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This thesis is concerned with reconstruction techniques for ultrasonic array imag-
ing based on a statistical approach. The reconstruction problem is posed as the
estimation of an image consisting of scattering strengths. To solve the estimation
problem, a time-domain spatially-variant model of the imaging system is devel-
oped based on the spatial impulse response method. The image reconstruction is
formulated as a linearized inverse-scattering problem in which the time and space
discrete natures of the imaging setup as well as measurement uncertainties are
taken into account. The uncertainties are modeled in terms of a Gaussian distri-
bution. The scattering strengths are estimated using two prior probability density
functions (PDF’s), Gaussian and exponential PDF’s. For the Gaussian PDF, the
maximum a posteriori (MAP) approach results in an analytical solution in the form
of a linear spatio-temporal filter which deconvolves the diffraction distortion due
to the finite-sized transducer. The exponential distribution leads to a positivity
constrained quadratic programming (PCQP) problem that is solved using efficient
optimization algorithms. In contrast to traditional beamforming methods (based on
delay-and-summation), the reconstruction approach proposed here accounts both
for diffraction effects and for the transducer’s electro-mechanical characteristics.
The simulation and experimental results presented show that the performances of
the linear MAP and nonlinear PCQP estimators are superior to classical beamform-
ing in terms of resolution and sidelobe level, and that the proposed methods can
effectively reduce spatial aliasing errors present in the conventional beamforming
methods.
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Glossary

Notational conventions

Matrices and vectors are denoted using boldface Roman letters and scalars
are denoted using lowercase Roman or Greek letters throughout the thesis.
All matrices are expressed using boldface upper-case letters and all vectors
are, by convention, column vectors.

Two types of vectors occur in the thesis. One type denote the positional
vectors that are used when presenting the sound model. These three dimen-
sional vectors are expressed using r and sometimes have a sub and/or super
script. For instance, rt denotes the position of a point-like target.

The vectors of the second type are of higher dimension. These vectors
typically consist of vectorized matrices or of samples from a signal or noise
sequence. A vectorized matrix a is defined by

a , vec(A) = [aT
0 aT

1 · · ·aT
J ],

where aj denotes the jth column in A and J is the total number of columns
in A.

Symbols

Below the most frequently used symbols in the thesis are summarized:
∗ Convolution in time
.
= Rounding towards the nearest integer

, Equality by definition
AT The transpose of matrix A

aj The jth column of matrix A

(A)m,n Element (m, n) in matrix A

vec(·) Operator that transforms a matrix lexicographically to a vector
E The expectation operator with respect to signals
||x||2 The L2 norm of the vector x (||x||2 = xTx)
tr{·} The trace of a matrix (tr{A} =

∑

i(A)i,i)
|A| The determinant of the matrix A

t Time
k Discrete-time index
f Frequency in Hertz
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CHAPTER 1

Introduction

ACOUSTIC array imaging is a technique used in many fields such as
medical diagnostics, sonar, seismic exploration, and non-destructive

testing. The objective with acoustic imaging, in general, is to localize and
characterize objects by means of the acoustic scattered field that they gen-
erate. An array of sensors facilitates this task since the diversity introduced
by transmitting and receiving acoustic energy from many positions enables
localization of the scatterers.1 In other words, by using an array it is possible
to both localize remote objects and estimate their scattering strengths.

In contrast to electromagnetic array imaging, where narrow band signals
with wavelengths exceeding the array antenna elements are used, broadband
pulsed waveforms are commonly used in acoustic array imaging. The wave-
length corresponding to the center frequency of these pulses is often of the
same size as the array elements. This make diffraction effects apparent
resulting in a frequency dependent beam directivity of the array elements.

Array imaging is, in this thesis, understood as a process which aims
at extracting information about the scattering strength of an object under
study. A realistic model of the imaging system is required to perform a
successful imaging.

The aim of this thesis is to develop and explore new model based imaging

1Acoustic arrays have also become popular since they are less expensive than, for
example, X-ray computerized tomography (CT) or magnetic resonance imaging (MRI)
systems [1].
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2 Chapter 1. Introduction

methods by utilizing the spatial diversity inherent in array systems by taking
diffraction effects as well as the broadband pulsed waveforms into account.
This is performed using a model-based approach where the model is obtained
from the known geometry and electro-mechanical characteristics of the array.

A suitable model can be obtained by solving the forward problem of
wave propagation. The main objective in acoustic array imaging is, however,
finding a solution to the backward, or the inverse problem, which is defined
here as image reconstruction from the ultrasound data. More specifically, the
image under consideration, which consists of the scattering strength at every
observation point in the region-of-interest (ROI), has to be estimated from
the received acoustic field. That is, the image cannot be measured directly,
it can only be observed indirectly through the scattered field measured at
the (limited) array aperture which, furthermore, is distorted due to the
electro-mechanical characteristics of the measurement system. Therefore,
the image has to be estimated, or reconstructed, from the observed data.
This can be seen as a process of removing the effects of the observation
mechanism, which in our case is the processing needed to compensate for
the wave propagation effects and the electro-mechanical properties of the
array.

Traditionally, acoustic array data has been processed by means of spatial
filtering, or beamforming, to obtain an image of the scattering objects [2–
4]. Beamforming using the classical time-domain delay-and-sum method is
analogous to the operation of an acoustical lens and it can be performed
efficiently using delay-line operations in real time or using post-processing
as in synthetic aperture systems [5–8]. Conventional beamforming, which
is essentially based on a geometrical optics approach [9], is computationally
attractive due to its simplicity but is has several inherent drawbacks. In
particular, conventional beamforming does not perform well in situations
where the ultrasound data is obtained using an array that is sparsely sampled
which, unfortunately, is quite common in many applications.

The main motivation for developing the reconstruction algorithms dis-
cussed in this thesis is the need to improve the performance of traditional
ultrasonic array imaging methods. To overcome, or at least alleviate, the
problems with conventional beamformers, a model based time-domain ap-
proach is proposed here. It takes into account the diffraction pattern of an
arbitrary array setup. This model accounts for all linear effects, such as,
transducer size effects, side- and grating lobes, focusing, and beam steering.
By a proper design of the reconstruction algorithm it should be possible
to compensate such effects and thereby achieve reconstruction performance
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superior to conventional array imaging.

The rest of the chapter is organized as follows: In Section 1.1, some basic
concepts in ultrasonic array imaging are presented. In particular an intro-
duction to elastic wave propagation, scattering and array image formation
is given. This is followed by Section 1.2, where conventional array imaging,
or beamforming is discussed. Section 1.3 presents the general formulation of
the array imaging problem, and in Section 1.4 the contributions of this the-
sis are summarized. A short review of earlier related work is also presented.
Finally, Section 1.5 gives the outline of this thesis.

1.1 Basic Ultrasonic Imaging Concepts

The basic physical property behind ultrasonic imaging is that an impinging
acoustical wave is scattered by a discontinuity, that is, a change in the acous-
tic impedance of an otherwise homogeneous object. The received scattered
wave is then converted to an electric signal which normally is sampled and
stored in a computer, or a dedicated ultrasonic instrument.

The scattering is governed by a change in the density, ρ, and sound
speed, c, of the inspected specimen. The reflected and transmitted pressure
amplitudes are described by the transmission and reflection coefficients, Tt

and Tr respectively. For a planar discontinuity, these coefficients are given
by the acoustic impedance, z1 = ρ1c1, before the discontinuity, and the
acoustic impedance, z2 = ρ2c2, after the discontinuity, where ρ1 and ρ2 are
the respective densities and c1 and c2 the corresponding sound speeds. Let
pi denote the incident pressure. Then the pressure of the reflected wave, pr,
is given by [10]

pr = Trpi =
z2 − z1

z2 + z1
pi (1.1)

and the pressure of the transmitted wave, pt, is

pt = Ttpi =
2z2

z2 + z1
pi. (1.2)

For a hard discontinuity we have that z2 > z1 and and for a soft z2 < z1. For
soft scatterers, the reflection coefficient is negative, which physically results
in a phase shift at the boundary of the scatterer.2

2Later when the reconstruction algorithms are discussed it will be shown that the
reconstruction performance can be improved if it is known a priori whether the scatterer
is hard or soft.



4 Chapter 1. Introduction

The acoustic waves are generated using a transducer which converts
an electrical waveform to an acoustical (or elastic) wave and vice versa.3

The driving input signal to the transducer is normally a sinusoidal signal,
resulting in a narrowband continuous wave (CW), or a pulsed broadband
signal.

In CW imaging it is difficult to separate the scattered and the incident
field. This is normally solved by using tone-burst signals that still are nar-
rowband but allow for a sufficient time separation between the transmitted
and received signals.4 Henceforth in this thesis it will be assumed that there
always is a sufficient time separation between the transmitted and received
waveforms.

1.1.1 Ultrasonic Transducers

Good acoustic coupling between the transducer and the specimen/medium
is required for an acoustic wave to propagate efficiently into the specimen.
Therefore many types of transducers are available to suit different appli-
cations. The two perhaps most common types are contact and immersion
transducers. Contact transducers are common in non destructive evalua-
tion (NDE) applications where the transducer is placed on the surface of
the specimen, normally with a couplant gel or water between the trans-
ducer and the specimen’s surface to provide sufficient wave transfer into the
specimen.

The most common type of transducer is the piezoelectric transducer
which is used for both contact and immersion measurements. A typical
piezoelectric contact transducer is shown in Figure 1.1. The piezoelectric
crystal is plated on both sides to create electrodes where the driving input
signal can be applied. If an electrical signal is applied to the electrodes, then
the crystal will expand and thereby generate an acoustic wave. The crystal of
a contact transducer is also normally protected with a ceramic wear plate.
Moreover, the backface of the crystal is loaded with a highly attenuating
medium, the so-called backing, which controls the shape and duration of
the output waveform. Without the backing the transducer would have a
very distinct resonant frequency resulting in a narrowband system, that is,
the transducer would have a long impulse response which deteriorates the

3If one makes the comparison with sound waves then the transducer acts both as a
microphone and a as loudspeaker.

4In some applications, for example sonar, frequency sweeped chirp signals are also
common.
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Matching
electrical 
circuit

Backing

ElectrodesCrystal

Connector

Wear plate

Case

Figure 1.1: Schematic view of a piezoelectric contact transducer. The piezo-
electric crystal is protected on the front side with a ceramic wear plate and
attached to a highly attenuating backing medium on its backface to reduce
resonant oscillations.

temporal resolution in many systems.

Immersion transducers are similar to contact transducers with the dif-
ference that an immersion transducer has often a quarter-wave matching
layer on its surface instead of the ceramic wear plate, see Figure 1.2(a). The
quarter-wave matching is specifically designed to allow an efficient transfer
of the acoustic energy into the medium (i.e., water). Immersion transduc-
ers may also have an acoustic lens attached to the front crystal surface, as
illustrated in Figure 1.2(b), for concentrating the acoustic field to a narrow
region.

1.1.2 Ultrasonic Image Presentation Methods

Acoustic imaging is in many respects similar to electromagnetic imaging. In
particular pulse-echo imaging is similar to radar in the sense that in both
fields the round-trip time of the pulse is utilized to estimate the distance to
the scatterer. More specifically, the arrival time of the return echo provides
range information of the scatterer and by acquiring the signals from different
antenna/transducer positions, the scatterer’s bearing can also be estimated.

A typical immersion pulse-echo experimental setup is depicted in Fig-
ure 1.3(a). The received digitized radio frequency (RF) waveforms are known
as A-scans (Amplitude-scans) and are the basic data unit for broadband
acoustic imaging; an A-scan can be visualized as an oscilloscope presenta-
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Quarter-wave 
plate

(a) A piezoelectric immersion
transducer. The quarter-wave
plate is designed to allow an ef-
ficient energy transfer into the
water.

Acoustic lens

(b) A piezoelectric focused
immersion transducer. The
acoustic lens concentrates the
acoustic energy to a narrow re-
gion.

Figure 1.2: Illustration of immersion transducers.

tion of the received waveform as shown in shown in Figure 1.3(b).

As mentioned above, the round-trip time of the echo yields information
about the range to the scatterer. This information is, however, ambigu-
ous since many scatterer positions can result in identical round-trip times.
Therefore, to enable localizing scatterers, it is necessary to sample the wave
field spatially by moving the transducer or by using several transducers. An
image obtained by a linear movement of the transducer and coding the re-
ceived waveform amplitudes, from many transducer positions, in colors or
as gray levels is usually denoted a B-scan. An example B-scan is shown in
Figure 1.3(c) and if the scatterer is located along the scanning direction,
the distance, zsc, between the transducer and the scatterer can be computed
from the shortest roundtrip-time, trt, found in the B-scan, that is, trt = 2zsc

c .

If the scatterers are located in a certain volume then a surface scan
can be performed resulting in a 3D data volume. A common technique to
visualize 3D data in acoustical imaging is the so-called C-scan. A C-scan
can be thought of as a photograph taken from above the specimen, obtained
by taking the maximum value of the received A-scans in a particular time-
frame. Figure 1.3(d) shows an example C-scan and it can now be seen that
the scattering energy is concentrated, or “has a peak”, at x = y = 0.

The resolution in B- and C-scan imaging is determined primarily by
the beam shape of the used transducer. Using a highly diffracting (small)
transducer results in poor lateral resolution and using a large or focused
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(a) A typical immersion pulse-echo
measurement setup.

60 65 70 75 80

−1

−0.5

0

0.5

1

t [µs]

N
or

m
al

iz
ed

 A
m

pl
itu

de

(b) A-scan (Amplitude-scan) plot.
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(c) B-scan image obtained by a hor-
izontal movement of the transducer.
The amplitudes of the waveforms cor-
responding to each transducer position
is coded as gray levels in the B-scan.
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(d) C-scan image obtained by
scanning the transducer in the
xy-plane. A C-scan is formed
by taking the maximum value
of the received A-scans in a
particular time-frame.

Figure 1.3: Common data presentations types in pulse-echo ultrasonic imag-
ing.
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transducer improves the resolution. This is analogous with optical imaging
where the sharpness of the image is improved by using a lens. In acoustical
imaging, the acoustic lens compensates for the arrival times of the sound
waves originating from the focal zone of the lens, yielding a coherent sum-
mation of those waves. The width and depth of the focal zone depends of
the aperture and focusing depth of the lens. A larger lens has a more nar-
row focal zone than a small lens focused at the same depth [9]. Acoustic
imaging using physical lenses may therefore require repeated scanning with
different large aperture lenses, focused at different depths, to obtain volume
data with sufficient resolution.

A-, B- and C-scan imaging are the most rudimentary methods used in
acoustical imaging where almost no processing of the data is required. They
enable, by simple means, visualization of the scattering strengths but their
usefulness is also, somewhat limited. In particular, the user that observes
the images must be skilled enough to be able to interpret the results, which
can become rather complicated since responses from many scatterers may
be superimposed. The mechanical scanning required to form an image when
using physical lenses is also time consuming which limits the image frame
rate. For these and other reasons, imaging using physical lenses is often
impractical or even unfeasible. Therefore, a considerable interest has been
observed in lensless acoustic imaging and array imaging where focusing can
be performed after acquiring data, as in synthetic aperture imaging or in
real time by using physical array systems. It will be shown later in this
thesis that the use of computer analysis can yield further improvements
since signal processing can contribute to a substantial improvement of the
resulting images.

Image Display Methods for Broadband Sound Fields and Sig-

nals

Properties, such as, lateral- and temporal resolution, contrast etc are impor-
tant measures in ultrasonic imaging. For CW signals and far-field analysis
there exist well established presentation methods, as we will describe in Sec-
tion 1.2 below, but for broadband and near-field data special presentation
methods are required. To facilitate evaluation of broadband data, four differ-
ent display methods are used in this thesis, each one of which being suitable
for a different purpose. The display methods are shown in Figure 1.4 using
example waveform data from a 1D array simulation. Figure 1.4(a) shows
3D snapshot graph of a (simulated) broadband waveform at one time in-
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(a) 3D snapshot.
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(d) On-axis waveform.

Figure 1.4: Image display methods used in throughout the thesis.

stant. Also shown in the 3D graph is the profile of the acoustic field, that
is, a projection of the maximum amplitudes of the field on the x-axis. This
profile plot is also shown in Figure 1.4 (b). In Figure 1.4(c) a 2D image of
the waveform is depicted, whereas in Figure 1.4(d) the on-axis waveform is
displayed. These four display methods will be used to present both pressure
waveforms, of the type shown in Figure 1.4, and reconstructions, that is, an
image or estimate of the insonified object’s scattering strength obtained by
processing ultrasound data.
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The profile plot can be seen as the broadband counterpart to the CW
beampattern plot which is suitable for studying the lateral resolution or the
contrast. The temporal or on-axis resolution is most easily studied using
plots of the type shown in Figure 1.4(d). The 2D and 3D plots are suitable
to obtain an overall view of a wavefield or a reconstruction.

1.1.3 Wave Modes of Elastic Waves

In addition to the comparison with radar imaging above, it should be noted
that, even though radar and acoustic pulse-echo imaging have many sim-
ilarities there are also some fundamental differences. The most apparent
difference is that elastic waves, as opposed to electromagnetic waves have
many propagation modes.

The two dominating modes in acoustic imaging are longitudinal or pres-

sure waves and shear or transversal waves [10, 11]. In longitudinal wave
propagation, the particle displacement is in the same direction as the prop-
agation whilst the particle displacement is orthogonal to the propagation
direction for shear waves. In liquids and gases, shear wave propagation is
strongly attenuated and only the longitudinal mode will therefore propa-
gate. In solids, both longitudinal and shear waves can propagate. The wave
modes have different sound speeds and the longitudinal sound speed, cp, in
metals is roughly twice the shear wave speed.

Furthermore, elastic wave propagation is complicated by the fact that
mode conversion occurs at a non-normal reflection and refraction at a dis-
continuity inside a test specimen, e.g., a metal test object. A typical ex-
ample, from NDE imaging, is the multiple mode conversions that can occur
at cracks [12]. There, mode conversion generates both longitudinal and
shear diffracted waves at the tips of the crack. A surface wave may also
be generated along the crack, which has different sound speed compared to
longitudinal and shear waves, resulting in additional diffracted waves at the
crack ends [13]. The resulting received signals may therefore consist of a
mix of different wave modes which may be very difficult to discriminate.
Fortunately, in many applications the echoes, corresponding to each wave
mode can be resolved since they will arrive with a time separation caused
by the different sound speeds of the wave modes.

In the work presented in this thesis all measurements have been per-
formed in water in order to avoid mode converted waves and thereby simpli-
fying the interpretation of the obtained results. The only exception where
longitudinal-shear-longitudinal mode conversion could possibly occur was
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in an experiment with scatterers inside an immersed copper block. That
experiment was, however, performed in such way that only the non-mode
converted longitudinal waves could arrive in the given time frame.

1.1.4 Ultrasonic Measurement Configurations

So far, we have mostly discussed acoustic imaging using a single, possible
scanned, transducer. Such imaging systems are cost effective but the acqui-
sition frame rate is insufficient for many applications. Also, the resolution in
B-scan images, obtained from mechanically scanned systems, is defined by
the beampattern of the transducer. As noted above, high resolution B-scan
imaging therefore normally requires focused transducers and, consequently,
the focusing depth cannot be changed during acquisition in a flexible man-
ner. On the other hand, array imaging does not have these limitations
and therefore, a considerable interest in array imaging methods has been
observed.

Array imaging methods can be classified in two groups: synthetic aper-

ture imaging and physical array imaging. In synthetic aperture imaging the
array aperture is obtained by processing sequentially recorded data from dif-
ferent transducer positions, typically using a small transducer with a wide
beampattern. Thus, transmit focusing cannot be achieved in synthetic ar-
ray imaging and focusing can only be performed in the receive mode on
the recorded data. On the other hand, a physical array comprising several
transducer elements allows for both steering and focusing of the transmitted
beam. A physical array can also be rapidly re-focused enabling fast beam
sweeping systems. Physical array systems have therefore become popular, in
particular, in medical imaging where real-time imaging is of great interest.

Historically, a distinction has been made between linear and phased

(physical) arrays. A linear array system does not have any delay-line cir-
cuitry that enables focusing of the transmit beam. Instead, linear arrays
are used for fast electronic scanning by switching among the active elements
of the array. Phased array systems, on the other hand, are able to both
steer and focus the beam by applying suitable time delays on the driving
input signals to the array elements. The array that has been used in the
experiments presented in this thesis is of the latter type and is consequently
capable of focusing the beam.

An array system, whether synthetic or physical, can be classified accord-
ing to its configuration as shown in Figure 1.5. Monostatic configurations,
shown in Figure 1.5(a), are common in synthetic aperture imaging where the
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Target Region

Transmitter
 and receiver
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Target Region

Transmitter Receiver

(b) Bistatic.

Target Region

Transmi�ers Receivers

(c) Multistatic.

Target Region

Transmitting Array

Receiving Array

(d) Transmission.

Figure 1.5: Common array measurement methods.

same transducer is used both in transmit and receive mode. Bistatic systems,
also known as pitch-catch systems, are used in, for example, NDE applica-
tions to detect diffraction echos from crack tips, i.e., time-of-flight diffraction

(TOFD) imaging [14]. A bistatic system is shown in Figure 1.5(b). Physical
arrays can be classified as multistatic, see Figure 1.5(c), since many ele-
ments are used simultaneously both in transmit and receive mode. Finally,
in transmission imaging, shown in Figure 1.5(d), the specimen is located
between two transducers or physical arrays.

The above presented nomenclature will be used throughout this thesis.
Note however that we will primarily consider monostatic and multistatic
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configurations.

1.2 Conventional Array Imaging

In order to obtain a high resolution image from array data, the data must be
compensated for the effect of the wave propagation and the array imaging
system. The classical method to solve this problem is array beamforming.
In this section we will present the basic properties of classical beamforming.
This is done in order to introduce the reader not familiar with array imaging
to the subject, but also to introduce concepts used later in the thesis.

As mentioned above, the operation principle of a beamformer in conven-
tional array imaging is the same as that of an acoustic lens. The basic idea
is to impose delays on the transmitted and/or received signals so that the
transmitted acoustic energy or the received signals are combined coherently
at a focusing point while other signals are combined incoherently. A beam-
former can be implemented using both analog delay-line circuits or using
digital hardware [15, 16].

The transmit focusing operation of an acoustical lens and a phased array
is illustrated in Figure 1.6. Focusing of the acoustical lens, shown in Fig-
ure 1.6(a), is achieved by the curvature of the aperture whereas the phased
array is focused at the same point by imposing time-delays that corresponds
to the curvature of the lens.

Reception of the beamformer is analogous to the transmission process
and the delays of the received signals can be implemented using delay-line
circuitry and a summing amplifier or by digital shift operations. The opera-
tion of a receive mode beamformer is illustrated by the block-diagram shown
in Figure 1.7. The time-delays, for the corresponding array elements, are
denoted τn for n = 0, 1, . . . , L− 1, where L is the number of array elements.

The output signal for the nth element is denoted u
(n)
o (t) and wn is an aper-

ture tapering (or apodization) weight. Apodization, which will be discussed
in more detail below, is a somewhat crude method, originating from spectral
analysis, used to control the sidelobe levels in linear beamforming.

The simple delay-and-sum (DAS) operation of the beamformer does not
take any directivity of the array elements into account, hence the elements
are treated as point sources/receivers. Assuming that the point source ele-
ment model is viable for the array, the performance of the DAS beamformer
can be analyzed in the frequency domain by considering a sum of phase-
shifted spherical waves. The response for a sinusoidal source, at the point
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Focus point

(a) Physical trans-
ducer with curva-
ture radius R

Focus point

(b) Phased array focused
at depth R by applying
suitable delays to the
transmitted signals for
each array element.

Figure 1.6: Illustration of transmit focusing using an acoustical lens and a
phased array.

 

Figure 1.7: Block diagram of a conventional delay-and-sum receive mode
beamformer.
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(x, z), can then be expressed as [9]

H(x, z) =
L−1∑

n=0

ejω(t−Rn/cp)

Rn
wnejωτn , (1.3)

where cp is the sound speed, wn an apodization weight, and
Rn =

√

(xn − x)2 + z2 is the distance from the observation point to the nth
array element positioned at (xn, 0), see Figure 1.8. The phase-shift due to

(x,z)

xn-x

x
n

Rn

d

DArray aperture

Pitch

Figure 1.8: A 1D array with an array pitch d and an aperture D.

the propagation distance from the observation point to the nth element is
given by ωRn/cp and the phase-shift ωτn is due to the focusing operation.

Conventional Beampattern Analysis

In this thesis we are primarily concerned with broadband array imaging and
modeling, since broadband modeling offers an accurate description of the
imaging system. However, array imaging performance is often analyzed us-
ing narrowband and far-field approximations. We will discuss the differences
between narrowband and broadband analysis in later chapters of this thesis,
and a short introduction to narrowband analysis is, therefore, given here.

To simplify the analysis the paraxial approximation is normally applied
which means keeping only up to second order terms in the Taylor expansion
of Rn in the phase term in (1.3) and only the zero-order term for the ampli-
tude term, 1

Rn
, and also assuming that (xn − x)2 � z2. In such case a Rn

reduces to Rn ≈ z + (x−xn)2

2z in the phase term.
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Consider now focusing at the point (0, z). Using the paraxial approxi-
mation, the focusing delays are given by

τn
∼= 1

cp
(z +

x2
n

2z
), (1.4)

and the response of a source at (x, z), after focusing will be

H(x, z) ∝ e
jω(t− x2

2zcp
)

L−1∑

n=0

e
jωxxn

zcp . (1.5)

After performing the summation in (1.5) the following expression defining
the magnitude of H(x, z), or the beampattern is obtained

|H(x, z)| ∝
∣
∣
∣
∣
∣

sin(Lπxd
λz )

sin(πxd
λz )

∣
∣
∣
∣
∣
, (1.6)

where λ is the acoustic wavelength. The beampattern can also be expressed
as a function of the angle, θ, from the center axis of the array to the source
point, (x, z), which in the far-field is given by

|H(θ)| ∝
∣
∣
∣
∣
∣

sin(Lπ sin(θ)d
λ )

sin(π sin(θ)d
λ )

∣
∣
∣
∣
∣
. (1.7)

To illustrate the behavior of the DAS beamformer, two normalized beam-
patterns, computed using (1.7) for a phased array focused at (0, z), are
shown in Figure 1.9. The beampatterns obtained for the same aperture
D = 8λ are plotted as a function of the angle θ for two different array
pitches, d = λ/2 and d = 2λ. Noticeable is that the array pitch does not in-
fluence the main beam width or the amplitude of the sidelobes. The width of
the main beam or the lateral resolution can only be improved by increasing
the aperture, D. To see this, consider the standard criterion for resolving
two point sources known as the Rayleigh criterion [9]. The Rayleigh crite-
rion is based on the idea that two point sources of equal amplitude can be
separated if the first source is placed at the maximum point of the beam-
pattern, x = 0, and the second source at a point where the beampattern is
zero. The first zero of the beampattern occur at the distance

dx =
λz

Ld
=

λz

D
= λF, (1.8)

where F = z/D is the so-called F -number. The Rayleigh criterion, which
is a rough measure of the lateral resolution attainable by a physical lens or
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(a) d = λ/2.
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(b) d = 2λ.

Figure 1.9: Beampatterns for a phased array focused at x = 0, with an
aperture of 8λ, and wn ≡ 1. The beampattern in (a) is for an array with a
pitch d = λ/2 and in (b) for an undersampled array with a pitch d > λ/2.

a classical array imaging, states that the resolution is determined by the
product of the wavelength and the F -number.

Another characteristic feature of classical array imaging can be seen in
Figure 1.9(b). Here, the array pitch d is 2λ, and aliased lobes are apparent
at θ = 30 deg. These so-called grating lobes occurs due to the fact that the
sinusoid signal arrives in phase, at all array elements, also for other angles
than the focusing direction if d is too large. If strong scatterers are present
in the grating lobes, they result in ghost responses in the beamformed image,
which is highly undesired. To avoid grating lobes the array sampling theorem

criterion has to be fulfilled, that is, the array pitch, d, must be less than
λ/2 [9]. Arrays that have a pitch that is larger than λ/2 are referred to as
undersampled or sparse arrays.

The sidelobes seen in Figure 1.9 is a characteristic feature of classical
beamforming, which severely limits contrast in the images. This effect is
most apparent when imaging weakly scattering objects in the presence of
strong ones. As can be seen in Figure 1.9, the first sidelobe is only about
13 dB below the main lobe, and a strong scatterer in the side-lobe may,
therefore, completely obscure a week scatterer in the main lobe.

As mentioned above, the sidelobe levels can be controlled by performing a
smooth apodization of the aperture. This is a technique known as windowing
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in spectral analysis where the commonly used window functions are, for
example, Hamming, Hanning, and Gaussian functions. Figure 1.10 shows
an example of apodization where a Hanning-apodized aperture has been
compared to an un-apodized, or rectangular-apodized, aperture. Clearly,
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Figure 1.10: Beampatterns for an un-apodized phased array (dash-dotted
line) and a Hanning-apodized phased array. The apodization procedure has
reduced the sidelobe levels at the expense of a wider main lobe.

the sidelobe levels have been decreased substantially by the apodization
procedure. This has, however, occurred at the expense of a significantly
increased width of the main lobe. This result can be explained by the
fact that apodization effectively reduces the aperture size since apodization
functions normally have low weight coefficients near the ends of the aperture.
In some applications apodization may be a viable technique but if the data is
acquired using a physical array it is highly undesirable to discard a significant
portion of the acoustic energy by tapering the aperture.

Above, we have presented the most important properties of classical
CW beamforming in order to introduce concepts common in acoustic ar-
ray imaging. This thesis is, however, concerned with broadband acoustic
imaging where the above presented simplified analysis is insufficient. In
particular, for broadband signals the grating- and sidelobes will not appear
as distinctly as for the CW case, shown in Figure 1.9, since the amplitude of
many frequencies will be super-imposed. From (1.6) it can be seen that the
beampattern is a function of the wavelength, λ, and the location of side- and
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grating lobes will, therefore, change with frequency. Thus, super-imposing
the amplitude of many frequencies will smoothen the beampattern [9].

Furthermore, classical array imaging has many deficiencies that limit its
usefulness, especially for sparse array data. Particular problems associated
with conventional array imaging are:

• The array elements are treated as point sources. That is, the DAS
operation does not compensate for the specific diffraction effects due
to finite sized array elements.

• The distance between the array elements, array pitch, must be less
than half the acoustic wavelength to avoid artifacts from aliased lobes.

• From (1.8) it is apperent that the resolution is determined mainly by
the array aperture. In particular, the lateral resolution is not depen-
dent on the quality of the signal, measured for instance by the signal-
to-noise ratio (SNR). Nor does the time available for acquiring data
influence the resolution (see also [4, 17]). This implies that gathering
data over a longer period of time would not improve lateral resolution.

• The sidelobe levels can only be reduced by tapering or apodizing the
aperture which has the cost of a wider main-lobe.

• The range- or temporal resolution is determined by the interrogating
wavelet. This fact was not mentioned in the discussion above, but the
interrogating wavelet is determined by the electro-mechanical proper-
ties of the array elements and the driving input signal which results
in a band-limited waveform. The temporal resolution is then roughly
given by the length of that waveform [18].

The first two issues above are perhaps the most severe since they impose
restrictions on the array design, that is: 1) the element size must be small in
comparison to the acoustical wavelength and, 2) the array sampling theorem
limits of the array pitch. It is of great interest to relax these two restrictions
since this will allow for larger sized array elements, capable of transmitting
more acoustic power, as well as sparse array designs.

In many medical and NDE applications, where the available apertures
are only a few tens of wavelengths and the F -numbers are in the order of
unity or more, the resolution achieved using classical beamforming is rather
limited. It is, therefore, desirable to develop reconstruction algorithms that
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are not restricted by the Rayleigh limit (1.8).5

Classical beamforming using apodization is today, essentially, a reminis-
cence from the past when high-resolution imaging was performed by using
lenses. When fast computers are available beamforming in its classical form
is not any longer optimal in any sense of optimal information processing

and as E.T. Jaynes stated [29]: “once one is committed to using a com-
puter to analyze the data, the high-resolution imaging problem is completely
changed”. The E.T. Jaynes’ paper is concerned with optical imaging but
the results are equally applicable to acoustic imaging. The conclusion from
this paper is nicely summarized by:

1. Keep your optical system clear and open, gathering the
maximum possible amount of light (i.e., information).

2. Don’t worry about wiggles in the point-spread function; the
computer will straighten them out far better than apodiza-
tion could ever have done, at a small fraction of the cost.

3. For the computer to do this job well, it needs only to know
the actual point-spread function G(x), whatever it is. So
get the best measurement of G(x) that you can, and let the
computer worry about it from then on.

4. What is important to the computer is not the spatial ex-
tent of the point-spread function, but its extent in Fourier
transform space; over how large “window” in k-space does
the PSF give signals above the noise level, thus deliver-
ing relevant information to the computer? Apodizing con-
tracts this window by denying us information in high spa-
tial frequencies, associated with the sharp edge of the pupil
function. But this is just the information most crucial for
resolving fine detail! In throwing away information, it is
throwing away resolution. Apodization does indeed “re-
move the foot;” but it does it by shooting yourself in the
foot.

Translated to acoustical imaging this means that one should transmit as

5Resolution improvement beyond the Rayleigh limit, is often referred to as super-

resolution or wavefield extrapolation [17]. Super-resolution has been the topic for intensive
research in both electromagnetic and acoustic imaging [19–28].
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much acoustic energy as possible in all directions6 in order to maximize the
signal-to-noise ratio and then let the computer compensate for interrogated
waveforms and diffraction effects.

Our approach which is discussed in more detail in the next section will
follow to E.T. Jaynes’ suggestions.

1.3 Problem Formulation

The general objective of array imaging, that is, extracting information on
the scattering strength of an object under study is, as discussed above,
traditionally performed using beamforming. The need for new and more
powerful imaging methods is due to the unsatisfactory performance of the
traditional DAS beamforming observed especially in the near field.

In the approach presented here the imaging problem is formulated as an
image reconstruction problem. The basic idea is to create a model of the
imaging system that describes the wave propagation and all other proper-
ties of the array system with sufficient accuracy compensate for the image
degradation introduced by the array system. Problems of this type, known
as inverse problems, often require a sophisticated mathematical tools to
obtain a satisfactory solution. This is particularly evident for noisy and in-
complete data. In particular, when pursuing image reconstruction one must
bear in mind that [31]:

• Obtaining true solutions from the imperfect data is impossible.

• Computational and methodological complexity has to be balanced
against the quality of the results.

The first issue is related to the fact that the reconstruction performance
depends on the amount of information or evidence that is available. That
is, the reconstruction performance is directly related to the available back-
ground information regarding the scatterers and the imaging system as well
as the evidence contained in the data. In particular, if the model does not
fit the data well, then the reconstruction performance will be poor, even if
the data is almost noise free. On the other hand, an excellent reconstruc-
tion performance can be obtained, even for very noisy data, if a strong a

priori information of the scattering amplitudes is available. An optimal

6In medical applications upper limits on average pressure amplitude is often imposed
to avoid damage and pain to the patient [30].
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strategy should, therefore, properly process both the prior information and
the information contained in the data.

The second issue is due to the practical reality: the computational ca-
pacity and the available memory resources are limited, which requires com-
promises in the design of the reconstruction algorithm. The reconstruction
algorithms discussed in this thesis are more computationally demanding
than classical beamforming but all the algorithms have been implemented
on as-of-today standard PC hardware.

As pointed out above, it is vital for the reconstruction performance that
both the model is accurate and the reconstruction algorithm makes use of
all the available information. These two topics are discussed further below.

1.3.1 The Image Formation Model

The array imaging system has been modeled as a linear time-invariant (LTI)
system. Such a system can be modeled using convolutions of the array input
signals and the impulse responses corresponding to each array element and
observation point. However, it should be emphasized that, even if the system
is time-invariant it is in general not position invariant. That is, the impulse
responses, corresponding to each array element are functions of the position
of the observation point.

To simplify the discussion we consider a pulse-echo measurement using
a single array element. Furthermore, we consider scattering from a single
scatterer at observation point r. The scatterer is assumed to have a scat-
tering strength o(r). The received signal, uo(k), can then be modeled as a
noise corrupted convolution

uo(t) = o(r)h(r, t) ∗ ui(t) + e(t), (1.9)

where h(r, t) is the double-path impulse response of the overall ultrasonic
system, ui(t) is the input signal driving the transducer element and, e(t)
is the noise.7 In order to obtain an accurate model for broadband array
imaging the impulse response, h(r, t), must account for both the diffrac-
tion effects associated with the transducer element and the electro-acoustic
properties of the transducer. The impulse responses are therefore generally
spatially variant.

7The “noise” term describes everything that is observed in the data that can not be
predicted by the linear model. There is no judgment made whether the error is “random”
or “systematic”. It can, however, be understood that the noise term is a combination of
modeling errors and thermal measurement noise.
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To obtain a model useful for array imaging it is not sufficient to con-
sider only a single observation point. If we confine our model to be linear,
then (1.9) can easily be extended by summing contributions from many ob-
servation points in a suitable region. Throughout this thesis it is assumed
that the scatterer’s locations are known approximately so that a ROI can
be defined within the medium, or specimen, before any experiments are
conducted.

Note that if the imaging system is properly modeled all scatterers illu-
minated by the incident field are confined within the ROI. Otherwise, the
fields originating from the scatterers outside the ROI may cause large mod-
eling errors. In particular, it is impossible for the reconstruction algorithm
to map the scatterers outside the ROI to the correct location.

The single A-scan model can now be extended to include several elements
or transducer positions. The extended discretized model can be expressed
as
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= Pd(ñ,n)oñ. (1.11)

The vector yn is the A-scan acquired using a transducer at (xn, 0), h
d(ñ,n)
m is

the discrete-time system impulse response corresponding to the observation
point (xñ, zm) for the nth transducer position, o is the vectorized scattering
image, and e is the noise vector. The model (1.10) is described in detail
in Chapter 4. The propagation matrix, P, contains the impulse responses
for all observation points to the corresponding array elements. Thus, the
model (1.10) is a fully spatial variant model of the imaging system.
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The benefit of using a spatial variant model, compared to a spatial in-

variant approximations, is that the model is equally valid in the near-field
as in the far-field of the aperture.8 A reconstruction method based on the
model, (1.10), should therefore be applicable both in the near- and the far-
field.

1.4 Thesis Contributions and Relation to Earlier

Work

Ultrasonic imaging has been an active research area for at least 40 years [32].
A substantial part of that research has been on ultrasonic array imaging
and beamforming. A considerable effort has been spent to improve the
beamforming performance. Here, we present a selection of previous research
related to the array imaging problem treated in this thesis.

The previous efforts can roughly be categorized as 1D and 2D process-
ing methods. The 1D methods aim at improving the temporal or range
resolution in conventional beamforming. Two common approaches are:

Pulse compression: In synthetic aperture radar (SAR) and synthetic aper-
ture sonar (SAS) applications, the incoming echos are usually time-
or range-compressed by correlating them with the transmitted wave-
form [33–35]. If the correlation pattern has a sharp peak, then the
temporal resolution is increased. In SAS frequency sweeped so-called
chirp signals are often used, and it usually results in a sharp correlation
pattern [36].

1D Deconvolution: In medical and NDT applications it is most common
to use broadband pulse excitation and the pulse shape is therefore
mainly determined by the electro-mechanical properties of the used
transducer. In this case pulse compression will in general not improve
temporal resolution much. For these applications 1D deconvolution
techniques can be utilized to improve temporal resolution [37, 38].

Various 2D methods have been utilized to improve both temporal and
lateral resolution. Two examples are:

8The drawback of using a spatial variant model is the rather large amount of computer
memory that is required to store all impulse responses.
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2D Deconvolution with spatial invariant kernels: 2D deconvolution
methods have been applied to ultrasonic array imaging where the for-
ward problem has been approximated using a spatial invariant convo-
lution kernel to allow standard Wiener filtering techniques [39–42].

Inverse filtering methods: Inverse filtering methods have recently been
applied to acoustic imaging. In these methods a deterministic ap-
proach is taken and the inverse is found by means of singular value
decomposition techniques [43–45].

In addition to the approaches presented above, Bayesian linear minimum
mean squared error (MMSE) methods have been applied to ultrasonic array
imaging, but only for narrow band signals and for simplified models that do
not consider the array element size [21–23].

However, no reports on methods using a fully spatial variant model that
use a realistic model for finite-sized transducers has been presented so far.

Thesis Contribution

An important contribution of this thesis is a new approach to ultrasonic
imaging which incorporates the time-domain ultrasonic model of the imaging
system into the Bayesian estimation framework. The most commonly used
approach to ultrasonic imaging involves the design of focusing and steering
ultrasonic beams using discrete-time focusing laws applied to finite-sized
transducers. This approach, which is inspired by geometrical optics, aims at
creating analogues of lens systems using ultrasonic array systems. Although
formal solutions treating imaging as a deterministic inverse problem have
been proposed before, see for example, [43, 45], presenting the ultrasonic
imaging as an estimation problem and solving it using a realistic discrete-
time model is new.

The contributions of this thesis is described in more detail next.

Model: A linear discrete-time matrix model of the imaging system taking
into account model uncertainties has been developed.

Problem Statement: A new approach to ultrasonic imaging has been pro-
posed. It globally optimizes the imaging performance taking into ac-
count parameters of the imaging system and the information about the
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ROI and errors known a priori.9 The proposed approach is more gen-
eral than the traditional imaging methods that maximize the signal-to-
noise ratio for a certain point in the ROI using a simplified geometrical
optics model of the imaging system.

Solution: Estimation of the scattering strengths has been performed us-
ing tools from Bayesian estimation theory. The imaging can be seen
as extracting information about the targets in ROI contained in the
measurements performed using the imaging setup in presence of mea-
surement errors.

Special Cases: A linear MMSE filter is derived, as a special case of the
proposed approach, using Gaussian measurement noise and a Gaussian
probability density function (PDF) for the scatterers in the ROI. The
linear MMSE solution takes the form of a spatio-temporal filter which
deconvolves the distortion caused by the transducer diffraction effects
in the ROI using the information contained in the transducer’s spatial
impulse responses (SIRs). Furthermore, a non-linear (maximum a pos-
teriori) MAP estimator is proposed for imaging targets with positive
scattering strengths.

Experiments: The new imaging algorithms have been used on simulated
and real ultrasonic data. The algorithms have been applied to mono-
static synthetic aperture imaging as well as to parallel array imaging.

Parts of the results presented in this thesis have been published in the
following papers:

• F. Lingvall
“A Method of Improving Overall Resolution in Ultrasonic Array Imag-
ing using Spatio-Temporal Deconvolution” Ultrasonics, Volume 42, pp.
961–968, April 2004.

• F. Lingvall, T. Olofsson and T. Stepinski
“Synthetic Aperture Imaging using Sources with Finite Aperture—
Deconvolution of the Spatial Impulse Response”, Journal of the Acous-
tic Society of America, JASA, vol. 114 (1), July 2003, pp. 225-234.

• F. Lingvall and T. Stepinski
“Compensating Transducer Diffraction Effects in Synthetic Aperture

9Optimization of the input signals driving the array elements are not considered in this
work.
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Imaging for Immersed Solids”, IEEE International Ultrasonic Sympo-
sium, October 8-11, Munich, Germany, 2002.

• F. Lingvall, T. Olofsson, E. Wennerström and T. Stepinski
“Optimal Linear Receive Beamformer for Ultrasonic Imaging in NDE”,
Presented at the 6th World Congress of NDT, Montreal, August, 2004.

• T. Stepinski and F. Lingvall
“Optimized Algorithm for Synthetic Aperture Imaging”, Presented at
the IEEE International Ultrasonic Symposium, 24–27 August, Montréal,
Canada, 2004.

1.5 Outline of the Thesis

The thesis is divided in three major parts: Ultrasound Theory and Model-

ing, Methods based on Delay-and-Sum Focusing, and Bayesian Ultrasonic

Image Reconstruction. The first part consists of Chapters 2–4, where Chap-
ter 2 and 3 include a comprehensive introduction to acoustic wave propaga-
tion theory and the impulse response method, whereupon the discrete-time
model, presented in Chapter 4, is based on. The second part consists of
Chapter 5 and 6 where classical array imaging is treated and, in particular,
the broadband properties are discussed. These methods are then used as
benchmarks for the Bayesian reconstruction methods presented in the last
part, consisting of Chapters 7 and 8.

Chapter 2: Ultrasound Wave Propagation

In this chapter we present the time domain model used for modeling the
transducer radiation process in this thesis. This chapter gives a comprehen-
sive introduction to time domain acoustic modeling for anyone working in
the interdisciplinary field of ultrasonic signal processing. Here, the wave
propagation phenomena are expressed using a convolutional formulation
which should be familiar to people working with signal processing. This
chapter also includes the definition of the spatial impulse response which
plays a central role in the impulse response method.
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Chapter 3: The Spatial Impulse Response

Here the spatial impulse response (SIR) concept is studied in more detail.
In particular, the role of the SIRs as a spatial variant filter is discussed.
Situations where the spatial impulse responses can be computed analytically
is reviewed. The approach that is used to sample analytical SIRs is also
presented. Moreover it also includes a description of the numerical method
used for situations when no analytical solutions can be found. For such
situations the author has developed software tool which is described at the
end of the chapter.

Chapter 4: A Discrete Linear Model for Ultrasonic Imaging

This chapter presents the spatial variant discrete model which constitutes
the basis for the Bayesian reconstruction methods utilized in this thesis.
We describe the modeling of the combined transmission, reception, and the
scattering processes. The model is expressed using a matrix formalism which
facilitates the derivation of the reconstruction algorithms presented in the
last part of the thesis.

Chapter 5: The Synthetic Aperture Focusing Technique

The synthetic aperture focusing technique is a widespread method used in
ultrasonic array imaging. This chapter reviews the basic properties of the
method with a focus on broadband characteristics and the specific diffraction
effects of finite sized transducers.

Chapter 6: Real Aperture Array Beamforming

This chapter presents some aspects of real aperture array imaging, that is,
array imaging with physical arrays. In particular the effects that finite sized
array elements have on the transmitted acoustic field is discussed. This
chapter also introduces the concept of parallel array imaging.

Chapter 7: Ultrasonic Image Reconstruction Methods

The proposed novel Bayesian reconstruction methods for ultrasonic array
imaging is introduced here. The chapter also contains a comparison of the
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Bayesian methods with common methods for solving so-called ill-posed in-
verse problems.

Chapter 8: Applications

The aim of this chapter is to report results of experiments and simulations for
both synthetic and real array apertures, comparing the Bayesian estimators
presented in Chapter 7 with conventional beamforming methods. Aspects
treated include the size effects of finite-sized transducers, sparse sampled or
under-sampled arrays, as well as parallel array imaging.

Chapter 9: Performance of the Optimal Linear Estimator

The aim of this chapter is to show that Bayesian analysis constitute a useful
tool for designing and evaluating ultrasonic array systems. This is due to
the fact that Bayesian methods provide a measure of the accuracy of the
estimates.

Chapter 10: Summary and Future Work

Here conclusions are drawn and directions for future research are indicated.

1.6 Financial Support
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CHAPTER 2

Ultrasound Wave Propagation

THIS thesis is concerned with acoustic array signal processing and for
that purpose a model of the acoustic array imaging sytem is needed. In

particular, the transmission, propagation, scattering as well as the reception
processes must be modeled. The purpose of acoustic wave modeling is to
calculate the acoustic field in a medium given the field sources, geometry, and
the initial and boundary conditions of the problem. This typically involves
finding a solution to the wave equation. As mentioned in Chapter 1, only
longitudinal waves are considered in this thesis, and longitudinal waves, both
in fluids and solids, are well described by the linear acoustic wave equation.1

This chapter is concerned with modeling the transmission and propaga-
tion processes or, in other words, the acoustic radiation process of an ul-
trasonic transducer. The scattering and reception process will be discussed
later in Chapter 4. It will be shown here that the pressure at an observa-
tion point can be expressed as a convolution between the normal velocity
on the transducer surface and an impulse response that is determined by
the geometry of the transducer and the boundary conditions. This impulse
response, known as the spatial impulse resonse (SIR), is the foundation of

1Linear wave propagation describes many acoustic phenomena surprisingly well. Wave
propagation in a fluid will be nearly linear if the fluid is uniform and in equilibrium, and
the viscosity and thermal conduction can be neglected, as well as if the acoustic pressure
generated by a transducer is small compared to the equilibrium pressure [46]. In ultrasonic
array imaging linear wave propagation is normally assumed which also is the case in this
thesis.

33
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the ultrasonic wave modeling performed here.

The chapter is organized as follows: The acoustic wave equation is intro-
duced in Section 2.1, and Section 2.2 reviews the method of Green’s functions
for finding solutions to the wave equation. Particlar solutions, given by the
initial and boundary conditions, are discussed in Section 2.3. The presented
solutions take the form of three integral expressions that correspond to, the
rigid baffel, the soft baffle, and the free-space boundary conditions, respec-
tively. All these integral formulas can be expressed in a convolutional form
which is attractive since wave propagation can now be modeled using lin-
ear systems theory. In Section 2.4 it is finally shown how the sound field
can be explicitly expressed as convolutions between the transducer’s normal
velocity and the SIRs.

2.1 The Acoustic Wave Equation

Wave propagation in an isotropic compressible medium containing an acous-
tic source can be described by the acoustic wave equation [46],

∇2p(r, t) − 1

c2
p

∂2

∂t2
p(r, t) = fp(r, t), (2.1)

where the scalar function, p(r, t) is the pressure at r and time t, cp is the
sound speed of the medium, and fp(r, t) is the source density, or the driving
function of the source. The wave equation can also be expressed in terms of
a velocity potential φ(r, t),

∇2φ(r, t) − 1

c2
p

∂2

∂t2
φ(r, t) = fφ(r, t). (2.2)

The pressure and the potential is related through,

p(r, t) = ρ0
∂φ(r, t)

∂t
, (2.3)

and ρ0 is the equilibrium density of the medium which is assumed to be
constant.

The wave equation (2.1) describes the wave propagation in space and
time for a driving function fp(r, t). The driving function can be seen as the
input signal to the acoustical system, and a solution to the wave equation
is the response in space and time for that input signal.
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Here we are interested in obtaining a solution where the input signal
is the normal velocity on the active area of the transducer. An analythical
solution to the wave equation is in general difficult to obtain except for some
special cases. Fortunately, a piezoelectric transducer can be well described
as a rigid piston due to the large difference in acoustic impedance between
the piezoelectric material and the medium (water). Under such conditions, a
solution can be found by the method of Green’s functions which is discussed
in the next section.

2.2 Green’s Functions

In the theory of linear time-invariant systems, the impulse response of a
system fully describes its properties. Green’s function has an analogous
property for the wave equation. To see this, let us first introduce the differ-
ential operator,

L = ∇2 − 1

c2
p

∂2

∂t2
. (2.4)

The wave equation (2.1) can then be expressed as

Lp(r, t) = fp(r, t). (2.5)

Since L is a differential operator, the inverse operator must be an integral
operator. Green’s function is the kernel for this integral operator. Physi-
cally Green’s function is the solution to a linear partial differential equation
(PDE) for a unit impulse disturbance [47]. Here the PDE is the wave equa-
tion, (2.1), which becomes,

∇2g(r − r0, t − t0) −
1

c2
p

∂2

∂t2
g(r − r0, t − t0) = δ(r − r0, t − t0) (2.6)

for a unit impulse source, δ(r, t), at r0 applied at time t0. If g(r − r0, t −
t0) is known for the problem given by (2.1) and the boundary- and initial
conditions, the solution for an arbitrary source fp(r, t) can be obtained by
the following procedure:

First, multiply (2.1) with g(r, t), and (2.6) with p(r, t), and then the
substract the results, to obtain,

g(r − r0, t − t0)∇2p(r, t) − p(r, t)∇2g(r − r0, t − t0)

= p(r, t)δ(r − r0, t − t0) − g(r − r0, t − t0)f(r, t).
(2.7)
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Interchange r with r0 and t with t0, and integrate with respect to t0 and
r0 over time and the volume V defining our region-of-interest and use the
sifting property of the delta function. We thus obtain, [48]

∫ t+

−∞

∫

V

(

g(r − r0, t − t0)∇2φ(r0, t0) − p(r0, t0)∇2g(r − r0, t − t0)

)

dr0 dt0

= p(r, t) −
∫ t+

−∞

∫

V
g(r − r0, t − t0)f(r0, t0)dr0 dt0,

(2.8)

where the notation t+ means t+ε, for an arbitrary small ε, thereby avoiding
an integration ending at the peak of a delta function.

Now, by using Green’s theorem [17], stating that two functions, u(r, t)
and v(r, t), with continous first and second order partial derivatives (within,
and on a surface S inclosing a volume V ) are related through

∫

V

(
u(r, t)∇2vn(r, t) − vn(r, t)∇2u(r, t)

)
dr

=

∫

S

(

u(r, t)
∂vn(r, t)

∂n
− vn(r, t)

∂u(r, t)

∂n

)

dS,

(2.9)

the volume integral on the left hand side of (2.8) can be turned into a surface
integral so that the pressure, p(r, t), can be found to be

p(r, t) =

∫ t+

−∞

∫

V
g(r − r0, t − t0)fp(r0, t0)dr0 dt0+

∫ t+

−∞

∫

S

(

g(r − r0, t − t0)
∂

∂n
p(r0, t0)

− p(r0, t0)
∂

∂n
g(r − r0, t − t0)

)

dS dt0.

(2.10)

Here n is the outward normal on S. Eq. (2.10) is an integral operator that
expresses the pressure at r both for a source within the volume V and on
the surface of V .

When modeling the acoustic radiation from an ultrasonic transducer the
source, i.e., the transducer, is located on S and and the source term inside V
is then not present, fp(r, t) = 0. Eq. (2.10) then reduces to the time-domain
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Helmholtz-Kirchhoff, or the Helmholtz equation

p(r, t) =

∫ t+

−∞

∫

S

(

p(r0, t0)
∂g(r − r0, t − t0)

∂n

− g(r − r0, t − t0)
∂p(r0, t0)

∂n

)

dS dt0.

(2.11)

To obtain an expression for the pressure waveform in the transmit process
we need to consider the initial- and boundary conditions which are discussed
next.

2.3 Boundary Conditions and Related Integrals

The Helmholtz equation (2.11) may have different forms for different bound-
ary conditions. The Rayleigh integral, the Rayleigh-Sommerfeld integral,
and the Kirchhoff integral are three forms for three different boundary con-
ditions that we will considered here.

2.3.1 The Rayleigh Integral

The boundary conditions determine the impulse response, i.e., Green’s func-
tion, for the problem at hand. If a point source is in free space, then the
radiated waves will spread spherically and g(r − r0, t − t0) is given by the
free-space Green’s function [46]

gf(r − r0, t − t0) =
δ (t − t0 − |r − r0|/cp)

4π|r − r0|
, (2.12)

where the super-script, F, denotes free-space conditions.

If some part of S is rigid, then the normal derivative of the pressure on
that part of the boundary is zero. A wave can now be reflected by the rigid,
or hard, boundary so the pressure at r, from a source at r0, is for a planar
boundary, the sum of two spherical waves: the direct and the reflected wave,
see Figure 2.1. Green’s function then becomes

gh(r − r0, t − t0) =
δ (t − t0 − |r − r0|/cp)

4π|r − ro|
+

δ (t − t0 − |r − r′0|/cp)

4π|r − r′0|
,

(2.13)

where the super-script, H, denotes hard or rigid boundary conditions.
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Figure 2.1: Illustration of a wave reflected by a rigid boundary for a source
at r0.

If the boundary is located in the xy-plane the point r′0 = (x0, y0,−z0) is
then the mirror point of r0. On the boundary, z0 = 0, the normal derivative
of Green’s function (2.13) vanishes, hence the contribution from the rigid
plane to the surface integral in (2.11) will be zero and (2.13) becomes

gh(r − r0, t − t0) =
δ (t − t0 − |r − r0|/cp)

2π|r − ro|
= 2gf(r − r0, t − t0), (2.14)

with
∂

∂n
gh(r − r0, t − t0) = 0. (2.15)

Now, if the source, i.e., the transducer, is located in the rigid plane, often
referred to as the rigid baffle as illustrated in Figure 2.2, then the baffle (Sb)
will not contribute to the field.

By using the Sommerfeld radiation condition, where one lets the volume
V expand to infinity, the contributions from the remaining part of the surface
(depicted

∑
in Figure 2.2) will cancel [17]. Thus, the only area that will

contribute to the surface integral is the active area of the transducer. If
the transducer is planar, then the wave in the vicinity will also be planar,
resulting in that the normal derivative of the pressure, its time derivative,
and the time derivative of the source velocity will be proportional [9, 49]

∂p(r0, t)

∂n
= − 1

cp

∂p(r0, t)

∂t
= −ρ0

∂

∂t
vn(r0, t). (2.16)

Substituting (2.16) and (2.14) into (2.11) results in the well known Rayleigh
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Figure 2.2: Illustration of the decomposition of the boundary S enclosing
the volume V .

integral [50]

p(r, t) = ρ0
∂

∂t

∫ t+

−∞

(∫

Sr

vn(r0, t0)
δ (t − t0 − |r − r0|/cp)

2π|r − r0|
dSr

)

dt0 (2.17)

which is commonly used to model acoustic radiation from piezoelectric ul-
trasonic transducers.

2.3.2 The Rayleigh-Sommerfeld Integral

If we consider a baffle that is acoustically soft, the so-called pressure-release

baffle conditions, then the pressure on the baffle will be zero. Green’s func-
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tion and its normal derivative on the baffle (r′0 = r0) will then be 2

gs(r − r0, t − t0) =
δ (t − t0 − |r − r0|/cp)

4π|r − ro|
− δ (t − t0 − |r − r′0|/cp)

4π|r − r′0|
= 0

∂

∂n
gs(r − r0, t − t0) ≈

δ′ (t − t0 − |r − r0|/cp)

4πcp|r − r0|
2 cos(θ)

(2.18)

where θ is the angle between the normal vector n and r − r0 and δ′(·)
is the first derivative of the delta function.3 By substituting (2.18) and
p(ro, t) = 0 into (2.11), the Helmholtz equation reduces to the Rayleigh-

Sommerfeld integral formula

p(r, t) = ρ0
∂

∂t

∫ t+

−∞

(∫

Sr

vn(r0, t0)
δ (t − t0 − |r − r0|/cp)

4π|r − r0|
2 cos(θ)dSr

)

dt0.

(2.19)

2.3.3 The Kirchhhoff Integral

For the free-space case, none of the terms in the Helmholtz equation disap-
pears and the normal derivative at the plane source of the free-space Green’s
function becomes

∂

∂n
gs(r − r0, t − t0) ≈

δ′ (t − t0 − |r − r0|/cp)

4πcp|r − r0|
cos(θ), (2.20)

where the super-script, S, denotes soft boundary conditions. Substituting
the free-space Green’s function and its derivative (2.20) into Helmholtz equa-
tion results in the Kirchhoff integral formula

p(r, t) = ρ0
∂

∂t

∫ t+

−∞

(∫

Sr

vn(r0, t0)
δ (t − t0 − |r − r0|/cp)

4π|r − r0|
(1−cos(θ))dSr

)

dt0.

(2.21)

In summary, by comparing (2.17), (2.19), and (2.21) tha difference be-
tween the three different boundary conditions is a direction dependent co-
efficient, α(θ), which is (1 − cos(θ)) for the free-space conditions, 2 cos(θ)
for the soft baffle, and a constant 2 for the hard baffle. The angular de-
pendence of the direction coefficient is shown in Figure 2.3. Normally the

2The approximation for the normal derivative of Green’s function is valid for |r−r0| �
λ

2π
where λ is the wavelength corresponding to the highest frequency in the frequency band
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Figure 2.3: Angular dependence of the directional coefficient, α(θ), for:
a hard baffle α(θ) = 2, a soft baffle α(θ) = 2 cos(θ), and for free-space
boundary conditions α(θ) = 1 − cos(θ).

hard baffle conditions (i.e., the Rayleigh integral) is used for modeling wave
propagation using an piezoelectric ultrasonic transducer immersed in water.

2.4 The Convolution Integral

In Section 2.3 we found that the Kirchhhoff, Rayleigh, and Rayleigh-So-
mmerfeld integrals all shared the form

p(r, t) = ρ0
∂

∂t

∫ t+

−∞

(∫

Sr

vn(r0, t0)
δ (t − t0 − |r − r0|/cp)

4π|r − r0|
α(θ)dSr

)

dt0

(2.22)
where α(θ) is the direction coefficient that depends on the boundary condi-
tion. If the source velocity is constant over the active area of the transducer
(i.e., vn(r0, t0) = vn(t0)), then vn(r0, t0) can be moved outside the surface

of interest [51].
3The derivative of a delta function has the property

R ∞

−∞
δ′(x)f(x+a)dx = −f ′(a) [48].
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integral, yielding

p(r, t) = ρ0
∂

∂t

∫ t+

−∞
vn(t0)

(∫

Sr

δ (t − t0 − |r − r0|/cp)

2π|r − rr|
α(θ)dSr

)

dt0

= ρ0
∂

∂t
vn(t) ∗

(∫

Sr

δ (t − |r − r0|/cp)

2π|r − r0|
α(θ)dSr

)

.

(2.23)

Thus, the pressure at r can be expressed as a temporal convolution between
the two factors,

ρ0
∂

∂t
vn(t), (2.24)

and ∫

Sr

δ (t − |r − r0|/cp)

4π|r − r0|
α(θ)dSr. (2.25)

The normal velocity, vn(t0), depends on the electro-mechanical transfer
function of the transducer combined, i.e., convolved, with the excitation
signal of the transducer. If the excitation signal is a delta function, then the
factor (2.24) can be seen as the forward electrical impulse response of the
transducer.

The second factor, (2.25), describes the acoustic wave propagation from
the tranducer surface to the observation point, r. This factor is then the
response at r that one would obtain for an impulsive transducer surface
velocity. The factor (2.25) is commonly called the spatial impulse response

(SIR). The spatial impulse response depends of the shape and size of the
active area (Sr) of the transducer, and it is this factor that determines the
directivity patterns of the transducer. The spatial impulse response has a
central role in this thesis and Chapter 3 is devoted entirely to this issue.



CHAPTER 3

The Spatial Impulse Response

THE spatial impulse response (SIR) concept plays a central role in this
thesis. It is the basis of the discrete wave propagation model on which

the reconstruction algorithms introduced in Chapter 7 is based on. The SIR
method, also known as the impulse response method, is established from
linear acoustics. Thus, wave propagation and scattering are treated as a
linear time-invariant (LTI) system. It is a time domain approach to model
acoustic radiation and reception.

The impulse response method is based on the Rayleigh integral formula
derived in Chapter 2 because the transducer is normally treated as a planar
rigid piston. For a planar piston the normal velocity all over the transducer’s
active area is uniform. The pressure at an observation point can, therefore,
be described by the convolution of normal velocity and SIR of the transducer,
where the normal velocity is determined by the driving input signal and the
electro-mechanical characteristics of the transducer.

The commonly used transducers all have a band-pass characteristics.
Thus, the frequencies outside the active frequency band will therefore not
be sent into the insonified medium. Also this effect can be modeled as a
convolution of the transducer’s electro-mechanical impulse response and the
input signal, and the combined imaging system can thus be modeled as a
LTI system. Consequently, if the electro-mechanical impulse response of the
transducer, the transducer shape, and the input signal are known, the total
system response of the transducer can be modeled by linear filtering.
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Evidently, to model the ultrasonic imaging system, the SIRs associated
with the transducer are needed. Analytical solutions to SIRs exist for a few
geometries, but one must in general resort to numerical methods. Section 3.1
discusses some important cases where analytical solutions do exist. These
time continuous solutions are however not practical since all signals acquired
are normally sampled and time discrete models are therefore needed. Sec-
tion 3.2 describes the sampling approach of the analytical SIRs used in this
thesis. The total system response is determined by both the electrical im-
pulse response and the SIRs. The properties and influence of the electrical
impulse response are discussed in Section 3.3.

As mentioned above, there exist no analytical analytical solutions for
many transducer geometries, and in such situation a method based on the
discrete representation (DR) computational concept is used here [52, 53].
The DR method is very flexible in the sense that complex transducer shapes
as well as arbitrary focusing methods easily can be modeled. Another benefit
of the DR method is that the SIRs are directly computed in a discrete form.
A short description of the DR method, and a numerical package based on
the DR method that has been developed by the author, is presented in the
final Section 3.4 of this chapter.

3.1 Analytical Solutions for some Canonical Trans-

ducer Types

In this section a few analytical SIR solutions are presented. These solutions
will be used later in scattering and transducer radiation modeling problems.
The first solution considered is the point source that is commonly used in
array imaging. In this thesis, the point source model is mainly used to mod-
eling scattering which is discussed in more detail in Chapter 4.1 The other
analytical solutions considered are the line and the circular disc solutions
that will be used to model synthetic aperture experiments in Chapters 5
and 8.

3.1.1 The Point Source

A point source is a common model used for a source that has an aperture
considerably smaller than the acoustical wavelength. A point source emits

1In pulse-echo imaging a scatterer can be seen a source of the scattered wave field.
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spherical waves, and thus has an angle-independent SIR which is given by
the free-space Green’s function, cf. (2.12),

h(r, t) = se
δ (t − |r − rt|/cp)

4π|r − rt|
, (3.1)

where rt is the position of the point source and r the position of the observa-
tion point. Since the SIR is a delta function the pulse shape will not depend
on the observation position, only the pulse’s amplitude will be scaled with
the factor 1/(4π|r− rt|). The scale factor, se in (3.1), is the cross-sectional
area or the elementary surface of the point source [54]. Note that the ele-
mentary surface must be small enough so that the source behaves as a unit
point source in all aspects except for the scale factor se.

In traditional ultrasonic array imaging, the array elements are treated
as point sources and the total array response is modeled as a superposition
of delayed point source responses. The point source is also commonly used
to model scattering. In this case se is thought of as the cross-section area
of a small scatterer.

3.1.2 The Line Source

A line source, or a uniformly excited line strip, can be used as an approxi-
mation of a narrow strip transducer or for modeling scattering from a wire
target that is commonly used in ultrasonic imaging. Here the line strip,

x

y

z

aa

(a) A line source.

x

y

z

a

(b) A circular disc source.

Figure 3.1: Geometries of a line and a circular disc source.
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with length 2a, is assumed to be located on the x-axis, centered at x = 0,
see Figure 3.1(a). The SIR of a uniformly excited line strip is given by [55]

for |x| ≤ a,

h(x, z, t) = se ·







0, t < tz

2 1√
t2−t2z

, tz < t ≤ t1

1√
t2−t2z

, t1 < t ≤ t2

0, t > t2

and for |x| > a,

h(x, z, t) = se ·







0, t ≤ t1
1√

t2−t2z
, t1 < t ≤ t2

0, t > t2

(3.2)

where tz = z/cp is the start time of the SIR when |x| ≤ a and t1,2 =

tz

√

1 +

(

a∓|x|
z

)2

. Due to the rotational symmetry of the SIRs for a line

source, only the two-dimensional case is considered here. That is, if the
SIRs in the xz-plane are known than all other SIRs can be found by a
rotation of the plane around the x-axis.2

Note that similar to the point source it is necessary to use a weight, se,
for, in this case, the yz-direction cross-sectional area of the line source.

3.1.3 The Circular Disc

Circular transducers are commonly used in ultrasonic imaging applications.
Typical examples are NDT/NDE, sonar, and scanned synthetic aperture
imaging applications.

The SIR of a circular disc has an analytical solution when the observa-
tion point is inside the aperture of the disc,

√

x2 + y2 ≤ a where a is the
transducer radius, and when the observation point is outside the aperture,
see Figure 3.1(b) [56]. The disc is assumed to be located in the xy-plane
centered at x = y = 0. Let first r denote the distance from the center axis

2The 3D solution for a line source can be found in [49].
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of the disc, r =
√

x2 + y2, then the disc SIR is given by

for r ≤ a

h(r, t) =







0, t ≤ tz

cp, tz ≤ t ≤ t1
cp
π cos−1

(

c2
p

t2−t2z+t2r−a/c2p

2tr
√

t2−t2z

)

, t1 < t ≤ t2

0, t > t2

for r > a

h(r, t) =







0, t ≤ t1
cp
π cos−1

(

c2
p

t2−t2z+t2r−a/c2p

2tr
√

t2−t2z

)

, t1 < t ≤ t2

0, t > t2

(3.3)

where tz = z/cp is the earliest time that the wave reaches the observation

point r when r ≤ a, tr = r/cp, and t1,2 = tz

√

1 +

(

a∓r
z

)2

are the prop-

agation times corresponding to the edges of the disc that are closest and
furtherest away from r, respectively.

Noticeable is that the pulse amplitude of the on-axis SIR is constant
regardless of the distance to the observation point.3 The duration of the
on-axis SIR is given by t1 = a/cp at z = 0. As the distance increases the
duration, t1−tz, of the SIR becomes shorter, and for large z it approaches to
the delta function. The transducer size effects are therefore most pronounced
in the near-field. This is illustrated in Figure 3.2 where the on-axis SIRs at
z = 20 and z = 80 mm, respectively are shown. The duration at z = 20 is
longer than that of z = 80 and if the distance, z, increases then the on-axis
SIR will approach to a delta function, cf. Figures 3.2(a) and (b).

The analytical SIR solutions presented above are the ones that will be
utilized in later chapters of this thesis, and additionally, a solution for a
rectangular transducer is presented in Appendix 3.A.

3The on-axis SIR has duration t1 − tz with the constant amplitude cp in the time
interval tz ≤ t ≤ t1.
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(a) Spatial impulse response at z = 20
mm.
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(b) Spatial impulse response at z = 80
mm.

Figure 3.2: On-axis spatial impulse responses for a 10 mm disc where the
sound speed, cp, was 1500 m/s.

3.2 Sampling Analytical Spatial Impulse Responses

The analytical expressions for the SIRs discussed above must be converted
to a discrete form in order to be useful for digital signal processing. A
proper discrete representation of the SIRs is necessary so that when the
sampled SIR is convolved with the normal velocity the resulting waveform
can faithfully represent the sampled measured waveform.

The analytical SIRs have an infinite bandwidth due to the abrupt ampli-
tude changes that, for example, could be seen in the line and disc solutions
above. In some situations the duration of a SIR may even be shorter than
the sampling interval, Ts, and it is therefore not sufficient to sample the
analytical SIRs by simply taking the amplitude at the sampling instants,
tk, since the SIR may actually be zero those time instants. The SIRs are
however convolved with a band-limited normal velocity, hence the resulting
pressure waveform must also be band-limited, cf. (2.23). Consequently, we
only need to sample the SIR in such way that the band-limited recieved
A-scans are properly modeled.

Here, the SIR sampling process is performed by collecting all contribu-
tions from the continuous time SIR in the corresponding sampling interval
[tk −Ts/2, tk +Ts/2]. A discrete version of the a time continuous SIR is then
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obtained by summing all contributions from the SIR in the actual sampling
interval. That is, the sampled SIR is defined as

h(r, tk) ,
1

Ts

∫ tk+Ts/2

tk−Ts/2
h(r, t′)dt′. (3.4)

The division by Ts retains the same unit (m/s) of the sampled SIR as the
continuous one. The amplitude of the sampled SIR, at time tk, is then the
mean value of the continuous SIR in the corresponding sampling interval,
[tk − Ts/2, tk + Ts/2]. Also, as seen from the analytical solutions above, the
SIRs always have a finite length as the transducer has a finite size. The
sampled SIRs are therefore naturally represented by finite impulse response
filters (FIR).

The effect of the sampling scheme (3.4) is illustrated in Figure 3.3 for two
discs with radii 1.2 and 3 mm, respectively, where the sampling interval, Ts,
was 0.04µs. In Figure 3.3(a) the analytic SIR is shorter than the sampling
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(a) Continuous and sampled spatial
impulse responses of a circular disc
with radius r = 1.2 mm.
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(b) Continuous and sampled spatial
impulse responses of a circular disc
with radius r = 3 mm.

Figure 3.3: Illustration of the spatial impulse response sampling method
used in this thesis. The continuous and sampled on-axis SIRs for two discs
with radii 1.2 and 3 mm, respectively are shown where the sampling interval,
Ts, was 0.04µs.

interval, Ts. The max amplitude of the discrete SIR is therefore lower than
then the max amplitude of the continuous SIR. If the duration of the analytic
SIR is longer than the sampling interval, as for the 3 mm disc shown in
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Figure 3.3(b), then the max amplitudes of the on-axis sampled and analytic
disc SIRs will be the same.

3.3 The Pressure Field

In Chapter 2 it was shown that the pressure waveform at an observation
point r can be modeled as a convolution of the SIR, h(r, t), corresponding
to r with the normal velocity waveform at the transducer surface,

p(r, t) = h(r, t) ∗ v(t). (3.5)

Since all SIRs of practical interest have a low-pass character, there will
only be significant acoustic energy at those observation points where the
frequency-bands of the SIR and the normal velocity overlap. The band-
width of the SIR becomes narrower when the observation point is further
away the from the center-axis of the aperture because the duration of the SIR
gets longer. This makes the beampattern frequency dependent and a trans-
ducer with low center frequency has therefore a wider beampattern than a
transducer with high center frequency for a fixed size of the transducer.

As an example of this effect, simulation results for two circular disc
transducers, with radii r = 1 mm and r = 5 mm respectively, are shown
in Figures 3.5 and 3.6. An impulse excitation is used here and the normal
velocity is therefore given by the forward electro-mechanical, or electrical,
impulse response of the transducer, that is,

v(t) = hef(t) ∗ δ(t), (3.6)

where hef(t) denotes the transducer’s forward electrical impulse response.
The electrical impulse response used here is shown in Figure 3.4, and the
center frequency is about 3 MHz which corresponds to a wavelength of 0.5
mm.4

Figure 3.5 shows the on-axis responses for the two transducer sizes and
the corresponding normalized spectra for the SIRs, the electrical impulse
response, and the SIRs convolved with the electrical impulse response.

4The electrical impulse response was measured with a Precision Acoustics PVDF hy-
drophone. The hydrophone has a bandwidth that is considerably larger than the band-
width of the transducer and will, therefore, not affect the measurement of the transducer’s
electrical impulse response.
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(b) Amplitude spectrum.

Figure 3.4: The (forward) electrical impulse response of the array trans-
ducer that has been used in the experiments in this thesis. The electrical
impulse response were measured with a broadband PVDF hydrophone man-
ufactured by Precision Acoustics.

The plots in Figure 3.5, repeated for the off-axis case x = 10 mm, are
shown in Figure 3.6. We can make the following observations from Fig-
ures 3.5 and 3.6: firstly, as noted above, a small transducer has a shorter
SIR than a large one and is therefore more broadband, and secondly, the off-
axis SIRs are longer than the on-axis ones. The acoustic energy is therefore
more concentrated below the center of the transducer. The low pass-filtering
effect of the SIRs can clearly be seen in Figure 3.6(d) where most of the
transducer’s electro-mechanical amplitude spectrum, |F{he(t)}|, is outside
the pass-band of the SIR. A consequence of the SIRs’ filtering effect is thus
that a transducer with a low center frequency will have a wider beam than
a transducer with a high center frequency. This is well known in classical
sound field modeling.

3.4 A Numerical Method for Computing Spatial

Impulse Responses

As mentioned in the introduction of this chapter, the analytical spatial im-
pulse responses are only available for a few simple transducer geometries.
Therefore, for a transducer with an arbitrary geometry a numerical method
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(a) Sampled spatial impulse re-
sponse for a disc radius of 1 mm.
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(b) Amplitude spectrum of the
on-axis SIR for a disc of radius
1 mm.
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(c) Sampled spatial impulse re-
sponse for a disc radius of 5 mm.
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(d) Amplitude spectrum of the
on-axis SIR for a disc of radius
5 mm.

Figure 3.5: On-axis sampled spatial impulse responses for a circular disc
with radii 1 and 5 mm at (x=0,z=50mm) and the corresponding amplitude
spectra. The solid lines are the normalized spectrum of the SIRs, the dashed
lines are the normalized spectra of the electrical impulse response, and the
dashed-dotted lines are the spectra of the convolved SIRs and the electrical
impulse response.
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(a) Sampled spatial impulse re-
sponse for a disc radius of 1 mm.
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(b) Amplitude spectrum of the
off-axis SIR for a disc of radius
1 mm.
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(c) Sampled spatial impulse re-
sponse for a disc radius of 5 mm.
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(d) Amplitude spectrum of the
off-axis SIR for a disc of radius
5 mm.

Figure 3.6: Off-axis sampled spatial impulse responses for a circular disc
with radii 1 and 5 mm at (x=10 mm,z=50 mm) and the corresponding am-
plitude spectra. The solid lines are the normalized spectra of the SIRs, the
dashed lines are the normalized spectra of the electrical impulse response,
and the dashed-dotted lines are the spectra of the convolved SIRs and the
electrical impulse response.
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must be used. The method is used throughout this thesis, the discrete repre-

sentation (DR) method, is based on a discretization of the Rayleigh integral
formula, (2.17). In the DR method, the radiating surface is divided into
a set of small surface elements, and the surface integral in the Rayleigh

S

x

y

z

Observation point
rj

j∆

Figure 3.7: Geometry and notations for the discrete representation method.

formula is replaced by a summation, as illustrated in Figure 3.7. The DR
method facilitates computation of SIRs for non-uniform excitation, apodiza-
tion of the aperture, and arbitrary focusing laws since each surface element
can be assigned a different normal velocity, apdodization or time-delay. The
DR computational concept can therefore be used for computing SIRs for an
arbitrary transducer shape or array layout [52, 53].

First, let the total transducer surface be divided into a set of J surface
elements {∆S0, ∆S1, . . . ,∆SJ−1}. Furthermore, let wj denote an aperture
weight, and Rj = |r − rj | the distance from the jth surface element to the
observation point. The discrete SIR can now be approximated by

h(r, tk) =
1

2π

J−1∑

j=0

wjδ(tk − Rj/cp − dj)

Rj
∆Sj

=
J−1∑

j=0

ajδ(tk − Rj/cp − dj),

(3.7)

where dj is a user defined focusing delay and tk = kTs, for k = 0, 1, . . .K−1.
The amplitude scaling factor

aj =
wj∆Sj

2πRj
(3.8)
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in (3.7) represents the amplitude of the impulse response for an elementary
surface at rj excited by a Dirac pulse, cf. (3.1). Hence, the total response
at time tk is a sum of contributions from those elementary surface elements,
∆Sj , whose response arrive in the time interval [tk − Ts/2, tk + Ts/2].

The accuracy of the method depends on the size of the discretization sur-
faces ∆Sj . It should however be noted that high frequency numerical noise
due to the surface discretization is in practice not critical since the trans-
ducer’s electrical impulse response has a bandwidth in the low frequency
range (for a further discussion see [53]). Also, these errors are small if the
elementary surfaces, ∆Sj , are small. The DR-method is very flexible in the
sense that beam steering, focusing, apodization, and non-uniform surface
velocity can easily be included in the simulation.

The author has developed a software tool, e.g. the DREAM (Discrete
REpresentation Array Modeling) Toolbox, based on the DR method in co-
operation with Prof. Bogdan Piwakowski at Lille Groupe � Electronique
- Acoustique �, Institut d’Electronique et de Micro-électronique du Nord,
France.5 The DREAM toolbox has support for many different transducer
types and array layouts, including arrays with circular, rectangular, and
cylindrical focused elements to name a few. Numerical routines from the
DREAM toolbox have been used for all the numerical SIR computations in
this thesis when analytical solutions are not available.6

5The DREAM toolbox is available on-line at http://www.signal.uu.se/Toolbox/dream/.
6Currently, the DREAM toolbox only has support for computing SIRs in homogeneous

media. In this thesis experiments are performed also using an immersed copper block. To
compute SIRs for this case an algorithm inspired by the DR method is used which is
described in Appendix 3.B.
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3.A The Rectangular Source

Rectangular sources are also very common in ultrasonic imaging. Array
transducers is a typical example where the array elements often have a rect-
angular active area.

The analytic SIR for a rectangular transducer can be computed by using
the solution for an observation point at a corner point under the rectangular
aperture, see illustration in Figure 3.8. The solution for the corner point is

x

y

z
Observation point

s

l

Figure 3.8: Geometry of a rectangular aperture located in the xy-plane.
The y-direction width is given by l and x-direction width by s. Also illus-
trated is the location of an observation point located under a corner of the
rectangular aperture.

given by [57]

h(r, t) =
cp

2π

(
π

2
Π(τ i, τ iv)

− cos−1

(

s

cp

√

t2 − t2z

)

Π(τ ii, τ iv)

− cos−1

(

l

cp

√

t2 − t2z

)

Π(τ iii, τ iv)

)

.

(3.9)

where l is the y-direction width and s the x-direction width of the rectangle.
The function Π(·, ·) is the “pulse function” defined as Π(t1, t2) = 1 when
t ∈ [t1, t2] and Π(t1, t2) = 0 otherwise. The time delays, τ i, . . . , τ iv, defined
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by

τ i = tz

τ ii =
√

z2 + s2/cp

τ iii =
√

z2 + l2/cp

τ iv =
√

z2 + s2 + l2/cp,

(3.10)

are the travel times of the pulse from the four corner points of the rectangle
to the observation point, respectively.

The response at an arbitrary observation point can now be obtained by
adding and/or subtracting responses from rectangular apertures. There are
four possible cases which are illustrated in Figure 3.9: In Figure 3.9(a) the
observation point is strictly inside the aperture, in Figure 3.9(b) x is outside
the aperture, in Figure 3.9(c) y is outside the aperture, and in Figure 3.9(d
) both x and y is outside the aperture.

For the first case, when the observation point is inside the aperture, the
SIR is obtained by summing the contributions from the rectangular sub-
apertures I,. . .,IV. When x is outside the aperture the SIR is obtained by first
summing contributions from the apertures II and III and then subtracting
the two contributions from rectangle I and IV that is not a part of the true
aperture. The SIRs for the two remaining cases are obtained in a similar
fashion.

The SIR for the a rectangular aperture can finally be expressed as

h(r, t) =
cp

2π

4∑

i=1

gi ·
(

π

2
Π(τ i

i , τ
iv
i )

− cos−1

(

si

cp

√

t2 − t2z

)

Π(τ ii
i , τ iv

i )

− cos−1

(

li

cp

√

t2 − t2z

)

Π(τ iii
i , τ iv

i )

)

(3.11)

where gi = 1 or -1 depends on the location of the observation point.
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Figure 3.9: The four possible observation point positions under a rectan-
gular aperture. The gray-shaded area denotes the transducer’s active area.
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3.B An Algorithm for Computing SIRs in Immersed

Solids

One of the experiments presented in Chapter 8 is performed using an im-
mersed copper block. To be able to use the model based methods that is
introduced in Chapter 7 we need to compute the SIRs for this setup. The
numerical method used in this thesis for this case is based on a line source
model with adjustments for the different sound speeds of the two media and
the refraction effects at the water-solid interface, as described below.

Wave propagation in elastic solids are, as mentioned in Chapter 1, more
complicated than propagation in fluids since many types of waves can prop-
agate. In the bulk of the solid both longitudinal and shear waves can prop-
agate. The longitudinal and shear waves have different sound speeds where
the longitudinal sound speed, cCu

p , in copper is around 4600 m/s and the

shear wave sound speed, cCu
s , is 2250 m/s. Thus, longitudinal waves in

copper travels roughly two times faster than shear waves.

As also mentioned in Chapter 1, mode conversion occurs at interfaces
were the acoustical impedance changes abruptly, resulting in both longi-
tudinal and shear wave components. In order to successfully model wave
propagation in an immersed copper block these mode conversion must be
taken into account.

To model the wave propagation, at the water-copper interface, consider
a harmonic plane wave impinging on the interface. The incident longitudinal
wave will both be reflected by the copper surface and transmitted into the
block. The transmitted wave will, due to mode conversion, consist of both a
longitudinal and a shear wave, see Figure 3.10. The angle of the transmitted
longitudinal wave, φP, and the angle of the shear wave, φS, are given by the
generalized Snell’s law [10].7

sin φi

cp
=

sin φP

cCu
p

=
sin φS

cCu
s

, (3.12)

where φi is the angle of the incident wave. The energy from the incident
wave will consequently be distributed between the reflected wave and the
two transmitted waves.

Evidently it is more difficult to model wave propagation in immersed
elastic solids compared to the acoustic case. To simplify the problem, mea-

7Longitudinal waves are also known as primary waves, or P-waves, and shear waves
are known as secondary waves, or S-waves.
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Figure 3.10: Reflection and refraction of a plane pressure wave at a fluid-
solid interface.

surements are usually performed in such way that the three waves received
by the transducer can be separated in time so that only one wave type
needs to be considered. In the experiments presented in this thesis only
the transmitted longitudinal wave mode is used and the wave propagation
can, therefore, be modeled using the corresponding SIRs. To simplify the
modeling further a line source was used to model the transducer

The line source SIRs were obtained by performing a numerical integra-
tion over the length of the line source with a method similar DR concept
used in the DREAM software tool described in Section 3.4. The amplitude
of the SIR at time tk is proportional to lk/Rk, that is,

h(r, tk) ∝
lk
Rk

, (3.13)

where lk is the length (e.g. the width of the area) of the transducer that is
active in the sampling interval [tk−Ts/2, tk+Ts/2] and Rk is the propagation
distance from the center of lk to the observation point, see illustration in
Figure 3.11. The length lk and the propagation distance Rk are computed
using the generalized Snell’s law (3.12) and a numerical search algorithm.

Note that here, the line source it positioned along the x-axis and, there-
fore, only the x-direction size effects are considered. In the y-direction the
transducer is treated as a point source and the y-direction size effects are
thus not modeled. However, since the transducer used in these experiments
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Figure 3.11: Illustration of the numerical method for computing spatial
impulse responses for measurements performed using immersed solids. The
amplitude of the SIR at time tk is proportional to lk/Rk where lk is the
length (width) of the area of the transducer that is active in the sampling
interval [tk − Ts/2, tk + Ts/2] and Rk is the propagation distance from the
center of lk to the observation point.

is concave,8 and the targets were located at the transducer’s geometrical
focal point, the y-direction characteristics will be similar to a point source.
That is, at the focal point waves from all points on the transducer surface
arrive in phase and the shape, but not the amplitude, of the waveform will,
therefore, resemble the pulse shape from a point source.

8A picture of the transducer is shown in Figure 8.1.
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CHAPTER 4

A Discrete Linear Model for Ultrasonic Imaging

THE objective of this chapter is to derive a discrete-time linear model
for pulse-echo ultrasonic imaging based on the SIR method discussed

in Chapter 3. To obtain a model for pulse-echo imaging we need to consider,
the transducer radiation, the scattering and the reception processes. The
reception process is similar to the transmission process and can therefore
also be modeled using the SIR method. The only task that remains before
the model is complete is thus to model the scattering process, and here,
the scattering has been modeled a superposition of responses from point-
scatterers.

The present model takes both the diffraction and focusing effects into
account. As was discussed in Chapter 3 the diffraction due to finite-sized
transducers results in a low-pass filtering effect, which often is neglected in
traditional array imaging. Modeling of this effect is therefore important, in
particular for the performance of the reconstruction methods discussed in
Chapter 7 and 8.

This chapter is organized as follows: In Section 4.1, the model assump-
tions are discussed. In Section 4.2, a continuous-time convolution model
for point-like target is derived that is based on the SIR method discussed in
Chapter 3, and finally, the sampling of the model is described in Section 4.3.
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4.1 Model Assumptions

The SIR method is based on several assumptions in the modeling of trans-
ducer radiation and reception. Since the imaging model also includes the
scattering process, more assumptions are needed to obtain a realizable model
for our purposes.

As we mentioned in Chapter 1, scattering can become arbitrarily com-
plex since many wave modes can be generated at, for example, a crack in
a specimen. This makes it inherently difficult to model scattering and, to
obtain a simple model, one therefore has to resort to approximations.

To clarify the approximations, and also to make it easier to understand
the possible discrepancies between the model and physical imaging systems,
the most important model assumptions are listed below:

Assumption 4.1 The medium is assumed to be homogeneous and isotropic
except where a scatterer is located.

Assumption 4.2 The wave propagation is assumed to be linear.

Assumption 4.3 The transducer is to be baffled with an infinite rigid
plane. The transducer radiation can, therefore, be modeled using the SIR
concept, discussed in Chapters 2 and 3.

Assumption 4.4 The transducer can be treated as a uniform rigid piston.

Assumption 4.5 The scattered field can be modeled as a superposition of
contributions from point scatterers.

Assumption 4.6 Mode conversion effects can be neglected.

Assumption 4.7 Multiple scattering is assumed to be very weak and can
thus be neglected.1

1If the superposition principle holds then the combined response from two objects
should be the sum of the individual responses. This is however a simplification since
the scattered field from the first object may be re-scattered by other objects. This will,
however, result in a non-linear forward model.
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Figure 4.1: Schematic view of the ultrasonic pulse-echo measurement sys-
tem. The system has a forward electro-mechanical impulse response hef(t),
a backward electro-mechanical impulse response heb(t), and the corrspond-
ing forward and backward active areas are denoted S f

r and Sb
r , respectively.

Assumption 4.8 Shadowing effects can be neglected. The acoustic field
behind a strong scatterer will be weakened since a substantial portion of the
acoustic energy is back-scattered, and this effect is not considered here.

The above assumptions reveal that the response from a scatterer at a
certain observation point is independent of those from other scatterers. This
enables the array imaging system to be treated as a linear and time-invariant
(LTI) system where at each observation point the impulse response is deter-
mined by the transducer shape, apodization, and focusing delay.

4.2 A Linear Imaging Model

The linear model of an imaging system is derived based on a point target at
position r, with an elementary surface se, as depicted in Figure 4.1. We con-
sider a typical piezoelectric transducer that has a forward electro-mechanical
impulse response denoted hef(t) and a backward electro-mechanical impulse
response heb(t), respectively. We also denote the electrical input signal to
the transducer ui(t), and its output uo(t).

Since the transducer is treated as uniform rigid piston the normal veloc-
ity, vn(t), on its active area Sr is space independent, and can therefore be
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expressed as

vn(t) = hef(t) ∗ ui(t). (4.1)

In this case the pressure field at r is given by the Rayleigh integral (2.17),

p(r, t) = ρ0vn(t) ∗
∂

∂t

(∫

Sf
r

δ
(
t − (|r − rf

r|/cp)
)

2π|r − rf
r|

dSf
r

)

, (4.2)

where Sf
r denotes the transmit, or forward, aperture and rf

r ∈ Sf
r.2 Letting

hf(r, t) denote the SIR associated with the transmit aperture, called the
forward SIR, defined as,

hf(r, t) ,

∫

Sf
r

δ
(
t − (|r − rf

r|/cp)
)

2π|r − rf
r|

dSf
r, (4.3)

then the pressure at r can be expressed

p(r, t) = ρ0vn(t) ∗
∂

∂t
hf(r, t). (4.4)

Thus, the forward SIR essentially specifies a spatial variant LTI filter that
relates the normal velocity to the pressure at an observation point. Hence,
the SIR concept enables the transducer radiation to be treated as linear
filtering.

To model the reception process the scattering from a point target, re-
ceived by a transducer with a surface Sb

r , is considered. In this case we can
see a scatterer as source.3 Since the SIR for a point source takes the form of
a delta function, cf. (3.1), the scattered field is given by the convolutional
form [54],

p(r, t) =
se

cp

∂

∂t

(

pinc(rt, t) ∗
δ(t − |r − rt|/cp)

4π|r − rt|

)

, (4.5)

where pinc(rt, t) is the incident pressure given by (4.4) and rt is the position
of the point-like target.

In reception the piezoelectric transducer is sensitive to the total instan-
taneous pressure, denoted 〈p〉(r, t), on its surface. That is, the total pressure

2We introduce a separate notation for the transmit and receive processes to allow the
possibility for a different transmit and receive aperture, even though the same aperture is
used in transmit and receive in many cases.

3It is assumed that there is a sufficient time separation between the transmitted and
scattered fields.
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is the incident pressure, at time t, integrated over the transducer’s active
backward area, Sb

r [54]. By using the point scattering model, (4.5), the total
pressure received by the transducer can then be expressed as

〈p〉(rt, t) =
se

2cp
pinc(rt, t) ∗

∂

∂t

(∫

Sb
r

δ
(
t − (|rt − rb

r|/cp)
)

2π|rt − rb
r|

dSb
r

)

. (4.6)

If we also define the backward SIR,

hb(r, t) ,

∫

Sb
r

δ
(
t − (|r − rb

r|/cp)
)

2π|r − rb
r|

dSb
r , (4.7)

and substitute both the forward and backward SIRs into (4.6), then (4.6) is
reduced to

〈p〉(rt, t) =
seρ0

2cp
vn(t) ∗

∂

∂t
hf(r, t) ∗ ∂

∂t
hb(r, t)

=
seρ0

2cp

∂2

∂t2
hf(r, t) ∗ hb(r, t) ∗ vn(t).

(4.8)

The output uo(t) is related to total pressure by a convolution between the
backward electro-mechanical impulse response heb(t) and the total pressure,
〈p〉(r, t), that is

uo(t) = heb(t) ∗ 〈p〉(r, t). (4.9)

If we now define the double-path (DP) SIR, hdp(r, t), as

hdp(r, t) , hf(r, t) ∗ hb(r, t), (4.10)

then, (4.9) reduces to

uo(t) = se
ρ0

2cp
heb(t) ∗

∂2

∂t2
hdp(r, t) ∗ vn(t). (4.11)

Furthermore, if we define the double-path electrical impulse response,
he(t), as

he(t) ,
ρ0

2cp

∂2

∂t2
heb(t) ∗ hef(t), (4.12)

and insert (4.1) and (4.12) into (4.11), then the output, uo(t), can finally
be expressed as

uo(t) = seh
dp(r, t) ∗ he(t) ∗ ui(t)

= seh
sys(r, t) ∗ δ(t),

(4.13)
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Figure 4.2: Block scheme view of the ultrasonic pulse-echo measurement
system shown in Figure 4.1.

where hsys(r, t) , hdp(r, t) ∗ he(t) ∗ ui(t) is the system impulse response.

Eq. (4.13) states that the output, for a point scatterer at r, is a con-
volution between the double-path spatial impulse response associated with
the transmit and receive aperture, the electrical impulse response, and the
input signal, scaled with the scattering amplitude given by the cross-section
area, se, of the target. The total imaging system can therefore be seen as a
LTI system where the SIRs and the electro-mechanical impulses responses
acts as linear filters, as illustrated in Figure 4.2.

In conclusion, if the shape of the transducer surface, the electrical im-
pulse response, and the positions of the targets are known, the (noise free)
output uo(t) can be modeled using (4.13).

4.3 A Discrete Two-dimensional Model

To obtain a realistic model for an array imaging system we need to consider
many transducer positions and the possibility for more than one scatterer.
As stated in Assumption 4.5 above, we will model the scattering response
as a superposition of contributions from point-like targets. To simplify the
analysis we consider the two-dimensional case where we assume that scatter-
ers are found only in the xz-plane, which is our ROI. That is, the responses
from targets outside the xz-plane are neglected in the model.
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If we consider a single transducer, located on the x-axis (y = z = 0),
then the signal received by the transducer at position x can, by using su-
perposition and (4.13), be expressed as

uo(x, t) =
∑

r∈T

se(r)h
dp
x (r, t) ∗ he(t) ∗ ui(t)

=
∑

r∈T

se(r)h
sys
x (r, t),

(4.14)

where T is the set of positions of the targets insonified by the ultrasound
from the transducer, hdp

x (r, t) denotes the double-path SIR associated with
the transducer position, x, and hsys

x (r, t) is the corresponding system impulse
response. We have also introduced the notation se(r) in (4.14) to allow point
scatterers with different cross-sectional areas.

A discrete-time version of (4.14) can be obtained by sampling the SIRs
and the electrical impulse response, and replacing the continuous time con-
volutions in (4.14) by discrete-time convolutions. Furthermore, a discrete
representation of the scattering strengths is obtained by defining the so-
called object function, o(r), as

o(r) ,

{

se(r) for r ∈ T
0 otherwise.

(4.15)

The discretized o(r) only takes values at the sampling points, hence,
o(r) can be represented by a matrix O, see illustration in Figure 4.3. The
element (O)m,ñ then represents the scattering strength at the observation
point (xñ, zm) which is the sum of the contributions from all scatterers inside
the sampling cell,

(O)m,ñ =
∑

r∈Tm,ñ

o(r), (4.16)

where Tm,ñ denotes the set of positions of the targets inside the sampling
cell at (xñ, zm).

If we consider the response from one point scatterer at (xñ, zm) the
sampled output signal, yn = [uo(xn, t0) uo(xn, t1) · · ·uo(xn, tK−1)]

T , is then
given by the multiplication of (O)m,ñ with the discrete system impulse re-

sponse vector, h
d(ñ,n)
m , obtained by sampling the system impulse response

hsys(r, t), cf. (4.13). That is, the discrete A-scan vector, yn, can be expressed

yn = hd(ñ,n)
m (O)m,ñ, (4.17)
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Figure 4.3: Illustration of the discretization of the region of interest.

where

d(ñ, n) , xñ − xn, (4.18)

indicates that the system impulse response, h
d(ñ,n)
m , depends on the horizon-

tal distance between the transducer xn and the observation point xñ.

The output signal, when all observation points along the line defined by
x = xñ is considered,4 can now be found by superposition,

yn =
M−1∑

m=0

hd(ñ,n)
m (O)m,ñ, (4.19)

which can be expressed in a compact matrix-vector form

yn =
[

h
d(ñ,n)
0 h

d(ñ,n)
1 · · · h

d(ñ,n)
M−1

]








(O)0,ñ

(O)1,ñ
...

(O)M−1,ñ








,Pd(ñ,n)oñ.

(4.20)

Since the transducer will receive echos from targets at different x-positions

4cf. Figure 4.3.
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a summation must be performed over ñ,5

yn =

N−1∑

ñ=0

Pd(ñ,n)oñ. (4.21)

In reality the received signal will be contaminated by measurement noise
and quantization errors, and the SIR method is as discussed above based
several approximations. Hence, the model will will never describe the true
imaging system perfectly. Here we model this uncertainty as a noise. If the
noise is assumed to be additive then an A-scan measurement vector can be
expressed as

yn =
N−1∑

ñ=0

Pd(ñ,n)oñ + en (4.22)

where en is the noise vector corresponding to the nth transducer position.
Eq. (4.22) is then a discrete linear model for a single A-scan measurement
for the imaging system.

The model (4.22) can be extended to a 2D B-scan by first defining L as
the number of A-scan measurements in the B-scan, resulting in a K ×L B-
scan matrix Y. Then by lexicographically vectorizing O and Y, o = vec(O)
and y = vec(Y), the B-scan model is obtained by appending the yns, for
n = 0, 1, . . . , L − 1, according to

y =








y0

y1
...

yL−1








=








Pd(0,0) Pd(1,0) · · · Pd(N−1,0)

Pd(1,0) Pd(1,1) · · · Pd(N−1,1)
...

...
...

Pd(0,L−1) Pd(1,L−1) · · · Pd(N−1,L−1)















o0

o1
...

oN−1








+








e0

e1
...

eL−1








= Po + e

(4.23)

where P has dimension KL × MN .

Eq. (4.23) is a discrete linear model for 2D ultrasonic imaging when the
backscattering is considered as a sum of responses from point targets. The
ith column, pi, in P is the response from a unit area point target at the
image point corresponding to the ith element, oi, in o.

The model takes the diffraction effects from a finite sized aperture into
account provided that the surface is planar. The model (4.23) can now be

5cf. Eq. (4.14).
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used to obtain simulated B-scan data by simply inserting an object function
into (4.23) and rearranging y into an image. The model (4.23) is the foun-
dation for the reconstruction methods discussed in Part III of this thesis.
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CHAPTER 5

The Synthetic Aperture Focusing Technique

SYNTHETIC aperture imaging (SAI) was developed to improve resolu-
tion in the along track direction for side-looking radar. The idea was to

record data from a sequence of pulses from a single moving real aperture
and then, with suitable computation, combine the signals so the output can
be treated as a much larger aperture. The first synthetic aperture radar
(SAR) systems appeared in the beginning of the 1950’s [58, 59]. Later on
the method has carried over to ultrasound imaging in areas such as syn-
thetic aperture sonar (SAS) [36], medical imaging, and nondestructive test-
ing [5, 6].

In this chapter we will study traditional delay-and-sum (DAS) based
ultrasonic SAI for the purpose of familiarizing the reader with the charac-
teristics of the technique. In particular, we will focus on broadband SAI
and the reconstruction performance with respect to spatial sampling and
the size of the physical transducer. In Chapter 8, we will then compare the
DAS based SAI method to the reconstruction methods that is presented in
Chapter 7.

SAI refers to a process in which the focal properties of a large-aperture
focused transducer is synthesized by processing sequentially recorded data,
often using a small-aperture transducer that has been scanned over a large
area. Most of the algorithms used in ultrasonic SAI have been developed
for SAR applications which are characterized by narrowband transmissions
and very high propagation speeds, i.e., the speed of light. Due to the high
propagation speed in SAR, it is rarely a problem to acquire data at a suffi-
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cient rate to avoid spatial aliasing. However, in ultrasound where the sound
speed ranges from 340 m/s (air) to about 6000 m/s (metals), the low propa-
gation speeds results in a long round-trip time of the echos that consequently
results in a low scanning speed. This is in conflict with the need to scan
as fast as possible to maximize the frame rate. This leads to a aperture
undersampling problem that limits widespread use of ultrasonic SAI [36].1

Other differences between SAR and ultrasound SAI are that, in ultra-
sound, the pulses are often broadband, and the finite size of the scanning
transducer can cause a significant beam directivity. The latter issue is in par-
ticular pronounced in NDT and medical applications where measurements
often are performed in the near-field where the transducer size effects may
be significant.

Different measures have been taken to improve the performance of the
SAR based methods for conditions found in ultrasonics. Typically different
correlation or pulse compression methods are used to improve temporal reso-
lution. In medical applications, requirements concerning frame rate have led
to solutions where a combination of a conventional electronic array focusing
and SAI imaging is used [61]. Recently, there has also been a considerable
interest in multi-element SAI applied to medical array systems [8, 62–64].
These systems are defocused to emulate a single-element spatial response
with high acoustic power. This technique involves treating the focal point
of the transducer as a virtual source [65]. The virtual source, which is aimed
to produce approximately spherical waves over a certain aperture angle, can
be treated as a point source [62, 63].

In this chapter we will concentrate on the overly dominating method
for combining the signals in ultrasonic synthetic aperture imaging—the syn-
thetic aperture focusing technique (SAFT). We will confine the discussion to
the monostatic case where a single unfocused transducer is linearly scanned
along the horizontal axis. The SAFT method has both time-domain [5, 66]
and frequency-domain [67, 68] implementations but here we shall focus our
interest on the time-domain algorithm.

This chapter is organized as follows: In Section 5.1 the classical time-
domain SAFT algorithm is introduced. The performance with respect to
transducer size and spatial sampling is then illustrated in Section 5.2. In
Section 5.3, a matrix form of the SAFT algorithm is derived and in, Sec-
tion 5.4, a matched filter interpretation of SAFT is given. Finally, in Sec-

1The problem can be relaxed somewhat due to the directivity of the transducer which
will attenuate the spatial aliasing effects [60].
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tion 5.5 some remarks are presented.

5.1 The SAFT Algorithm

The conventional time-domain SAFT algorithm performs synthetic focusing
by means of coherent summations, of responses from point scatterers, along
hyperbolas.2 These hyperbolas simply express the distances, or time-delays,
from transducer positions in the synthetic aperture to the observation points,
see illustration in Figure 5.1.

Target

Scanning

direction

Figure 5.1: Typical measurement setup for a SAFT experiment. The trans-
ducer is mechanically scanned along the x-axis and at each sampling po-
sition, xn = nd, n = 0, 1, . . . , L − 1, a data vector (A-scan) of length K
is recorded. The distance between the transducer, at (xn, z = 0), and the
observation point, (xñ, zm), is given by R.

More specifically, to achieve focus at an observation point (xñ, zm), the
SAFT algorithm time shifts and performs a summation of the received sig-
nals uo(xn, t) measured at transducer positions xn for all n in the synthetic
aperture. The time shifts which aim to compensate for differences in pulse
traveling time, are simply calculated using the Pythagorean theorem and the
operation is commonly expressed in the continuous time form [62, 69–71]

o(xñ, zm) =
∑

n

wnuo(xn,
2

cp

√

(xñ − xn)2 + z2
m). (5.1)

where o(xñ, zm) is the beamformed image.3

2Linear scanning of the transducer is assumed here.
3The beamformed image o(xñ, zm) and the object function introduced in Chapter 4 is
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Figure 5.2: Illustration of spatial sampling of the region-of-interest. The
ultrasonic B-scan data, Y, are recorded for x ∈ [x0, xN−1], shown as the

solid-line rectangle. The reconstructed image, Ô, is calculated for every
point in the figure. The shaded part of the ROI is the area that is used for
reconstruction of the image points along the vertical line defined by x = xñ.

As mentioned in Chapter 1, apodization weights, wn, can be introduced
to reduce the sidelobe levels but at the cost of a broader main lobe. If
the apodization weights, wn, is equal to 1 then the far-field beampattern,
see (1.6), becomes sinc-shaped for harmonic excitation [9, 62].

Normally the received signals are digitized and a discrete version of (5.1)
can be obtained as follows: First, let d denote the distance between the
consecutive transducer positions along the scanning direction, that is, the
synthetic array pitch. Then, an ultrasonic data vector (A-scan) of length K
is acquired at each transducer position, xn = nd, n = 0, 1, . . . , L − 1. This
results in a K × L B-scan measurement matrix Y. Also, let the synthetic
aperture consist of L̃ terms, yielding a width of the synthetic aperture of
(L̃−1)d. Secondly, let the discretized region-of-interest (ROI) be represented
by an M × N observation matrix O which is illustrated in Figure 5.2.4

not defined in the same way. However, we use the same notation for the object function
and the beamformed image since they have a similar meaning.

4The image is discretized in the same manner as for the linear model discussed in
Chapter 4.
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The discrete SAFT algorithm (5.1) can now be expressed as

(Ô)m,ñ =

ñ+L̃/2
∑

n=ñ−L̃/2

wn(Y)k,n. (5.2)

The discrete time vector index, k, is a function of the distance between the
transducer position, xn, and the observation point, (xñ, zm), that is given
by

k
.
=

(
2

cp

√

(xñ − xn)2 + z2
m

)
1

Ts
. (5.3)

Note that since the signal is discrete, the time-shifts in (5.1) must be rounded
towards the nearest sampling instance which introduces some errors. The
operator

.
= denotes that k is rounded toward the nearest integer.5

5.2 Performance of The Synthetic Aperture Fo-

cusing Technique

Here a brief analysis of the SAFT performance is given. Since one of the
main topics in this thesis is compensation of beampattern and diffraction
effects, we will treat these aspects for the SAFT algorithm below.

In SAFT experiments, the scanning transducer is normally small for the
purpose of creating an almost spherical beampattern. However, in many
situations a finite sized transducer must be used to obtain sufficient acoustic
power. The diffraction effects due to a finite aperture will then reduce
performance, especially in the near-field. Undersampling may also cause
problems with grating lobes, in particular for narrowband systems. Some
important parameters for the SAFT performance are:

• The bandwidth of the transducer.

• The size of the transducer’s active area.

• The synthetic array pitch.

• The F -number.

• The signal-to-noise ratio (SNR).

5It is common to perform interpolation or to oversample in order to reduce the rounding
errors.
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Below, the first four of these topics are discussed. The last one is post-
poned to Chapter 8.

5.2.1 Spatial Undersampled Broadband Data

As mentioned in Chapter 1, the results from conventional far-field beam-
pattern analysis of an undersampled array predict aliased lobes with the
same amplitude as the main lobe. However, for broadband imaging, spatial
aliasing will in general be less severe, as shall be shown below.

Recall from Chapter 1 that, for a harmonic excitation signal and an
array pitch, d, that is larger than half the wavelength, λ/2, there will be
strong grating lobes in the angle interval -90 to 90 degrees outside the main
lobe. The grating lobes may severely deteriorate the processed image, since
energy from a target within the grating lobe will leak into the main lobe
resulting in spurious responses. The far-field beampattern,

|H(x, z)| =

∣
∣
∣
∣
∣
∣

sin
(

L̃dπx
λz

)

sin
(
dπx

λz

)

∣
∣
∣
∣
∣
∣

, (5.4)

has a maximum at x = 0 but also for those points where the phase shifts of
the received harmonic signals is a multiple of the wavelength at all transducer
positions. That is, all received signals arrive in phase for those points. If
d < λ/2 then this will not occur.

Two example beampatterns computed using (5.4), for a point target at
depth z = 50 mm, is shown in Figure 5.3. The synthetic array pitch, d, was
1 mm, and λ = 0.5 mm. Due to the undersampling grating lobes can be
found around ±14 and ±28 mm for both apertures.

The beampattern in Figure 5.3 is valid also for tone-burst excitation
provided that the pulse length is sufficiently long. That is, if the sinusoidal
signal is too short, then all transducer positions will not contribute to the
total output. If this is the case, then the amplitude in the grating lobe
will drop and the effects of undersampling in SAFT is therefore less severe
compared to harmonic excitation [9, p. 265].

Normally, in NDE and many other applications, broadband pulses are
used and effects of undersampling will then depend of the pulse shape and
length [35, 72]. This effect is shown in Figure 5.5 where three different
synthetic pulses, shown in Figure 5.4, have been used. The three pulses
had a half-power bandwidth (HPBW) of 89%, 28%, and 12%, respectively.
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(a) Beampattern for a synthetic aperture of 8 mm. d = 2λ
(dash-dotted) and d = λ/2 (solid).
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(b) Beampattern for a synthetic aperture 50 mm (d = 2λ).

Figure 5.3: Beampattern for two synthetic apertures (8 and 50 mm) with
an array pitch, d = 1 mm, for a target at z = 50 mm, and the wave-
length, λ, was 0.5 mm. The inserted figure in (b) is an amplification of the
beampattern around x = 0.
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The bandwidth of 89% can be considered as high and 12% as relatively low.
The sound field was simulated using the DREAM method for a circular
transducer and the simulation parameters are presented in Table 5.1.

Aperture [mm] 50

Depth z [mm] 50

Transducer diameter [mm] 0.4

Sound speed cp [m/s] 1500

Table 5.1: Parameters for the simulation results shown in Figure 5.5.

It is clear that the amplitudes of the grating lobes have been decreased
compared to the narrowband analysis for all three pulses. Using a pulse with
a HPBW of 89% resulted, for example, in a grating lobe level below -30 dB.
The explanation for this behavior is simply that if the pulse is shorter than
Ld sin(θ), where θ is the grating lobe angle, the pulse will not be present
“simultaneously” at all transducer positions in the synthetic aperture and
the grating lobe amplitude will therefore drop. However, the pulse length
cannot become arbitrarily short since the bandwidth of the array system is
limited. Grating lobes will therefore always be a problem in undersampled
DAS based array imaging.6

Note also that even though a shorter pulse alleviates the problem with
grating lobes, the lateral resolution does not improve significantly by using a
short pulse, cf. Figures 5.3(b) and 5.5. The lateral resolution depends mostly
on the synthetic aperture and the transducer size as will be discussed in the
next subsection.

5.2.2 Finite Sized Transducers and Lateral Resolution

As mentioned earlier in this chapter the transducer is assumed to be a point
source and receiver in the SAFT algorithm. The validity of this assumption
depends on the size of the transducer in relation to the distance to the focal
point as well as the transducer’s center frequency and bandwidth.

As an example of typical SAFT performance for finite-sized transducers,

6It can also be seen in Figure 5.4 that the grating lobe pattern is smoother than
the narrowband pattern, shown in Figure 5.3, since the amplitudes of many frequencies
superimpose and since the grating lobes occur at different angles for different frequencies.
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Figure 5.4: Synthetic impulse responses and their corresponding amplitude
spectra. The half-power bandwidths of the pulses are 12%, 28%, and 89%,
respectively.
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Figure 5.5: Beampattern profiles of broadband SAFT processed data with
an aperture of 50 mm for the three pulses shown in Figure 5.4. The thin line
corresponds to a half-power bandwidth (HPBW) of 89%, the dash-dotted
line to a HPBW of 28%, and the thick lines to HPBW of 12%. The inserted
figure is an amplification of the beam profiles around x = 0.

a simulation using the DREAM method for a short pulse7 and synthetic
aperture of 50 mm, for a target at z = 50 mm, was performed. The beam
profile and 3 dB lobe width of the SAFT processed data are shown in Fig-
ure 5.6 for a transducer radius ranging from 0.005 to 5 mm. The 0.005
mm transducer can be considered as very small and the 5 mm transducer
as large. That is, the 5 mm transducer is large enough to manifest strong
beam directivity effects.

As can be seen in Figure 5.6, the resolution clearly deteriorates as the
size of the transducer increases. There is nearly a linear relationship be-
tween beam width and transducer size, cf. Figure 5.6(b). Note that in this
example, if the transducer is larger than approximately 3.5 mm the lateral
resolution becomes even worse than the unprocessed data.

To further illustrate the behavior of the SAFT algorithm, B-scan im-
ages of unprocessed and SAFT processed simulated data is shown in Fig-
ure 5.7. Results from two transducer sizes are shown where the first one is

7The pulse with the half power bandwidth (HPBW) of 89% shown in Figure 5.4 was
used.
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Figure 5.6: Lateral resolution for SAFT processed data for transducer sizes
from 0.005 to 5 mm. The simulations were performed with an aperture of
50 mm for a target at z = 50 mm.

small (0.005 mm) and the second large enough to manifest strong transducer
size effects. The unprocessed data for the small transducer, shown in Fig-
ure 5.7(a), shows the typical hyperbolic form resulting from linear scanning
when the transducer emits nearly spherical waves. It is this pattern that
the hyperbola in the SAFT algorithm (5.1) is matched against. The data
from the large transducer (5 mm) shown in Figure 5.7(b) deviates, however,
significantly from the hyperbolic form. The SAFT performance is therefore
poor for the large transducer whilst the result from the small transducer
shows a significant improvement in lateral resolution compared to the un-
processed data, cf. Figures 5.7(d) and 5.7(c). Consequently, the diffraction
effects of the transducer can severely deteriorate the lateral resolution if care
is not taken.

5.3 Matrix Formulation of the SAFT Algorithm

The time-domain SAFT algorithm can also be expressed using a matrix
formalism. Here this is done in the interest of clarity. Furthermore, the
matrix formulation of SAFT enables a direct comparison with the later
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(c) SAFT processed image for the
0.005 mm transducer.
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(d) SAFT processed image for the 5
mm transducer.

Figure 5.7: B-mode images of unprocessed and SAFT processed simulated
data for two transducer sizes. The simulations were performed with an
aperture of 50 mm for a target at z = 50 mm using a wide band pulse
excitation with a HPBW of 89%.
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proposed algorithms for better illustration of the relations between them.

Let Ô denote the SAFT reconstructed image. The reconstructed image
takes the values at the spatial sampling points xñ, zm) for ñ = 0, . . . , L − 1
and m = 0, . . . , M − 1, respectively.

Again, let yn = [uo(xn, t0) uo(xn, t1) · · ·uo(xn, tK−1)]
T denote the nth

A-scan column vector in Y. The DAS operation can now be expressed as a
summation of matrix-vector multiplications, that is, the ñth column, ôñ, in
Ô can be expressed as

ôñ =

ñ+L̃/2
∑

n=ñ−L̃/2

Dd(ñ,n)yn (5.5)

where d(ñ, n) is defined in (4.18) and Dd(ñ,n) is given by

(Dd(ñ,n))m,j =

{

wd(ñ,n) for j = k (with k defined in (5.3)),

0 otherwise.
(5.6)

The apodization weight wd(ñ,n) can be a rectangular window function, i.e.,
wd(ñ,n) is identical to 1, but often it is a decreasing function of the distance
d(ñ, n).

By following the notation introduced in Chapter 4, where the data vector
was defined as y = vec(Y) , [yT

0 yT
1 · · ·yT

L−1]
T , and the vectorized image as

ô = vec(Ô), and by also noting that d(ñ, n) = d(ñ + i, n + i) for any integer
i, the SAFT algorithm can finally be expressed as

ô =





















Dd(i−L̃/2,i)
... Dd(i−L̃/2,i) 0

Dd(i+L̃/2,i)

...

Dd(i+L̃/2,i)

. . .

. . . Dd(i−L̃/2,i)

0
...
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=DT
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for any i such that i−L̃/2 and i+L̃/2 is in the ROI. Note also that k in (5.6)
is a function of (xñ − xn)2, implying the symmetry relation Dd(n−ñ,n) =
Dd(n+ñ,n). The matrix Dsaft is a KL × MN sparse block matrix.

5.4 Matched Filter Interpretation

The SAFT algorithm can be viewed as an implementation of a matched filter
(MF) [6, 9], where the filter associated with image point (xñ, zm) is given
by the hyperbolic function (5.3). The matched filter is the linear filter that
maximizes the SNR for a known signal with known arrival time [73, 74].
Consider the one-dimensional discrete time case with a signal s in Gaussian
noise,

y = s + e. (5.8)

The filter, h, that maximizes the SNR is given by [73]

h ∝ C−1
e s, (5.9)

where Ce is the noise covariance matrix. If the noise is white (Ce = σ2
eI) the

MF output, hTy = sTy, is simply a correlation with the signal prototype
s. In the SAFT case, the hyperbola, defined in (5.3), is the 2D MF for
the response from a single point target at image point (xñ, zm), given that
the transducer can be well approximated as a point source and that the
its forward and backward electro-mechanical impulse responses, hef(t) and
heb(t), are delta functions, cf. Figure 4.1. Under these circumstances the
SNR is expected to increase after SAFT processing

Each column in the SAFT matrix, Dsaft, defined in (5.7) contains the
matched filter for the corresponding image point. That is, by using (5.7)
the SAFT matched filter outputs are computed simultaneously for all image
points.

Using the linear model derived in Chapter 4 the image obtained after
SAFT processing can be modeled as

ô =DT
safty

=DT
saft(Po + e),

(5.10)

where, y = Po + e, was introduced in (4.23). The columns in the matrix
DT

saft acts as a masks that “picks out” the samples in y corresponding to
the hyperbolas given by (5.3).
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5.5 Remarks

Note that for the SAFT algorithm to be a true matched filter, DT
saft must

equal PT otherwise will the SAFT filters not match the true response ex-
actly. Recall from Chapter 4 that the ith column, pi, in the propagation
matrix P corresponds to the response from a unit area point target at the
image point represented by the ith element in the vectorized image o. The
MF for that image point is then pT

i y This transpose operation can be seen
as a time-reversal of the propagation operator that maximizes the amplitude
of the acoustic wave at a given time and location [75].

In the far-field, and for very broadband systems, the approximation
DT

saft ≈ PT may be reasonable but in the near-field there are a number
of issues that only make the SAFT algorithm an approximation of a MF:

• The electrical impulse response of the transducer filters the signal so
that even if the input signal is a delta function the temporal waveform
will not resemble a delta function. Since SAFT uses delta functions
(time-delays) temporally the SAFT MF will not match the true wave-
form.

• SAFT treats the transducer as a point source and receiver. If the
transducer has a finite size the SIRs associated with the transducer
will smoothen waveform which also leads to a mismatch between the
SAFT filters and the true response.

It should also be emphasized that MFs is only optimal in the sense that
they maximize the SNR at one point when one signal is present. A MF
processing will therefore not necessarily result in high resolution images since
energy from scatterers nearby to the observation point may leak into the
focal point, through the side- or grating lobes associated with the MF [44].
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CHAPTER 6

Real Aperture Array Imaging

REAL aperture array imaging plays an important role in ultrasonic imag-
ing.1 The reason for the popularity is the very high flexibility of this

technique. Real arrays makes it possible to design very fast electronic beam
scanning systems as well as fast switching of the focusing properties of the
beam.

In this chapter we will review some important properties of real aperture
array imaging. We focus on two topics, the transmit process of a phased
array,2 and parallel receive beamforming. The purpose of this chapter is
mainly to familiarize the reader with some characteristics of broadband real
aperture array imaging that we later will come back to in the following
chapters in this thesis.

Note that, we will only consider classical delay-line type of systems that
focus the beam by means of imposing time delays on the signals driving the
array elements. That is, we will not consider the type of systems that have
started to appear in the last decade that are capable of exciting the array
elements with arbitrary waveforms [76, 77].

This chapter is organized as follows: In Section 6.1, classical CW far-field
array modeling is discussed. In particular, beam steering and its influence

1By real aperture array imaging we mean imaging with physical arrays.
2The receive process is not discussed here since it is very similar to the receive process

in synthetic aperture imaging discussed in Chapter 5. The main difference between a real
and a synthetic aperture is that a real aperture allows for simultaneous acquisition from
all array elements while using a synthetic aperture one acquire the data sequentially.

91
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on grating lobes are mentioned. In Section 6.2, some important properties
of broadband array imaging are treated, in particular, the influence of the
array element size and the interrogated wave form is discussed. Finally
in Section 6.2, parallel array imaging is briefly introduced and a matrix
expression for a parallel DAS beamformer is presented.

6.1 Conventional Narrowband Transmit Beamform-

ing Analysis

In Chapter 1, conventional delay-and-sum (DAS) beamforming was intro-
duced. In particular, the effects of apodization as well as spatial sampling
consequences, such as grating- and sidelobes are discussed. We will, there-
fore, assume that the reader is already familiar with these concepts. In this
section we will extend the analysis to transmit beamforming, still treating
the array elements as point sources and assuming CW excitation. These
assumptions will then be relaxed in the next section where broadband array
imaging, with finite sized elements, are discussed. This is done here in or-
der to show the differences between the common CW far-field beam pattern
analysis, where idealized arrays with point-like elements are assumed, and
a broadband excitation with more realistic array models.

Consider a 1D phased array consisting of L elements equally spaced along
the x-axis with an array pitch d, see Figure 1.8 in Chapter 1. The position
vector, rn, for the nth element is then rn = (xn, 0, 0). Since the waves
will spread spherically from the point-like elements, the wave field at an
observation point, r, will become a sum of the spherical wave contributions
from each element. If we also apply the paraxial approximation introduced
in Section 1.2 for the amplitude terms of the waves, then the CW field at r

can be approximated by

H(r, t) ≈
L−1∑

n=0

wne
jω(t−

|r−rn|
cp

+τn)
, (6.1)

where wn is the apodization weight for the nth element and τn is the cor-
responding focusing delay. Focusing at a point rf can now achieved by
assigning the time delay, τn = |rf−rn|

cp
, for n = 0, 1, . . . , L−1. If rf is located

on the z-axis then the array is focused but not steered, otherwise the array
is also steered.

To show the effect of focusing and beam steering, consider a 16 element
phased array with a pitch d = 2λ and focused at z=50 mm (cp = 1500
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m/s, λ = 0.5 mm). This is an undersampled array and grating lobes will
therefore appear. Two example CW fields for the array are in shown Fig-
ure 6.1. Figure 6.1(a) shows the wave field when the array is focused but
not steered and the corresponding beam pattern, at z = 50 mm, is shown
in Figure 6.1(c). Similarily, the wave field for the array steered -20 degrees,
is shown in Figure 6.1(b) and the corresponding beam pattern is shown in
Figure 6.1(d).

Clearly, the undersampling manifests itself in several grating lobes both
for the non-steered and the steered array. Also, as can be seen in Fig-
ure 6.1(b) and (d), beam steering not only steers the main lobe but also
the grating lobes. Measurements often are performed in such way that it is
more likely for a scatterer to be located close to the center of the array and
the problem with ghost responses due to grating lobes are, therefore, more
severe for steered systems than for non-steered systems.

Note, however, that the model (6.1) neither considers the beam directiv-
ity of the elements nor the fact that the length of a the transmit pulse—if
a broadband pulse is used—also influences the grating- and sidelobe ampli-
tudes. These topics are further discussed in the next section.

6.2 Broadband Transmit Beamforming with Fi-

nite Sized Array Elements

In Chapter 5 it was shown that the transducer size had a large impact on the
lateral resolution for SAFT processed data. In this section we will discuss
some of the effects that the transducer size, or more specifically, the array
element size has on the transmitted wave field for broadband excitation of
a real aperture array.

In the narrow band analysis in the previous section we saw that by
steering the beam also the grating lobes was steered. Due to the paraxial
approximation, the max amplitude in the main beam and in the grating
lobes were the same, cf. Figure 6.1(b). For a more realistic array, with finite
sized array elements, this will in general not be the case [78]. To see this,
let us study an example.

Consider again a phased array with the same pitch and aperture as
was used in the CW example in the previous section, that is, a 16 element
array with a pitch of 1 mm focused at z =50 mm. But now the elements
have a finite size; they are circular with a diameter of 0.9 mm. Also, a
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(a) CW field for a non-steered phased
array focused at z=50 mm.
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(b) CW field for a steered phased array
focused at (x = −18 mm,z = 50 mm).
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(c) Beam pattern at z = 50 mm for a
non-steered phased array.
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(d) Beam pattern at z = 50 mm for
steered phased array.

Figure 6.1: Continuous wave fields and beam patterns for an undersampled
1D phased array. The wavelength, λ, was 0.5 mm and a 16 element array
with a pitch of 2λ was simulated.
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broadband pulse is used, which is shown in Figure 3.4(a) in Chapter 3. The
pulse has a center frequency of approximately 3 MHz which corresponds to
a wavelength, λ, of 0.5 mm. Thus, the array is undersampled and grating
lobes should appear.

Simulated wave field snapshots, at three time instants, for this array
setup are presented in Figure 6.2. The snapshots where computed using
the DREAM method, for the array focused at z = 50 mm, both for an
un-steered and a steered configuration.3

By comparing the CW interference patterns, shown in Figure 6.1(a) and
(b), with the broadband fields, shown in Figure 6.2(a) and (b), one can
observe that the somewhat chaotic interference patterns close to the array
seen in the CW images cannot be observed in the broadband snapshots.
Instead, the waves are almost planar shortly after they have left the array
for the broadband case.

As time evolves, and the waves approaches the focal points, the wave
fields become more concentrated. When they have reached z = 50, shown
in Figure 6.2(e) and (f), the waves fields are rather narrow.

However, due to the undersampling of the array aperture, one can also
observe significant acoustic energy outside the main beams, see Figure 6.2(c)–
(f). This is more easily seen in the profile plots of the wave fields shown in
Figure 6.3. These profile plots were taken when the waves had reached the
focal points. By comparing the profile plots, shown in Figure 6.3, with the
CW beampatterns, shown in Figure 6.1(c) and (d), one can notice that the
amplitudes of the grating lobes, with respect to the main lobes, are signifi-
cantly lower in the broadband profile plots. The reason for this behavior is
twofold:

• The length of the pulse is only about two cycles (of the center fre-
quency), cf. Figure 3.4(a). Hence, only the signal from two elements
will add constructively at the grating lobe, in contrary to CW excita-
tion, where the signals from all elements adds in phase at the grating
lobes [9].

• The beam directivity of the elements results in significantly reduced
amplitudes at observation points far from corresponding array element.

The beam directivity of the elements will, therefore, influence the beam
steering properties of the array; the element’s beam directivity essentially

3The array was steered -20 degrees.
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(a) Snapshot at t = 10µs
a for a non-steered phased
array.
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(b) Snapshot at t = 10µs
for a steered phased array.
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(c) Snapshot at t = 22µs
for a non-steered phased
array.
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(d) Steered Array. Snap-
shot at t = 22µs.
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(e) Snapshot at t = 37.6µs
for a non-steered phased
array (where the wave is
close to the focal point).
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(f) Snapshot at t = 37.6µs
for a steered array (where
the wave is close to the fo-
cal point).

Figure 6.2: Broadband field snapshots for an undersampled phased array
with circular array elements. The center frequency of the broadband pulse
corresponds approximately to a wavelength, λ, of 0.5 mm and a 16 element
array with a pitch of 2λ was simulated.
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(a) Non-steered Array. Profile at t =
37.6µs
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(b) Steered Array. Profile at t = 37.6µs

Figure 6.3: Broadband profiles for the wave fields shown in Figure 6.2(e)
and (f) respectively.

reduces the effective aperture of the array. To illustrate this, consider the
profile plot of the wave field for one element, at x = 7.5 mm, shown in
Figure 6.4. The profile plot was taken at t = 34.1µs and the pulse has
then traveled approximately 50 mm in the medium. As can be observed,
the amplitude at x = −10 mm is about 20 dB lower than directly under
the array element, at x = 7.5. Thus, if the steering angle is high then the
contributions from elements at a horizontal distance far from the focal point
will become very low.

From the discussion above it is clear that many factors must be taken into
account when choosing a proper array layout for broadband ultrasonic array
imaging. The simplified far-field CW model (6.1) is often not sufficient since
many important properties are not considered by that model. To successfully
analyze broadband array imaging one must in particular consider the size
effects of the array elements as well as the waveform of interrogated pulse.

We will come back to these topics in Chapters 7 and 8 when we discuss
reconstruction methods for ultrasonic array imaging.
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Figure 6.4: Broadband beam profile for a single circular array element with
a diameter of 0.9 mm at t = 34.1µs. The vertical line indicates the position
of the array element.

6.3 Parallel Receive Beamforming

Parallel beamforming is a method developed to increase the frame rate of
array imaging systems. The basic idea is the transmit a broader-than-normal
beam and then beamform several image lines from that transmission. This
will decrease the number of re-transmissions needed to cover the whole ROI,
thus increasing the image frame rate [79, 80].

In this section we will consider parallel DAS beamforming whilst more
advanced approaches will be discussed in Chapter 8.

A parallel receive mode DAS beamformer consists of several delay-line
units, thus enabling focusing at many points. A schematic block diagram
of a parallel DAS beamformer is shown in Figure 6.5. Similar to the SAFT
algorithm, the parallel DAS beamformer can be expressed using matrix for-
malism as shown below.

Let us for simplicity consider 2D parallel beamforming where the ROI
has been discretized and represented by an M × N matrix O as described
in Chapter 4.

Consider again a 1D array with L elements positioned along the x-axis.
Let yn denote the A-scan received by the nth array element, yn = [uo(xn, t0)
uo(xn, t1) · · ·uo(xn, tK−1)]

T , and y, the (vectorized) B-scan containing the
A-scan data for all elements, y , [yT

0 yT
1 · · ·yT

L−1]
T . Then, the operation of
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Figure 6.5: Block scheme of a parallel delay-and-sum beamfomer. Each
delay-line unit is focused at a different observation point.

one of the delay-line units, focused at the observation point (xñ, zm), can be
expressed as

(Ô)m,ñ =
L−1∑

n=0

wnuo(xn, τn(xñ, zm))

=
L−1∑

n=0

wny
T
nd(m,ñ)

n

=









w0d
(m,ñ)
0

w1d
(m,ñ)
1
...

wL−1d
(m,ñ)
L−1









T

y,

(6.2)

where wn is an apodization weight, τn(xñ, zm) is the focusing delay for fo-
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cusing at the observation point (xñ, zm), and d
(m,n)
n is a vector of length K

which is zero everywhere except at the kth index, k
.
= τl(xn,zm)

Ts
, where it is

1.

Now, the total vectorized image, ô = vec(Ô), for all observation points,

can be expressed by appending the delay vectors, d
(m,ñ)
n , for the remaining

observation points, according to

ô =









w0d
(0,0)
0 w0d

(1,0)
0 · · · w0d

(M−1,N−1)
0

w1d
(0,0)
1 w1d

(1,0)
1 · · · w1d

(M−1,N−1)
1

...
...

...

wL−1d
(0,0)
L−1 wL−1d

(1,0)
L−1 · · · w1d

(M−1,N−1)
L−1









T

y

= Kdasy.

(6.3)

The operation described by (6.3) is similar to that of a dynamic focus

beamformer. A dynamic focusing beamformer has time-dependent focus
delays which, in receive mode, adapts focusing at the same rate as the wave
propagates. This results in an extended region where the beam is focused
compared to a fixed focus beamformer. The matrix Kdas in (6.3) acts as
a dynamic focus beamformer that focuses, in parallel, at all observation
points.



Part III

Bayesian Ultrasonic Image

Reconstruction
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CHAPTER 7

Ultrasonic Image Reconstruction Methods

RECALL from Chapter 1, that the main objective in all ultrasonic imag-
ing applications is that we want to gain knowledge of an object under

study by means of studying the ultrasonic scattering from the object. We
perform experiments and by observing the recorded data we draw conclu-
sions whether, for example, a defect is critical or not or, in a medical appli-
cation, whether surgery must be performed or not. The data can however be
difficult to interpret for a human operator since the wave propagation in the
medium can be complex and the measurement apparatus may distort the
received scattering information. That is, the user must have deep knowledge
about the measurement system in order to draw accurate conclusions from
the experiment.

The focusing methods discussed in Chapters 5 and 6 can alleviate this
process to some degree. Focusing, or beamforming, is performed mainly for
two reasons:

• The obtained ultrasonic images are easier to interpret when the acous-
tic energy is concentrated to a small region.

• The acoustic energy, in the region that we want to study, must be high
enough to obtain a sufficient SNR since, otherwise, the data will not
contain enough information regarding the scattering objects.

It should however be noted that receive mode beamforming does not give
us any additional information than what is already in the unprocessed data

103
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received from the individual array elements, rather the opposite. This fact
is known as the data processing inequality which states that: no processing
of the data, deterministic or random, can increase the information that the
data contains of the parameter we want to estimate [81]. In practice, all
processing that we perform on the data will in fact destroy some amount of
information due limited numerical precision, etc.

A relevant question that we can ask us is: How should we process our data

to utilize its information about the scattering strengths in the best possible

way to obtain a result that can be easily understood by a human? In many
applications DAS based methods may be sufficient for the particular purpose
but they are not optimal in the sense of utilizing all available information.
A reasonable answer to the question formulated above is that we should use
all information that is available, both from data and from prior knowledge.
We know, for example, many properties of the measurement system and
the linear model described in Chapter 4 gives us a tool for modeling the
system’s “distortion”. This knowledge can then be used to compensate
for the distortion and thereby obtaining images that should be easier for
a user to understand. In other words, if we formulate the problem as an
image reconstruction problem we may be able to improve the image quality
compared to traditional DAS beamforming.

The system model is however not the only prior information that we
have. We also know that the scattering amplitudes cannot become arbitrar-
ily large since the ultrasonic transducer emits a finite amount of acoustic
energy. In some cases we may even know the sign of the scattering ampli-
tude. An optimal reconstruction method, that accounts for all information,
should therefore use both the prior information and the information from
the experiments.

We must bear in mind that we cannot expect to fully recover the true
scattering image (with arbitrary precision) since we never have complete
information. The data are acquired using a limited aperture, often from
a a 1D array, and we cannot expect to reconstruct a 3D object based on
2D data. Furthermore, the data are always corrupted by thermal noise and
the models we use do always have limitations. It is evident that there will
always be an amount of uncertainty in our estimates. This lack of complete
information usually manifest itself in making the problem ill-posed. That
is, if we deductively try to find an inverse to the propagation operator, then
this inverse will not be stable in the sense that a small disturbance can cause
a large change in the estimates. When solving inverse problems deductively
one must therefore take special measures to stabilize the solution. This
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process is usually called regularization and a popular method is the so-
called Tikhonov regularization [31]. Regularization typically involves tuning
parameters to compromise between fidelity to the data and the stability of
the solution.

Another approach is to view the problem as a Bayesian inference prob-
lem. In the Bayesian philosophy the prior information has a central role
and, for inference problems, the regularization parameters can be directly
connected to the prior knowledge. In fact under certain conditions, the
Tikhonov regularization schemes can be seen as a special case of the linear
minimum mean squared estimator derived using Bayesian analysis, although
Tikhonov regularization is based on totally different assumptions.

As mentioned in Chapter 1, ultrasonic imaging experiments easily pro-
duce large data volumes and the dimensionality of the problems are often
very high. Practically, there is a trade off between computational complex-
ity and the quality of the results. The reconstruction methods proposed in
this chapter, have been developed with that in mind. The problem has been
formulated from a Bayesian perspective where regularization parameters can
be deduced from the prior information of the scattering strength, typically
the scattering mean value or the variance, and the variance of the noise.

In this chapter two Bayesian estimators are derived, one linear and one
non-linear. The linear estimator is based on the assumption that the mean
and variance of the scattering strengths are known. This results in the
linear minimum mean-squared error (MMSE) estimator. The non-linear
estimator is based on the assumptions that we are imaging objects with
positive scattering strengths that we know the mean of. It is shown that
the resulting maximum a posteriori (MAP) solution is found by solving
a quadratic programming (QP) problem. Also found in this chapter is a
comparison of the two Bayesian methods with common methods for solving
ill-posed inverse problems.

The chapter is organized as follows: In Section 7.1, a short introduction
to Bayesian inference is presented and the maximum entropy principle, used
for assigning prior probability density functions, is introduced. This section
also includes derivations of the optimal linear MMSE estimator, as well as
the optimal non-linear exponential MAP estimator. In section, 7.2, some
common methods for solving ill-conditioned image reconstruction problems
are reviewed and the relation to the Bayesian estimators are discussed. In
particular it is shown that, under certain conditions, these methods can
be seen as a special case of the linear Bayesian estimator discussed in Sec-
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tion 7.1. This section also contains a discussion of the maximum likelihood
estimator and its properties. Finally, in Section 7.3, some concluding re-
marks are given.

7.1 Bayesian Image Reconstruction

In Bayesian estimation theory a probability density function (PDF) de-
scribes the uncertainty, or the degree of belief, of the true value of the
variable under study [82]. In other words, a PDF is thought of as a carrier

of information. In our case we want to study the scattering strength at each
image point described by the vector o. To accomplish this we perform an
experiment that gives us some data y. Note, that our knowledge regarding o

is usually not only coming from the data. Typically we know, without seeing
any data, that o cannot have an arbitrary scattering amplitude; the scatter-
ing amplitude must at least be limited to some interval. The PDF, p(o|I),
that describes our knowledge before seeing the data is usually called “the
prior” and I denotes any background information that we have regarding o.
When we have performed an experiment we have received more information
about o and the updated PDF after seeing the data is given by the posterior

PDF, p(o|y, I). If the measurement contained relevant (new) information
of o then the posterior PDF should be more concentrated around the true
value of o.1

Bayes’ theorem,

p(o|y, I) = p(o|I)
p(y|o, I)

p(y|I)
, (7.1)

describes how to update our knowledge of the variable, o, when new data,
y, is observed. The conditional PDF p(y|I) is a normalization factor not
dependent on o and p(y|o, I) describes the likelihood of seeing the data y

given o.

In this thesis the measurement errors are assumed to be Gaussian and
p(y|o, I) will therefore be given by the multidimensional Gaussian distribu-
tion,

p(y|o, I) =
1

(2π)
MN

2 |Ce|1/2
e−

1
2
(y−Po)T Ce

−1(y−Po), (7.2)

1If the prior PDF and the posterior PDF are identical we know that the data contains
no new information of the variable.



7.1. Bayesian Image Reconstruction 107

where P is the propagation matrix from (4.23) and the size of the image to
reconstruct is M × N .

The two most common estimators in Bayesian estimation applications
are the maximum a posteriori (MAP) estimator and the minimum mean
square error (MMSE) estimator. The MAP estimate is found by maximizing
p(o|y, I) and take the maximizing argument as the estimate,

ômap = arg max
o

p(o|y, I) = arg max
o

p(o|I)p(y|o, I), (7.3)

where (7.1) was used in the last equality. The MAP estimate is thus the
value o that is most probable given both data and prior information.

The MMSE estimate is given by

ômmse = arg min
o

E{‖o − ô‖2} (7.4)

where E{·} is the expectation operator. It should be emphasized that it is
only when both o and e are Gaussian that the MMSE estimate is practi-
cally tractable. The reason is that when both o and e are Gaussian the
MMSE estimate will be a linear combination of the data. If o and e are not
Gaussian, then Markov chain Monte-Carlo (MCMC) methods can be used
to draw samples from p(o|y, I) and then average over these samples [83].
This is however very time consuming for high dimensional problems and is
therefore not practical for the applications described in this thesis.

Furthermore, if both o and e are Gaussian then the MAP and the linear
MMSE estimate will be identical. Although this is well known we present
the respective solutions here for practical reasons. Consider first the lin-
ear MMSE estimate, defined as the estimate ô = Ky that minimizes the
criterion,

Jmse(K) = E{‖o − Ky‖2}. (7.5)

with y = Po + e. The linear MMSE estimator, Kmmse, is then given by

Kmmse = arg min
K

E{‖o − Ky‖2}

= arg min
K

E{(o − Ky)T (o − Ky)}

= arg min
K

tr{Co} − 2 tr{KTCoP
T } + tr{KPCoP

TKT }

+ tr{KCeK
T }

(7.6)

where we assumed that o and e are mutually independent with covariance
matrices Co = E{ooT } and Ce = E{eeT }, respectively. Taking the deriva-
tive with respect to K and equating to zero in (7.6) results the linear MMSE
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estimate
ômmse = Kmmsey = CoP

T (PCoP
T + Ce)

−1y (7.7)

The MAP estimate can be found by again assuming that o and e are
zero mean Gaussian. Now take the negative logarithm of (7.1), excluding
all terms not dependent on o, which results in the criterion

Jmap(o) =
1

2
oTCo

−1o +
1

2
(y − Po)TCe

−1(y − Po) (7.8)

Differentiating (7.8) with respect to o and equating to zero gives the MAP
solution

ômap = (C−1
o + PTC−1

e P)−1PTC−1
e y = Kmapy. (7.9)

The equivalence of (7.9) and (7.7) is discussed in Appendix 7.A.1. This
equivalence is of practical interest since the matrix inverse in (7.7) and the
inverse (C−1

o + PTC−1
e P)−1 in (7.9) may be of different size.2 Recall from

Chapter 4 that the A-scan dimension is K and the number of measurements
is L, resulting in a KL × KL noise covariance matrix Ce, and that the
number of observation points is MN , resulting in an MN ×MN covariance
matrix Co. Hence, if KL is larger than MN , then it is less computationally
demanding to use the MMSE form compared to the MAP form and vice
versa.3

Another important feature of Bayesian methods is that we obtain a mea-
sure of the precision of the estimate. For Gaussian o and e, the PDF for the
error, ε = ômmse − o, for the linear MMSE estimate is also Gaussian with
zero mean and the covariance matrix,

Cε = E{(ômmse − o)(ômmse − o)T } = E{εεT }, (7.10)

given by (see also Appendix 7.A.2) [84]

Cε = Co − CoP
T (Ce + PCoP

T )−1PCo

= (C−1
o + PTC−1

e P)−1.
(7.11)

The mean squared error (MSE) is the sum of the diagonal elements of Cε

Jmse , tr{Cε}. (7.12)

2A matrix inverse requires a number of operations in the order of n3 where n is the
dimension of the matrix.

3A typical A-scan dimension, for the experiments presented later in this thesis, is
K = 1000, and L = 16 for the real aperture array experiments. If O, for example, is an
100 × 50 image, then P has the dimension 16000 × 5000, which is a normal size of the
problems treated in this thesis.
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If the noise energy is large, that is Ce � PCoP
T , then Cε is approximately

equal to Co. We know then that our reconstruction performance is poor
and we should choose to design the experiment differently. Moreover, since
each diagonal element in Cε corresponds to the variance at an observation
point, the expected error due to a chosen focusing method can be evaluated
by organizing the diagonal elements into an M × N image. By observing
the expected mean-squared error image it can then be directly seen in what
regions the reconstruction performance is acceptable and where it is not.
This topic will be further discussed in Chapter 9.

7.1.1 Assigning Prior Probability Density Functions — The

Maximum Entropy Principle

So far we have not discussed how to obtain the prior p(o|I). In the lin-
ear MAP estimate (7.9) it was assumed that the prior was Gaussian. The
Gaussian PDF is uniquely determined by the mean vector and the covari-
ance matrix; hence it seems reasonable to assign a Gaussian prior if the only
information about o we have is the mean and the variance. The question is
if this assumption can be justified?

If we have no prior information of the scattering amplitudes, then all
amplitudes are equally likely. This corresponds to a uniform distribution
with infinite support. Hence the uniform PDF is the most “uninformative”
of all distributions; the uniform distribution represents the most noncom-
mittal distribution since no amplitude is favored over any other. However,
by using a uniform prior PDF with infinite support we have not used that
we know the mean and variance which is undesirable. A reasonable require-
ment is thus that the prior PDF should be maximum non-committal with
respect to the, in this case, known mean and variance. Hence, we want the
prior be as uninformative as possible but take into account the information
that we actually have.

To judge how uninformative a PDF is we need a consistent measure of
its “uniformity”. This measure can then me maximized with respect to
the constraints given by our prior information; thus yielding a prior that is
honest about what we know. The measure should be continuous, consistent,
and a monotonic increasing function in the sense that if n events are equally
likely, then the measure should increase if n increases. That is, we are more
uncertain which event that will occur if there are many possibilities than
when there are few. The only known function with these properties is the
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information entropy [82]

H(p(x)) = −
∫ ∞

−∞
p(x) log p(x)dx. (7.13)

Thus by maximizing (7.13) with respect to constraints, given by our a priori

knowledge, a PDF should be obtained that is the most honest with regard
to what we know and what we do not know.

Note that the optimization is with respect to a function p(x), required
to have the property ∫ ∞

−∞
p(x)dx = 1, (7.14)

since it is a probability density function. If, as assumed above, we know
the first and second order moments of the PDF, then these two additional
constraints enter in a similar fashion as the constraint (7.14).

The problem of finding a PDF that maximizes (7.13) with respect to
constraints can be solved with the method of Lagrange multipliers [85].
Note that we are searching for a stationary function here; thus, finding the
distribution that maximizes the entropy (7.13) given the constraints is a
variational problem. The problem is to extremizing, or finding an extremal,
to a functional, J(·), of the form

J(p(x)) =

∫ b

a
L(x, p(x), x′, p′(x))dx (7.15)

where the function L(·) is the, so-called, Lagrangian. An extremal, p(x),
to (7.15) must then satisfy the Euler or Euler-Lagrange equation [47]

Lp(x) −
d

dx
Lp′(x) = 0 (7.16)

where Lp(x) is the derivative of the Lagrangian with respect to p(x) and
Lp′(x) is the derivative with respect to p′(x).

Below we present three common maximum entropy distributions, ob-
tained from different moment constraints where, in particular, the last two
examples is of great interest for ultrasonic image reconstruction purposes.

Three Maximum Entropy Distributions

Let us study three examples where we in the first only know that our variable
is bounded to an interval, whereas in the second example we know the mean
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and that the variable is positive. Finally in the last example we know both
the mean and the variance.

Example 7.1 Known interval, x ∈ [a, b].

If the only prior knowledge is that the variable x is known to be in the
interval [a, b] the only constraint is that p(x) must fulfill (7.14) in that
interval. Thus, the functional to maximize is

J(p(x)) = H(p(x)) − λ

(∫ b

a
p(x)dx − 1

)

=

∫ b

a
(−p(x) log p(x) − λp(x)) dx + λ.

(7.17)

The derivatives of the Lagrangian with respect to p(x) and p′(x), respec-
tively, then become

Lp(x) = − log p(x) − 1 − λ

Lp′(x) = 0.
(7.18)

Inserting (7.18) into the Euler equation (7.16) results in a constant PDF

p(x) = e(1+λ) = C. (7.19)

Using the single constraint,
∫ b

a
p(x)dx = [xC]ba

= C(b − a) = 1,

(7.20)

results in

p(x) =
1

b − a
(7.21)

which is the uniform distribution.

Thus, if it is only known that x is within an interval, then the PDF with
maximum entropy is the uniform distribution, which of course coincides with
the intuition.

Example 7.2 Known mean, m̄, and x positive.
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If the variable is positive with know mean, then the entropy functional
becomes

J(p(x)) = H(p(x)) − λ

(∫ ∞

0
p(x)dx − 1

)

− µ

(∫ ∞

0
x p(x)dx − m̄

)

=

∫ ∞

0
(−p(x) log p(x) − λp(x) − µ x p(x)) dx + λ + µm̄

(7.22)

where m̄ denotes the mean value and λ and µ are Lagrange multipliers.

The derivatives of the Lagrangian now become

Lp(x) = − log p(x) − 1 − λ − µx

Lp′(x) = 0
(7.23)

which, after insertion into (7.16), results in

p(x) = exp(−1 − λ − µx) (7.24)

Using the first constraint gives

∫ ∞

0
p(x)dx =

[

exp(−1 − λ)
1

µ
e−µx

]∞

0

= exp(−1 − λ)
1

µ
= 1,

(7.25)

and the second constraint,

∫ ∞

0
xp(x)dx =

[

exp(−1 − λ)
(−µx − 1)e−µx

λ2

]∞

0

= exp(−1 − λ)
1

µ2
= m̄.

(7.26)

Combining (7.25) and (7.26) determines the value of the first Lagrange
multiplier, λ = 1

m̄ , and the PDF becomes

p(x) =
1

m̄
exp(− 1

m̄
x). (7.27)

which is the exponential distribution.
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Now we return to the question whether we could assign a Gaussian prior
if the mean and variance are known. This is discussed in the following
example.

Example 7.3 Known mean, m̄, and variance, σ2.

The functional to maximize now has three Lagrange multipliers corre-
sponding respectively to, the condition that p(x) should fulfill (7.14), and
the mean and variance constraints, which results in the entropy functional,

J(p(x)) = H(p(x)) − λ

(∫ ∞

−∞
p(x)dx − 1

)

− µ

(∫ ∞

−∞
x p(x)dx − m̄

)

−

η

(∫ ∞

−∞
(x − m̄)2p(x) − σ2

)

=

∫ ∞

−∞

(
−p(x) log p(x) − λp(x) − µ x p(x) − (x − m̄)2p(x)

)
dx+

λ + µm̄ + ησ2

(7.28)

The derivatives of the Lagrangian then become

Lp(x) = − log p(x) − 1 − λ − µx − η(x − m̄)2

Lp′(x) = 0.
(7.29)

Now, let λ̃ = 1 + λ in (7.29), and then insert (7.29) into the Euler equa-
tion (7.16). We thus obtain

p(x) = exp(λ̃ + µx + η(x − m̄)2). (7.30)

By using the first constraint,

∫ ∞

−∞
p(x)dx = exp

(

1

4

4λ̃η − µ2 − 4µη

η

) √
π√−η

= 1, (7.31)

and the second constraint,

∫ ∞

−∞
p(x)dx = exp

(

1

4

4λ̃η − µ2 − 4µη

η

) √
π√−η

(−µ + 2ηm̄)

2η
= m̄,

(7.32)
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gives that −µ + 2ηm̄ = 2ηm̄, hence µ = 0. By inserting µ = 0 into (7.30),
the third constraint becomes

∫ ∞

−∞
(x − m̄)2p(x)dx = − eλ̃√π

2η
√−η

= σ2. (7.33)

Now inserting µ = 0 also in (7.31) gives that

eλ̃√π√−η
= 1 (7.34)

and combining (7.34) and (7.33) yields

η = − 1

2σ2

eλ̃ =

√−η√
π

=
1√
2πσ

.
(7.35)

Finally, inserting (7.35) and µ = 0 into (7.30) yields the PDF

p(x) =
1√
2πσ

exp(− 1

2σ2
(x − m̄)2) (7.36)

which is the Gaussian distribution.

Evidently, a Gaussian prior is the maximum entropy PDF if the first two
moments are known.

In the next two sub-sections we will present two Bayesian estimators
that are based on Gaussian and exponential prior PDFs, respectively.

7.1.2 The Optimal Linear Estimator

The Gaussian prior can, as described above, be motivated by being a max-
imum entropy distribution for known mean and variance. The Gaussian
prior also leads to the (closed form) MAP estimator (7.9). The form of the
MAP estimator,

ô = Kmapy, (7.37)

has an attractive characteristic for practical computation. Each row, ki,
in Kmap constitutes of the optimal linear estimator for the corresponding
observation point. The optimal estimator for the ith element in o can be
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computed as the inner product kT
i y independently of the estimates for all

other observation points. Thus, the optimal linear filtering can be performed
in parallel using many CPUs thereby improving real-time performance.

Also, as will be further discussed in Section 7.2, the optimal linear es-
timator has similarities to standard Tikhonov type of regularization. To
understand this, first recall the equivalence between the linear MMSE and
the MAP estimate

Kmap = (C−1
o + PTC−1

e P)−1PTC−1
e

= CoP
T (PCoP

T + Ce)
−1 = Kmmse.

(7.38)

The noise covariance matrix, Ce in (7.38), can be seen as a regulizer
that stabilizes the solution. To see this more clearly, consider a singular
value decomposition (SVD) of the propagation operator P. The SVD of P

is given by
P = UDVT , (7.39)

where the columns of U are the eigenvectors of PPT , the columns of V

are the eigenvectors of PTP, and the singular values on the diagonal of D

are the square roots of the eigenvalues of both PPT and PTP. If we let
si denote the ith singular value and we also assume that the elements in
both o and e are uncorrelated so that Ce = σ2

eI and Co = σ2
oI, then by

using (7.39), (7.38) becomes

Kmap = σ2
oP

T (σ2
oPPT + σ2

eI)
−1

= PT (PPT + σ2
e/σ

2
oI)

−1

= V









s0

s2
0+σ2

e/σ2
o

s1

s2
1+σ2

e/σ2
o

0
. . .

0 sMN−1

s2
MN−1

+σ2
e/σ2

o









UT .

(7.40)

The factors si

s2
i +σ2

e/σ2
o

in (7.40) are of the form

si

s2
i + α

, (7.41)

where the term α stabilizes the solution. That is, even if the some of the
singular values are close to zero, which potentially could lead to a division
by zero, the factor α ensures that (7.41) is always bounded. The particular
choice α = σ2

e/σ
2
o is the optimal choice of the stabilizer; that is, the choice

that results in the minimum mean-squared error of the reconstructions.
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7.1.3 The Optimal Beamformer with Exponential Prior

As discussed in Example 7.2 above the maximum entropy PDF for a pos-
itive variable with known mean is given by an exponential distribution. It
may therefore be motivated to assign an exponential distribution for the
ultrasonic scattering when it is known that the scattering strength must be
positive.4

If we assume that the prior PDF for o is exponential, and also that all
ois are independent identically distributed (IID), then the prior is given by

p(o|I) = ΠMN−1
i=0 λo exp(−λooi). (7.42)

If e is also Gaussian then the resulting posterior PDF becomes

p(o|y, I) ∝ 1

(2π)
MN

2 |Ce|1/2
exp

(

−1

2
(y − Po)TCe

−1(y − Po)

)

ΠMN−1
i=0 λo exp(−λooi).

(7.43)

The MAP estimate can then be found by maximizing (7.43) subject to the
constraint that all oi must be positive, or equivalently by taking the negative
logarithm of (7.43), and minimizing

− log p(o|y, I) =C +
1

2
(y − Po)TCe

−1(y − Po) +
MN−1∑

i=0

σ2
ooi

=C +
1

2
(y − Po)TCe

−1(y − Po) + λo1
To,

(7.44)

subject to oi > 0, where C is a factor independent of o and 1 = [1 1 · · · 1]T .

Note that due to the constraints the estimate can no longer be expressed
in a closed form as was the case for the linear MMSE estimate (7.7). The
MAP estimate, given by minimizing (7.44) must therefore be found by means
of an iterative optimization procedure. However, for optimization problems
of this type there exist efficient numerical algorithms as will be discussed in
more detail in the next chapter.

7.2 Focusing as an Inverse Problem

Recently there has been an interest in improving the reconstruction per-
formance using inverse filtering techniques in ultrasonic imaging, [43–45].

4An example where the scattering amplitude must be positive, which is considered in
the next chapter, is array imaging of hard steel wire targets immersed in water.
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In order to relate such inverse filtering methods to the Bayesian methods
discussed above, a brief introduction the inverse filtering is presented below.

Let us regard the image reconstruction problem as an inverse problem
where we seek the inverse operator to remove the effects of the observation
mechanism. We assume that the true image formation system is given by
the linear model

y = Po + e. (7.45)

The propagation matrix, P, introduces a distortion or a degradation of
the image o which we want to compensate for. Now a function F (·) is
sought, which is the inverse function of P. If P is square and invertible (all
eigenvalues larger than 0) then the function F (·) is simply P−1. If P is not
square a pseudo or generalized inverse can be used,

ô = P+y. (7.46)

The pseudo inverse solution can be found by solving the equation system

PTy = PTPo, (7.47)

or equivalently by solving the least-squares (LS) optimization problem

Jls = ‖y − Po‖2

= yTy − 2PTy + oTPTPo.
(7.48)

Eq. (7.48) is minimized by

ôls = (PTP)−1PTy. (7.49)

which is the familiar least squares (LS) estimate.

A requirement for the existence of (7.49) is that the normal matrix,
PTP, is regular. Recall from Chapter 4 that P is a KL×MN matrix where
MN is the dimension of o and KL is the dimension of y. If KL < MN ,
then PTP will have rank KL and is therefore not invertible. Even though
the normal matrix has full rank, some eigenvalues of PTP will usually be
very close to zero. Inverting PTP will therefore result in a variance of the
LS estimates that is unacceptable.

Inverse problems of this type in know as ill-conditioned or ill-posed prob-
lems and special precautions must be taken when solving such problems. For
a solution to be acceptable, it must satisfy three conditions, known as the
Hadamard conditions, which are: existence, uniqueness, and the physical
condition of stability or continuity with respect to the data [31]. There ex-
ist several approaches to ensure stability of the solution and two common
methods are discussed in the following two sub-sections.
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7.2.1 Singular Value Decomposition Inversion

A common technique to solve ill-posed inverse problems is by means of a
performing a SVD of the propagation operator. Recall from Section 7.1.2
that the SVD of the propagation operator, P, is given by

P = UDVT . (7.50)

To avoid strong noise amplification, as a result of small singular values, it is
thus unwanted to use a direct inverse of the normal matrix, PTP, using all
eigenvectors and singular values.

A common technique is then to truncate the singular value decomposi-
tion and only use the eigenvectors and corresponding singular values over a
certain threshold, R = imax, in the inverse operator. The remaining singular
values, for i > R, are then set identically to zero. A pseudo-inverse of P

can then be found by first noting that U and V are orthonormal matrices
so their corresponding inverse is given by UT and VT , and since D is diag-
onal the inverse is simply obtained by taking the reciprocal of each diagonal
element si. The truncated pseudo-inverse is thus given by

ôsvd = VD+UTy

= V















s−1
0

s−1
1 0

. . .

s−1
R

0

0
. . .

0















UTy.
(7.51)

The strong noise amplification, due to a devision with a singular value close
to zero, is thereby avoided resulting in a more stable solution [44, 86]. There
is however no rationale on how to select the threshold, R, when the singular
values are considered too small. In particular, the method does not con-
sider the noise in (7.45) nor any prior information regarding the scattering
strengths.

7.2.2 Tikhonov Regularization

A classical regularization method introduced by Tikhonov and Arsenin [87]
is to add constraints on the solution to avoid excessive noise amplification.
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The estimate is obtained by solving the optimization problem

ô = arg min
o

‖y − Po‖2 + αQ(o), (7.52)

where Q(·) is a discrete functional of the form Q(o) = ‖Ro‖2. Taking the
derivative of (7.52) with respect to o and equating to zero results in

ômnls = (PTP + αRTR)−1PTy. (7.53)

A common choice is to let R be a differential operator which, then leads
to smoother estimates since rapid changes in o result in a large value of
‖Ro‖2.

A special case of (7.53) is the minimum norm least-squares (MNLS)
solution where R = I. Eq. (7.52) then simplifies to

ô = arg min
o

‖y − Po‖2 + α‖o‖2. (7.54)

For this choice of Q(o) there will be a penalty for large values of o.

The MNLS solution can be compared to the SVD method, (7.51), by
using the singular value decomposition (7.39) in (7.53) with R = αI,

ômnls = (PTP + αI)−1PTy

= V(D2 + αI)−1DUTy

= V
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sMN−1

s2
MN−1

+α











UTy.

(7.55)

The factor α protects from a division by a factor close to zero thereby
stabilizing the solution.

As already mentioned in the introduction to this chapter, Tikhonov reg-
ularization can be seen as a special case of the linear MMSE, or linear MAP,
solution. To see this compare the MNLS solution (7.55) and the MAP so-
lution (7.40). If we choose α, in (7.55), as σ2

e/σ
2
o then (7.55) and (7.40)

becomes identical. Thus, for the particular choice α = σ2
e/σ

2
o the MNLS

solution (7.55) will also be the minimum mean-squared error solution.
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7.2.3 The Maximum Likelihood Estimator

As a final remark we also consider the maximum likelihood (ML) estimator
due to its popularity in the statistical literature. A reason for the popularity
is that the ML estimate is unbiased and have the asymptotically smallest
covariance matrix of all the unbiased estimators. The ML estimate is defined
as the maximum value of the likelihood function, given by

ô = arg max
o

p(y|o, I). (7.56)

Here I denotes our background information, i.e., the model (7.45).

For a Gaussian measurement noise the likelihood function is given by

p(y|o, I) =
1

(2π)
MN

2 |Ce|1/2
exp

(

−1

2
(y − Po)TCe

−1(y − Po)

)

. (7.57)

Eq. (7.57) is then maximized by first taking the logarithm,

log (p(y|o, I)) = − log
(

(2π)
MN

2 |Ce|1/2
)

− 1

2
(y−Po)TCe

−1(y−Po), (7.58)

and then equating the derivative with respect to o, given by

∂ (− log p(y|o))

∂o
= −PTCe

−1y + PTCe
−1Po (7.59)

to zero. This results in the solution

ôml = (PTCe
−1P)−1PTCe

−1y. (7.60)

If the noise is white, Ce = σ2
eI, then (7.60) reduces to

ô = (PTP)−1PTy, (7.61)

which is identical to the LS estimate (7.49). Thus, the ML estimate has the
same stability problems as the LS estimate: the low bias of the ML solution
is traded against an (unacceptable) high variance of the estimates.

The problem with the ML estimator, and the estimators discussed above
this section, is that they do not utilize the essential prior information. There-
fore, more or less ad hoc methods were needed to regularize the solution.
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7.3 Concluding Remarks

In this chapter, two Bayesian reconstruction methods were introduced, the
linear MMSE and the non-linear MAP estimators. These estimators were
considered for the purpose of improving the imaging performance of classical
beamforming methods. Since the two Bayesian methods are based on a more
realistic model of the imaging system than traditional DAS beamforming, as
well as prior information of the scattering strengths is taken into account, the
performance is expected to improve compared to traditional beamforming.
This will be verified in Chapter 8, where the reconstruction performance of
the two Bayesian methods will be further studied.
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7.A Some Matrix Derivations

7.A.1 Equivalence of MAP and Linear MMSE Estimators

To prove the equivalence of MAP and linear MMSE estimators, when o and
e are Gaussian, we use the matrix inversion lemma [88]

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (7.62)

First, let A = Ce, B = P, C = Co, and D = PT , then using (7.62), the
factor (Ce + PCoP

T )−1 in the MAP estimate (7.3) is

(Ce + PCoP
T )−1 = C−1

e − C−1
e P(C−1

o + PTC−1
e P)−1PTC−1

e . (7.63)

Now let Γ = (C−1
o +PTC−1

e P)−1 then the MAP estimator can be expressed
as

Kmap = CoP
T (C−1

e − C−1
e PΓPTC−1

e ), (7.64)

and the linear MMSE estimator (7.7), as

Klmmse = ΓPTC−1
e . (7.65)

Taking the difference between (7.64) and (7.65),

Kmap − Klmmse = CoP
T (C−1

e − C−1
e PΓPTC−1

e ) − ΓPTC−1
e

= (Co − CoP
TC−1

e PΓ − Γ)PTC−1
e

[Co = CoΓ
−1Γ]

= (CoΓ
−1 − CoP

TC−1
e P − I)ΓPTC−1

e

= (Co(C
−1
o + PTC−1

e P) − CoP
TC−1

e P − I)ΓPTC−1
e

= (I + CoP
TC−1

e P − CoP
TC−1

e P − I)ΓPTC−1
e

= 0,

(7.66)

and the equivalence is proved.

7.A.2 Performance of the Linear MMSE and MAP Estima-

tors

The performance of the estimator is measured with the error ε = ô − o.
Since o is Gaussian and ô is a linear transformation of a Gaussian variable
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ε must also be Gaussian. Let K denote the MAP estimator (7.9). The error
covariance matrix is then obtained as

Cε = E{εεT } = E{(Ky − o)(Ky − o)T }
= E{ooT } − E{K(Po + e)oT } − E{o(eT + oTPT )KT }+

E{K(Po + e)(eT + oTPT )KT }
= Co − KPCo − CoP

TKT + K(PCoP
T + Ce)K

T

= Co − CoP
T (PCoP

T + Ce)
−1PCo

= (C−1
o + PTC−1

e P)−1

(7.67)

where we have used the properties that o and e are uncorrelated, and that
the inverse of a symmetric matrix also is symmetric. The last identity
in (7.67) follows directly from the matrix inversion lemma (7.62).
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CHAPTER 8

Applications

IN the previous chapters, ultrasonic image reconstruction was formulated
as a linearized inverse-scattering problem, to which both linear and non-

linear approaches to were suggested. The simulations in Chapters 5 and 6
showed that traditional beamforming methods produced images with inade-
quate quality in cases involving spatially sparse sampled data and where the
specific diffraction effects due to finite-sized array elements were apparent.

The aim of this chapter is to report results of experiments and simula-
tions for both synthetic and real array apertures, comparing the Bayesian
estimators presented in the previous chapter with conventional beamform-
ing methods. Aspects treated in this chapter includes the size effects of
finite-sized transducers, sparsely sampled, or under-sampled arrays, as well
as parallel array imaging.

The experiments have been conducted using a phased array system and
a standard immersion tank. The broadband data were acquired using a 1D
array, employing both electronic and mechanical scanning. To make the
reconstruction results easy to interpret, wire targets and side-drilled holes
were used. The simulations in this chapter were designed to emulate the
physical array system. This was done in order to facilitate the comparison
with experiments.

For practical reasons, all investigations, both experimental and simu-
lated, have been conducted on two-dimensional data only. In this way the
memory and CPU requirements are reduced. Note however that there is

125
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nothing that theoretically limits the Bayesian methods discussed here to be
applied to full 3D data.

This chapter is organized as follows: In section 8.1, the array system
used for the measurements is described. This section also contains a short
description of how the SAI and the parallel imaging experiments have been
conducted. Section 8.2 describes the SAI experiments, for investigation of
the lateral resolution, when using finite-sized transducers. In Section 8.3,
the parallel array experiments are discussed. Topics treated are grating
lobe suppression and estimation performance, both with respect to different
focusing methods and to signal-to-noise ratios. This section includes a com-
parison of the DAS, matched filter, and the linear MMSE methods as well
as the non-linear MAP estimator. Finally, in Section 8.5, some conclusions
from the experiments are given.

8.1 Experimental Equipment

The experimental data for this thesis were acquired using an ALLIN array
system manufactured by NDT Systems. This system is equipped with an
electronic beamformer that allows for focusing in both the transmit and
the receive operation. The driving unit can use a maximum of 32 elements
simultaneously, but only with 16 unique focusing delays, and beam steering
can therefore only be performed using 16 elements. The system has an
analog multiplexer that controls which array inputs are connected to the
8-bit analog-to-digital converter (ADC).1

Since the data, due to the analog multiplexer, can be acquired by elec-
tronically switching between different array elements, a very fast scanning
of the beam is possible. The system can also perform mechanical scanning
by moving the transducer using a step-motor controlled robot.

In the experiments, the ALLIN system was connected to a 64 element
concave 1D array for immersion testing, manufactured by Imasonic. This
array has a dimension of 64×33.5 mm, where each individual element is 0.9×
33.5 mm. Each array element is geometrically focused in the y-direction at
the depth z = 190 mm. The array pitch, d, is 1 mm and the elements are thus
separated by 0.1 mm. The array has a center frequency at approximately 3
MHz (see Figure 3.4). This corresponds to λ = 0.5 mm in water. The array
pitch is then approximately 2λ and the array is under-sampled according

1The 8-bit ADC limits the dynamic range of the system to 48 dB.
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to the array sampling theorem, cf. Chapter 1. The Imasonic array and the
ALLIN driving unit are shown in Figure 8.1. Figure 8.1(a) shows a schematic
view of the Imasonic array and a photograph is shown in Figure 8.1(b). A
photograph of the ALLIN system cabinet is shown in Figure 8.1(c) where
also a part of the robot can be seen in the background.

This system was used in experiments for both synthetic aperture imag-
ing (SAI) and parallel array beamforming. The SAI experiments were per-
formed by means of mechanical scanning with a different number of active
elements thus mimicking single scanned transducers with different sizes but
with almost identical electrical characteristics. This measurement method
facilitates the comparison of SAI experiments with different transducer sizes
since the electrical impulse responses are the same regardless of the trans-
ducer size.

As discussed in Chapter 6, a parallel beamformer uses multiple focusing
laws to beamform many points simultaneously. To acquire data for parallel
imaging, the received signals from all elements must be available. Since
the ALLIN system only has one ADC, parallel beamforming experiments
cannot be performed from data acquired using a single emission. A parallel
data acquisition can, however, be emulated by using the analog multiplexer
by sequentially acquire data from each element with the array at the same
position. All parallel array imaging experiments have been conducted using
this technique.

8.2 Ultrasonic Synthetic Aperture Imaging

In this section the specific effects due to transducer element size has been
studied. SAI experiments has been chosen since the transducer size does
not impose any restrictions on the array pitch, which is the case for physical
arrays.

Below, the propagation matrix for monostatic SAI is presented which is
then used in the experiments.

8.2.1 The Monostatic Propagation Matrix

The propagation matrix described in Chapter 4 was derived for a general
measurement setup, allowing for transmission and reception using arbitrary
combinations of transducers. In the SAI experiments presented in this thesis
a single scanned axisymmetric transducer was used. In this case the acoustic
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(a) Geometry of the 64 element
concave 1D array.
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array.
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Figure 8.1: The ALLIN array system and the 64 element Imasonic array.
The array elements are 0.9 mm wide in the x-direction and 33.5 mm in
the y-direction, the array pitch d is 1 mm, and the array is geometrically
focused at 190 mm. The driving unit can use 32 elements simultaneously
but only with 16 unique focusing delays and the data are acquired using an
8-bit analog-to-digital converter.
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transmit and reception processes will be identical, that is, the transmit and
receive SIRs will be the same. Recall that the A-scan signal, yn, received
by a transducer at xn, is given by (4.21), that is,

yn =

N−1∑

ñ=0

Pd(ñ,n)oñ + en. (8.1)

Due to the symmetry of the transducer, the Pd(ñ,n) matrices for vertical
lines at the same horizontal distance from the transducer will be identical,
that is,

Pd(n−i,n) = Pd(n+i,n) (8.2)

for an integer i in the ROI.2 Moreover, the matrix Pd(ñ,n) is also invariant
with respect to a parallel shift of the position of the transducer, in the sense
that

Pd(ñ+i,n+i) = Pd(ñ,n). (8.3)

Furthermore, the number of elements in the propagation matrix can be
decreased by noting that the contributions for observation points at a large
distances from the transducer will be small due to the beam directivity of
the transducer (cf. the discussion in Section 3.3). Therefore, the summation
in (8.1) can be truncated without introducing any significant errors. That
is, (8.1) can be simplified to

yn ≈
n+L̃/2
∑

ñ=n−L̃/2

Pd(ñ,n)oñ + en, (8.4)

where L̃ is the number transducer positions that significantly contribute to
the response from targets located along the vertical line at xñ.

Using (8.4), and the symmetries (8.2) and (8.3), in (4.23), the total
propagation matrix for monostatic SAI imaging can finally be expressed,

P =













Pd(i−L̃/2,i) · · · Pd(i+L̃/2,i)

Pd(i−L̃/2,i) · · · Pd(i+L̃/2,i) 0

. . .
. . .

0
Pd(i−L̃/2,i) · · · Pd(i+L̃/2,i)













,

(8.5)
for any i such that i − L̃/2 and i + L̃/2 is in the ROI.

2It is assumed that the ROI is spatially sampled at regular intervals.
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8.2.2 Lateral Resolution and Finite Sized Transducers

A deficiency of the SAFT method comes from treating the scanning trans-
ducer as a point source. This results in a mismatch of the SAFT filter given
in (5.7) if the transducer has a finite size, as was demonstrated in Chapter 5.
To study only the influence of the transducer size on the lateral resolution,
a simplified propagation matrix, Ssir, can be used which only contains the
double-path SIRs and not the electrical impulse responses. This essentially
assumes the propagation model

y = Ssiro + e (8.6)

where Ssir has the same structure as the propagation matrix, P in (8.5).

The filter matrix in the linear MMSE estimator, for the simplified mod-
el (8.6), is then given by

Kmmse = CoS
T
sir(SsirCoS

T
sir + Ce)

−1. (8.7)

Since the model (8.6) does not include the electrical impulse response,
the filter (8.7) should now only compensate for the specific diffraction effects
due to the finite size of the active area of the transducer.

Below, two experiments are presented, one conducted using wire tar-
gets and one using an immersed copper block with side-drilled holes. The
experiments were designed such that transducer size effects was apparent.

Experiment 1: Wire Targets

In this experiment, the lateral resolution for the simplified linear MMSE
estimator (8.7) was evaluated on measured data, and compared to SAFT
processing using the same synthetic aperture.

The data were acquired using the Imasonic array imaging a wire target3

at z = 50 mm. The array was mechanically scanned along a line, and the
data were acquired with a pitch d = 1 mm and a temporal sampling period,
Ts, of 0.04 µs (=25 MHz). The synthetic aperture consisted of 31 A-scans
for both the SAFT and the MMSE algorithm.

Two transducer sizes were considered: 1 mm and 16 mm, respectively.
The latter was obtained by firing 16 elements of the Imasonic array simul-
taneously. The SIRs associated with the concave array, Ssir, used in (8.7),

3A steel pin with a diameter of 0.3 mm was used.



8.2. Ultrasonic Synthetic Aperture Imaging 131

were computed using the DREAM method described in Chapter 3. Fur-
thermore, in all experiments and simulations presented in this thesis, the
following are assumed:

Assumption 8.1 The matrices Co and Ce are assumed to have the form
Co = σ2

oI and Ce = σ2
eI, respectively.

Assumption 8.1 states that the elements in both o and e are uncorrelated,
which is reasonable if we do not have any information that indicates any
dependence between the elements in o and e. Using this assumption (8.7)
is simplified to

Kmmse = ST
sir(SsirS

T
sir + σ2

e/σ
2
oI)

−1. (8.8)

In this experiment, the simplified model (8.6) is used (that do not take
the electrical impulse response into account) which introduces model errors.
These errors are difficult to quantify and it is, consequently, also be difficult
to determine the noise variance σ2

e since the noise is a combination the model
and measurement errors. Therefore, the ratio µ = σ2

e/σ
2
o was simply used as

a tuning parameter, and it was adjusted manually to obtain the best visible
performance.

The unprocessed data and the reconstruction results are shown in Fig-
ure 8.2. Figures 8.2(a) and (b) show the unprocessed B-scan data, corre-
sponding to the 1 mm and the 16 mm transducer, respectively. The B-scan
for the 1 mm transducer has the typical hyperbolic shape associated with
small transducers that emits nearly spherical waves. The B-scan from 16
mm transducer, shown in Figure 8.2(b), shows however strong effects of the
beam directivety.

The reconstruction results for the SAFT processed 1 mm data, shown
in Figure 8.2(c), shows a significant improvement in lateral resolution com-
pared to the unprocessed data. However, the SAFT reconstructed image
for the 16 mm transducer, shown in Figure 8.2(d) shows no improvement
in lateral resolution compared to the unprocessed data. That is, SAFT
performance deteriorates when the transducer size inceases.

The MMSE reconstructions, shown in Figures 8.2(e) and (f), shows, on
the other hand, high lateral resolution for both transducer sizes. Thus, the
MMSE estimator has sucessfully compensated for the diffraction effects of
the transducer.

One can also finally note that the temporal, or range resolution, is
roughly the same in the unprocessed B-scan data and the processed images
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Figure 8.2: Comparison between the SAFT and the simplified MMSE esti-
mator, (8.7), on measured data from a wire target (steel pin with a diameter
of 0.3 mm) at z = 50 mm using a phased array.
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for both methods. This was expected since the conventional SAFT algorithm
do compensate for the temporal waveform and, as mention above, we inten-
tionally did not include the electrical impulse response in the model (8.7)
that the MMSE estimator is based on.

Experiment 2: Side Drilled Holes in an Immersed Copper

Block

The objective with this experiment was to evaluate the performance of the
MMSE method in comparision to classical focusing methods in a typical
NDT application. In NDT applications it is often important to be able
to resolve closely spaced objects in order to, for example, identify critical
defects. For that purpose, measurements were performed using a copper
block with four pairs of side-drilled holes (SDHs). The copper block was
immersed in water and the distance between the array and the block was
adjusted so that the SDHs in the copper block were located at the geometric
focus of the concave 1D array.4 The spacing between the SDHs in the block
ranged from 1 to 7 mm, see Figure 8.3. Below, the SDH spacing is denoted

1mm

ο=1mm

3mm 5mm 7mm

35mm

Figure 8.3: Copper test block with four pairs of side drilled holes.

∆d (which should not be confused with the array pitch d).

Three approaches for imaging were examined in this experiment. First,
conventional phased array (PA) beamforming, then SAFT, and finally the
MMSE method.

The PA method was used as a bench-mark, and the array was focused
at the depth of the SDHs with 32 elements using the hardware beamformer
in the ALLIN system. Results from the PA measurements, in the form of
profile plots are shown in Figure 8.4. As can be seen in Figures 8.4(a) and
(b), the PA method did not resolve the two SDHs with ∆d = 1 and 3 mm,

4The Imasonic array was manufactured specificially for imaging immersed specimens.
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Figure 8.4: Profile plots from side-drilled hole data beamformed using the
Imasonic phased array focused at 35 mm in a copper block using 32 ele-
ments.

but when the SDH spacing was increased to 5 and 7 mm the SDHs could be
distinguished, see Figure 8.4(c) and (d).

The SAI data were acquired using a single element of the array, and the
width of the transducer were therefore approximately 1 mm. The pitch and
sampling frequency were the same as for the PA data above, that is, d = 1
mm and Ts = 0.04µs, and the data were acquired by means of mechanical
scanning in the same manner as in Experiment 1.

The SAI results for the SAFT method are shown in Figure 8.5 and the



8.2. Ultrasonic Synthetic Aperture Imaging 135

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

[mm]

(a) SDH spacing: ∆d = 1 mm.

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

[mm]

(b) SDH spacing: ∆d = 3 mm.

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

[mm]

(c) SDH spacing: ∆d = 5 mm.

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

[mm]

(d) SDH spacing: ∆d = 7 mm.

Figure 8.5: Profile plots from side-drilled hole data measured with a 1 mm
transducer and processed using the SAFT algorithm.

results for MMSE algorithm are shown in and 8.6.5

If we compare the DAS based PA and SAFT results, cf. Figures 8.4
and 8.5, their performance are very similar.6 That is, both methods did only
resolve the SDHs with a spacing of 5 and 7 mm. This is not unexpected since
both methods are based on DAS processing and the aperture was almost the
same in both experiments. However, from Figure 8.6, where the results from

5The SIRs corresponding to the observation points in the immersed solid, needed for
the MMSE method, were computed using the method described in Appendix 3.B.

6The noise level is higher in the SAFT processed plots since only one element is used
whereas the PA uses 32 elements and therefore transmits more energy.
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Figure 8.6: Profile plots from side-drilled hole data measured with a 1 mm
transducer and processed using the simplified MMSE estimator, (8.7).

the MMSE estimator are presented, it is clear that all four pairs of SDHs
were resolved.

It is evident from the Experiments 1 and 2 above, that the MMSE
method successfully can compensate for the size effects of a finite-sized
transducer resulting in a significantly improved lateral resolution compared
to DAS based processing. Thus, the MMSE method enables more flexible
measurement setups since transducers with larger active areas can be used
without loosing too much resoltion.
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8.3 Parallel Array Imaging

Recall from Chapter 6 that in parallel beamforming several receive focusing
filters are used simultaneously to focus the array at many points on data from
a single transmission [79, 80, 89]. The benefit of this approach is an increased
frame rate compared to, for example, sweeped beam imaging where many
transmissions are needed. Typically a transmit beam that is wider then
normal is used and a few lines of the total ROI is then reconstructed using
parallel receive beamforming [79]. The complete ROI could, in principle,
be reconstructed from one transmitted pulse provided that the transmit
beam is wide enough to illuminate the ROI. There are, however, practical
considerations that make very wide beam illumination difficult. Firstly, it
may be difficult to generate a sufficiently wide beam, and secondly ghost
responses due to the grating lobes are stronger for DAS beamformed images
when a wide beam is used compared to using a sweeped narrow beam [51].

As we will show below, model based reconstruction methods can however
alleviate some of these problems since they can take both the transmission
and reception processes into account and compensate for any beampattern.
The reconstruction methods discussed in this thesis, that are based on the
impulse response method, can in principle compensate for grating lobes or
any other beam pattern, provided that the corresponding spatial impulse
responses can be computed. Moreover the reconstruction methods discussed
in Chapter 7, that are based on the linear model (4.23), reconstructs the full
ROI from a single set of signals, received by the respective array elements,
and are therefore also inherently parallel in nature.

Below we will study the linear MMSE estimator and the non-linear MAP
estimator with exponential prior in a situation where the array is undersam-
pled in order to center the attention on the lobe aliasing problems that may
be apparent in such situations.

8.3.1 The Propagation Matrix for Parallel Receive Imaging

As discussed in Chapters 1 and 6, in phased array imaging the beam can
be focused or steered by applying suitable delays of the signals driving the
array elements. These delays will then also delay the SIRs for each array
element. The receive and transmit SIRs will therefore be different in contrast
to monostatic SAI where the transmit and receive SIRs were identical.

The system impulse response hsys(r, t) for the nth receive element can
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be computed as a superposition of all delayed transmit SIRs convolved with
the SIR for the nth receive element and the electrical impulse response
(cf. (4.13)),

hsys(r, t) =





P−1∑

p=0

hf
p(r, t) ∗ δ(t − τp)





︸ ︷︷ ︸

total forward SIR

∗ hb
n(r, t)
︸ ︷︷ ︸

nth backward SIR

∗ he(t), (8.9)

where P in the number of transmit elements and τp is the focusing delay
corresponding to the pth transmit element. The received discrete waveform,
from a target at an observation (xm, zñ), can then be expressed as

yn = h(ñ,n)
m (O)m,ñ (8.10)

where the vector h
(ñ,n)
m is the discrete system impulse response for the nth

receive element.

Similar to (4.22) can the noise corrupted received discrete waveform be
expressed as

yn =
N−1∑

ñ=0

Pd(ñ,n)oñ + en

=
[

h
(0,n)
0 h

(0,n)
1 · · · h

(0,n)
M−1 h

(1,n)
0 · · · h

(N−1,n)
M−1

]

o + en

= Pno + en,

(8.11)

and, by appending the received signals from all L receive elements, the total
array imaging system can finally be modeled as

y =
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=Po + e.

(8.12)

The KL×MN propagation matrix, P, in (8.12) now describes both the fo-
cused transmission process and the reception for an arbitrary focused array.

Note that the model (8.12) is valid for any transmit and receive aperture,
provided that the corresponding receive and transmit SIRs can be computed.
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The model (8.12) is therefore not restricted to using the same elements both
in receive and transmit, and it can be used to model both dense- and sparse,
or under-sampled, arrays.

8.3.2 The Optimal Linear Estimator

The optimal linear estimator can for an array layout can now be found by
inserting the propagation matrix from (8.12) into (7.6). In the experiments
performed here a simplified form of (7.6) has been used were the MMSE
filter matrix, Kmmse, for the estimator was computed using Assumption 8.1.
Using this assumption (7.6) reduces to

Kmmse = PT (PPT + µI)−1, (8.13)

where µ = σ2
e/σ

2
o. The µ parameter in (8.13) is related to the “confidence”

that the MMSE estimator has to the data. If the noise is very large then µ
will also be large and the factor µI will dominate the inverse (PPT + µI)−1

in (8.13). The MMSE estimator will in the limit µ → ∞ then reduce to
PT /µ. The gain of the MMSE estimator decreases when σ2

e , and µ, increases.
Furthermore, the estimate will tend toward zero, which is the a priori mean
value of o. In other words for this case, the measurement vector y contains
no new information about o and the estimate is only based on our prior
information.

For the opposite case, when µ approaches zero, the MMSE estima-
tor (8.13) reduces to PT (PPT )−1. This will however rarely be the case,
since we always have uncertainties in our model, thus, we need to set µ
to a positive value.7 Below, we will study the performance of the MMSE
estimator and the influence of the µ parameter.

8.3.3 Grating Lobe Suppression of the Optimal Linear Esti-

mator

A very important factor that can severely deteriorate image quality in tra-
ditional DAS beamforming is the presence of grating lobes, as discussed in
the Chapters 5 and 6. To evaluate the MMSE estimator (8.13) with respect
to grating lobe suppression, measurements and simulations were performed
using the setup shown in Figure 8.7. A steered array configuration was cho-

7Remember that the noise, e, is a combination of all errors of the model (8.12), includ-
ing measurement noise and model errors.
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ROI

z

16 Element Linear Array

Steering Angleφ

x

Wire target

Figure 8.7: Illustration of the measurement setup for evaluation of the
optimal linear parallel estimator. A 16 element phased array with an array
pitch of 1 mm, focused at z = 50 mm and steered -20 degrees, was used.

sen since by steering the array, the grating lobes will also be steered and
therefore appear more clearly as discussed in Chapter 6.8

A snapshot of the acoustic field simulated with the DREAM method for
a 16 element steered array setup is shown in Figure 8.8.9 The snapshot was
taken slightly before the pulse reached the focal point at approximately (x =
-18 mm, z=50 mm). The acoustic energy in the region around x = 8 mm is
due to the grating lobe of the under-sampled array. This can also be seen
as the peak at x = 8 mm in the profile plot shown in Figure 8.8(b).

To study the behavior of the MMSE method, simulated data were ob-
tained by using the linear model (8.12) were the noise vector e was simulated
as white with Gaussian amplitude distribution. The SNR used in the simu-
lations below was defined as

η ,
yTy

eTe
, (8.14)

where the signal energy, yTy, computed using (8.12) with e = 0, is given by

yTy = oTPTPo. (8.15)

8As also noted in Chapter 6 the array elements have a finite size, and their beam
directivity will attenuate energy coming from positions at a high angle with respect to the
vertical center axis. By steering the array, the angle between grating lobes and the center
axis will be reduced and the response from targets in the grating lobe will be stronger.

9The under-sampled Allin array setup was simulated.
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Figure 8.8: Snapshot of the acoustic field at -25 mm < x < 25 mm, 45 mm
< z < 55 mm for a 16 element array with 0.9 mm wide elements and an
array pitch of 1 mm, focused at z = 50 mm and steered -20 deg.

Thus, the signal energy, yTy, is the total energy received by all array ele-
ments. Note that the received signal energy, when imaging a single point
target, will depend on the position of the target. The SNR will therefore
also be a function of the target position and, consequently, the SNR will be
low when the target is in regions with low acoustic energy and high when
the target is in the main or the grating lobe.

Experiment 1: Illustration of Grating Lobe Suppression of the

MMSE Estimator

In the first experiment we consider the beamforming performance at the
vertical image line where the focal point resides. If a target is horizontally
moved from left to right under the array, cf. Figure 8.7, the reconstructed
scattering amplitudes at that line should ideally be zero for all target posi-
tions except for the one where the target position and the position of the
image line coincides. Normally, this will not be the case since, due to side-
and grating lobes, energy will leak into to the main lobe resulting in ghost
responses and a loss in resolution and image contrast.

Figure 8.9(a) shows the results for a simulated 16 element array, and
Figure 8.9(b) shows the corresponding results for data measured with the
Imasonic array. The max amplitudes of the beamformed images at the line
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corresponding to the main lobe position, x = -18 mm, were plotted as a
function of the target position. The DAS beamformer used a fixed receive
focus at (z=50 mm, x = −18 mm), and the optimal filters for the corre-
sponding image line were used in the MMSE estimator. In the simulations,
the noise power was constant for all target positions where the SNR, defined
by (8.14), was 15.8 dB when the target was at the focal point.

To show the influence of µ in (8.13), when µ is treated as a tuning
parameter, the max amplitude was plotted as a function of the position of
a unit area point target for five values of µ: µ = 102, 103, 104, 106, and 109,
respectively, see Figure 8.9(a). For low values of µ the MMSE filter relies
strongly on the measured data, resulting in a significant noise amplification.
This is seen in Figure 8.9(a), for µ = 102, where the noise floor only is about
7 dB lower than the maximum amplitude at the focal point. Increasing µ
lowers the noise sensitivity but it also results in a worse suppression of the
grating lobe, which can be seen for µ = 106 and µ = 109. A good trade-off
between the noise sensitivity and grating lobe suppression is in this case
µ = 104 where the noise and grating lobe levels are roughly 25 dB lower
than the target signal. Note that the MMSE beamformer suppressed the
grating lobe better for all the examined µ values. It is also noticeable that
the MMSE reconstructed image has higher lateral resolution than the DAS
beamformed data.

A similar behavior can be seen in the experimental results, shown in Fig-
ure 8.9(b), where µ = 102 was used for the MMSE estimates.10 Clearly, the
results from MMSE method show both higher resolution and a lower am-
plitude at the grating lobe, even though model errors degraded the MMSE
reconstructions somewhat.11

The fact the MMSE estimates becomes more similar to DAS beamformed
data for large values of µ, can be explained by the fact that the MMSE
estimator reduces to a matched filter, PT /µ, when µ is large (cf. Section 5.4).
Since the DAS beamformer approximately is a matched filter as well, their
performance will be similar. Thus, if the variance of the measurement noise
is very high, then the MMSE estimator will reduce to a matched filter, which
is known to maximize the SNR.

From the results presented above it can be concluded that the MMSE
estimator is capable of eliminating most of the grating lobe effects, if the

10µ = 102 resulted in the best visible performance.
11The synchronization in the ALLIN system is sometimes inexact which introduces

modeling errors.
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(b) Results for measured data using the Imasonic ar-
ray and a 0.3 mm wire target.

Figure 8.9: Normalized maximum amplitude as a function of horizontal
target position for a 16 element 1D array focused at z =50 mm and steered
at an angle of -20 degrees. The point target was located at depth z = 50
mm and the SNR in (a), for the target at x = −18 mm, was 15.8 dB.
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SNR is sufficient. We will continue to investigate these properties of the
MMSE estimator in the next experiment presented below.

Experiment 2: Illustration of Grating Lobe Suppression for

Parallel Array Imaging

In the second experiment the parallel DAS beamformer (5.7) and the MMSE
estimator (8.13) were used to reconstruct a full image from a single emission
from a wire target at a fixed position. More precisely, the entire 50 mm wide
ROI was reconstructed from one emission.12 Again, a 16 element 1D array,
focused at z=50 mm and steered -20 degrees in transmission, was used.

The profile plots of the reconstruction performance for two target posi-
tions was examined; the first one with the target in the main lobe at x = −18
mm, shown in Figure 8.10, and the second with the target located in the
grating lobe at x = 10 mm, shown in Figure 8.11. The noise variance was
constant in the simulations, which resulted in an SNR of 12.5 dB when the
target was in the main lobe and a SNR of 10.7 dB for target in the grating
lobe, where the SNR is defined in (8.14).

As can be seen in Figure 8.10, the DAS beamformed data has a clear
peak at the grating lobe position, around x = 10 mm, for both the simulated
and the measured data. This can not be seen in the MMSE processed
images, presented in Figure 8.10(b) and (d). The same behavior is even
more pronounced when the target is in the grating lobe. Then, the parallel
DAS processed data shows two strong peaks at both the main lobe and the
grating lobe positions, even though there is only one target located in the
grating lobe.

Also here the lateral resolution is superior for the MMSE method com-
pared to the parallel DAS beamformer, and the width of the target peak in
the MMSE reconstructed image is roughly half the width of the correspond-
ing DAS image.

Thus, it can be concluded that the MMSE method can successfully com-
pensate for grating lobes resulting from the use of under-sampled arrays.
Essentially, the parallel MMSE beamformer can reconstruct a target re-
gardless if the target is in the main or the grating lobe. The performance
depends mainly on the acoustic energy at the particular target position.
This topic will be discussed further in Chapter 9.

12As in Experiment 1 above, the “single” emission was emulated due to the limitations
of the ALLIN system.
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(c) Parallel DAS: Measured data.
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(d) MMSE: Measured data.

Figure 8.10: Profile plots for parallel beamformed data with a point target
in the main lobe using a 16 element 1D array focused at z = 50 mm and
steered -20 degrees.

8.4 Parallel Imaging with Exponential Priors

So far it has been assumed that o could take both negative and positive
values. Such an assumption is reasonable if the inspected object may have
an acoustic impedance that can be both higher and lower from that of the
surrounding medium. In some applications it may however be appropri-
ate to assume that the scattering strength only can take positive values.
Consider, for example, a similar experiment to the experiments discussed in
Section 8.3.2 above. There it is known a priori that the wire targets have a
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(c) Parallel DAS: Measured data.
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(d) MMSE: Measured data.

Figure 8.11: Profile plots for parallel beamformed images with a point target
in the grating lobe using a 16 element 1D array focused at z = 50 mm and
steered -20 degrees.

much higher acoustic impedance than the surrounding medium. Thus, the
resulting scattering amplitude must be positive. By using this information,
the reconstruction performance should be improved, especially for band lim-
ited systems where linear deconvolution typically leads to ringings [38].

A drawback of imposing the positivity restriction on the scattering am-
plitude is that a closed form expression for a MAP estimator can no longer
be found. This can be a serious drawback in ultrasonic array imaging appli-
cations due to the usually high dimensionality in these problems. However,
in some cases the MAP solution has a structure that enables the use of very
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efficient numerical methods. One such example is when the measurement
noise is Gaussian and the prior distribution for o is the exponential PDF.13

Recall from Section 7.1.3 that the MAP estimate for an exponential prior
and Gaussian measurement noise can be found by solving the optimization
problem

ô = arg min
o

1

2
(y − Po)TCe

−1(y − Po) + λo1
To

subject to oi ≥ 0 ∀i.

(8.16)

Eq. (8.16) is a quadratic programming (QP) problem with inequality con-
straints. QP problems have the important property that they always can
be solved in a finite number of iterations, if a solution exists [85]. Here,
the QP problem is convex since the Hessian matrix, PTC−1

e P is positive
semidefinite which further facilitates the solution of the problem.

The estimate obtained by solving (8.16) will hereafter be denoted the
positivity constrained quadratic programming, or PCQP, estimate. In the
two experiments described below the PCQP estimate has been compared
with the DAS beamformer, the matched filter (MF), and the linear MMSE
estimator. The image to estimate consisted of about 5000 unknowns and
all computations were performed, on as-of-today, standard PC hardware in
less than an hour.

Below, the performance of the PCQP estimator is illustrated, using both
simulated data and experimental data acquired using the Imasonic array.

Experiment 1: Focused Array using Simulated Data

In this experiment the PCQP estimate was compared with the parallel DAS
beamformer, (5.7), the MMSE estimator, (8.13), and the matched filter,
PT . The Imasonic array was simulated using 16 elements, focused at z = 50
mm. A snapshot of the acoustic field around the focal point for this setup
is shown in Figure 8.12. Since the array is under-sampled one can notice
two grating lobes, at approximately x = ±23 mm, but most of the acoustic
energy is focused around the center axis x = 0.

Three simulations were performed, with SNR = 30, 10, and -20 dB, were
the SNR is defined by (8.14). The true scattering image, o, had five pairs of
unit area point targets located at the horizontal positions x=-25, -13, 0, 13,

13The exponential PDF is also reasonable in the sense that it is the maximum entropy
distribution if the mean is known as discussed in the previous chapter.
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(b) Profile plot of the wave field.

Figure 8.12: Snapshot of the acoustic field at -25 mm < x < 25 mm, 45
mm < z < 55 mm for a 16 element array with 0.9 mm wide elements and
an array pitch of 1mm focused at z = 50 mm.

and 25 mm, and vertically at z = 50 and z = 50.5 mm, respectively. The
vertical distance between the point targets is then roughly one wavelength
of the corresponding center frequency of the array.

To obtain a fair comparison we need to set the parameters in the MMSE
and the PCQP so that the expected energy using both estimators is the
same. The prior that is determined by the mean value, λo, used in the
PCQP estimator was based on the assumption that we can expect to find
one unit area point target in the ROI. The mean scattered energy is the
sum of the squared mean value and the variance, which for a single point
target becomes 12/MN = λ2

o + λ2
o since the variance is given by λ2

o for the
exponential PDF. Thus, λo is given by 1/

√
2MN . By a similar reasoning the

variance, σ2
o, used in the linear MMSE estimator is given by σ2

o = 1/MN .

The reconstruction results, for the respective SNRs, are displayed in
Figures 8.13, 8.14, and 8.15. If we study the DAS and matched filter (MF)
beamformed images it is evident that even for the data with the relatively
high SNR of 30 dB, shown in Figure 8.13, these two methods can only
resolve the targets located close to the focal point. On the contrarym, the
MMSE and PCQP estimators were able to resolve all targets. The PCQP
estimator had, as it can be seen in 8.13(f), very low error in the scattering
amplitudes at all target positions. The MMSE estimator underestimated
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Figure 8.13: Simulated data, with an SNR of 30 dB for five pairs of point
targets at x=-25, -13,0 13, and 25 mm, at z = 50 and z = 50.5 mm, re-
spectively, and the reconstructions using the DAS, MF, MMSE, and PCQP
algorithms.
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the amplitudes somewhat in the regions where the acoustic power was low14,
which is a reasonable behavior since the SNR in those regions is lower than
at the focusing region and the estimates are therefore more uncertain.

When decreasing the SNR to 10 dB the PCQP estimate, shown in Fig-
ure 8.14, starts to show a similar behavior as the MMSE estimator, that
is, it becomes more “cautious” at regions with low acoustic power. This is
even more evident in the reconstructions from the rather low SNR of -20
dB shown in Figure 8.15. Now, both the MMSE and PCQP estimators
only “trust” responses from the focusing region and all other responses are
close to zero. It is also noticeable that the MMSE reconstruction becomes
more similar to the MF output as the SNR decreases, see Figures 8.15(d)
and (e). This is due to the fact, mentioned above, that the noise covari-
ance matrix, Ce, dominates the factor (PCoP

T + Ce)
−1 in the MMSE es-

timator when the SNR is low and the MMSE filter is then approximately
Kmmse ≈ σ2

oP
T (σ2

eI)
−1 = PT σ2

o/σ
2
e .

15

Noteworthy in Figure 8.15(f), is also the remarkable high ability of the
PCQP estimator to suppress the measurement noise. Even though the re-
ceived signals were completely hidden in the noise, see Figures 8.15(a) and
(b), the PCQP estimator managed to predict the two targets at the focal
point with a noticeable high contrast in the reconstructed image.

It is evident from these simulations that the two model based MMSE
and PCQP methods are superior to traditional DAS based beamforming,
in the sense that DAS processing does not perform well for targets outside
the focusing region, whereas the two model based MMSE and PCQP meth-
ods can reconstruct the targets with high temporal and lateral resolution
provided that the SNR is sufficiently high.

Noticeable is also that, in contrast to the DAS and the MF beamformers,
the overall amplitudes of the estimates become lower for both the MMSE
and the PCQP estimators as the noise variance increases. In essence, the
data become less informative regarding the scattering amplitudes, o, when
the noise variance increases and the MMSE and PCQP estimators therefore
becomes more cautious and underestimates the amplitudes.16 This is a
reasonable behavior which gives us a warning that the quality of the data
may not be sufficient for our particular purpose.

14The true target amplitude was 1 in this case.
15The gain of the MMSE estimator is lower than that of the MF due to the factor σ2

o/σ2
e ,

which will be low if the noise variance is high.
16The amplitudes goes toward the a priori mean value, which was 0 for the MMSE

estimates and 1/
√

2MN for the PCQP estimates in this case.
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Figure 8.14: Simulated data, with an SNR of 10 dB for five pairs of point
targets at x=-25, -13,0 13, and 25 mm, at z = 50 and z = 50.5 mm, re-
spectively, and the reconstructions using the DAS, MF, MMSE, and PCQP
algorithms.
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image.
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Figure 8.15: Simulated data, with an SNR of -20 dB for five pairs of point
targets at x=-25, -13,0 13, and 25 mm, at z = 50 and z = 50.5 mm, re-
spectively, and the reconstructions using the DAS, MF, MMSE, and PCQP
algorithms.
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The general observation from these simulations is that it is the spatial
distribution of acoustic energy that is important for the reconstruction per-
formance, not the actual pulse shape. More specifically, the reconstruction
performance of the model based methods employed here mostly depends on
the SNR in the particular region17 and not the length or shape of the wave-
form. Moreover, as demonstrated above, the MMSE and PCQP estimators
could estimate targets outside the focusing region, where the transmitted
waveforms from each element are not in phase, provided that the SNR was
sufficient.

Experiment 2: Steered Array using Measured Data from Wire

Targets

To verify the above mentioned conclusions regarding the ability of the Baye-
sian estimators to reconstruct targets outside the main beam, an experiment
with an under-sampled steered array is presented here. As we have men-
tioned earlier, such an array will transmit energy both in the focusing di-
rection and in the directions of the grating lobes. A relevant question is
therefore if the Bayesian methods also are able to accurately estimate the
scattering strength from a target located in a grating lobe?

For this purpose, the parallel DAS, MMSE and the PCQP methods were
used to reconstruct data from a 16 element array, focused at z = 50 and
steered at -20 degrees, acquired using the ALLIN system and the Imasonic
array. A snapshot of the resulting wave field from this setup is presented
in Figure 8.8 above. The measurements were performed using wire targets,
positioned both in the main lobe at x = −18 mm and in the grating lobe at
x = 10 mm, at depth z = 50 mm, see the illustration in Figure 8.16. The
reconstruction results are shown in Figure 8.17.

The results for the DAS method, shown in Figures 8.17(a) and (b),
again demonstrate the typical leakage from the grating lobe associated with
conventional beamforming. The temporal resolution for the DAS method is
roughly the same as the length of the acoustic pulse for the target in the
main lobe.18 Also, the temporal resolution for the target in the grating lobe
is very poor which can be explained by the fact that the acoustic waveform
is much longer in the grating lobe than at the focal point, see Figure 8.8(a).

As can be seen in Figures 8.17 (c)–(f), both the MMSE and the expo-

17The bandwidth of the system is also of importance [38].
18This is expected since in ordinary DAS processing there is no compensation for the

transmitted pulse waveform.
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Figure 8.16: Illustration of the measurement setup for Experiment 2. The
under-sampled 16 element array was focused at z = 50 mm and steered -20
degrees. A snapshot of the wave field for this configuration is presented in
Figure 8.8.

nential MAP estimators suppressed the grating lobe well for both target
positions, and the temporal resolution has also been improved compared to
DAS processing. The MMSE estimates have however some ringing, see Fig-
ure 8.17(d). This ringing behavior is most likely due to model errors caused
by synchronization problems in the ALLIN array system. The PCQP esti-
mates, shown in Figures 8.17(f) and (f), also have some extra “spikes” but
the amplitude of those spikes are smaller than the oscillations in the MMSE
estimates.

Evidently, both of the model based MMSE and PCQP estimators were
able to accurately estimate the target strength, regardless if the wire target
was located in the main or the grating lobe. This is in complete agreement
with the simulations in Experiment 1 above.

The results from the two experiments presented in this section shows
that, at least for high contrast targets, the use of an exponential prior PDF
for the scattering amplitudes can give impressive results with very high tem-
poral and lateral resolution. The contrast is also very high and the noise level
in the reconstructions are often very low. The remarkable performance of
the exponential MAP estimator is due to the correct prior information that
was incorporated into the model, which enables the estimator to effectively
discriminate between noise and the target responses.
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(a) DAS: Target in main lobe.
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(b) DAS: Target in grating
lobe.
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(c) MMSE: Target in main
lobe.
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(d) MMSE: Target in grating
lobe.
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(e) PCQP: Target in main
lobe.
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(f) PCQP: Target in grating
lobe.

Figure 8.17: Reconstructions from measured data using a wire target in the
main lobe (Figs. (a), (c), and (e)) and a wire target in the grating lobe
(Figs. (b), (d), and (f)). The data were acquired using the ALLIN system
and the concave Imasonic array. The transmit beam was steered at -20 deg
and focused at 50 mm using 16 array elements.
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The most significant drawback of the PCQP method is that the estimate
must be obtain by an iterative optimization algorithm. This makes the
method most suitable for offline processing where real-time constraints are
of little concern.

8.4.1 Remarks

Focusing phase errors: The transmit focusing delays in ultrasonic array
imaging systems are often subject to quantization errors. This re-
sults in a slightly different transmit beampattern then the desired.
In classical beamforming this will result in increased sidelobe ampli-
tudes [16, 90]. However, the model based estimators discussed here
can compensate for these errors given that the true focusing delays
are known.

Correlated scattering: In the experiments discussed in this chapter it
was assumed that the scattering amplitudes at all image points were
uncorrelated. In some applications the scattering objects can, for ex-
ample, have a layered structure (e.g., in seismic exploration) resulting
in correlations between the scatterers. This knowledge can be easily
introduced in the linear MMSE estimator by means of the covariance
matrix Co.

Priors: In the experiments performed with the ALLIN system presented in
this chapter the a priori mean and variance of the scattering strength
were in reality unknown. Despite this fact, we have seen in the results
from both the linear MMSE and the non-linear PCQP method that
the exact mean or variance are not required. Our experience is that
the reconstruction results for both these model based methods are not
sensitive to the particular value of the variance or the mean. The
variance or mean can typically be changed by a factor of 10 without
significantly affect the reconstruction performance. Furthermore, it is
possible to design an experiment, with a known set of scatterers, to
estimate the unknown quantities. However, this is a topic for future
research.

8.5 Summary

In this chapter we have evaluated performance of the linear MMSE estimator
and the PCQP estimator used for the reconstruction of ultrasonic data in
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monostatic configuration as well as in multistatic parallel array imaging.

It was demonstrated that both estimators were capable of reconstructing
multiple targets with high accuracy in the experiments even if the ultrasonic
data were sparsely sampled. However, the PCQP estimator were more im-
mune to the corrupting noise.

The MMSE estimator, which in the simplest case results in a spatio-
temporal filter with only one scalar tuning parameter, clearly outperformed
traditionally used DAS beamforming algorithms in terms of higher resolution
both for the targets in water and in an immersed solid. In the parallel receive
imaging, the MMSE algorithm clearly minimized target leakage from the
grating lobes and could be successfully used for correct reconstruction of
targets located in the grating lobes.

However, when our prior information tells us that the scattering strength
always is positive the best performance was achieved using the nonlinear
PCQP estimator developed for the exponential prior. This estimator clearly
outperformed the linear MMSE estimators in terms of high immunity to
the measurement noise and its ability to reconstruct multiple targets in the
ROI.

The performance of the proposed estimators is achieved at the price of
the increased computational complexity, especially, for the PCQP algorithm
which takes the form of an iterative optimization algorithm.
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CHAPTER 9

Performance of the Optimal Linear Estimator

IN this chapter we turn the attention to the influence that the array system
design has on reconstruction performance and, in particular, how we can

evaluate different array layouts. Traditionally, array systems are designed
with classical beamforming in mind, meaning that the design of the ar-
ray system must respect the limitations that classical beamfoming imposes.
Namely, sub-wavelength array pitches and small element sizes in order to
avoid artifacts and resolution loss. The Bayesian estimators, presented ear-
lier in this thesis, do however not not impose these restrictions and a more
flexible array design should therefore be possible.

The aim of this chapter is to show that Bayesian analysis offer a useful
tool for designing and evaluating ultrasonic array systems. This is due to
the fact that these methods provides a natural measure of the accuracy of
the estimates. According to the discussion in Section 7.1, the performance
of the optimal linear estimator is given by the error covariance matrix, Cε,
in (7.11), which can be analyzed for different array layouts.

In this chapter we will show that, for the linear MMSE estimator, the
expected mean-squared error can give us valuable information regarding,
in particular, the choice of suitable focusing strategies. In agreement with
common sence, it will be demonstrated that focused beams are needed if
the noise is high to obtain a sufficiently low expected error at least in the
limited region of the main beam.

This chapter is organized as follows: In Section 9.1, we present an ex-

159
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pression for the normalized expected error which is then used in Section 9.2,
to evaluate the performance for three parallel array imaging setups.

9.1 The Normalized Expected Error

Recall from Chapter 7 that, for the linear MMSE estimator (7.7), the dis-
tribution for the reconstruction error, ε = ômmse − o, is Gaussian if the
measurement noise and the prior are both Gaussian. The expected mean-
squared error at each observation point are given by the diagonal elements
of the error covariance matrix Cε. The performance of the MMSE estimator
can then be evaluated by organizing the diagonal elements diag{Cε} into
an M ×N error image Eε. Below, we present a normalized error covariance
matrix for the purpose of facilitating the comparison of different transmit
focusing methods.

The error covariance matrix is given by (cf. Appendix 7.A.2)

Cε = Co − CoP
T (PCoP

T + Ce)
−1PCo

= (C−1
o + PTC−1

e P)−1.
(9.1)

Let us consider a special case where Co = σ2
oI and Ce = σ2

eI. Then the
error covariance matrix Cε becomes

Cε = σ2
oI − σ2

oP
T (σ2

oPPT + σ2
eI)

−1Pσ2
o

= (I/σ2
o + PTP/σ2

e )
−1.

(9.2)

If we now normalize (7.67) with respect to σ2
o, then the normalized error

covariance matrix becomes

C̃ε =
1

σ2
o

Cε

= I − PT (σ2
oPPT + σ2

eI)
−1Pσ2

o

= (I + PTPσ2
o/σ

2
e )

−1.

(9.3)

If σ2
e is very large compared to PTPσ2

o, then the normalized error co-
variance matrix will reduce to the identity matrix which is the worst case
scenario where the data holds no new information. A region in the normal-
ized error image, Ẽε consisting of the diagonal elements of C̃ε with a value
close to unity will then indicate poor reconstruction performance in that
region.
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In the next section we will utilize Ẽε to evaluate the performance of the
linear MMSE estimator for a simulated phased array.1

9.2 Parallel Array Imaging Performance

To illustrate the performance of the parallel MMSE estimator (8.13), with
respect to focusing method and SNR, three example array setups are con-
sidered. In all tree setups the Imasonic array described in Section 8.1 was
simulated and 16 array elements are used in receive mode. The transmit
beam is focused in tree different ways as illustrated in Figure 9.1.

16 Element Linear Array

(a) 16 transmit
elements focused
array.

16 Element Linear Array
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(b) 16 transmit elements
steered array.

16 Element Linear Array

(c) One transmit ele-
ment.

Figure 9.1: Illustration of the transmit focusing methods for the simulations
presented in Figures 9.2–9.4.

1. The beam is focused at z = 50 mm with no beam steering.

2. The beam is focused and steered -20 deg resulting in a focal point at
x = −18, z = 50 mm.

3. One single element was used in transmit mode.

1The array was simulated using the DREAM toolbox.
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The first two setups, where the array is focused, result in regions with both
high and low acoustic energy. The third setup, where a single element is
used, results in a wider beam illuminating more of the ROI but the total
transmitted acoustic energy will be lower. The reason for the lower transmit
power is that by only using one element the active area of the transmit
aperture is reduced by a factor 1/16 compared to the other two setups.

Normalized error images, obtained using (9.3) and the three focusing
methods, are shown in Figures 9.2, 9.3, and 9.4, respectively. The noise
variance σ2

e is highest in Figure 9.2 and lowest in Figure 9.4 and the ratio,
σ2

e/σ
2
o, in the respective figures are 2.5 · 10−3, 2.5 · 10−5, and 2.5 · 10−8.

The error images presented in Figure 9.2 correspond to a very low SNR.
It can clearly be seen in Figures 9.2(a) and (b) that the normalized error will
only deviate from unity at those image points that are in the vicinity of a
focal point or a grating lobe, that is, at those points where most of the energy
is transmitted. It can also be seen that the error at the focal point is lower
for the array that is not steered, even though the same number of elements
are used in transmit mode for the steered array. This can be explained by
considering the beam directivity of an individual array element as discussed
in Section 6.2. An array element of the Imasonic array has a width of
approximately 2λ at the array’s center frequency, and the element’s beam
directivity can therefore not be neglected. The array element will transmit
most energy in the normal direction of its active surface area where the
SIRs are shortest, as discussed in Chapter 3. At high angles, the SIRs will
attenuate the signal, especially for the higher frequencies. Elements that are
horizontally closer to the focal point will, therefore, contribute more than
the ones further away from the focal point. Steering at high angles will then
essentially reduce the effective number of transmit elements due to the beam
directivity of the array elements. In fact, it can be seen in Figure 9.2(b) that
the error is of the same order both in the main- and grating lobe for the
steered array. The reason for this behavior is that the grating lobe is closer
to the array center than the main lobe and more elements will therefore
contribute to the acoustic field.

It can also be seen in Figure 9.2(c) that the acoustic power from one
element was not sufficient at this SNR since the normalized error was close
to unity at all image points.

If the noise level is decreased then the estimation error will also de-
crease. The noise level in Figure 9.3 is 20 dB lower than in Figure 9.2 and
the normalized error has been substantially decreased for all three trans-
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CHAPTER 10

Concluding Remarks and Future Research

The classical approach to ultrasonic imaging using arrays is inspired by
geometrical optics and consists in designing discrete versions of lens systems
capable of focusing and steering ultrasonic beams.

In the new approach to ultrasonic imaging presented in this work the ul-
trasonic image reconstruction was formulated as a linearized inverse-scattering
problem taking into account both the discrete nature of the imaging setup
as well as the modeling errors. This formulation has enabled global opti-
mization of the imaging performance given the a priori information on the
imaging system parameters and the PDF’s of errors and scatterers present in
ROI. Although the optimization in this work was performed in terms of reso-
lution, given the parameters, such as, transducer size, its electro-mechanical
characteristics and the exciting waveform it is also possible to include these
parameters in the optimization process. This creates the possibility of opti-
mizing transducer’s bandwidth and the form of its exciting signal according
to the imaging performance to achieve a global optimum of the imaging
process.

The estimation was performed by means of the tools from Bayesian esti-
mation theory using the specially developed for this purpose linear discrete
matrix model of the imaging system. It is known from statistics that the
MAP approach leads to analytic solutions only for a very few PDF fami-
lies, in most cases the optimization of the a posteriori probability has to be
performed numerically.
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In the work the measurement errors were assumed to be Gaussian, and
two special prior distributions of scatterers were considered, Gaussian and
exponential.

It was shown that for Gaussian PDF’s the MAP approach results in
the MMSE criterion. The linear MMSE solution takes the form of a lin-
ear spatio-temporal filter which deconvolves the distortion caused by the
diffraction effects of the transducer used for imaging using the information
contained in the transducer’s SIRs.

For the exponential PDF of scatterers in the ROI the solution was formu-
lated as a nonlinear optimization problem with constrains which was solved
numerically.

The imaging algorithms resulting from the proposed approach were ver-
ified using simulated and real ultrasonic data. The algorithms are of general
character and can be applied both to the synthetic aperture imaging (mono-
static and bistatic) as well as to the parallel beamforming.

It was demonstrated that the linear MMSE and the nonlinear PCQP
estimators were superior to the classical beamforming in terms of resolution
and sidelobe level.

It should be noted however, that the successive application of the pro-
posed approach relies on the reliable information concerning the imaging
setup, transducer’s SIRs as well as the statistics of the measurement noise
and the scatterers present in ROI. In our experiments the SIRs calculated
numerically for given setup and the transducer geometry were successfully
used. The statistics were not estimated explicitly but found using the trial-
and-error method for the particular ultrasonic data.

Future Research

Model size reduction: The propagation matrix P in (4.23) is inherently
large if the ROI is densely sampled. In many applications there are
only a few scatterers, or the scatterers are confined to a localized area.
In such situations many of the observation points will not contribute
to the measurement y. If this is known in advance the matrix P can
be truncated resulting in a much smaller problem. If the location of
the targets is not known in advance one needs a “zooming” strategy
to find areas where the sampling needs to be dense.

Prior: Assumptions concerning the prior are needed for the model based
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imaging algorithms. Since little is known about scatterers’ statistics
experiments with a set of known objects yielding reliable estimates of
the mean and variance should be performed.

Optimal input signal design: The choice of input signal driving the ul-
trasonic array elements is fundamental in the sense that it may deter-
mine the reconstruction accuracy [91, 92]. The input signals commonly
used in ultrasonic imaging, such as, tone-burst or impulse excitation
may not be the optimal choice with respect to reconstruction per-
formance. Since the developed linear model takes into account the
input signal, the reconstruction algorithms based on the model will
automatically compensate for the chosen input signal. In effect the re-
construction performance can be optimized with respect to the input
signal. Therefore developing feasible methods for designing suitable
input signals for the particular ultrasonic array imaging applications
is of great interest [93].

Parallel implementations: The matrix based models are inherently large
and therefore, the image reconstruction, that generally results in solv-
ing linear equation systems or solving (constrained) optimization prob-
lems, also results in large equation sets. To be able to scale up these
problems and improve computation time it is desirable to distribute
the computation on parallel computers.

Sparse arrays: Sparse arrays are used in 3D medical applications. Perfor-
mance of the proposed algorithms should be experimentally verified
for such arrays.
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[88] T. Söderström. Discrete-Time Stochastic Systems: Estimation & Con-

trol. Prentice Hall International, 1994.

[89] B. Delannoy, R. Toutguet, C. Bruneel, E. Bridoux, J.M. Rouvaen, and
H. Lasota. Acoustical image reconstruction in parallel-processing ana-
log electronic systems. Journal of Applied Physics, 50(5):3153–3159,
May 1979.

[90] S. Holm. Analysis of worst-case phase quantization sidelobes in focused
beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, 39(5):593–599, September 1992.

[91] R.K. Mehra. Optimal input signals for parameter estimation in dynam-
ical systems—survey and new results. IEEE Transactions on Automatic

Control, (6):753–768, Dec 1974.



BIBLIOGRAPHY 179

[92] S.M. Sowelam and A.H. Tewfik. Waveform selection in radar target
classification. Transactions on Information Theory, 46(3):1014–1029,
May 2000.

[93] B. Haider, P.A. Levin, and K. Thomenious. Pulse elongation and decon-
volution filtering for medical ultrasonic imaging. IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control, 45(1):98–113, Jan-
uary 1998.




