according to many diffstetégies
(algorithms), some of which are presented next. These algorithms contedrs o
several design parameters that need to be adjusted. However, the mierliat

it should be easier to adjust these parameters than the step-sizthat the algo-
rithm will work in various tracking scenarios without the help from the design
In this study we also assume that the step-gifereal valued and non negative.

3.2 Overview of variable step-size (VS) LMS algorithms

Continuously Decreasing Step-Size (CDSSHere the step-size is initiated to a
large value at the beginning of the adaptation, it is then decreased exrord
to a predefined function

pe = f(t)po (3.1)

where f(t) is some decreasing function of the time indeXtor stochastic
gradient algorithms it is common to uge = 1/t since this fulfills the nec-
essary conditions for stability outlined in [25]. This method works well for
estimation of time-invariant parameters since the resulting estimation error
becomes very small if the step-size is decreasing. However, this method is
not aimed for tracking problems since the lag-part of the parameter tracking
error b, will increase as the step-size decreases.

Design variable:f (t)

Error based Variable Step-Size (VSS):In this method, proposed in [20], the idea
is to connect the adjustment of the step-gizairectly to the size of the in-

The gain of the Kalman filter behaves in this way
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stantaneous estimation eregr The equation
fe1 = oy + 6l (3.2)

where the design parametdrs< o« < 1 andd < 1 are used for the step-
size adjustment. This method is often referred to asvir@ble step-size
algorithm or simply VSS. This updating scheme has been criticized for its
sensitivity to noise [18].

Design variablesq, §

Remark: This method can be interpreted as a low-pass filter with a pole
in a < 1 driven by the squared error signa|?. If the the error signal
le¢|> — 0 then the step-size; — 0 ast — co. The sensitivity to noise can
be explained by writing the instantaneous estimation etfpgs

5t:yt_@t:@rht‘i‘vt_%@:ht:@:(ht_ilt)‘f'vt . (3.3)

The error can be divided in two parts. One paift(h; — flt), depending on
the tracking errof, = h, — h, and one part,, represented by the measure-
ment noise. Therefore, a large|? might give the illusion that the parameter
estimation erroh; — h; is large, when the real reason for the large error is
due to a dominating noisg.

Modified (Correlation-based) Variable Step-Size (MVSS):Due to the sensitiv-
ity to noise in the VSS algorithm the following updating scheme, often de-
noted the Modified Variable Step-Size (MVSS) algorithm, was proposed in
[18]:

fe1 = o+ dlp (3.4)
pr = Ppi—1+ (1= Peei_; (3.5)

This algorithm is based on the assumption that the steady-state estimation
errore, at adjacent time-steps ande;_; are uncorrelated, i.e. white, while
they are correlated during the convergence phase. Therefore,as$ibfe

to use the time-averaged estimate (3.5) of the autocorrelation at adjacent
time-steps in order to adjust the step-size. This method has been shown to
work well in situations where the optimal step-size is small i.e. where the
time variations of the parameteiig are slow, or maybe static. However, the



32 Chapter 3. Step-size adaptation

tuning of the parameters in this algorithm has turned out to be rather sensitive
to the present tracking conditions.

Design variablesno, 3,0

Remark: This method is useful in the case of uncorrelated measurement
noise. However, in situations where the measurement noise may be corre-
lated, e.g. echo cancelation problems, see [26]5.2,_1} is not sufficient

as an indicator of the closeness to the minimum of the critefion

Robust Modified (correlation-based) Variable Step-Size (RMVSS)Due to the
problem of correlated measurement naisén the MVSS algorithm the fol-
lowing algorithm was proposed in [26]

1 = o+ dlpef? (3.6)
pe = PBpi1+ (1 —Per(er—1+e)” (3.7)

Here, not only the correlation of the estimation errpat adjacent time-lags

is included in the adjustment equation, but also the squared magriittide,

of the instantaneous error is used to sense the closeness to the minimum.
This improvement robustifies the performance of the algorithm in the pres-
ence of correlated measurement naise

Design variablesu, 3,0

Remark: It should be emphasized that this step-size update, as well as the
MVSS algorithm using only{s.c; _,} in the adjustment of the step-size,
suffer from the fact that the noise still may mislead the adaptation.

We will from now on refer to the algorithms above as #reor Based(EB) meth-
ods. These algorithms are simple in their structure and base the updating of the
step-size: mainly on the instantaneous ergror the correlation of this error.

3.3 Gradient based VS-LMS Algorithms

These methods [6],[21],[27],[28] are based on a recursive gradiestent tech-
nique (similar to the LMS algorithm) to adjust the step-size parameieorder to
minimize the error criterium (2.14). Compared to the methods described atove w
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have found this step-size adjustment technique superior in our seackuddable
candidate to be used together with the SWLMS algorithm. The concept befsnd th
method will now be explained more in detail.

In order to avoid the problem with sensitivity to the noise tesrin the algorithms
described above we need to base the adjustment of the step-size on sgmeten
than just the instantaneous estimation eerorHere, the adjustment of the step-
sizey is obtained by estimating the gradient of the error critetfowith respect

to the step-size parametgr As we will see in the next chapter, this will sig-
nificantly change the behavior of the algorithm as compared to the algorittems pr
sented above. In order to fully understand the concept behind thisiziemethod
we will start by giving a detailed description of a gradient based methddfios
posed by Benveniste and co-workers in [5]. This step-size updatingoohdihsed

on the LMS algorithm, will then serve as the base when we later in Section 3.5
develop a new adjustment method for the SWLMS algorithm.

3.3.1 VS-LMS-Benveniste

The idea with this gain adjustment method is to recursively find an estimate of the
step-size valug that minimizes the error (2.14).

Consider the WLMS algorithm (2.52)-(2.54), for the special Bsg; ') = I, i.e.
the LMS algorithm. Let

A 0J
= o
denote the scalar gradient of the criteridrin (2.14) with respect to the step-size
parametef:. In order to recursively adjust the step-size parametier (2.53) we
introduce the gradient search

Y, (3.8)

Pt = fit — pVy (3.9)

wherep is the parameter that controls the rate of change:forHere, the scalar
gradientV,, of the criterionJ with respect to thestep-sizgparametey, consists
of the gradient of the criteriodd with respect to thgarameterh, V, = @sey,
multiplied by the gradient of the parameter vecﬁzgl;_l with respect tahe step-
sizeu. As shown in Appendix C, this can be expressed as

V= -R{¢iper} (3.10)

HereR represents the real part and the vector of dimensjgh, ¢, is the gradient
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of the parameter vectdrt‘t_l with respect to the step-size defined as

_ Oy

5 (3.11)

t

In Appendix C it is shown that, is obtained from measured signals via the recur-
sion

Ve = [I — ppr—197 1 |Ye—1 + pr-180-1 (3.12)

In order to obtain a self tuning algorithm, we combine (2.52)-(2.53), (33910{
and (3.12) folR = I into one scheme

& = Yt — @tﬁat_l (3.13)
furr = fu+ pR{Y; oee} (3.14)
Grar = I — fusrr000i 0 + oree (3.15)

hisip = hor + lurrier - (3.16)

Remark: Observe the order of updating the equations. In the literature, e.g. [7]
the valuej, is often used to upda&étﬂ. This, however, is not the best we can do
since we can use the latest estimation of the step-gize, to updatey,1. Fur-
thermore, note also thaft,,, is replaced byﬁtﬂ. The reason for this is that the
instantaneous value of the gradiént, i.e. @#(t) is used in (3.9). For details, see
Appendix C.

Design variable:p

The main reason why the gradient descent method is considered morstinggre
than the other step-size schemes mentioned above, is that the updatingtepthe s
size in this case is based on a minimization of a design criterion, rather than an
ad-hoc strategy. Also, since our goal is to design an algorithm that is taned tu
almost without any help from the system designer, the number of desigb e
should be kept to a minimum. For this particular class of adjustment schemes we
only have to consider the value of the parameter

This might however seem strange to some readers. We first start witharitaty
with only one design variablg. Then, we replace this variable, by another de-
sign variablep! However, as mentioned before, the whole idea with this is that it
should be easier to choose an appropriate value of the paramtbtar to select an
appropriates. This will be investigated in the following chapter.
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3.3.2 Other VS methods based on the gradient descent technig|

In [7] a nice summary of different gradient descent methods is preseBeside
the method presented above a few other interesting variants are mentioned.

1. A multiplicative version of Benveniste’s algorithm. This adjustment scheme
is written as

frir = ull + pR{YF pier}) (3.17)
Vo1 = [ — 10007 |9 + oies (3.18)

This method is, according to the authors of [7], superior in convergemoe

pared to the linear updating scheme (3.14),(3.15) above. This statement was
also verified in preliminary simulations by ourself, and we will therefore use
the multiplicative version in the following simulations instead of the linear
one.

Design variable:p

2. A simplification of Benveniste’s multiplicative algorithm, first proposed in
[7], can be written as

furr = full + pR{; et} (3.19)
'lbt+1 = Oéwt+90t€t . (320)

Here, the paramete[a is obtained by low-pass filtering of the signa)e;,.

The filtering is performed by a first order low-pass filter with a pole i1 1.

The degree of low-pass filtering is here controlled by the value of the para
metera. This value is normally set close to 1.

Design variablesp, «

Remark: By using« instead of[I — j+1¢:9;], €.f (3.18), the explicit
dependence op, and the time variability caused by the regresspysn

41 are excluded. This may work well in situations where the stepssize

is assumed to change slowly, or in cases where we have enough information
about the approximate value of the optimal step-size so that an appropriate
value ofa could be used. In situations where the step-gielarge, and the
chosen value ofv is close to one, a deviation from the optimal steady state
step-sizeu will be introduced. This phenomenon will be investigated in the
following chapter.
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3.4 Simplified Wiener LMS with automatic tuning of the
step-size

The first step towards a self tuning SWLMS algorithm is to combine the variable
step-size schemes above together with the SWLMS equations from Chaptes 2
results in the following algorithms

VS-SWLMS-Benveniste (Multiplicative):

& = Yt — W?ht\t—l (3.21)
fusr = fu [+ P%{@@{ft}] (3.22)
Vi1 = [ — fuy1000:]%1 + @iey (3.23)

ilt\t = ilt|t—l + R e (3.24)
]A”Lt+k:\t = 'sz(q_l)ilt\t (3.25)
VS-SWLMS-Simplified Benveniste (Multiplicative):

& = Ut — @?Ht\t—l (3.26)
[ftﬂ = ﬂtl—’ + pR{Fpre}] (3.27)
Vi1 = o+ pe (3.28)

}Alt|t = }Alt|t71 + fur1 R e (3.29)
ilt+lc|t = 'Pk(q_l)ilt\t (3.30)

Here, only the GB algorithms are presented. The other conceivabléhigemwith

LMS-based step-size adjustments are summarized in Appendix D.

The performance of these algorithms will be investigated in the next chéjuter.
thermore, in Appendix F the flexibility of the automatically tuned SWLMS al-
gorithm is illustrated by solving the Wiener filtering problem from Appendix A
without any knowledge about the parameter drift to-noise ratio

3.4.1 VS-SWLMS

With Section 3.3 in mind we will now present a new updating scheme based on the
SWLMS algorithm. The algorithms above are based on the structure of the LMS
algorithm. An algorithm derived from the SWLMS equations will look somewhat
different. Of special interest is in what way the coefficient predictimoathing
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filter P(¢~*) from (2.54) will propagate into the adjustment equation of the step-
size and what effect this will have on the tracking performance. Cordparthe
VS-LMS-Benveniste algorithm described above, the major differenceeiméw
algorithm due to the filteP;(¢—*) will show up in the calculation of the gradient
\%

The starting point is the SWLMS adaptation algorithm (2.52)-(2.55) for tha-AR
hypermodel (2.61), (2.62). Minimizing the criteriohin (2.14) with respect to the
step-size parameteryields the VS-SWLMS algorithi

& = yt—wiﬁqm (3.31)
fusr = fu+ pR{ piei} (3.32)
p = 1/(1+da(1 — fir41)) (3.33)
bp = —dip (3.34)
by = —dy (3.35)
a1 = —do(1 — figs1)bo (3.36)
¢ = dobop (3.37)
Z, = Rl (3.38)
X = R'oup) (3.39)
P o= (bo (I— 1 Xy) —an) (3.40)
Py = b (I— 1 Xe_1) (3.41)
Gre1 = Prapy+ Poibroy + (€ fier1 + Do) Z
+ by Z4 (3.42)
ﬁt|t = ﬁt|t—1+ﬂt+1Zt (3.43)
ilt+k|t = 'Pk(qfl)ilﬂt (3.44)

See Appendix E for a complete derivation of equations (3.31) to (3.44).

Remark: In order for the algorithm to work properly, stability of (3.42) is required.
SinceP; and P, are time varying the stability analysis is far from trivial. The sta-
bility conditions are not easily obtained and the issue is subject to furtheéestud

Now, comparing the equations (3.15) and (3.42) we observe the additiypmean-
ics introduced by the coefficient prediction filtBy, (). This raises an interesting

2The derivation of this step-size scheme is based on the additive updatite to facilitate the
simple comparison with the derivation of the VS-LMS-Benveniste algorithm.
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guestion:
In what way will this affect the overall performance of the algorithm?

The following issues are interesting to study for different tracking soaesia
e The convergence rate
e The steady state tracking performance
e Sensitivity to noise
e Sensitivity to abrupt changes in the parameter vector

If it turns out that the performance of the VS-SWLMS is superior to the SASL
algorithm used in combination with the step-size scheme derived for the LMS al-
gorithm, is it then worth the increased complexity? This question will be anslwere
in the next chapter where simulations corresponding to different traskieigarios

will be conducted.

3.5 Comments about stability, convergence, and steady-
state behavior

In the literature e.g. [1],[2],[25] much can be read about the stability of & L
algorithm and the different versions of the self tuning, VS-LMS algorithitse
problem of obtaining exact expressions and bounds for the stability heeditout

to be an extremely complicated task. Normally, when investigating the stability of
the LMS algorithm the so calleddependence assumpti@applied [1],[2]. This

can be summarized as:

e The regressorg,, ¢;11... p+1k are assumed independent

e Attimet, the regressorg,; are assumed to be independent with all previous
samples of the signaj.

e Attimet, the signaly; is dependent only on the regressgiand independent
of all previous samples of the signal

e The regressop; and the signaj;; are jointly Gaussian

These assumptions are, of course, unrealistic in virtually every prastigation,
but they have shown useful, in situations where the rate of change of the time
varying parameters is slow, i.e. when the optimal step-size is very small. ldowev
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when dealing with fast varying parameters these assumptions are simplg-not a
propriate. Signals may not be Gaussian, dependence among the signaiscmay

the signal statistics may change over time and so forth. This, together withea larg
step-size severely complicates the stability and convergence analysfserimuore,

in the case of VS algorithms we also have an additional adaptation loop wihich fu
ther complicates the analysis. A common way used in the literature, to ensure the
stability of the VS algorithms is to limit the step-size parameteby lower and
upper boundsy,,in and .., satisfying the stability criterion for the LMS algo-
rithm [1],[2],[7],[18],[20],[29]. If consecutive regressor vectas; are independent
then it is appropriate to set these bound9tand2/(3trR) [29] respectively, i.e.

2
0 —_— 3.45
SHs 3trR ( )

Normally ., is set to a small value close to zero. This way of ensuring the stabil-
ity works well in most situations. However, in [Z9ihe authors demonstrate that
the above assumption in generafasse since the independence assumption does
not normally hold, and that the stability issue for VS algorithms is something much
more complicated than that of the classical LMS algorithm and thereforé&resqu
careful analysis. The problem is that the step-size is data dependktiteaafore
does not fit into the structure normally used for stability analysis. In [29hthe
thors also show that the stability regions for VS algorithms are smaller compared
to that of the traditional LMS algorithms. While caution is thus recommended, our
experience from simulations regarding the stability of the VS-LMS algorithrds an
the new VS-SWLMS algorithm is that the stability bounds suggested in (3.45) ar
valid in most cases.

When it comes to theonvergencéssue of the step-size; of the VS algorithms,
different studies have been performed, see e.qg. [18],[20],[21]i829,[31] in or-

der to show that the adaptive step-size converges under certainagisemptions.
However, as we see it, often these studies, [18],[21], neglect oyeimgortant
aspect 1s the step-size really converging to the optimal step-size predicted by the
theory? This is of course a fundamental issue when it comes to automatic adjust-
ment of the step-size, and can not be neglected. It is common to prove ¢hat th
VS algorithm as a whole converges in a mean square sense. This, haleege

not guarantee that the step-size converges to a proper value whidis ires good
tracking performance. In the literature, when it comes to comparative sthdie
tween different adaptive step-size schemes, the estimation MSE aft@rgence

of the parameter vectadr; is often used to tune the different design parameters

Here, exact expressions for the stability region of one-tap filters heme terived. In the multi-
tap case, bounds on the stability have been obtained in [29].
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in the competing algorithms [18],[20],[7],[26]. Then, the convergenciénefesti-
mation MSE (also called the learning curve) is used as a measure to compare the
convergence rate of the algorithms. However, since the resulting estimaSén M

is very much depending on the time variability of the paraméigias well as on

the SNR, the process of finding appropriate values of the design pararoétee
different algorithm$ can be quite time consuming. This is of course not tractable
since we aim at an almost self-tuning algorithm.

When the steady-state tracking performance is evaluated among difedgent
rithms, it is often performed as follows. Starting with a certain parameter vanrjatio
e.g. RW or AR, and a disturbing noise, the steady-state performance isme@as
from the time the algorithms enter the tracking mode, i.e. when the initial tran-
sients are gone. Then the estimation MSE of the algorithms is plotted versus the
number of recursions, and finally a winner is chosen. Normally, slownpetex
variation is assumed, and the performance is evaluated at differens S&tRari-

ous input signals. However, environmental changes might requiraniegtof the
algorithms in order to cope with the new situation. Then, again, repeated aests h
to be performed in order to find suitable parameter values. This procedoos
acceptable if these algorithms are to be used in real applications wherevthe en
ronment might change. Then the whole idea with adaptive step-size algoighms
violated.

3.6 Complexity

Since the complexity of adaptive algorithms is very important when it comes to im-
plementation in real applications we will here (in Table 3.1) summarize the number
of calculations (real multiplications) needed to update the step-gizés each

one of the presented VS algorithms. In this calculation, multiplication between
complex numbers is counted as four real multiplications, whereas multiplications
or divisions between a real and a complex number are counted as two multipli-
cations. The polynomial®(¢—!) in VS-SWLMS is assumed to have real-valued
coefficients.

Note that in Table 3.1, only the calculations for updating the step-size isfegse

In addition to these calculations the complexity for the constant gain algorithm,
such as LMS or SWLMS, needs to be added in order to get the total nurhber o
multiplications. The complexity for the LMS algorithm and the SWLMS is pre-
sented in Table 3.2. Here we assume a complex linear regression with sdalar o

“This is especially true for the error based and the correlation basedtlatger
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VS-algorithm # of real mult.

VS-Benveniste 26 ny,
VS-Benveniste-Simp 18 ny,
VS-SWLMS 54 np,
VSS 7 np

MVSS Tnp+8

RMVSS 7np+8
CDSS 2ny

Table 3.1: The number of real multiplications required talaje the VS algo-
rithms. Heren,, is the number of parameters in the vedtpr

put, complex-valued regressors, parameters, and a real-valuég—'). These
complexity calculations concerns one-step predictors and are later tosideced
when the performance of the different algorithms is evaluated. For a crityple
comparison with the Kalman estimator, we refer to [11].

Algorithm | # of real mult.
LMS 10 np,
SWLMS 16 ny,

Table 3.2: The number of real multiplications required taafe the LMS and
SWLMS algorithms. Herey,, is the number of parameters in the vedipr

3.7 Conclusions

In this chapter we introduced the concept of automatic tuning of the simplified
WLMS algorithm. Different updating schemes were presented and a nestad
ment scheme was derived. The stability issue of variable step-size algovitmas

also discussed and it turned out that this is a much more complex problem than
when dealing with the original LMS algorithm. Finally, the complexity for the
different adjustment methods were compared.
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Chapter

Simulation and performance
evaluation

4.1 Introduction

In Chapter 3 an overview of different step-size methods was givenwviiMm this
chapter study the performance of these step-size algorithms in variokisitrace-
narios in order to find the best candidate to be used together with the SWIightS a
rithm. Recall that the LMS algorithm is obtained as a special case of the SWLMS
algorithm by selecting the hypermodel B§;~') = 1/(1 — ¢~ '), i.e. a random
walk model. Thus only SWLMS algorithms will be considered. Since no analyt-
ical results are presented for the algorithms, the following study will bedoase
simulations. The algorithms that are subjects for the investigation argradesnt
based method&sB):

e Alg 1: VS-SWLMS-Benvenistes, (3.21)-(3.25)
e Alg 2: VS-SWLMS-Simplified Benvenistes, (3.26)-(3.30)
e Alg 3: VS-SWLMS, (3.31)-(3.44)
and, theerror based methodd&B):
e Alg 4: VSS-SWLMS, (Appendix D)
e Alg 5: MVSS-SWLMS, (Appendix D)

e Alg 6: RMVSS-SWLMS, (Appendix D)

43
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e Alg 7: CDSS-SWLMS, (Appendix D)

Note that in Alg 4 to Alg 7 the SWLMS algorithm (2.52)-(2.54) is combined with
the step-size. = j[i; with i, given by (3.2), (3.4)-(3.5), (3.6)-(3.7), and (3.1),
respectively. To start with, we will investigate the differences betweerEe
methods and GB methods. Then, we will focus on the differences betwe&h
algorithms. Of particular interest regarding the GB algorithms is the influehce o
the parameterg and«, and whether or not the newly derived VS-SWLMS (Alg

3) will perform better than the original VS-SWLMS-Benveniste (Alg 1) aiton

and its simplification (Alg 2). We will start with simple adaptation problems and
then gradually move on to more realistic scenarios. The algorithms above will be
evaluated in the following scenarios:

e Estimation of static parameters.

e Tracking of sinusoidal parameters (slow and fast), at SNR, 5 dB amtB15
respectively.

e Tracking of Rayleigh fading parameters.

The comparative study will mainly focus on the behavior of the step-sizetada
tion of the different algorithms. Here, one of the important questions to enisw

if the adaptive step-size will converge to the optimal valug: gfredicted by the
theory, i.e. the value of the step-size that solves the Wiener filtering prablem
Figure 2.10. This, also implies that the algorithm will produce the smallest para-
meter tracking error.

Apart from the comparative study of the different algorithms, we will alsesti-
gate three other issues regarding tracking.

e Thefirstissue deals with individual step-size control for each parameter in
the vectorh;. The parameters, i.e. the elements of the veatpiare here
assumed to vary at different rates. Here we illustrate the flexibility of the
VS algorithm to individually adjust the step-size for each parameté!
according to their rate of change kff.

e Thesecondssue deals with the problem of wether to use the Newton direc-
tion in tracking problems or not. As mentioned before, see Chapter 2, it is
well known that the Newton direction improves the convergence rate in sta-
tic parameter estimation problems compared to using the gradient direction.
Here we will investigate if this also is the case in tracking problems.
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e At the end of the chapter, we demonstrate the performance gain obtained
by using different hypermodels when tracking time varying parameters of
different kinds.

In most of the simulations aimed to describe the behavior of the adaptiveiztep-s
algorithms, tracking of only one time-varying parameter will be considerde T
observed behavior is however valid also for higher order models. Indhear-
isons between the algorithms we will focus either on the adaptation of theiggep-s
or the squared parameter tracking erhf)r In the simulations below, if nothing
else is said, the SWLMS algorithm is used in combination with the step-size algo-
rithms (1-7) presented above together with an integrated random walkrhggel
(IRW)L.

4.2 Comparison between the EB and GB step-size algo-
rithms

Since the structure of the EB and GB algorithms is quite different we expese th
algorithms to also show different tracking properties. We start this congparis
by studying the convergence properties of the step&ider Alg 1- Alg 7 when
estimating an unknown static parameter.

4.2.1 Simulation 1: Estimation of a static parameter:

Since the parametéy; is time-invariant we expect the step-sjzeto decrease until
the lower limit of the step-sizey..;», here set t@.005, is reached. Figure 4.1 il-
lustrates the convergence of the step-size paramefer the different algorithms.
The differences between the algorithm classes are obvious: All the BBthlgs
outperform the GB algorithms. Here, the design parameters in the diffalgmt
rithms are chosen to typical values normally used in order to produce gukiitg
performancé The rate of convergence for the GB algorithms is much slower than
that of the EB algorithms. The reason for this big difference is due to théHac

the instantaneous gradieﬁtu(t), used in the step-size updating equation for the
GB methods, is on average much smaller than the size of the squared instastane

In order to completely study the behavior of the different step-size mstheesented in the
previous chapter a hypermodel other than the Random Walk (RW) rhadédb be used. The reason
for this is that the SWLMS algorithm in the RW case reduces to the classicaldliftithm. Some
of the interesting features of the automatically tuned SWLMS algorithm woutd\tarish, and the
study would not be of any interest. We therefore applied the IRW model.

’Regarding the parameter values for the EB methods we approximatetheisalues recom-
mended by the different authors.
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Convergence of the step-size
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Figure 4.1: The convergence of the step-gizavhen estimating a static parame-
ter. The convergence rates for the EB methods are much tasterfor the GB
methods.

error<? used in the EB methods. It would of course be possible to speed up the

co

nvergence rate of these algorithms by increasing the valpe dbwever, this

would increase the parameter tracking error in steady-state. Furtheramooag

the GB methods, we observe that the convergence rate of Alg 3 is fastethtita

of Alg 1 and its simplified version Alg 2. This is interesting since the same value of
the convergence-rate parametdn the multiplicative step-size updating equation

fusip = full + pR{V; e} (4.1)

was used. The estimated gradiéx;itin the equation above is calculated according

to

the following equations, previously presented in Chapter 3.
Alg1) Pry = [I— fur1oep;]te + e (4.2)
Alg 2) Y1 = o + pre (4.3)

Ag3) i1 = Proby+Pothyy+ (Efupr +00)Z+b1 Zq  (4.4)
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Considering the above equations, the magnitude; afill differ among the algo-
rithms. According to Figure 4.1 we can conclude that the extra dynamicsimgsu
from the prediction filter in (4.4) clearly increased the magnitude,ofompared

to Alg 1, and therefore we obtained an improved convergence rate. hVelsa

see, due to the faster convergence rate in Figure 4.1, that the simplificaticimiy

the parametes? in (4.3) also changed the convergence properties compared to the
original Alg 1.

As we suspected in the beginning of this chapter, the step-sizes of theediffe
algorithms converged into the the regiongf,;,,. However, large differences in
the convergence rate was observed. Therefore, if our goal is taHenstep-size
updating algorithm with the fastest convergence rate, then, we wouldipisob
choose one of the EB algorithms. In this case Alg 7 would be the obviousechoic
since it reached the optimum step-size faster than the other algorithms. étowev
Figure 4.1 does not say much about the step-size convergencetmepéithese
algorithms in a tracking scenario. Therefore, we will now move on to tracifng
time varying parameters.

4.2.2 Tracking a sinusoidal parameter

Tracking a sinusoidal parameter
hy = eIt (4.5)

will now be considered. In these examples we will study the behavior ofigjoe a
rithms for different values of the frequengyas well as for different signal-to-noise
ratios. Tracking of sinusoids will be used in many of the following simulations in
order to compare the different algorithms. Other more realistic parameiar var
tions will be used at the end of this chapter.

Simulation 2: Slow parameter variation, SNR = 15dB

Figure 4.2 illustrates tracking of a low frequency sinusoid with= 0.00039, at

a medium SNR level (15 dB). The frequency is normalized to the samplingy rate
In this situation we also expect the adaptive step-gizéo converge to a rather
small value, since the time variability of the parameferis rather slow. Here
we can clearly see that all of the algorithms converges into the region opthe o
mal step-siz®.007. The optimal step-size was calculated iteratively by evaluating

3In this simulationo = 0.95 was used.
*Sampling rate270000 Hz will be used in all of the following simulations.
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Figure 4.2: Tracking of a slowly varying sinusoid with freqicyw = 0.00039.
The upper diagram illustrates the optimal parameter vanatf h; and the es-
timatesh, for the different algorithms as a function of the number efations.
Here, it can be seen that the GB algorithms achieves fasteeagence towards
the true parameters although the convergengg €dr the EB algorithms is faster.
The lower diagram illustrates the adaptive step-size gdbversus the number of
iterations.

the parameter tracking MSE for different step-sizes, then the valpetudit pro-
duced the lowest MSE was chosen as the optimal step-size. The diffsranc
terms of the resulting step-size between the algorithms are shown to be véity sma
However, as noticed in the previous example, the step-size of the GB aigsrith
suffer from much slower convergence than that of the EB algorithms.ré&ig3
illustrates the parameter tracking MSE of the different algorithms. The regultin
error is about the same due to the almost identical final step-size for ak @flth
gorithms. The differences between the GB algorithms are shown to bemaetly s

A closer study of these algorithms will be performed in a subsequent section
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Figure 4.3: The parameter tracking error MSE for the diff¢@dgorithms. Since
the resulting step-size in this case equals the lower botititt@llowed step-size
we can see that the MSE at the end of the adaptation is abostthe for all

algorithms.

Simulation 3: Fast parameter variation, SNR = 15dB

In order to observe the behavior of the algorithms in a different situaticerevh
the environment has changed, let the values of the design parameténs far
gorithms remain exactly the same as for the slower sinusoid and then increase th
frequencyw. This will, according to the theory [1],[2],[4], also increase the opti-
mal step-size: since the algorithms must be more alert to changes in the parameter
vectorh;. Then, what will be interesting to see, is if the algorithms will converge
to the step-size predicted by the theory, or if there will be a significantrdiffee
between them. The results are shown in Figure 4.4. Here, we obsertbdhat
exists a fundamental difference between the algorithms. The GB algorithpes co
with these faster parameter variations in a much better way than the EB algorithms.
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Fast varying sinusoid at SNR 15 dB
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Figure 4.4: Tracking of a fast varying sinusaid= 0.0078, SNR15 dB. The up-
per plot illustrates the optimal parameter variatiorhp&and the estimates, for
the different algorithms. In the lower plot the adaptiveps$eze is plotted versus
the number of iterations. Here we can clearly see that théigmabased meth-
ods converge approximately into the optimal step-8i8&1. A small deviation
from the optimal step-size can be noticed for the simplifiecsion of Benvenistes
method. This has to do with the value of the parameteFhe reason for this will
be explained in later sections

Figure 4.5 shows the parameter tracking MSE of the algorithms when tracking th
faster sinusoid. In this case we notice a remarkable difference betweetgi:
rithms as compared to the previous example. This effect is explained by tke low
plotin Figure 4.4 where the adaptation of the step-sizes for the diffelgarithms

is illustrated. In this example the optimal step-size was calculatedid. As we

see in Figure 4.4, the GB methods Alg 1 - Alg 3 manage to converge towards the
optimal step-size predicted by the theory. This is however, not true foEBhe
algorithms Alg 4 - Alg 7. Their step-sizes continue to decrease to a level that is
much smaller than the GB algorithms. The final value of these step-sizes, which



4.2. Comparison between the EB and GB step-size algorithms 51

Convergence
102 F T
10" b 4
E / Alg7
i e .
10° b 9
w E Alg 5, Alg 6 ]
= /
(=)
c
= f ) NPT " ' Lt [ N
3 9;15“/*‘4“~4”‘i’“f1“r”\wt‘”‘?’\f‘\’ VAR i WtiapbA et APt \ﬁ?-,” ittty ﬂ;l g
< } y R y ¥ : Y A R ; ) Fic
Foot i A
\ Alg 4 ]
Alg 1, Alg 2, Alg 3 ,
107 M / .
gt ’ l | I LT i) ! ! \j
! i
10’3 I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 4.5: The parameter tracking MSE of the algorithmsminacking a fast
varying sinusoid withy = 0.0078 and SNRL5 dB. Due to the large differences of
the step-sizes between the EB and GB algorithms their iegwdtrors will differ
significantly. The MSE of the GB methods are much smaller tharMSE of the
EB methods since their step-sizes converge into the redittre@ptimal step-size
predicted by the theory. The individual differences betw#wese algorithm are
however not noticeable in this case.

to a large extent is influenced by the choices of the parametansla, see (3.2),
(3.4), and (3.6), may not correspond to the step-size predicted by thg.the

These differences between the algorithms are not unexpected. Byiagalkie
design of the different step-size schemes, it becomes quite clear whipehaye

as they do. In the case of the GB methods, the design is based on the minimization
of the criterium.J; in Chapter 2. This, makes the adaptive adjustment scheme
search for the particular value of the step-sizethat minimizes this criterium.

This important feature is not present in the EB methods where the adjustinent o
the step-size is performed without involving the minimization of a suitable criteron.
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Simulation 4: Slow parameter variation, SNR = 5dB

One thing that might change the behavior of the algorithms drastically is the mea-
surement noise. In real applications it is very important that the adaptitieooe

do not deteriorate to much if the noise increases. Therefore, we will nowotwr
attention towards the signal-to-noise ratio. Recalling Simulation 1, we will now
perform exactly the same experiment but increase the noise level. EsesEs are
shown in Figure 4.6. It is now possible to see the effect of the noise in tyatad

Tracking of q

6 T
41 i
= 2F » ]
0 W.\\\———d’;
_ | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations
Convergence of step-size
02 T T T
0.15f -
[}
N
K Agd  Alg2 Alg 1, Alg 3, Alg 5, Alg 6 |
]
0.05H ¥ ) . N : z
b ghoipaghe Due it imasgopantiilins catm oA A g Sty
olE=== :“l“‘:’:“,"‘:"\,‘l i g S e e [ —;‘Z“:’L“;‘: =" R e v e 2T g gt A 1"“; R
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 4.6: Tracking of a slowly varying sinusoid with= 0.00039 and SNR5
dB. In this case the theoretical step-size is quite smalktddiee large influence of
noise. We therefore expect that the different algorithneotoverge into this small
step-size. However, this is only true for Alg 2, the other G@oathms suffers
from a bias of varying size. The reason for this will be dis&gbsin later sections.
Regarding the EB methods, we see that they do not manage tthénaptimal
step-size either. Also noticeable is that the convergeateeaf the GB methods
significantly increased due to the higher noise level.
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tion of the step-size. Since the noise increases the size of the gragjeaty;e;,

the convergence rate of the step-size will also increase due to the clusection

to the size of the instantaneous gradi®hf(¢). This is of course attractive, but,
unfortunately, together with this increasing convergence rate of thesiteps,

the fluctuations of the adaptive step-size becomes severe. In the cime®B
methods, these fluctuations can be controlled by the parametesmall value of
this parameter produces a small adjustment of the step-size in each iteraibn wh
keeps the variance g¢f; at a low level. However, a small value of the parameter
p also severely decreases the convergence rate of the step-sizerthareadeoff
between the fluctuations and the convergence rate must be considered.

What can also be noted in Figure 4.6 is that none of the GB algorithms seem to
converge exactly to the optimal step-size,(.805. A clearly noticeable bias is
present, especially for Alg 3 and Alg 1. The reason for this bias is not =iatp
known at present and requires further studies. However, whenmesdo Alg 2

it almost manages to find the theoretical step-size. This is explained by the time-
invariant low-pass filtering of; used in Alg 2. Regarding the EB methods we
notice that their resulting step-sizes increased compared to Simulation 2sand a
that they failed to approach the optimal step-$iZi#5.

Figure 4.7 shows the corresponding parameter tracking MSE for theetiffal-
gorithms. Since the optimal step-size in this simulation equals the lower bound
Umin = 0.005, the smallest parameter tracking MSE is produced by Alg 7, which
adjustsyu; to be closest to this bound, among the considered algorithms.

Simulation 5: Fast parameter variation, SNR =5 dB

Here, we will keep the noise level from the previous experiment but @&ser¢he
frequency of the sinusoid. Now, by comparing Figure 4.8 and Figure & datice

that the optimal step-size has decreased foob1 to 0.046 due to the influence

of the noise. However, looking at the step-sizes of the EB methods wevelsse
increasecompared to Figure 4.4. This behavior is not desirable. The reasondor th
is that we in a noisy environment, would like an adaptive step-size algorithi to b
more cautious, i.e. to use a smaller step-size, than in a high SNR scenarice On th
other hand, looking at the step-sizes for the GB methods we obsee&easof

iit, which is in correspondence with the theory [1],[2]. The variance oattaptive
step-size is also shown to increase due to the higher noise level. Furtbemmgor
also notice that the bias in the step-size for the GB methods present in Figure 4

®In this example the value of the parametewas chosen t@.97. This assumes an optimal
step-size around.03 and constant modulus regressors with amplitude one.
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Figure 4.7: The parameter tracking MSE for algorithms AlgAlg 7 when track-
ing the slow sinusoid in Figure 4.6 with an SNR of 5 dB.

is still present. This indicates that these methods overestimates the stepthize as
noise increases. This will be further discussed in later sections.

Figure 4.9 illustrates the parameter tracking MSE of Simulation 5. Due to the
similar step-sizes shown in Figure 4.8 the resulting tracking MSE of the differe
algorithms are about the same, except for Alg 7 which suffers fromr#araeking
MSE due to a severe lag error (2.22).

We have so far seen that differences between the GB and EB mettegpiesent,
however, at this moment we do not exactly know when the differencesnes
significant. This will be investigated next.
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Figure 4.8: . Upper diagram: Tracking of a fast varying saidsvith frequency
w = 0.0078 and SNR5 dB. Lower diagram: The convergence of the step-gize
for the different algorithms.

Simulation 6: Fast parameter variation, SNR = 25 dB

Since the optimal step-size is depending on the noise level and the rate of the time
varying parameter we will now illustrate the behavior of the algorithms under fa
variations and low noise conditions. In this example the frequency of thedthu

is the same as in Simulation 5, i.e. = 0.0078. However, the SNR is chosen to

25 dB and the optimal step-size is calculated1t080. Figure 4.10 illustrates

the sinusoidal parameter and the convergence of the step-size. The tG&Imes

seen to converge into the region of the optimal step{&iz@s30. However, the bias

of Alg 2 is here larger than in Figure 4.4. The reason for this will be disalisger

in Section 4.4. Also seen is that the step-sizes of the EB methods converge into
totally erroneous values not representable for tracking fast of vgpamameters.
From this example we conclude that fast variations together with low noisetan
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Figure 4.9: The parameter tracking MSE for the differenbatgms in Figure 4.8
when tracking a fast sinusoid at SNR 5 dB.

be handled by the EB methods. The number of iterations is, in this simulation,
compared to the previous, increased frod000 to 20000 due to the slow conver-
gence rate of the GB methods at this noise level.

This scenario clearly illustrates the difference between the EB and GBtalgsr
By considering the lower plot of Figure 4.10 we conclude the following:

e In situations wherg:,, is large due to rapidly varying parameters and/or a
high SNR, the EB algorithms seems incapable of finding the optimum value
of the step-size. Tracking fast varying parameters/sinusoids usirgdlgs
rithms in environments where the SNR is high is therefore not recommended.

e The GB methods Alg 1 and Alg 3 manage to converge to the step-size pre-
dicted by the theo®; With the exeption of generating a bias at low SNR,

5By theory, we mean the specific value of the step-size that produceswhestltracking MSE
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Figure 4.10: Upper diagram: Tracking of a fast varying sadsvith frequency
w = 0.0078 and SNR25 dB. Lower diagram: The convergence of the step-gize
for the different algorithms.

these methods cope with fast varying parameters in a satisfactory way.

In order to further study the behavior of the different algorithms in thegqmee

of noise we will conclude this section with a final example, where tracking of a
sinusoid with high frequency is considered. Here, the simulation intervat is d
vided into four segments in which the noise level is increased segmentimgseg

In this simulation, see Figure 4.12, the effect of the noise becomes obvibgs.

GB methods successfully decrease their step-size according to thesingreaise

level. This is a result of a decreasing correlation among the components in the
instantaneous gradieﬁtﬂ(t) used in the step-size updating equations for the GB
algorithms. The EB methods, on the other hand, erronednsigasetheir step-

under the conditions given in the simulation, i.e. the rate of the time-var@ranpeter and the SNR.
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Figure 4.11: The tracking MSE for the EB and GB algorithms whracking a
sinusoid with frequency = 0.0078 at SNR 25 dB. The GB methods are here

shown to outperform the EB methods since the tracking MSEl&aat 100 times
smaller.

sizes when the noise becomes more dominant. The optimal step-size is plotted
according to the noise level in the first segment. The noise level in theatiffer
segments id.5, 2 and 2.5 times the level in the first segment, whichli§ dB.

What is interesting in Figure 4.13 is the development of the parameter tracking
MSE for the EB methoddDue to the fact that the noise level actually increases the
parameter tracking error is shown to decreaskhis is explained by the fact that

their step-sizes by coincidence increase towards the optimal step-sZeigsee
4.12.

So far we have investigated the convergence properties of the stefpsitte
different algorithms when tracking a sinusoid and a static parameter. &n tord
illustrate the behavior of the different algorithms when the environment isgecha
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Figure 4.12: Tracking of a fast varying sinusoid in incregsnoise. The noise
level in the different segmentsiss, 2 and2.5 times the level in the first segment,
which is15 dB. In correspondence with the theory, i.e. when the measemée
noise increases, then the step-size of the GB algorithmsesme to gradually de-
crease. The EB algorithms on the other hand, increasesstiegirsize when the
noise increases since they in this case, erroneously vieélithat the tracking of
the parameteh, is bad due to the fact that the instantaneous efydrecomes

larger.

ing, the design parameters of the algorithms have been the same in all simulations.
It would of course have been possible to improve the performance mgiita

the design parameters for each simulation, however, this totally contradi@a-the
tomatic tuning concept we are about to investigate. Our intention by letting the
design parameters remain the same during the different simulations is to find out
how sensitive the different algorithms are based on a specific paranettiags
Based on the above simulations, the performance of the GB methods segms ver
promising. They have all shown a higher level of robustness to changies en-
vironment than the EB algorithms. Due to this superiority we will now leave the
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Figure 4.13: The corresponding tracking MSE when trackifgsavarying sinu-
soid in noise with stepwise increasing variance. The istérg part in this figure
is that the MSE for the EB methods actually is shown to deeredthiough the
noise is gradually increasing. We also note that Alg 5 and@igethod is more
robust to noise than Alg 4.

EB methods and focus only on the GB algorithms.

4.3 GB algorithms and the parameterp

To start with, we recall the equations (4.1)-(4.4). These equationsgept the

core of the step-size adaptation for the GB methods. Common to these three meth-
ods is the parameterin (4.1), which controls the convergence rate of the step-size
as well as the resulting tracking MSE in steady-state. Our aim in this thesis is to
find a robust automatic step-size algorithm that does not need to be reatzdifor

each new tracking scenario. Therefore, in order to work well in rpglieations,

the resulting automatically tuned SWLMS algorithm cannot be too sensitive to the
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choice of the parameter. In the following examples we will study the behavior
of the GB algorithms for different values of the parameien different tracking
scenario&. To start with, we will focus only on one of the GB algorithms in order
to illustrate the main behavior. Figure 4.14 shows the convergence of theistep
for Alg 1 for four different values of the parametemwhen tracking a sinusoidal
parameter at the frequency = 0.0078 at two different signal-to-noise ratios, 5
and 15 dB, respectively. As mentioned in a previous section, the canezgate
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Figure 4.14: The convergence of the step-gizdor Alg 1 for different values
of the parametep when tracking a sinusoidal parameter at the frequency
0.0078. In the case of SNR 15 dB (dashed) the different algorithmsage to
converge to the step-size predicted by the theory. Howévéhe case of SNR 5
dB (solid) a bias becomes noticeable if the valug dfcreases.

of the step-size becomes faster if the value of the paramétéarge or if the SNR-

“In order to capture the initial behavior of the algorithm we here study th&itgcscenario
during the first 5000 iterations
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level is low. The reason why the convergence rate increases with @agez noise
level is that the driving force behind the adaptation, i.e. the norm of thenitasta
neous gradien‘ﬁ”(t), becomes larger. This phenomenon also becomes visible if
we decreasehe frequencyw. Then, it will be easier for the algorithms to follow
the variations of the parametgy, thus, the parameter errdg at each time-step
will be smaller than for a fast varying sinusoid. The driving fokég behind the
adaptation therefore becomes smaller. This results in a slower convengta@s
well as smaller fluctuations of the step-size after convergence. Thaskésrare
depicted in Figure 4.15. Here we can clearly see that the convergaasdaathe
step-sizes are much slower compared to those in Figure 4.14, wheregherfoy

of the sinusoid was higher. What also can be noted in Figure 4.14 is that in the
case of higher SNR, the different algorithms manage to converge to thsiztep
predicted by the theory. This, however, is not true in the case of low& 8here

the bias becomes noticeable. Furthermore, in the low SNR case, the biatbseem
increase as the size pfincreases.

So far, we have only focused on one of the three GB algorithms in order $s illu
trate the typical behavior for different values of the convergencepatemeter.
We will now proceed with two final examples where we compare the three GB
algorithms: Alg 1, Alg 2 and Alg 3. In Figure 4.16 the convergence ratethtor
GB algorithms are illustrated for four values of the paramgtarhen tracking a
sinusoidal parameter at SNRAB at two different frequencies. We can note that
an increased value of the parameténcrease the convergence rate as well as the
variance of the step-size&;,. We also notice that Alg 1 (upper diagram) is most
tolerant among the three algorithms against changes of the pargméetéis is
observed by inspecting the variance of the step-size for the diffelgotithms

in Figure 4.16. When it comes to Alg 2 (middle), we notice that the variance of
the step-size is severely increased when tracking the faster parantatecifbve).
However, we also observe that the bias present among the red carvakyfl

and Alg 3 is vanished since it converges towards the correct step-BiEs.is a
result of the time-invariant low-pass filtering of the gradiep; performed by the
parametery in Alg 2. However, in the case of the rapidly varying sinusoid (blue
curve), where the step-size is larger we notice that the low-pass filtefingp
does not decrease the variancgipf This is an effect of the design parameter
The influence of the parameterwill be discussed in the next section. For the Alg

3 (lower) we observe both an increased variance of the step-sizenandraased
bias compared to that of Alg 1. Common to Alg 1 and Alg 3 in this simulation is
that the variance qf; increases if the frequency of the sinusoid increases and vice
versa. This is observed by comparing variance of the red and bluescuHow-
ever, it is also noticeable that the bias seemddoreasewith higher frequency.
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Figure 4.15: The convergence of the step-gizdor Alg 1 for different values
of the parametep when tracking a sinusoidal parameter at the frequency
0.00039 SNR = 15 dB dashed, 5 dB solid. The convergence of the stepisiz
here slower than in Figure 4.14 due the lower frequency osimesoid. The bias
is also in this case clearly visible at the lower SNR.

This phenomenon is explained by Figure 4.17 where the parameter variation a
the instantaneous gradiéﬁp(t) for Alg 1 when tracking a sinusoidal parameter at
two different frequencies, = 0.00039 andw = 0.0078 at SNR5 dB is illustrated.
Here we observe that the variance of the instantaneous gradjgh} for the fast
sinusoid is much smaller than for the slower sinusoid. The bias is believed to orig
inate from this difference. The reason for this difference in the vaeiam‘l&u(t)

is explained as follows. We know from Chapter 3 that the instantaneodgegta
with respect to the step-sizg is defined as

V,u = —5}%[1#:9015515] . (46)

The size of these three components will depend on the variation of the pgarame
h: and on the SNR level. Small variations of the paramegtee.g. slowly varying
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Figure 4.16: Convergence of the step-gizefor the GB algorithms for different
values (.1, 0.06, 0.03, 0.01) of the parametes when tracking a sinusoidal para-
meter at two different frequencies,= 0.00039 (blue) andv = 0.0078 (red) at
SNR5 dB. It is noted that the step-sizes using a larger value optrametep
results in a larger bias since the deviation from the optsteyp-size after conver-
gence becomes larger. Observe that the bias present aneregitburves for Alg
1 and Alg 3 has vanished for Alg 2.

sinusoids, results in a dominant part representea‘ﬁ;b;due to the similar values

of the parametera; at two adjacent time-steps. This, creates a larger variance of
@M(t). Conversely, less similarity between rapidly varyimgandh;_; results in

a smaller value of>¥ which in turn results in a smaller variance‘@p(t).

Figure 4.18 illustrates the same tracking problem as above but at an SNRIBf
Here, the effects of the different values fre not as visible as in the low SNR
scenario. This is partly due to that the convergence rate is slower fordmes of
p. There are two noticeable effects. First, there are tendencies of lenb&tiav-
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Figure 4.17: The parameter variation and the variance ofrtgtantaneous gra-
dient @M when tracking a sinusoidal parameter at two different feemies,

w = 0.00039 andw = 0.0078 at SNR5 dB. The variance of the instantaneous
gradient is here shown to be smaller when tracking a rapillying parameter.

ior in the beginning of the adaptation in the middle plot for the largest valye of
Second, there is a bias of the step-size for Alg 2, due to an improper viaiboe o
parameter.. Regarding Alg 1 and Alg 3, we observe that the convergence rate is
faster for the Alg 3 than for Alg 1 due to the increased norm of the instaotesne

gNradient@M(t) introduced by the coefficient prediction filter through the gradient
Wy, See (4.4).

We may now summarize our findings about the parameterfollows:

e The parametep controls the convergence rate of the step-size parameter
and its variance after convergence.

e In noisy environments, the value of the parametehould not be chosen too
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Figure 4.18: The convergence of the step-size for diffevehtes (.1, 0.06, 0.03,

0.01) of the parametep when tracking a sinusoidal parameter at two different
frequenciesy = 0.00039 (blue) andv = 0.0078 at SNR15 dB (red). Step-sizes
with a low value ofp results in a slower convergence rate compared to step-sizes
with a high value ofp. Here it is noted that the convergence rate of Alg 3 is
somewhat higher than for Alg 1 and Alg 2. Alg 2 also show sighsitstable
behavior in the beginning of the simulation.

large due to the increased variance of the resulting step-size and tkee corr
sponding bias.

e Slower parameter variations requires a larger value of the parap#ian
faster varying parameters in order to obtain fast convergence.

e Among the algorithms tested here, Alg 1 seems to be the one that is most
robust to different values of the parameter
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4.4 Benveniste’s simplified multiplicative method and the
parameter «

We will now investigate the influence of the parametén Alg 2. Recall the step-
size equation of Alg 1 before and after the simplification, cf. (3.18) andj3tRat
is,

Yir1 = [T — ferr0s0})s + pres (4.7)
Y1 = o+ orEr (4.8)

The simplification is performed by substituting the time-varying expresdion
fi+1p1p7] With a constant gain matrix 7. As mentioned in Chapter 3, this leads
to a time-invariant filtering of the gradient;e, instead of a time-dependent fil-
tering. The consequences of this simplification will now be investigated in a few
tracking scenarios. Figure 4.19 illustrates the 'true’ value,afe. [ — ;1191 ¢} ]

for a one-tap parameter vectigrwhen tracking sinusoids of different frequenéies
at two values of the SNR. Since this, 'true’ value, is directly related to thesiep

jiz we notice that it will change according to the time variability of the parameter
h: and the SNR. Thus, by analyzing Figure 4.19 it becomes obvious thatd fixe
value of the parameter may lead to unwanted effects in the step-size adaptation.
Faster parameter variations require a smaller value edmpared to slower vari-
ations due to the larger step-size. This means in terms of time-dependentgfilterin
that the cut-off frequency of the instantaneous low-pass filter (4.7t tmtols the
frequency components gf;e; will change according to the parameter variations.
Therefore, as we can see in Figure 4.16 (middle diagram), if the valadsohot
tuned according to the noise level and the variations of the parameies. to the
correct step-sizé,, then the filtering ofp,e, does not work properly. In Figure
4.16 this can be seen as an increased variance of the pargmelies to a noisy
gradient and a bias. Furthermore, care must be taken when combiaimdp. Our
simulations indicates that a large valuengfi.e. 0.97 —0.99 combined with a large
value ofp, i.e. ~ 0.1 may lead to an unstable behavior of the adaptive stepsgize
An example of this phenomenon can be observed in the middle plot of Fig@e 4.1
Here the convergence of the step-sizdor the simplified version shows signs of
unstable behavior in the beginning of the adaptation when ysiad).1. Another
example of this behavior is observed in Figure 4.9 where the parameteintyack
MSE of the simplified algorithm (Alg 2) is clearly affected.

We summarize our findings about the parametes follows:

8Here the frequencies 0.00039, 0.0039, 0.0078 and 0.0155ede us
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Figure 4.19: The 'true’ value of the express|@r-ji; 11| at SNR5 dB andl5
dB and at different frequencies of the sinusoid. The thickeves represents the
value ofac at SNR 15 dB. As seen, the value of the ‘true’ alpha variesitogmtly
with the rate of the parameter variation or the SNR.

e The parametetr controls the time-invariant filtering of the gradiepyz; in
(4.8)

e The smoothing of the gradiefifu(t) works only in cases where the value
of the parametety is correctly tuned, i.e. according to the speed of the
parameter variations and the SNR. In our simulations we have noticed that,
if the value ofa used in the simulations isigherthan the “true” or steady
state value ofI — /i.+1¢:¢; ], then an increase in variancejafis obtained.
This also results in a bias, with a magnitude that depends on the SNR level
and the parameter variations/af. On the other hand, if the simulated value
of aislowerthan the “true” value, a smoothing of the step-gize obtained.
This reduces the bias in noisy conditions, or maybe in the best case, totally
eliminates it.
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The success of the simplificatioh— /i;.+1 ¢ 0f| — « is therefore depending on the
relation between the optimal step-size, i.e, the SNR and the parameter vatfagion,
value of the parametegrand the chosen value of the parameteBy simulations
we have found that values in the regi@82 — 0.97 are appropriate. The val@e9s

is normally used in our simulations.

4.5 Parameter Tracking MSE of the GB algorithms

So far we have mostly been concerned with the convergence propéttiesstep-
sizes for the different algorithms. We will now turn our attention to the paramete
tracking MSE,E{|h|?}. In the beginning of this chapter we illustrated the para-
meter tracking MSE for the GB methods together with the EB methods. In that
case the aim was to show the significant differences between the EB afahGB
ilies. However, in those MSE-figures, Figures 4.3, 4.5, 4.7 and 4.9 thereliites
between the different GB algorithms were hardly noticeable. Thereferavil
now closer investigate the parameter tracking MSE for these algorithmsd Base
what we know so far about the GB algorithms and the behavior of theirsétep-
adaptation in different tracking situations we might suspect that they wikrdiff
also when it comes to the parameter tracking MSE, since it is directly propalrtion
to the step-siz@,. Figure 4.20 shows the parameter tracking MSE and the variance
of the instantaneous gradie‘ﬁp (t) of the GB algorithms when tracking a rapidly
varying sinusoid at two different signal-to-noise ratios. In the caseefawer
noise level (SNR 15dB) we note that the algorithms perform about the santye,
small differences in the steady-state tracking MSE can be observedevdnvif

the noise level increases, then, we observe that the MSE for Alg 3 defriaie the
other two GB algorithms. This is explained by looking at the lower plot of Figure
4.20 where the variance of the instantaneous grad?e;tmt) is plotted versus the
number of iterations. Looking at the upper curves (5dB), we can clsadythat
the variance ofvu(t) for Alg 3 is larger than that of the other two algorithms. This
is, as mentioned before, a result of the dynamics from the coefficiediction
filter. We also observe that the variance of t@ig(t) for Alg 2 is larger than that

of Alg 1. This is explained by a too large value of the parameter

Now, continuing our study of the parameter tracking MSE we dd@treasehe
frequency of the sinusoid from the previous simulation. This is illustrated inrEig
4.21. Similar to the discussion above we observe that the algorithms peifouh a
the same at high SNR and that the differences show up at low SNR. Hvireve
this case we notice that Alg 2 produces the lowest tracking MSE in both sitgation
This is explained by the lower diagram of Figure 4.21. Here, the effettteoliow-
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Figure 4.20: Upper diagram: The parameter tracking MSE vizaking a rapidly

varying sinusoidal parameter at 5dB and 15dB, respectiviglithe case of the
higher SNR hardly any differences apart from the convergeate in the begin-
ning of the adaptation are noticed. All methods converge ithé same steady-
state tracking MSE. However, at the lower SNR we notice thigt Adeviates

from the other two. Lower diagram: The variance of the inttaeous gradient
V. (1).

pass filtering ofp.c; becomes visible. In this case the optimal step-size is quite
small due to the slowly varying parameter. This produces, as we knowdeaoker
discussions, a large value of the 'trueand since we are using = 0.95 which is
lower than the 'true’ value ofr, smoothing ofi; takes place.

4.6 Tracking with individual step-size for each parameter

In the previous simulations we have only used one time varying parameterin ord
to describe the behavior of the different algorithms. However, trackirmme pa-
rameter is of course not very realistic since tracking in real applicatiomaaily
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Figure 4.21: The parameter tracking MSE when tracking a simwsoidal pa-
rameter at 5 dB and 15 dB, respectively. Compared to the éaging parameter
depicted in Figure 4.20 we here note that the variance oftamtaneous gradient
@M(t) (lower diagram) is larger and that Alg 2 produces a much lanaaking
MSE than the other algorithms at SNR 5 dB. No significant déffees are ob-
served at 15dB.

involves more than one parameter. When it comes to tracking of seveaahptars
based on the algorithms presented in Chapter 3 we can choose to use tlstegame
size for all parameters or to use individual step-sizes. The latter is easdined
by replacing the scalar step-size parametewith a diagonal matrix containing
a variable step-size for each parameter. Tracking of several tim@xggrgrame-
ters will increase the complexity of the adaptive algorithm. However, theaseise
complexity is traded for better performance. For example, a typical situatienew
individual adaptation of the step-size is motivated is when the parametetgef in
est vary at different rates, and if they change their typical behawvier ttime. In
the case of the automatically tuned SWLMS algorithm, individual adaptation adds
another degree of freedom not included in the original SWLMS algorithinis T
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has to do with the restrictions of the SWLMS hypermodel. Since we use a di-
agonal hypermodel with theametransfer functions along the diagonal, i.e., the
parameters; are assumed to be governed by the same dynamics, individual con-
trol of the parameters is not as flexible as in the WLMS algorithm. In the following
tracking scenario we will illustrate the performance gain introduced by sdig
vidual step-size adaptation when tracking four individually time-varyingumpe-

ters. Figure 4.22 shows the parameter variations for the different param&tess

Tracking of parameters of different speeds
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Figure 4.22: Tracking performed by Alg 1 of 4 individuallyné-varying sinu-
soidal parameters at SNR dB. In the diagrams, the red color illustrates the
common step-size and blue color illustrates the individitap-sizes. It can be
noted in the bottom diagram, i.e. the slowest varying patenté, that the in-
dividual step-size is significantly smaller than the comrstep-size towards the
end of the simulation. This, results in a smaller parametaking MSE, see
Figure 4.24.

®Hypermodel IRW was used in this simulation.
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advantage of letting the step-size adjust itself individually to the time-varyirag pa
meters is obvious in the lower plot. In order to cope with the slowly varyingtfiour
parameter the individually tuned step-size converges to a much smaller vatue th
for the other parameters. This, clearly improves the tracking perfornmaue¢o

the smaller variance of the estimated paramgferThe convergence of the step-
sizes is illustrated in Figure 4.23. Here, we can also see that the step+sihe fo
common step-size algorithm is slightly smaller than that of the first parameter in
the individual case. Figure 4.24 shows the parameter tracking MSE fawthe

Step-size adaptation: individual and common
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Figure 4.23: The convergence of the step-size for indiMidua common step-

size. It can be noted that the individual step-sizes adfigshselves to the rate of
their time-varying parameter. In the case of the common-sitsg the resulting

step-size adjust itself to the parameter that contribugentiost to the resulting
tracking error, which in this case is parameter 1,

algorithms. As expected, the performance is significantly improved by indiVvid
tuning of the different step-sizes. From our simulations we can conclade th
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Comparison of tracking MSE for common and individual step—size at SNR 15 dB
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Figure 4.24: Tracking MSE when tracking the four sinusofameters with dif-
fering frequencies in Figure 4.22 at SNRdAB. It is here clearly noted that the use
of individual step-size adaptation improves the trackisgf@rmance compared to
that of a common step-size.

¢ Individual step-size adaptation enhances the performance of thényaadk
gorithm if the parameters are varying at significantly different rates.

e Individual step-size adaptation should be used if the extra complexity in-
volved is not a major problem.

4.7 Tracking in the Newton direction usingR !

It is well known that the convergence properties of adaptive algorithrok as
LMS is improved by using the Newton direction instead of the gradient direction
when estimating parameters in a situation with colored regressors. HownesT,

it comes to tracking, i.e. when we are dealing with a moving performancecsurfa



4.7. Tracking in the Newton direction usily! 75

- Is is also true then? In order to answer this question we redajlthe Newton
direction improves the convergence rate of the adaptation. For a non-grosin
formance surface, this is simply explained by the fact that the searcrefMMSE
point always proceeds in the direction of the minimum. However, when it comes
to tracking, and a moving surface, the Newton direction at one time-step ndaght b
significantly different in the next time-step. To what extent this is true degpen
several things such as

¢ the shape of the performance surface, i.e. the correlation of the segses
o the rate of change of the time-varying parameters

e the variation, i.e. smooth or randomly varying, of the time-varying parame-
ters.

e the correlation between the time-varying parameters

First of all, if the performance surface in a static scenario is completely symmet-
rical in every direction due to uncorrelated regressors, then the gtatirection

and the Newton direction is the same and the udg of in the algorithm provides

no advantage. It is when we are dealing with an elongated performarfeeesu
that the use of the Newton direction might be of interest.

Secondly, when it comes to the rate of change of the time-varying parameters
slowly varying parameters do not change the position of the MMSE point ab mu
as rapidly varying parameters do, therefore, problems with using the Nedito
rection may only arise in the case of rapidly varying parameters. Thirddunas

ing that we are dealing with rapidly varying parameters, then, the directitdmeof
movement of the performance surface becomes very important.

Thirdly, the moving direction of the performance surface is depending @ndh

ture of the time-varying parameters. For example, assume two uncorredated r
dom walk parameters. These will change the position of the MMSE point in an
unpredictable way, see Figure 2.8. In this case, the Newton direction aitigeh
dramatically from one time-step to another. Therefore, little is gained by includ-
ing the Newton direction. On the other hand, if we assume two uncorrelat®d IR
parameters, then they will produce fairly smooth changes of the MMSE seiet,
Figure 2.7. In that case, the probability that the Newton direction will chamge
an entirely new direction in the next time-step is much lower. Then, we might gain
something by using the Newton direction.
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Fourthly, since the movement of the performance surface also is affegttdue
correlationbetween the parameters this has to be taken into account. Now, assume
two rapidly varying parameters. If they are positively correlated, they wik

move the MMSE point diagonally along a positive slope in the parameter space
spanned byy; andhs,. If they are anti-correlated, then the slope will be negative.
See Figure 4.25 and Figure 4.26. Now to the interesting part. Whether the New

Tracking of minima
10F T T N

Figure 4.25: The trajectories for fast varying correlatadgameters. In this case
the direction of the trajectories becomes orthogonal teetbagated direction of
the performance surface. The use of the Newton directiondvoere decrease
the tracking performance, i.e. increase the parametekitgadISE as well as

decreasing the convergence rate, as compared to negléutifgctomR !

ton direction should be used or not is to a large extent depending on tloctiatire
of the moving performance surface in combination with the shape of thecsurfa
due to the correlation between the regressor elements. In our simulatiores/eve h
found that, if the elongation of the performance surface agrees with thetidin
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of the moving MMSE point, or, if the performance surface is elongated amd th
parameterg, are uncorrelated, then the Newton direction should be used. In other
situations, the use of the Newton direction may actually decrease the penfigma
However, as always, when it comes to real applications the designer laht

Tracking of minima
10F ~J H

Figure 4.26: The trajectories for fast varying anti-caatetl parameters. In this
case the direction of the trajectories agree with the el@utydirection of the per-
formance surface. Therefore, the convergence rate willpeaved by including
the facto®R ! due to the larger steps in the elongated direction.

important information about the parameters needed to decide wether to use the
Newton direction or not. This problem has to be treated from case to case.
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4.8 Performance gain obtained by hypermodels and step-
size adaptation

So far we have primarily focused on the details and the behavior of theatiffe
versions of adaptive step-size methods. We will now turn our attention tatbe a
matically tuned SWLMS algorithm, as a whole, as a tool used to track parameters
of time-varying systems. We will here illustrate the performance gain obtained
by using automatic tuning of the step-size as well as how different levelsaf p
information, i.e., differenhypermodel® improve the tracking performance.

4.8.1 Tracking of Rayleigh fading parameters

In this subsection we consider tracking of one Rayleigh fading [32] élgrara-
meter in a wireless communication scenario between a base station and a mobile
unit. Here, the time-variability of the channel parameter is caused by theveelati
motion, i.e. the doppler frequency, between the mobile unit and the base station
Other factors, such as the environment surrounding the mobile, exeeNR,

is not taken in to account. We will therefore focus on the doppler freqpues

the main factor influencing the time-varying channel. The simulation is performed
over 10000 iterations, where the first 7500 iterations representadesteratioft,

then, an abrupt change occur and the acceleration is started agaith&dregin-

ning. The SNR level in the example is 15 dB. Figure 4.27 illustrates the tracking
performance of the following algorithms

1. LMS: SWLMS with hypermodel RW and no adaptation of the step-size. No
prior information about the parameters is included in the design. The step-
size (4 = 0.15) is optimized for a mobile speed ®60 km/h.

2. VS-LMS: Automatic tuning is now added to the previous LMS algorithm.

3. SWLMS: SWLMS with hypermodel IRW and no adaptation of the step-size.
Information about smooth parameter behavior is now included. The fixed
step-size 4 = 0.08) is optimized for100 km/h.

4. VS-SWLMS-IRW (Alg 1 with hypermodel IRW) : Automatic tuning of the

1%For a thorough description and analysis of the use of hypermodels évgeth the WLMS and
SWLMS algorithms we refer to [4], [11], [12], [13] and [14].

"Here the doppler frequency is changed from 1000Hz. At the carrier frequency (1800Mhz)
in this example, and the sampling r&e0000 Hz, this doppler shift corresponds to an acceleration
from 0 — 600 km/h in 0.0278 seconds. This is of course unrealistic, however, in this case it is used
to illustrates the behavior of the algorithms in an extreme situation.
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Figure 4.27: Tracking of a Rayleigh fading parameter. Thepder frequency is
gradually increasing froih— 1000Hz, then the parameter is exposed to an abrupt
change and the acceleration is started again.

SWLMS algorithm and information about smooth behavior of the parame-
ters is included, by using the IRW hypermodel.

5. VS-SWLMS-AR2 (Alg 1 with hypermodel AR2): Same as in 4, but, in this

case we also assume exact knowledge of the doppler frequency.

Remark: Note that Alg 1 is chosen in 4. and 5. in order to represent a
suitable VS-SWLMS algorithm. This choice is based on the results in the
previous simulations where Alg 1 has shown to be superior compared to the
other candidates.

In the early stage of the adaptation (iteration- 3000), the gain from the hy-
permodelling is visible in the parameter tracking MSE plot (lower diagram). The



80 Chapter 4. Simulation and performance evaluation

parameter tracking MSE for the algorithms using IRW and AR2 hypermodels is
significantly smaller than that of the LMS and the VS-LMS algorithms. However,
as the variation of the parameter increases, the effects of the variablgiztdye-
comes more significant. The fixed step-size algorithms (LMS and SWLMS)clea
suffers from a severely increasing parameter tracking MSE compatkd WS al-
gorithms. The SWLMS algorithm is also shown to perform worse than the LMS
from iteration4500 until 7500. This is explained by the large lag-error due to its
smaller step-size. However, when the parameter variation slows down again
iteration 7500, the SWLMS recovers its superiority. From Figure 4.27 viieeo
that the hypermodelling improves the performance compared to the claski&al L
algorithm and its variable step-size companion VS-LMS at doppler fregesnp

to approximately 400Hz. After that, the improvements obtained by the VS algo-

Tracking of a rayleigh fading parameter
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Figure 4.28: Tracking of a Rayleigh fading parameter wite @B algorithms.
The tracking performance is about the same for all of therdlgos except for
the convergence rates and the unstable behavior of Alg 3 &na Airectly after
the abrupt parameter change.
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rithms improves even further. Since the fixed step-sizes of LMS and SWafdS
optimized for the speed00 km/h, i.e. a doppler frequency ef 170 Hz, they
cannot cope with the increasing variation of the parameter in the same wag as th
VS algorithms do. When it comes to the information about the doppler freguenc
used in the AR2 hypermodel compared to the IRW hypermodel, it clearlynfiezo
visible at f; ~ 200 Hz that this enhances the performance. However, since the
difference is fairly small, we conclude that the IRW hypermodel works e

for very fast variations without this information. Furthermore, it is alsovkmo

see [14], that, for parameter vectors of dimenstori, the SWLMS algorithm is
significantly better than the classical LMS algorithm. Then, also differevicels

of the hypermodel becomes more visible. In Figure 4.28, the same tracléng sc
nario as above is performed with the different GB algorithms (Alg 1 - Alg 8). |
accordance to what we have seen in the previous simulations, no sighifitfan
ences between these algorithms are observed, except from the tastergence
rate of the Alg 3 algorithm. The parameter tracking MSE of the algorithms are al-
most identical except for the convergence phase in the beginning ofléipedion

and after the abrupt change. However, after the abrupt parametegehsigns of
unstable behavior is present in both Alg 3 and Alg 2.

4.9 Concluding remarks

In this chapter a comprehensive simulation study of the step-size algoritbms fr
Chapter 3 has been performed. The algorithms have been investigatatbusva
scenarios designed to bring out their characteristic behavior. Thegeiqgf this
study was to find the best candidate of the presented algorithms to be usttbtog
with the SWLMS algorithm in order to obtain a self tuning tracking algorithm. We
will now, based on the simulations performed in this chapter, summarize and con
clude our findings in order to give a potential user guidelines on how tty a&pp
suitable automatic step-size scheme in combination with the SWLMS algorithm.

In the beginning of this chapter a comparison between the error baséadidB
rithms and the gradient based (GB) algorithms was performed. It was céraiea

that the EB algorithms were working properly in situations where the parameter
vectorh; was static or slowly varying. However, in cases where the rate of change
of the parameter vectdr, was faster, limitations in the structure of the EB algo-
rithms precludes their use in such situations. This clearly favors the use GBh
methods.

The different algorithms were also investigated under various noisdtmor sl It
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was shown that the EB algorithms were more sensitive to noise than the GB meth-
ods. In tracking situations involving a rapidly varying parameter vektand a
noise that may have varying power, we have through the performed sinmglatio
seen that the GB algorithms are superior compared to the EB algorithms. Fur-
thermore, it should be noted that the EB algorithms never outperformed the GB
algorithms except from simulation 1, i.e. in the estimation of a static parameter.
From this we conclude that the GB algorithms can be used in situations where the
parameter vector is changing both slowly and rapidly.

Among the GB algorithms, we investigated three different step-size methads wh
we called Alg 1, Alg 2, and Alg 3 (cf page 43). The first algorithm was Hase

the classical LMS algorithm. The second algorithm was a simplification of Alg 1
in which the complexity was slightly reduced. Alg 3, was a completely new step-
size algorithm derived directly from the SWLMS equations. One of the pyimar
goals with this thesis was to answer the question, whether or not imprové&uhtyac
performance was possible to attain by deriving a new step-size adjustmiatcme
based on the SWLMS equations, instead of using one of the step-size method
previously derived for the LMS algorithm. It was shown that the new siep-
method possessed almost the same tracking performance as the other tginestep
methods. A small improvement of the convergence rate was discovettedhibu
came at the price of an increase of the complexity which could hardly be rrestiva
in a practical application.

Our recommendations when it comes to using an automatic step-size scheme to-
gether with the SWLMS algorithms are as follows:

e A simple gradient based method, based on the LMS algorithm works per-
fectly fine in order to automatically adjust the step-sizen-line. In our
case Benvenistealgorithm is chosen as the winner among the investigated
algorithms. It is simple and has shown to be more robust against noise, as
compared to the other algorithms. However, its simplification possessed an
interesting property in terms of low-pass filtering of the instantaneous gra-
dient, V,,(t), given that a suitable value of the parametewas used. This
filtering reduced the deviation from the optimally calculated step-size other-
wise generated by a noisy gradiam(t).

e If using the simplified version of Benvenistes algorithm, care must be taken
when deciding on the value of the parameter Approximate knowledge
about the rate of the variations of the parameter vektand the SNR is
recommended before setting the valuexofin order to give one numerical
value that has worked well in most of our simulation, we would recommend
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a = 0.95. However, values in the interval92 — 0.97 are all possible. A
general rule is that if the parameter is rapidly varying, then a lower value of
« should be used.

e When it comes to the numerical value of the parametee recommend the
region0.01 — 0.08. In most of the simulations we have used the valug.

At the end of this chapter we also investigated whether or not to use the New-
ton direction in tracking problem as well as the gain obtained by using ingilidu
step-size adaptation for each parameter in the parameter yeciitdie recommen-
dations concerning the the Newton direction are as follows:

e When tracking rapidly varying parametedsy not use the Newton direction
if not enough information about the parameter variation, the correlation be-
tween the regressors, and the correlation between the parameters tslavaila

e When tracking slowly varying parameters, information about the correlation
of the regressors is the main factor influencing the choice of WRiny If
this information is available or is easy to estimate, then the ud dfis
motivated.

When it comes to individual step-size adaptation our findings and reconamend
tions are the following:

¢ If the available computing power allows for the extra complexity introduced
by the individual tuning, then it should definitely be used.

e The performance gain of individual tuning of the step-sizecreases with
the size of the parameters vectar. Naturally, it also increases with the
difference in drift rate between different elementshpf Therefore, if com-
plexity is an issue, then study the difference in the assumed drift rate betwee
the parameters and take into account the siZe of

With these conclusions we will now move on to a real application in which the au-
tomatically tuned SWLMS algorithm is applied and compared with other adaptive
algorithms.
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Chapter

Adaptive Channel Equalization in
EDGE - A Case Study

5.1 Introduction

In this chapter we will investigate the performance of some of the previousty p
sented algorithms in a realistic simulation of a specific application. We will here
consider a communication scenario where information is sent over a wicklass

nel. The task of the adaptive algorithm is to compensate for negativasffec
transmission originating from the wireless channel.

5.2 EDGE

We shall evaluate the block error rate (BLER) performance of a deldgeidion-
feedback sequence estimator (DDFSE) [33] in conjunction with the pealalgo-
rithms on multipath fading channels associated with the EDGE [34] air interface.
This radio interface is based on GSM, which implies that the symbol rate and the
slot format (in terms of symbols) are the same, as illustrated in Figure 5.1. In
EDGE, the bit rate is adapted to the long-term channel conditions by selecting
one of nine different modulation and coding schemes (MCS). For MCSafice
higher, the modulation is 8PSK with linearized GMSK pulse shaping. In this study
we shall focus on a Rural Area (RA) scenario since in such casegetiffes in
tracking accuracy will be of particular interest.

An adequate single receiver antenna transmission model for short EXEBE
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156.25 symbols (0.577ms}————
3 tail | 58 datal]| 26 sync| 58 data2 3 tail |8.25 guard

Figure 5.1: The Edge slot format.

channels, such as Rural Area propagations [35], can be exgrasse

yr = @i he + vy, (5.1)

wherev, represents noise and interferengg,is a scalar time varying complex-
valued gain ang; represents a scalar regressor, expressed as

M
0= grsiok - (5.2)
k=0

Above, g, and s; denote channel taps and transmitted symbols, respectively. It
should be noted that the correct channel model normally is described kdytap
FIR-filter with time-varying taps and that the above model (5.1), (5.2) ornlyese
as a good approximation over an EDGE-slot. In the case of flat fadingnela
the approximation error will vanish. For short EDGE channels, the inteosy
interference modeled by (5.2) is mainly caused by the pulse shaping ane-the r
ceiver (RX) filtering, whereas; models flat fading as well as impacts caused by
frequency offsets. In the case of a pure frequency oftggtoriginating from a
deviation of the carrier frequency from the receiver oscillator fragygethe gain
h: is given by

hy = elwot (5.3)

For RA channels, the spectrum kf is approximately described by a Rice model
[35],
P (w) = Ad(w — 0.7wp) + B® j(w,wp) , (5.4)

for some constantd and B, where® ;(w,wp) represents the spectrum of Jakes
model [32] with a Doppler frequenayp. In real scenarios, a combination of the
models (5.3) and (5.4) is normally used since both offset and fading neleel to
modeled.

The tapsgy, are in this presentation estimated by Least Squares (LS) over the sync
data interval (Figure 5.1), under the assumption that= 1, and are then held
constant over the entire slot. The estimated channel taps relate to the slotcssyn
nization position that yield the smallest cumulative squared LS residualkifigac
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of the time varying taph; begins in the middle of the sync interval. Decision-
directed mode, where known sync symbols are replaced by detectedlsymim

used within the data blocks. The data2 block in Figure 5.1 is first detected in the
forward direction, and the datal block is then detected in the backwartidire
(time-reversal detection). Hence, the equalization will be performed orhako
slots. The considered detector structure is depicted in Figure 5.2. Thertifzes

to performd-step prediction, since it works afistep delayed data. The prefilter is
designed, for each slot half, as a feedforward filter of an MMSE aetieedback
equalizer (DFEY. In the simulations below, a square root raised cosine RX filter

" . soft-outputs
2 prefilter t DDFSE+SOVA [ —

Mm—] St—d
g~ ¢ tracker

Figure 5.2: Soft-output delayed decision feedback seqiestimator (DDFSE)
with d-step prediction tracking of a flat fading channel. The teadkperates on
pre-filtered data and delayed symbol decisigng. Soft sample values for convo-
lutional decoding are here delivered by the soft-outpugdi algorithm (SOVA)
[37].

with single-side bandwidth of50 kHz and roll-off factor of0.15 is used. Fig-
ure 5.3 shows the block error rate (BLER) when transmitting over a ragvere
fading channel in the 1800 MHz band. In this example, the prefilter cortfidts
taps, the DDFSE consists of two maximum likelihood sequence estimate (MLSE)
taps and two feedback tapk] = 3 in (5.2), and a decision delajyof three sym-
bols is used. Ideal frequency hopping is assumed. For the trackilgtep ahead
VS-SWLMS prediction with adaptive and fixed step-size is used. Theqiced

are designed for amtegratedrandom walk model (IRW) In the upper plot of
Figure 5.3 no frequency offset is assumed. The sender and theaease in this
case perfectly synchronized. Therefore the BLER for the diffeaégarithms are
smaller than in the lower figure where an offset of 200 Hz is assumed. Goempa
ing the two cases we also notice that the differences between the algoritimgs us
adaptive step-size and the ones using fixed step-sizes are larger @0thig Bffset
case.

This receiver structure is similar to the one used in [36] (single brarmh)where we have
included one-tap tracking and use another soft-output scheme.

2The reason for this choice is a compromise between performancecamlexity. The use of
a hypermodel that includes more information about the assumed etmabehavior would proba-
bly result in better performance. However, the IRW model capturesigrgficant behavior of the
parameter and is therefore considered as a reasonable choice.
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The performance of the gradient-based (GB) VS-SWLMS algorithms €biap-
ter 4 (Alg 1 -Alg 3) is here compared to algorithms without adaptive step-size,
here denoted SWLMS and NLMSAIso the VS-LMS algorithm is evaluated. The

No frequency offset

NLMS
VS-LMS

SWLMS
VS-SWLMS
(Alg 1- Alg 3)

w10 ~ e : .
[an] : ‘ ]
2
| | | | | | |
10 12 14 Eb/No 16 18 20 22
Frequency offset 200Hz
T T I T
NLMSys-) Ms
_ VS-SWLMS
o~ SWLMS (Alg 1~ Alg 3)
[ -1
lilJ 10 ' -
om N . ]
LI ]
| | | | | | | ‘é‘
10 12 14 Ep/Nol6 18 20 22

Figure 5.3: Block error rate for modulation and coding sceem 7 (MCS-7)
and an RA channel at 1800MHz as a function of Eb/No, at a mapksed of
200 km/h with and without frequency offset. Comparison betwe&SWLMS

(Alg 1 - Alg 3), SWLMS with fixed step size, Variable Step-sizkl§ (VS-LMS)

and (normalized) LMS with fixed step size (NLMS).

design parameter in the GB algorithms is set t0.07, and the variable step-size
1 1s adapted over the slots. The normalized LMS (NLMS) algorithm with fixed
gain here corresponds to a SWLMS with= —1 anddy = 0 (1 is normalized by

JZ, in order to make the algorithm independent of the magnitude of the regsgssor

3The normalized version of the LMS algorithm is used in order to make theiidgoindependent
of the magnitude of the regressors. The initial step-gizeit is set to0.15.
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The fixed step-sizes were optimized for zero frequency offset andoélerspeed

of 100 km/h and an SNR of 15 dB, which provides good performance on average
over vehicle speeds between zero @&1d km/h. These values were also used as
initial values fory = [w?p in the algorithms with adaptive step-size.

The VS-SWLMS algorithms overall provides superior performance coeapi
that of the VS-LMS algorithm. However, no significant differences dseoved
between the different GB algorithms (Alg 1 - Alg 3). At 200 km/h and 10% BLER
in the upper plot of Figure 5.3, we obtain an improvement of aBaudB in com-
parison with the VS-LMS algorithm. Note also that the SWLMS with incorrectly

200 km/h

NLMS (4 = 0.15)

BLER

VS-SWLMS
(Alg 1 - Alg 3)

10*2 I I I

|
8 10 12 14 16 18 20 22 24
Eb/NO [dB]

Figure 5.4: Block error rate for modulation and coding sceem?7 (MCS-7) and
an RA channel at 1800MHz, at a mobile speetlio&nd200 km/h with frequency
offset 200Hz. This clearly shows that adaptatiorhpfmproves the performance
in severely fading channels.

tuned (fixed) step-size will provide better performance than the VS-LM8B-a
rithm. This is a result of a the hypermodel. The use of an automatic step-size
scheme comes best to its right in situations where the environment may change
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frequently. In a communication scenarios this can be simulated by diffgreats

of the mobile unit. Figure 5.4 illustrates the BLER of the different algorithms for
two different velocities of the mobilel,0 km/h and200 km/h. The tuning of the
algorithms are exactly the same as in the previous figure. Here it becomies obv
ous that a fixed step-size tracker in the adaptive equalizer severaiydésgthe
performance of the communication system compared to the automatically tuned
equalizer. For slowly moving mobiles the differences are hardly noticeblo-

ever, when the speed of the mobile increases, the fading becomes twmfabe
step-size need to be changed to a totally new value. This is also perforntled by
VS algorithms and explains the large difference in BLER.

5.3 Conclusions

Our case study clearly shows the superiority of the variable step-sizathigo

in combination with the SWLMS algorithm. Even though a simple IRW hyper-
model was used to model the fading parameter, the VS-SWLMS algorithm was
shown to outperform both the NLMS algorithm and the VS-LMS algorithm. By
using more informative hypermodels, such as AR2-models tuned accdodihg
doppler spectrum of the fading parameter, the performance may be inddave
ther. However, this will be a topic for further studies.
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Further work

This thesis has investigated tracking of time varying parameters. The maisn focu
has been on investigating the possibility to equip the Simplified Wiener LMS al-
gorithm with a suitable automatic step-size scheme. The motivation to study this
has been to simplify the work of the designer in a real tracking scenarierevh
the choice of a proper step-sizemight be a time-consuming process if the al-
gorithm is to be used in a time-varying environment where the noise level may
change frequently. We have studied the behavior and the performérctew
known variable step-size algorithms as well as an entirely new step-sizenech
based on the SWLMS structure. In this work we have focused on some bétic
features regarding the automatic tuning of the SWLMS algorithm. Howevet, a lo
of interesting research regarding this problem remains do be donestzefoym-
plete picture about the behavior of the VS-SWLMS algorithm can be givée.
following tasks are subject for further studies:

e Theoretical studies of convergence and stability

e The validity between the automatically tuned step-size and the optimal step-
size for different prediction horizons and different number of patarsen
the vectorh;.

e Reducing the complexity of the present algorithms by updating the step-size
less often; not at each iteration.

e Applying the concept of automatically tuned step-size in other applications
such as e.g. echo cancelation and active noise control.

e On-line tuning of the parametedfs andd, in the hypermodel.
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Appendix l \

The relation between the classical
Wiener filter and the WLMS
algorithm

Here we will illustrate the relation between the classical Wiener filter and the stru
ture of the WLMS algorithm for the particular case of estimating a signal in noise
It will be shown that the WLMS algorithm in this case is just a different retibra

of the Wiener solution, in the form of a feedback loop.

Ut

hy Yt Bk

oy S o] o

€t —>

+
v

Figure A.1: The Wiener filtering problem of estimating a sigim noise. The
signaly, is produced by the signal, disturbed by the noise,. Here, the goal of
the Wiener filter is to produce an estimate of the signabiven the noisy signal
Yt-

93



94 Appendix A. The relation between the classical Wiener filter and the WLMS i#ifgn

Consider the signals

Cla™)
h A.l
t D(q‘l)et (A.1)
vy = @ihi+ve=hi+vg . (A.2)

Here, the signai; is a noisy measurement of the sigihg) disturbed by the white
noisev;. Note also that the regressgf present in (A.2) is set td in order to
obtain a direct relationship with a time-invariant Wiener filter. Given (A.1) and
(A.2), it can be shown [4] that the Wiener filt&V(¢~!) in Figure A.1, estimates
ht1 1 based on the measuremeint

. _ Qrlg™)
h =W(g Yy = : A3
t+k|t (¢ )y R0 Yt (A.3)
This solution to the Wiener filter is obtained by solving the spectral factorization
rBBs =~y CCy+ DD, (A.4)

and the diophantine equation
¢"*1CC, = rQiBs + qD Ly (A.5)

where,~, is the relationship between the process neisand the measurement

noisev;, expressed as
_ B{jlelBy _ Re A6)
E{jlvl3} R
where R, and R, are the autocorrelation matrices of the process ngisend the
measurement noiseg, respectively. This method of calculating the optimal Wiener
filter is described more in detail in [38]. Now, in order to create the connectio
between the WLMS and the Wiener filter we rewrite the steady-state solutioj (A.3

as

) Qola™Y)

iy = gzqq_l) Ui (A7)
A _1 A
b = g’ggi " (A8)

where it can be showrthat Qq(z~1) has all its zeros inz| < 1. We also ex-
press the connection between the spectral faétgr') and the step-sizg in the
following way

(Qola™) —q (1 — )Q1(g™Y)) .
i

Bl = (A.9)

!See Lemma 2 and Appendix B in [13]
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For a derivation of (A.9), see Appendix B. Then, using the result (faqA.7)
gives us

(Qola™) — ¢ (1 — w)Qi(a~ )y = nQola Mye (A.10)
which can be rewritten as

Qo(q_l)ilﬂt - qil(l - M)Qo(q_l);ltﬂ\t = uQolg Ny (A.11)

by using the relation X X
Qo(q_l)ht+1|t = Ql(q_l)hﬂt (A.12)
from (A.8). Now, given that the polynomid) is time-invariant we obtain

g (1= w)Qola Ny = (1 — 1)Qola ey - (A.13)

Since() is stable it is possible to express the equation (A.11) as
ilt\t = (1 - ﬂ)hﬂt—l + 1Yt (A.14)

Finally, by introducings; = y; — f%|t_1 we can express the Wiener filter as

& = Yt — ;Lt|t—1 (A.15)
]Alt|t = Et|t71 + pet (A.16)

- Qrla™");
ht+k|t = m t|t (A.17)

i.e. the WLMS structure. The WLMS structure is in this case a realization of the
Wiener filterW(¢—!) in a form that uses the one-step prediction eroand the
one-step predictioﬁt‘t_l as intermediate results in a feedback loop. The step-size
1 to be used in the WLMS algorithm in order to produce the same result as the
classical Wiener filter is then obtained as

le—% . (A.18)

wherer is given by the solution to the spectral factorization (A.4). The purpose
with this example has been to illustrate the relation between the Wiener filter and
the WLMS algorithm. However, what is also important to realize is that the opti-
mal performance of the WLMS algorithm is based on the knowledge of thalsign
model (A.1) and the parameter In Chapter 3 the Wiener filtering problem is fur-
ther discussed in order to illustrate an alternative solution based on lesaation
about the environment.
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Appendix B

The relation between the step-sjze
and the spectral factgt(¢—!)

The solutions to the diophantine equation (2.57) for different time-teaysd white
noisewv; can be obtained recursively fro@y(¢—!) and@Q1(¢ ') according to

Qg™ = q(BeH)— D) (B.1)

Qrile™ = q(Qrle™) — D HQk(™)) (B.2)
1

Qolg™H) = ﬁ(Q‘l)—D(q‘l);, (B.3)

for details see Corollary 1 in [4]. Then, the connection between the poliaie
Q1(g7Y), Qri1(g7h), B¢~ 1), and the step size is calculated as follows. Sét= 0
andQ@)(¢~") = pin (B.2). This gives

Q@™ = q(Qola™") — D(g~ ) - (B.4)
Then, solving forD(¢—!) in (B.1) results in
D@ ) =B~ ¢ Q™ (B.5)

Now, by inserting (B.5) into (B.4) and solving fgl(g 1), we obtain (A.9),
Qe = Qo) — (Ble™) — ¢ 'Qula™))p) (B.6)

g Q@) = Qolg™") — Bl MHu+q ' Qilg Mk (B.7)
Bla Y = Qolg™) —q 'Qilg) +q Qg (B.8)

-1y _ ,—1 -1 —1 -1
Bl = Qol¢™") —q QI(CL ) +q Qg )u. (B.9)
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Appendix

Derivation of Benvenistes VS-LMS
algorithm

The following derivation is performed in a similar way as in the book [1].
Let the error function be denoted

1
J=5Elel, (C.1)
wheres; is the estimation error,

Et =Yt — So;fk]tl‘ﬂt—l' (CZ)

By differentiating the criterion functioo’ with respect to the step-size parameter
u, the scalar gradier¥ ,(t) becomes

oJ 1_ |0 ,  Ocf Oej
— — —t e | =B C.3
Vi = B [(M o 4 [met A }] €9

2
Then, the use of equatiqid’.2) gives

s} 0 el * 0 5, .
8/5 = (yt — ¢ ht\t—l) = —a(ht\t—wzﬁ) =~V (C.4)
where
Oy
v 2 75'; L (C.5)

The gradien¥,, can now be expressed as
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100 Appendix C. Derivation of Benvenistes VS-LMS algorithm

Vi =-ER{ejp}] = —E[R{viper}] (C.6)

In order to calculate (C.6), the derivative is needed. From (2.54) we obtain

ﬁt+1|t = 'Pl((fl)ﬁt\t = Bt|t = Bt|t71 + R e (C.7)

Note that we have used the fact thaf,(¢~!) = I for k¥ = 1 in the LMS case,
cf. (2.54), (2.55), (2.63), and (2.64). The derivative of (C.7) wehkpect to the
step-sizeu is

aﬁt+1|t 8ilth: 0 1
o = o = @(ht\tfl"i‘,uR Ptet)

= Y+ R e + pR gy

0zt

O
= Y+ R e — ,UR_liptSOf?ﬂt
= [I— R o0f ] + R ey (C.8)

Equation (C.8) can thus be expressed as
Yryn = [ —pR ™ oo}l + R ey (C.9)

The optimaly could be obtained by setting,, in (C.6) to zero and solving for
. However, this is not feasible in an online situation. An iterative searcheof th
performance surface would be more appropriate. Thus introducelegtaearch
for u as

furr = e — PV () (C.10)

Where@,b(t) is an approximation of (C.6) at time instant Hereﬁu(t) is ob-
tained by taking the instantaneous value of (C.6) while replagimgth /i, in the
calculation ofi;. We thus obtain

fur1 = fie + pR{U} e} (C.11)

where
Y1 = [ — ey R Mopf ]t + RNy (C.12)

which is obtained by replacing with /i, in (C.9).
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We can now summarize the VS-LMS algorithm for the cRse- I as follows

& = Yt — SOtiLat—l (C.13)
fugr = i+ pR{ pues} (C.14)
Y1 = [ = funof]dn + orer (C.15)

hivip = Pyjeor + fusrpier - (C.16)

Note the order of updating the equations. Since we are able to update treézstep
fit+1 With the last piece of information from the errgy, /1,11 is used to update the
derivativey,; 1.
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Appendix

VS-SWLMS algorithm candidates

VSS-SWLMS:

MVSS-SWLMS:

RMVSS-SWLMS:

E>
T s
I

= Y- (P:ilﬂt—l

= ajy +dle]?

= g1 + e R ey
= 'Pk(q_l)ilﬂt

= Yt — @:ilﬂt—l

= Bp—1+ (1= B)lerer_|
= o+ 0p;

= Iypor + R
= Prla Dy

Yt — (P:ht\tfl

Bpi—1 4+ (1 = B)|ee(er + €1—1)7|

aju + O}
hye—1 + 1R o
'Pk(qfl)i%\t
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(D.1)
(D.2)
(D.3)
(D.4)

(D.5)
(D.6)
(D.7)
(D.8)
(D.9)

(D.10)

(D.11)
(D.12)
(D.13)
(D.14)

(D.15)



104 Appendix D. VS-SWLMS algorithm candidates

CDSS-SWLMS:
& = yt—@khﬂt—l (D.16)
= £ (D.17)
ht|t = ﬁt|t—1+ﬂt+1R_1S0t€t (D.18)

here = Prla (D.19)



Appendix

Derivation of the VS-SWLMS
algorithm

The VS-SWLMS algorithm is here derived in a similar way as the variable step-
size LMS algorithm is derived in Appendix C. This will make it easy to compare
and understand the differences between the two algorithms.

Let the error function be denoted

1
J = Elal’, (E.1)

wheres; is the estimation error,

& =Yt — @ﬁltufr (E.2)

By differentiating the criterion functioo’ with respect to the step-size parameter
1, the scalar gradiery¥ ,(t)

L0 g 0n 0 0

is determined. Then, the use of equat{@?2) gives

88* a *7 * a 7 % *
8/5 = o (yt ¥t ht\t—l) = _ailuj(ht\t—l(lot) =~ (E.4)
where
Oyl
v 2 5'; L (E.5)
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The gradienV,, can therefore be expressed as

V= —E[R{e)ioi}] = —ER{{pier}] . (E.6)

In order to calculate (E.6), the derivative is needed. From (2.54) we obtain

ilt\t—l = 'Pl(q_l)ilt—ut—l ) (E.7)
where 0 ) .
_ (") _ bo+big”
Pig )= 12— : E8
) Qolg™") ao+aig™! (E8)
and the coefficientsy,b1,ag,a1 are obtained from (2.63) and (2.64) as
fdl
by = ——— E.9
0 1+ do(1 — ) (E9)
by = —dy (E.10)
ap = 1 (E.11)
ap = —b0d2(1 — ,u) . (E.lZ)
The coefficientsly, ds in (E.9)-(E.12) are given by the hypermodel
Hg™") = 1/(L+dig ' +dog™?t) . (E.13)
Equation (E.7) can now be rewritten as
ilt\t—l = _alilt—l|t—2 + bOiLt—l\t—l + blilt—2|t—2 . (E.14)
The derivative of (E.14) with respect to the step-size calculated as
oh 1 0 - 0 .
B = g @he) g (o)
o .
+ a(blht—2|t—2)
oaq - oh _1ft—2
= _(ai‘ulht—utq +a taM't )
dbo ; Ohy_1j-1
+ (au hy_1¢—1 + bo on )
by ; ailt—Q\t—Q
+ (3M hy_a)1—2 blT) ; (E.15)
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where the derivative of the parametergsandb, with respect to the step-size para-
meter is given by

8(11 8b0 —d1d2 A
— = = =c . E.16
on " on Lt (- P (E19
Furthermore, from (2.53) we obtain
hiotjpo1 = hy_apo + R Yoi1ei1 (E.17)

which gives us

Ohy_14-1 Jd - -
tT‘t = gz TR Ypor-1ee-1)

= 1+ R 1e 1 + uR o1 (—9fY—1) (E.18)
In order to simplify the expression we define

Z
X

R lpe, (E.19)
R~ oupf (E.20)

e 1>

We can now express equation (E.15) as

Ohyjp—1 )
57“ = —chiqpo— a1t
L
+ ¢ iLt—1|t—1 +bo(Vi—1+ Zi—1 — pXi19-1)
+ 0 + 01 (VYi—2 + Zi—2 — pXi_21)—2)

= cpudp1—ay P

+ bo (I — pXy—1)Ys—1+ Zi1)

+ by (I — pX4—2)hi—2 + Zi—2)

= (bo (I — pXi-1) —a1)hr—

+ b1 (I — puXy_2)hi—2

+ (cp+bo)Zi1+b1 Zio . (E.21)

This expression can further be simplified by defining

Po= (bo(I — pXi-1) — a1) (E.22)
Py = bi(I —pXy2) . (E.23)

Equation (E.21) can then be rewritten according to

Yy = Piy—1 + Potpyo + (cpp+bo) Zy—1 + b1 235 . (E.24)
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The optimaly could be obtained by setting, in (E.6) to zero and solving for
1. However, this is not feasible in an online situation. An iterative searcheof th
performance surface would be more appropriate. Thus introduceleegtaearch
for u as X

i1 = e — pVp(t) (E.25)
where@u(t) is an approximation of (E.6) at time instant Hereﬁu(t) is ob-
tained by taking the instantaneous value of (E.6) while replagimgth /i, in the
calculation ofiy;. We thus obtain

fuir = fu + pR{P7 e} (E.26)
where
Py =Py s+ Pyty_o+ (cfit+bo)Zi—1+b1 Z—o . (E.27)

In (E.27)¢ is obtained by exchangingfor /i, in (E.16).

We can now summarize the SWLMS algorithm with automatically updated step-
size (VS-SWLMS) as follows

e = Y — @i hyg— (E28)
furr = i+ pR{Y; oree} (E.29)
p = 1/(1+da(1 — fir11)) (E.30)
bp = —dip (E.31)
by = —ds (E.32)
ar = —da(1— fus1)bo (E.33)
¢ = dobop (E.34)
Z, = R7lge (E.35)
X; = R7o) (E.36)
P = (by (I— i1 Xy) —an) (E.37)
Py = b (I— X 1) (E.38)
i1 = Prhy+ Pyh1 + (€ fig1 + bo) Ze
+ b Zi (E.39)
he = g1 + i1 Ze (E.40)

Prla Ve (E.41)

>
Ky
I
=

Il



Appendix

Solving a Wiener filtering problem
with the automatically tuned
SWLMS algorithm

In order to illustrate the flexibility of automatic tuning of the step-size we shall get
back to the Wiener filtering problem from Appendix A. There, we explaitined
relation between the Wiener filter and the WLMS algorithm. This was illustrated
by verifying that the classical Wiener filter used to clean the signfitbm the dis-
turbing noisev; also was obtained by the recursive WLMS algorithm. We learned
that in order to calculate the optimal step-sjzdor the recursive WLMS algo-
rithm, knowledge about: the hypermodel, the process noise and the nreastire
noise, etc was needed. However, we will in this example show that the alapti
step-sizeu, produced by Benveniste’s step-size method in combination with the
SWLMS algorithm actually convergéto the optimal step-size predicted by the
theorywithout knowledge about the process noise and the measurement\Weise
will also show, by simulation, that this adaptive step-size method produces an
cursive solution the diophantine equation normally needed to calculate the bptima
step-size.

Recall the the signals

Clg™)
ht = D(qil)et (Fl)
Yy = he+u . (F.2)

"Here we mean thau; — fopt aSt — 0o
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110Appendix F. Solving a Wiener filtering problem with the automatically tuned SWialg8rithm

In this numerical example we will usé(¢—*) = 0.009, D(¢~') = [1 — 2 1], the
driving noisee; is white with variance).000006 and the variance of the measure-
ment noisey, is 0.006. Then, the solution to the spectral factorization

where {Jledl3)
N = =S =167%10"", (F.4)
E{llul3} R
is given by
r = 1.0154 (F.5)
B = 1—1.9848¢ " —0.9849¢72 . (F.6)

The optimal step-size for the SWLMS algorithm is then calculated.@@51 by
the relation )

Hopt = 11— ; . (F7)
Now, suppose that weo not know the variances of the process noise or the mea-
surement noisehis means that we cannot calculateand therefore, we will not
be able to solve the diophantine equation. However we circumvent this proble
by applying Benveniste’s step-size scheme. This will produce a reeurpiating
of the step-size: that hopefully converges into the same optimal value as above.
The result is illustrated in Figure F.1. Then, based on the recursivesstegbove
we can also present the recursive solution to the diophantine equatiantbsin
relation (A.9), i.e.,

(Qote™) =g (1 = p)Qi(a™")
Mt

As we see in Figure F.2 the recursive solution manages to find the coarache-

ter values of the polynomiak. This example is interesting in that sense the the
adaptive step-size algorithm, in this case, Benveniste's, correctly estithatpa-
rameters and/s without knowledge of the process noise or the measurement noise.
In other words, the automatically tuned SWLMS algorithm is able to estimate the
relationship between the process noise and the measurementnuiisetly by

the relation between the instantaneous efrf@nd the closed form expression for
the coefficient/prediction filter given in Chapter 2. This Wiener filtering feob

is very trivial in the sense that no regressors are used, and we Igrestimating

the parameteh,. However, we have seen through many different simulations that
this method of estimating the optimal step-size works well for non-trivial tragkin
problems as well.

Bilg™") = (F.8)



111

Adaptive step-size
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Figure F.1: The convergence of the step-size and the caméeamy value of the
parameter- when tracking an integrated random walk parameter distlite

noise. We can here clearly see that the iterative solutipmagahes the optimal
solution
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Adaptive solution to the diophantine equation

T T T T T
— Beta(1)
126 _ Betaadam(l)
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k] 1
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0.6 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure F.2: lllustration of the adaptation towards the étrparameter values of
the polynomials.
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