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Abstract

Efficient data representation and choice of suitable basis (representation)
are the main issues addressed in the thesis. Three separate applications are
presented: two are in the field of non-destructive testing, while in the third
methods for reconstructing room temperature distributions based on ultra-
sonic measurements are considered. The need for compact representation
arises from the limited amount of data available for the classification of ma-
terial defects and for temperature estimation, respectively. The main goal
that was common for the first two projects was developing software tools of
self-learning type, suitable for automatic classification of defects in multi-
layer aluminum aircraft structures and welds in steel material, respectively.
Different NDT methods were used in both cases, eddy current (EC) for the
aircraft structures and ultrasonics (US) for welds. A compact data repre-
sentation was necessary in both cases, due to the low number of examples
available for training the classifiers. This was accomplished by compressing
the high dimensional data vector, obtained from the measurements, using
various truncated bases, such as: wavelets, Fourier, and principal compo-
nent bases. Efficient data representation was also a crucial part of the third
project. The aim was to reconstruct a 2D-temperature distribution in many
points of a room, based on a limited number of measurements (time of
flight of an ultrasonic wave). To achieve a satisfactory performance strong
prior knowledge regarding the reconstructed surface was necessary. The
prior knowledge was incorporated by expressing the temperature distribu-
tion using suitable base functions. Computer simulations revealed that the
principal component basis (specific for the measured data) clearly outper-
formed other more general base function sets (for instance, wavelets), which
confirmed the importance of a suitable data representation.
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Chapter

Introduction

1.1 Background

Non-destructive testing (NDT) does, as the name implies, denote methods
for non-destructive detection of material flaws, or characterization of mate-
rial properties, by means of techniques that do not impair functionality of
the inspected material. NDT methods have found many industrial applica-
tions and they are vital for such fields as, nuclear power plants, car industry,
aircraft and space industry, where the risk of failure is associated with seri-
ous consequences. NDT techniques are attractive for production lines since
they make possible inspection of all produced parts at relative low cost to
assure their quality. Their use in maintenance routines has made possible
extending life length of nuclear and aerospace structures.

In many NDT applications it is impossible, due to the large number of
inspections, for a human operator to perform satisfactory. Boredom, fatigue
etc. will influence the probability of detection to a large extent. The re-
sults between different operators may also vary, resulting in inconsistency,
which clearly is unsatisfactory [1]. Therefore, it is desirable to automatize
the inspection so that the operator has to intervene only when a defect is
detected. An automatic system does not have the above mentioned disad-
vantages provided that it is properly designed.

The performance of an NDT inspection depends on several factors as-
sociated with the procedure used for gathering NDT data and the way of
processing the acquired data. Here, we will address the following issues that
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affect the data processing:

The quality of the NDT measurements Generally, NDT methods are
based on indirect measurement using ultrasonics, radiography, eddy
current, etc. The measurement quality can be characterized by the
amount of information relevant for the NDT inspection as well as the
amount of noise and disturbances that deteriorate the results. NDT
procedures usually yield only a partial information about material
properties, for instance, only a limited information amount is pro-
duced in the form of a radiographic image, an ultrasonic B-scan, or
an eddy current (EC) scan. If a specimen is inspected for defects,
then the geometry of detected flaws is usually interesting. The limited
information provided by NDT should be sufficient for determining at
least critical features, such as, crack length, diameter of an inclusion,
amount of porosity, etc.

Interpretation of the measurements The fact that a relevant informa-
tion is contained in the measurements does not guarantee the success
of the NDT inspection. The measurements have to be interpreted
before reasonable decisions are made. The interpretation can be per-
formed either by a human operator or by a machine, or (perhaps most
commonly) by a combination of those. Since the measurement pro-
cedures often provide the required information about material in the
form that is not well suited for human (or machine) interpretation, this
information has to be transformed and presented in a form facilitating
its interpretation. Learning how to interpret NDT measurements may
be a difficult and long process for a human operator that may take
several years to master [1]. An algorithm for automatic analysis of
NDT data also requires some ”training”. Generally, machine training
can be accomplished in two different ways: 1) A set of explicit rules
can be formulated, based on which the machine (i.e. computer pro-
gram) makes its decisions, and 2) the machine can be trained on a set
of known examples to develop the ability of making correct decisions
based on this experience (to interpolate based on the seen examples).
The first approach is known as an knowledge-based system (KBS) or
as an artificial intelligence (AI) approach [2]. The second approach is
applied in learning systems, for instance, neural networks.

Note that, information representation is an important issue in both
types of machine learning. For the KBS approach, a human designer
has to transform the available information in to clear and unique de-
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cision rules that cover all situations that can occur. The self learning
machine based interpreter has parameters that have to be determined
during training (for instance, weight coefficients in neural network).
Obviously, if a large number of parameters has to be estimated from
the training examples, then a sufficient number of examples has to be
available to achieve good generalization performance [3, 4]. Thus, a
good representation in learning systems is both compact and informa-
tive, since it reduces the amount of examples required for training. In
other words, only a limited number of relevant features should be used
for training automatic self learning systems aimed for interpretation
of NDT data.

From the discussion above one can conclude that two key issues that
have to be considered in relation to processing NDT data are, information
representation and classification. Unfortunately, a limited amount of data
for testing and evaluation of algorithms is a quite common situation in NDT
applications. The main reason for that is the fact that manufacturing real-
istic artificial defects is in general expensive, difficult, and time consuming.

This thesis reports three different projects where classification and rep-
resentation are of vital importance. The first two projects are in the field
of NDT while the third is concerned with a method for mapping room tem-
perature based on the measurement of the ultrasound velocity in air.

The main goal that was common for the first two projects was develop-
ing software tools of self learning type, suitable for automatic classification
of defects in multi-layer aluminum aircraft structures and welds in steel ma-
terial, respectively. The difference lied in the NDT methods used—EC was
used for the aircraft structures and ultrasonics (US) for steel. In both cases
manufacturing realistic defects with known geometry was associated with
considerable expenses which implied a limited number of training examples.
As a result of this constraint the way of data representation, or feature ex-
traction, became an important issue. Efficient data representation was also
a crucial part of the third project. The aim was to reconstruct a 2D temper-
ature distribution in many points of a room based on a limited number of
measurements (time of flight of an ultrasonic wave). To solve this problem
strong prior assumptions regarding the reconstructed surface were necessary
to achieve a satisfactory performance of the reconstruction. This means that
an efficient compact representation was a common issue in all three projects.

From the above discussion it is apparent that when solving such prob-
lems we face a trade off between the amount of available a priori knowledge
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and the amount of training data/number of measurements. Consider the
following example as an illustration. Assume that a US method is used to
examine flaws in a metal object. The shape of an ultrasonic response from
a particular irregular flaw (e.g., crack) depends on the transducer location
respective to the flaw (insonification angle). Thus, flaw rotation would obvi-
ously change the US response. Assume then that a US measurement can be
performed that contains an amount of information which is sufficient for the
flaw classification regardless of its orientation. Then, if the flaw rotation is
totally unknown, then the classifier used for the flaw classification has to be
trained for every possible flaw orientation. It is obvious that, if it is known
a priori that the orientation of the flaw is limited to some angle interval,
then the number of training examples can be limited substantially.

A similar situation occurs in reconstruction of a function in many points
from few measurements. Since the number of measurements is lower than
the number of parameters to estimate there are many solutions that are
consistent with the measurements. Then, in order to find a unique solution
prior assumptions must be made regarding the solution.

For self-learning classifiers (neural networks) the above mentioned trade
off issue results in a problem where a number of parameters has to be deter-
mined from the available data and/or from prior knowledge. If the number
of parameters in the algorithm is large a considerable amount of data is re-
quired, otherwise, the performance for new (unseen) examples will be poor.
Consider for example, a situation where the data is high-dimensional—1000-
dim is not uncommon in ultrasonics—and a simple linear classifier is used.
This means that at least 1000 classifier parameters have to be estimated.
This implies that, at least in theory, several thousands of examples must
be available to obtain a reliable classifier. If the number of examples is too
low, then the classifier will learn the training examples by heart”, but it
will perform poor on unseen examples (poor generalization). To avoid this
problem the number of parameters must be reduced or more data must be
aquired.

The process of limiting the number of parameters in pattern recognition
applications is known as feature extraction. The question is then how to
compress data, or extract features, without loosing the information relevant
for our application. The perhaps most common solution used in signal pro-
cessing, is to express the data by means of Fourier series. That is, the data
is expressed by a finite sum of sine waves. However, typical NDT signals, for
instance, ultrasonic pulses (wavelets) found in pulse-echo ultrasonics, have
a compact support and sinusoids (which have infinite support) may not be
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well suited for the task. The issue of choosing a suitable basis (representa-
tion) is a common topic in all the three projects treated here. Although, the
reasons for looking for a compact representation are different in the projects,
the methods used for obtaining the compact representation are very similar.

As discussed above, the particular choice of classifier (or estimator) de-
pends on the amount of a priori information available about the measure-
ments and the measurement process. A relevant question is whether linear
algorithms can solve the problem or the solution should be searched in the
class of nonlinear algorithms. A general answer is very difficult to give, but
neural networks, which have the ability to “learn” nonlinear mappings from
examples, offer an interesting option when little is known a priori about the
task.

1.2 Outline of the Thesis

The topic in Chapter 2 is research performed as a part of the Brite Euram III
project Cost Reduction by Advanced Non-destructive Inspection of Aeronau-
tical Structures (CANDIA). The research is concerned with the automatic
detection of cracks in the lower layer of lap-joints in aluminum airspace
structures by means of EC. Traditionally the inspections have been per-
formed manually by means of a PC-based portable EC system that enables
both evaluating and saving complex-valued EC patterns. The presence of
defects is detected by the operator who is expected to analyze all responses
to individual rivets saved in the computer. Since one single aircraft (Air-
Bus) may contain several thousands of rivets that are to be inspected there
is a considerable risk of human faults. The automatic system discussed in
Chapter 2 should eliminate this problem by indicating to the operator only
those rivets that produce patterns deviating from normal.

The measurement situation is, however, complicated by the fact that
the cracks are located relatively deep (the magnitude of the eddy currents
drops off fast with depth), and that there are strong inferences due to the
rivets. The rivets may be made of materials with different conductivity
which also complicates the task. The data acquisition process is not perfect
either, the scanning line may not be perfectly aligned with the rivet row, and
some data points is sometimes missing.! Using a tailor-made, low frequency
probe made defect detection possible. The probe was designed in such a way

!There were some spikes found in the EC data which were due to insufficient acquisition
speed of the hardware used.
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that the interference due to rivets and the responses from typical cracks were
separated maximally in the complex plane (different phase angles) to achieve
good suppression of the rivet interference.

In Chapter 2 we present an automatic classifier of EC signals consisting
of a pre-processor and a self learning classifier based on neural networks.
The pre-processor has two functions, signal conditioning and feature extrac-
tion. Pre-processing was employed to reconstruct missing samples in the
signal and to improve robustness of the feature extraction algorithms. Fea-
sibility of four different feature extraction schemes was examined for this
particular application: discrete wavelet transform, Fourier transform, prin-
cipal component analysis (PCA) and a simple block averaging procedure.
The classifier was implemented as a standard multi-layer perceptron (MLP)
neural network which was chosen due to its ability to compensate for non-
linear effects.

The system has been implemented with a user friendly graphical interface
enabling both the training and the classification of the MLP. Examples of
some interface images are shown in Figure 1.1.

Chapter 3 treats a project sponsored by the Swedish Neuclear Power
Inspectorate (SKi) concerned with the characterization of various types of
defects in welded steel structures. This is the fourth and last part of the
project, using measurements performed on realistic defects implanted in V-
welded carbon steel blocks. This was the main novelty compared to the
earlier studies which (basically) only treated simulated and artificial de-
fects [5, 6, 7]. The research reported in Chapter 3 is concerned with more
realistic flaws, like, sharp cracks, volumetric defects and porosity that where
implanted in welds at different positions. The basic task was to characterize
the defects based on ultrasonic measurements and to classify them in to two
main groups, soft (volumetric, porosity etc.) and sharp (cracks) defects.
The ultrasonic measurements where performed using traditional pulse-echo
techniques with direct angle beam and angle beam reflected from the back
surface. Defect characterization can be regarded as an inverse problem in
ultrasonics, based on a number of field measurement around the flaw (scat-
terer), we have to reconstruct the scatterer itself. In theory, to solve this
problem we have to perform field measurements in all positions on a sphere
surrounding the scatterer. This is, however, impossible due to practical con-
straints and we have a limited set of data in the form of B- and D-scans. Our
research was based on the hypothesis that, despite the limited information
available, it would be possible to distinguish different type of defects using
their ultrasonic signatures. This goal was achieved for the simulated and
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artificial defects. However, the main problem encountered for the realistic
defects was variability of their ultrasonic signatures, depending on their in-
dividual features, such as, their geometrical form, position and orientation.

Due to the reasons mentioned above, the number of available defects was
very limited (totally 36). The low number of available examples implied
that an implicit and powerful data compression/feature extraction must be
performed, in order to limit the number of parameters to be estimated in the
classifier. Additionally, we had to normalize defect signatures with respect
to their depth. By training on a very large number of examples the MLP
classifier could, in principle, be trained to compensate for all orientation and
position variations but this could not be achieved using the examples that
where available.

Being aware of this severe limitation we tried to refine methods for data
pre-processing, normalizing and feature extraction to simplify the classifica-
tion task. These topics are discussed in Chapter 3 where selected measure-
ment results are also presented.

In Chapter 4 we present a selection of methods suitable for reconstructing
temperature distributions in a room based on ultrasonic measurements. The
project was sponsored by IMRA SA, Sofia Antipolis, France.

The presented measurement principle uses the fact that sound velocity is
a function of air temperature. Thus, by transmitting US pulses along known
paths, and measuring the time of flight (TOF) between the transmitter and
receiver, it is possible to estimate the temperature distribution in a room.
In other words, the temperature map is reconstructed from a set of straight
line projections—TOF measurements. This problem is similar to computed
tomography (CT) widely used in medicine. As mentioned earlier, it is also
of interest to find a suitable low dimensional model of temperature distri-
bution in a particular room (office). The reason for that is the limitation
imposed by the number of ultrasonic sensors. A low number of measure-
ments (projections) results in a strongly underdetermined problem—many
parameters are to be estimated from a few measurements. We investigated
several approaches to alleviate this problem. The solution can be achieved
by introducing a priori knowledge about the temperature distribution. For
example, band limiting, or low pass filtering, is a simple way of incorporating
prior knowledge. If no assumptions are made about the temperature dis-
tribution and the projections are few, then a unique solution will not exist,
and hence, there will be many (infinitely many) temperature distributions
that are consistent with the measurements.
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As mentioned above, the temperature distribution can be expressed using
a suitable reduced basis. Then the number of parameters to estimate is
fewer which may lead to a unique solution. In Chapter 4 we present a
selection of reconstruction schemes, such as, regularized least squares and
truncated singular value decomposition methods, as well as the traditional
CT methods, like the filtered back-projection algorithm. We also investigate
some recursive methods, like algebraic reconstruction techniques (ART) and
the multiplicative ART (MART) algorithm. We address separately the basis
selection issue and we propose using principal component analysis (PCA)
for this purpose.

1.3 Contributions

Parts of the material have been published as reports or in the following
journals and conferences:

Chapter 2 Fredrik Lingvall and Tadeusz Stepinski, “Automatic Detection
of Defects in Riveted Lapjoints using Eddy Current”, In 7th European
Conference on Non-Destructive Testing, Copenhagen 26-29 May 1998.

Fredrik Lingvall and Tadeusz Stepinski, “Automatic detecting and
classifying defects during eddy current inspection of riveted lap-joints”,
NDT&E International, Vol 33, No 1 January 2000.

Chapter 3 Fredrik Lingvall and Tadeusz Stepinski, “Ultrasonic Character-
ization of Defects—Study of Realistic Flaws in Welded Carbon Steel”
SKi report 1999.

Tadeusz Stepinski and Fredrik Lingvall, “Automatic defect characteri-
zation in in Ultrasonic NDT”, accepted for the 15th World Conference
in NDT, Rome 15-21 October, 2000.

Chapter 4 Fredrik Lingvall, Mats Gustafsson and Tadeusz Stepinski “Tem-
perature Mapping with Ultrasonic Amenity Sensor—Simulation Re-
sults”, Signals & System Group Dept. of Material Science Uppsala
University.
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1.4 Abbreviations

ANN Artificial Neural Network

ART Algebraic Reconstruction Technique
CLI Conventional Line Integral

CT Computed Tomography

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

EC Eddy Current

FBA Filtered Backprojection Algorithm
FD Fourier Descriptors

ICA Independent Component Analysis
LS Least Squares

MART Multiplicative Algebraic Reconstruction Technique

M-SMART Modified Simultaneous Multiplicative Algebraic Reconstruc-
tion Technique

MRE Minimizing Reconstruction Error
NDE Nondestructive Evaluation

NDT Nondestructive Testing

ON Orthonormal

PC Principal Components

PCA Principal Component Analysis
PDF Probability Density Function
PSF Point Spread Function

R-LS Regularized Least Squares
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ROI Region of Interest

SIRT Simultaneous Iterative Reconstruction Technique

SMART Simultaneous Multiplicative Algebraic Reconstruction Technique
SSE Sum Squared Error

SVD Singular Value Decomposition

TOF Time of Flight

TOFD Time of Flight Diffraction

TSVD Truncated Singular Value Decomposition

US Ultrasonic

UT Ultrasonic Testing
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Chapter

Inspection of Aircraft Lap-joints
using Eddy Current

2.1 Introduction

Inspection of riveted lap-joints in aeroplanes is a task which is a part of
the regular maintenance procedure for aircrafts. The lap-joint inspection
is usually performed manually using eddy current (EC) techniques. The
procedure consists of scanning the rivet lines (lap-joints) with an EC probe
connected to a PC, where the complex eddy current data is stored. The
operator(s) then analyze the reponse from every rivet and determines if the
response deviates from the normal. This process is time consuming, and
therefore expensive, since a typical commercial aircraft (AirBus) contains
tenths of thousands rivets. There exists also a considerable risk of human
faults during analyzis of the EC data, due to the large number of rivets
involved. Therefore, it is desireble to have tools that could detect, and
perhaps classify, the abnormal responses so that the operator only need to
analyze those rivets containing possible defects.

The topic of this chapter is the design software which has the desired
properties described above. The goal was to develop a signal processing tool
for automatic detection and classification of defects in riveted aeronautical
structures by means of eddy current (EC) testing. The proposed method
employs an effective pre-processing followed by a data compressing feature
extractor that significantly reduces the data volume fed to a neural network

13
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classifier. Section 2.2 describes data acquisition and selection of examples for
training. Section 2.3 discusses the pre-processing employed and Section 2.4,
the feature extraction methods used in the comparison. In Section 2.5 the
neural network classifier is described, and finally the last two sections present
classification results and a discussion.

2.2 EC Data

The used EC data was acquired by AEROSPATIALE Suresnes using a single
frequency EC instrument. A deep penetrating probe, specially developed
for this application, was used to detect cracks located in the lower layer of
the lap-joints. The defects were manufactured mechanically as a result of a
large number of fatigue cycles with forces simulating loads in real aircraft.
Due to the direction of the applied forces the cracks appeared only along
the rivet line and were located on the left and/or the right side of the rivets,
see Figure 2.1.

Left QJ Right
Defect SZ Probe

| L Rivet ﬁoioé

O OO0OO0OO0O OO0

(a) (b)

Figure 2.1: (a) Cross section of a lap-joint and (b) Defect location and
probe movement in a lap-joint.

The EC inspection was performed using a simple mechanical scanner
guiding the probe along the rivet line. The scanner was operated by hand
and the EC data was digitized and stored in a personal computer. The probe
was operated at a very low frequency (in the range of 1 kHz) to achieve a
sufficient penetration depth. Figure 2.2 shows example data acquired during
inspection of one rivet line. The strong periodic component in the signal
interfering detection of the cracks originates from the rivets. The multi-coil
EC probe was designed in this way that its response of each rivet consists of
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two full periods with different amplitudes. The periodic component enables
quite accurate determination of the probe position relative the inspected
rivet.

The probe is designed in such a way that the rivet response and the
defect response for the operating frequency are almost perpendicular in the
impedance plane which can be seen in Figure 2.2(b).

Totally 46 complex valued EC data vectors (each one containing ser-
val rivets) containing signals corresponding to different sizes of defects were
available for the tests. This data set has been split into three smaller sub-
sets used for different purposes. The first subset was used for training the
classifier, the second was used for its evaluation and the third contained all
measurements with defects that were considered as large. The last group
was not used at all because of two reasons: 1) large defects can easily be
detected with simple thresholding and 2) the used EC instrument saturated
for very large defect amplitudes. From those 46 complex data vectors ap-
proximately 900 examples were extracted (one example for each rivet). Most
of these examples came from defect-free rivets, only 133 signals were defect
responses. Thus the number of EC data available for training the neural
network was relatively low which had to be taken into consideration when
choosing the classifier architecture. This was one of the main reasons for
including a powerful feature extraction algorithm processing the EC data
before the classification.

2.3 Pre-processing

A number of pre-processing steps were required before feature extraction
and classification were possible. The EC signal had to be normalized in
a proper way. This was accomplished by using the rivet response in data,
since it should be the same regardless which lap-joint the data came from.
This is due to the fact that the distance between the rivets is the same (22
mm) in all samples and the data were acquired with the same probe (same
EC instrument).

2.3.1 Maedian Filtering

The EC signal was first filtered in a moving window including a three-point
median filter. This step was required only because of the imperfections of the
acquisition device used for data digization which introduced large amplitude
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Figure 2.2: Example EC data: (a) in-phase and quadrature component and
(b) complex plane plot.
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sparse spikes in the signal.

2.3.2 Rotation of EC Signals

As mentioned earlier the defect and rivet responses were separated in phase
as much as possible by choosing a proper probe and by using a suitable
operating frequency. However, this does not mean that the direction of the
defect responses in the complex plane was known accurately. Generally, the
absolute direction of the EC signals depends on the phase setting of the
instrument and is often known only approximately. A standard procedure,
applied before the inspection is to rotate the EC signal so that the defect
responses lie along the in-phase direction while the disturbance (here the
rivet response) in the quadrature direction (or vice versa). To achieve max-
imum suppression of the rivet responses a fine tuning procedure has been
applied to the digitized signals. The method used to rotate the EC pattern
was based on the observation that the dominating part of the signal energy
was due to the periodic rivet response. That is, the complex EC signal de-
noted by a column vector x was rotated ¢ radians so that the energy in the
imaginary component of the signal was maximized according to Eq. (2.1).

mgx || Im{xe®} |2 (2.1)
Figure 2.3 shows an example EC signal before and after the rotation.

2.3.3 Normalization

Amplitude normalization, performed for all data sets, was based on the
assumption that the responses from the rivets should have equal amplitude.
Mean value of the positive part of the rotated signal quadrature was used as
a robust amplitude estimate for the normalization. In other words a mean
value of a half wave rectified rivet component was used as a measure of the
EC signal amplitude.

One drawback of this method was that presence of large defects also
affected the amplitude of the quadrature component and in this way de-
graded performance of the normalizing procedure. Therefore large defects
were detected by thresholding and then these respective parts of the signal
were removed before normalization.

The in-phase component after the normalization usually had a small
dc-bias. This bias was removed by subtracting a value corresponding to
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Figure 2.3: EC signal (solid - real component, dotted - imaginary compo-
nent) as a function of probe position, (a) the original signal, (c) the rotated
signal. The same signal as a complex valued contour, (b) the original signal,
and (d) the rotated signal.
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“the most likely amplitude” in the signal. The most likely amplitude value
was found by estimating smoothed histogram of the signal and finding the
amplitude corresponding to its maximum.

2.4 Feature Extraction

Feature extraction denotes in pattern recognition a procedure of mapping
the original measurements into a relatively short vector representing features
relevant for the classification[4]. The main purpose is mainly reducing the
number of parameters (inputs) in the classifier. This was a vital operation in
our case since the number of examples was rather limited. A large number of
inputs to the neural network when only a few training examples are available
results in a substantial risk for over-fitting. This means that the classifier
“learns” the training examples well but performs poor on unseen data (poor
generalization performance).

All data reduction schemes chosen for our application can be described
by a linear transformation

y = Ax, (2.2)

where A is a “compression matrix” and vector x represents the measure-
ments (assumed to have zero mean). The reason for choosing a linear
method, which should be always tried first, is the existence of well estab-
lished methods for selecting the transformation matrix A. Of course, in
many practical applications the relevant signal features can be obtained
only by non-linear mappings of the measurements. In this application it is
not clear whether the classification task requires really “non-linear” feature
extractor. Our solution is to use a linear feature extractor and a non-linear
classifier.

Care must be taken when choosing the matrix A to preserve the features
in data that are relevant for defect classification. For example, position is
an important feature if the defects location is to be preserved.

Four types of feature extractors, applied to a windowed signal, have been
investigated here, block mean values, Fourier descriptors, a discrete wavelet
transform, and a method based on principal component analysis (PCA).
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2.4.1 Analyzing Window Centering

All feature extraction schemes were applied in a window precisely centered
around each rivet. Precise centering was very essential and all subsequent
processing relied on it. The classification was performed for signal features
extracted for a single position of the analyzing window with respect to each
rivet.

The window centering was based on the observation that the rivet re-
sponse is a periodical sinusoidal-like signal with two positive peaks and one
of the peaks is significantly larger than the other one (this feature resulted
from the probe design). Thus, the rivet response (imaginary component of
the EC signal) includes the information required to position the analyzing
window around each rivet, which is illustrated in Figure 2.4. Since defect

0.5F |

—

100 200 300 400 500 600

Figure 2.4: Centering of the analysis window using quadrature component
of the EC signal. Horizontal axis shows sample number.

responses from the adjacent rivets overlap the window width was increased
slightly (by 50 samples) after the centering. Also, the signal vector in this
window was down-sampled from about 300 samples to a constant length of
128 samples. This was required by the subsequent feature extractors (e.g.,
wavelets) that operate on input vectors of dyadic length (power of two).!
Furthermore, the data vector was windowed by a soft rectangular window
(with sigmoid-like flanks) to remove the edge effects.

LA length of 256 could also have been used, but this did not improve the classification
much so a length of 128 was used as a compromise.
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2.4.2 Block mean

This is a very simple technique consisting in splitting the analysis window
into a number of intervals (blocks) and calculating a mean signal value for

each block. If the measurement vector x = [z(1) z(2) --- =z(N)] is
divided in M blocks (N = 128 here), then the elements of the feature vector
y=[y(1) y(2) -+ y(M)] can be expressed as
1 iN/M
yi)=7; Y, @) i=le, M (2.3)
j=(i—1)N/M+1

As Eq. (2.3) indicates blocks uniformly distributed within the analysis win-
dow were used in our case, this was the simplest solution, see the discussion
in Section 2.7 for comments.

2.4.3 Fourier Descriptors

This is a standard technique used in image processing for recognition of
different contours in digital images. The idea is to expand the contour of
an object in Fourier series and use a limited number of Fourier coefficients,
called Fourier Descriptors (FDs), as features for recognizing the object [8,
9, 10]. In our case the complex valued EC Lissajous patterns, defined by
their real and imaginary components were used as an object contour, see
Figure 2.5. The expansion was performed in the analysis window using the
discrete Fourier transform (DFT).

2.4.4 ‘Wavelets

The discrete wavelet transform (DWT) forms an orthonormal basis which
has several interesting features for this application. One of the most impor-
tant features of DWT is fact that the basis consists of local functions with
different positions and scales[11]. This feature is very useful in our case
since it enables determining particular scales where the EC signal has sig-
nificant energy. For instance, energy at small scales is mostly due to noise,
so by removing small scale coefficients in y both noise reduction and data
compression can be achieved.?

2For more sophisticated methods for signal de-noising using wavelets see for
example[12].
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Figure 2.5: EC response to an example “left defect”: (a) in-phase and
quadrature component, and (b) contour plot (Lissajous pattern).
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The basis functions in the DWT consist of local functions with different
positions and scales. All basis functions are constructed from the same
template function ¢ (n) , called mother wavelet, using the formula

Pir(n) = 2/%p(2n—k) n=1,2,...,N. (2.4)

Using these basis functions any vector x can be expressed as the linear
combination

z(n) = wjihjr(n). (2.5)
7k

The wavelet coefficients are then given by the inner product
T
wj’k =X ’l,bj,k. (26)

If the basis functions (vectors) 1, , are collected in a matrix, and the
coefficients w;; in a vector, then a linear transformation of the form de-
fined by Eq. (2.2) is obtained. There exists a very efficient computation
scheme enabling evaluation of the inner product Eq. (2.6) using only O(N)
operations (for comparison the FFT algorithm is an O(N log N) algorithm).
However, number of computations is really not a critical issue in this appli-
cation.

The mother wavelet chosen for this application is the Coiflet 2 wavelet,
which is a rather smooth wavelet suitable for modeling the used EC signals.
Figure 2.6 shows the first (largest scale) basis functions of the Coiflet 2
mother wavelet.

2.4.5 Principal Component Analysis

The basis functions used for DWT are constructed without using any partic-
ular knowledge about the analyzed data. For each specific application one
should of course select the mother wavelet which seems to fit the analyzed
signal best—which is exactly what has been done in the previous section.

Another approach is to construct a basis which, given a data set, yields
the best compression. In other words, the basis which results in the smallest
error (in the least square sense) using only m of the N coefficients in y is
chosen for the reconstruction of z, where m < N.

Using geometrical interpretation, the coordinate system is rotated so
that the axes in the new system point in the directions of the largest vari-
ances of the analyzed data (x can be regarded as a stochastic vector). These
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Figure 2.6: The first 16 basis functions of the Coiflet 2 mother wavelet in
the DWT used for compressing EC data.

axes are referred to as principal azes. The idea behind compression is to rep-
resent the data using only a limited number of axes for which the variance
is sufficiently large. The basis functions which fulfill this criterion are eigen-
vectors of the covariance matrix of x [4]. This method has several attractive
features; all elements in y are uncorrelated (independent if z is Gaussian)
which means that the covariance matrix of y is diagonal with the eigenval-
ues on the diagonal. If the eigenvectors are sorted in a descending order
according to their eigenvalues, and only the m first ones are used, then the
best possible representation is obtained with only m basis functions for all m
orthonormal basis vectors. This procedure is known as principal component
analysis (PCA).3

The procedure can be summarized as follows:

1. Calculate the sample covariance matrix of x.

2. Perform eigenvector decomposition.

3. Sort the eigenvectors ¢, according to their eigenvalues A;
4. Use the ¢, with largest eigenvalues (variances). That is,

y =&"x. (2.7)

3The procedure of expanding a vector x using the eigenvectors is also known as the
discrete Karhunen-Loéve expansion.
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The reconstruction is then defined as

X = E yip; = dy = ATy. (2.8)
i=1
were ¢, are the columns in &.

Using the procedure above one obtains an intelligent system which from
examples—in our case EC data—extracts an optimal set of orthogonal basis
functions.

It should be mentioned that these basis functions do not have to be local
like in the DWT case, in fact they have rather global character in our case.
Figure 2.7 shows the 8 first basis functions obtained using PCA for EC data.
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Figure 2.7: The first 8 basis functions obtained by principal component
analysis of the EC data.

2.5 Classification

The classifier was implemented as a two-layer artificial neural network (ANN).
The ANN had two outputs: one for defects on the right side of the rivets,
and one for defects on the left side. After preliminary simulations it ap-
peared that using only 3 neurons in the hidden layer was sufficient which
confirmed high efficiency of the feature extraction schemes and implied a
fast training due to a low number of coefficients in the ANN (a desirable
feature if the amount of data is low).
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The data set was (as described earlier) divided into two subsets: one set
was used for training, and the second for cross-validation and evaluation.
All data with large defects were removed from both the training and the
evaluation sets.

2.6 Results

A large number of ANNs (1000 for each feature extractor) was trained using
the AEROSPATIALE training data set. The optimization algorithm used to
train the nets was very powerful (Levenberg-Marquardt [13]), but the risk
of getting trapped in local minima seemed to be rather large, therefore a
large number of networks, with random starting weight, was used during the
training. A detection was flagged if one the outputs of the ANN exceeded
the level 0.5.

All feature extractors had approximately the same performance on the
evaluation data used if a sufficient number of coeflicients was used. All the
extractors resulted in 2-3 missed detections (of 68), 5-8 false detections (of
640) and misclassification of 6-9 detections (left instead of right crack for
example)—it is difficult to say which feature extractor that has the best
performance, due to the low amount of data available.

To illustrate the extractors performance defect responses from four adja-
cent rivets is presented in Figure 2.8. The rivet corresponding to the signal
shown in Figure 2.8(a) was defect free, while the responses in the (b), (c) and
(d) were due to rivets with cracks. The cracks in (b) and (c) were detected
and the crack (d) was missed by all methods. By comparing the responses
from the defect-free rivet (a) and the missed rivet (d), one can conclude that
the magnitude of the respective signals is similar for both rivets. That is,
the defect response in (d) has the amplitude in the order (or lower) of the
noise level, which explains why this defect was missed.*

The number of coefficients required to accomplish the classifier perfor-
mance described above varied between the different methods as shown in
Table 2.1.

Figure 2.9 shows an example of reconstructions of an EC signal, con-
taining a small disturbance, using the number of coefficients depicted in
Table 2.1, for the DWT, PCA and DFT. The disturbance has dissapeard

“Note that the measurement vector is windowed by a soft rectangular window which
explains why the EC response is zero at the beginning and the end of the vector.
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No defect Defect on right side (6.5 mm)

T T T 1 T T T T

Figure 2.8: In-phase components from four adjacent rivets, (a) is the left-
most rivet and (d) is the rightmost one. Dotted curves show un-windowed
data and the dashed curves is the rivet response signal (quadrature part of
the EC signal). The rivet corresponding to the signal in (a) is defect-free,
while the responses in the (b), (c) and (d) are coming from the rivets with
a 6.5 mm crack, a 3.5 mm crack, and a 3 mm crack, respectively. There
should be two “bumps” for each defect due to the probe design. The defects
in (b) and (c) were detected while the defect in (d) was missed. Note that
due to overlap of the analysis window the “bump” in the right hand side of
the (a) marked “1”appears as the left bump in (b), and the right bump in
(b) marked “2” appears as the left bump in (c) etc. Since neither “5” nor
“6” bump can be distinguished from noise the defect in (d) was missed.
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Block mean FD Wavelet | PCA
# of Coeff. 12 12 (6 complex) 15 6
# of misses (false alarms) 2 (5) 3(7) 3(8) |3(5)

Table 2.1: Classification results for the employed feature extraction meth-
ods. The performance seems (slighty) better for the block mean and the
PCA methods, but it is difficult to draw any general conclusion from this
low number of missed detections.

in the reconstructions, indicating that the robustness has been improved by
performing proper feature extraction.

Original signal
T
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Figure 2.9: Reconstructions of an EC signal using reduced DWT (Coiflet
2), PCA and DFT bases. The original signal contain a small disturbance
in the middle. This disturbance has disappeard when the recontructions is
performed using truncated bases, indicating that the robustness has been
improved.

2.7 Conclusions

The proposed method to detect and classify defects in lap-joints during EC
inspection presented in the chapter appeared to perform well on the given
data. Due to the relatively low amount of EC data available it is difficult
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to perform a quantitative comparison of the classification performance of
the different proposed pre-processing schemes. Generally, all of them per-
formed well on the available data set. The main difference between them
is the number of coefficients needed to achieve a satisfactory classification
performance. Below some comments related to each pre-processing method
are presented:

Block mean Taking simple averages in sections worked well. One pecu-
liarity was though observed, namely that, increasing the number of
blocks did not necessarily improve the classifier performance. This
was probably due to the length and location of the blocks in the an-
alyzing window. Blocks with the equal lengths was simply used, but
if the block lengths and locations was chosen in a more sophisticated
manner, then even better performance would probably achieved.

Fourier Descriptors This method is the only one that utilizes the full
complex-valued EC signal. The data compressing performance was in
the same order as the Block-mean and the DWT method.

Wavelet The wavelet method, was surprisingly, the method that needed
the largest number coefficients. To achieve the desired performance
the two largest scales were needed, which resulted in 15 basis functions
(cf. Figure 2.6).5 Better performance would probably be possible if
an adapted wavelet basis[14], or a basis chosen from a WavePacket
library[11, 15], was used.

PCA The PCA method achieved very good compression performance, only
6 coefficients were needed for the classification. This can be explained
by using an adapted basis, deduced from the training examples. The
use of an adapted basis is a very powerful method since it enables
a very efficient data compression and a reliable elimination of large
errors (outliers) at the same time. Outliers appear when the basis is
not well matched to all measured data, which means that some part
of data has features different from the majority, for instance due to
signal saturation. Outlier detection can be performed by observing
the reconstruction error. That is, the fact that the reconstruction er-
ror is large may indicate that the observed data probably originates
from some other family than that the basis was constructed from. It
is worth noting that due to the fact that PCA is based on discarding

5The two largest scales of the used DWT comprise 16 basis functions, but the last one
was almost totally weighted out by the used windowing procedure.
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the eigenvectors corresponding to the smallest eigenvalues does not
guarantee correct representation of the significant features in all cases.
It may namely happen that the discarded directions contain informa-
tion essential for the classification. However, in this application PCA
worked properly resulting in a very good classification performance.



Chapter

Characterisation of Defects in
Welded Carbon Steel

3.1 Introduction

Characterization of defects is an important issue in many industrial appli-
cations. Knowledge of defect properties (geometries) can save substantial
amounts of money due to the high costs involved in replacing parts in many
applications. The location and size of a defect may, for example, not be
critical for a particular application, and this knowledge can reduce mainte-
nance costs substantially. In many applications it is also vital to be able
to inspect (monitor) parts before a part actually breaks. Examples of such
critical applications can be found in nuclear power plants and in the aircraft
industry.

Ultrasonic inspection is one technique that enables defect monitoring,
and defect sizing, of specimens non-destructively. However, the measure-
ments typically obtained with ultrasonic (US) methods are complex to eval-
uate since the response depends on many factors, such as lobe characteristics
of the transducer, the transducer bandwidth and center frequency, angle of
inclination, depth and orientation of the defects etc. Today only very experi-
enced operators are able to perform full evaluation of the results, especially
for coarse grained materials (stainless steel). Therefore, it is desirable to
have tools that can support operators in tasks, such as, flaw sizing and
classification.

31
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The goal of the research presented in this chapter has been to develop a
software package that, by means of signal processing, could support an op-
erator in making decisions regarding defect characteristics using pulse-echo
ultrasonic measurements. The idea was to study US signatures from mea-
surements, performed at our lab, from a carefully chosen selection of “real”
defects. A suitable set of signal processing tools should then be developed
based on the US characteristics of different flaw types, and the experiences
gained from the measurements. Previous research [5, 6, 7], performed us-
ing simulated and artificial defects, has shown the feasibility of such an
approach.

The selected defects were of types similar to those commonly encountered
in real V-welds. The number of defects used was 36. A much larger number
would have been desirable but the production cost for “real” defects is very
high since the geometry of the used defects must be known. One must also
be aware that, due to physical restrictions, it is only possible to insonify the
defects from a limited number of views. The inspections are constrained to
be performed from the front and the back surface of the test block. Normally,
the upper rough surface of the weld also restricts inspection which limits the
obtainable information even further.

The approach taken here consists in, first carefully analyzing the US re-
sponses, using different transducers, and then examining if there are features
which are unique for individual classes of defects, and hence, could be used
for characterization. The second step is to develop methods, or algorithms,
for extraction of these features in a format suitable for a classifier. This is an
important step due to the very low number of examples available. Note that
the “classifier” can be either a human operator or a dedicated software. If
the software approach is chosen, then there is an apparent need of incorpo-
rate strong a priori knowledge since the number of examples is very limited.
A reasonable goal, which was adapted here, is to select two classes, one con-
taining sharp defects (various types of cracks) and one including soft defects
(slag inclusion and porosity). Note that, even though only two classes are
used, there are still very few examples of each class available for training.

Section 3.2 includes a short description of the carbon steel blocks and
the “natural” flaws that were implanted in them. The main part of this
chapter, Section 3.3, describes the B-scan (and D-scan) measurements that
have been performed and discusses the features extracted from the mea-
surements. In Section 3.4 the algorithms for position estimation, region of
interest selection, feature extraction, and depth normalization are presented.
This section also contains a discussion concerning the different defect classes
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proposed and a comparison of signal features between different flaw types.
At the end of the section there is also a comparison of artificial flaws contra
natural flaws. Finally, Section 3.5 gives the conclusions.

3.2 Realistic Test Blocks

Four blocks, each with 9 various flaws, were designed in collaboration with,
and manufactured by Sonaspection International Ltd. All blocks have di-
mensions 42 mm X 400 mm X 600 mm and consist of two carbon steel plates,
welded together (V-weld). The defect types and sizes manufactured in the
blocks are summarized in Table 3.1. From Table 3.1 it can be seen that the

Flaw Type Size in mm | No of flaws | Abbreviations
Root Crack 3 3 RC
Root Crack 6 3 RC
Lack of Side Wall Fusion 3 3 LOF
Lack of Side Wall Fusion 7 3 LOF
Side wall crack 3 3 SWC
Side wall crack 7 3 SWC
Center line crack 3 3 CC
Center line crack 6 3 CC
Slag 3-6 3 S
Porosity 6-10 3 P
Over Penetration 3-5 3 opP
Lack of Penetration 2-25 3 LOP

Table 3.1: Flaw list.

flaw population consists of 24 sharp flaws (various types of cracks and lack of
fusion) and 12 soft type flaws (slag, porosity and over penetration). Closer
analysis shows that there are three different types of cracks characterized by
various sizes, angles and locations. The cracks were manufactured by me-
chanical fatigue and were implanted by semi-direct insertion (created before
the welding process or at a pre-determined stage during welding). There
are also natural sharp flaws in the form of lack of side wall fusion. This
gives an idea of spread in the sharp flaw class which should also result in the
variation of their ultrasonic signatures. The soft defects, on the other hand,
should by their nature result in similar ultrasonic responses, independent of
their orientation.
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The test blocks have been subjected to careful ultrasonic inspection in
our lab and all the defects were localized according to the reports from the
manufacturer (copies of the block drawings are shown in Appendix 3.A).

3.3 Test Block Measurements

3.3.1 Transducers

The contact US inspection of the blocks has been performed using a mech-
anized scanner and a digital ultrasonic system based on a Saphir PC board.
B-scans for each flaw were acquired and a flaw data base was created.

Two miniature screw-in transducers from Panametrics, with center fre-
quencies 2.25 MHz (type V539-SM) and 3.5 MHz (type A545S-SM) were
used in the (shear wave) contact inspection: Both transducers had nominal

fo [MHz] | B [MHz| (-6dB) | Angle [Degrees| | Producer

2.25 89% 45 Panametrics
2.25 89% 60 Panametrics
2.25 89% 70 Panametrics
3.5 58% 45 Panametrics
3.5 58% 60 Panametrics
3.5 58% 70 Panametrics

Table 3.2: Transducer list.

element size 0.5” (13 mm) and were assembled by screwing directly into
miniature angle beam wedges type ABWM-5T, also from Panametrics. Six
different angle beam transducer configurations, listed in Table 3.2, were cre-
ated in this way. The advantage of this solution is obvious; by using the
same active element the obtained transducers have very similar character-
istics. Since ultrasonic response of a particular flaw is determined both by
the flaw type and by the transducer characteristics it is essential for defect
characterization to keep transducer characteristic as constant as possible.

3.3.2 Measurement Setup

Four different scanning methods were used. The aim was to make direct mea-
surements from the top side of the steel blocks as shown in Figure 3.1(a).
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However, for smaller angles direct measurements were obstructed by the
upper surface of the V-weld. In such cases indirect measurements, or mea-
surements from the backside were performed instead, which is shown in
Figure 3.1(b) and (c). Another reason for making indirect (or backside)

(a) Direct measure- (b) Indirect mea-
ments surements

Weld
J Q -
(c) Backside mea- (d) D-scan
surements measure-
ments

Figure 3.1: Measurement setups.

measurements was low amplitude of the reflection obtained in the direct
measurement. This was due to the unfavorable angle between the trans-
ducer main beam and certain flaws (sidewall cracks, for example).

The fourth scanning method, referred to as D-scans, is shown in Fig-
ure 3.1(d). In D-scans the probe is moved along the weld side-wise. D-scans
are interesting because they reveal how the defect response varies along the
defect. It is also interesting to see the response from the weld itself, both
with and without a defect present. Typically the shape of the weld varies
spatially and D-scan shows this variation rather clearly.

3.3.3 Measurements

The performed measurements are displayed in Table 3.3 and Table 3.4. The
measurements consist of B- and D-scan data matrices and the total number
of measurements are 2x133. The main part of the data comes from the
welded steel blocks described above, but new measurements have also been
performed, for comparison, on two aluminum blocks with artificial defects
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also used in a previous project [7]. In addition to these measurements all
flaws have also been subjected to manual inspections. The artificial flaws
in Table 3.4 named SBH are side-drilled holes, and the ones named S are
cracks (notches).!

3.3.4 Measurement Results

In this section a number of B-scans from each defect type is shown for
illustration. They were selected so that both common features and feature
variations are represented for each defect type. Note also, that some of
the images contain responses from non-defect parts of the weld, like the
top or bottom surface of the weld or the steel-weld junction. These echos
are explained (if possible) when they are encountered. In the figure titles
the name of the data files are given. An example is p28b 1 3 5, where
p28 means porosity flaw 28, b means backside measurements, 1 indicates
that the flaw is located in test block PL4501, and 3 5 is the used transducer
frequency (3.5 MHz). The B-scans presented in the following subsections are
from measurements with the 3.5 Mhz transducer. The reason for showing the
3.5 Mhz transducer only is that the measurements is performed on carbon
steel blocks with very little grain noise. This implies that the 2.25 MHz and
the 3.5 MHz transducers should give similar results (which also was verified),
with the exception that the 3.5 MHz transducer gives higher resolution due
to the shorter wave length (both transducers have approximately the same
bandwidth).

Center Cracks

The center cracks found in the steel test blocks were either vertical or slightly
tilted. Figure 3.2 shows indirect measurements using the 45-degrees trans-
ducer. One can see that there are two rather strong peaks (too strong to be
diffraction echos) in all three B-scans. An unambiguous explanation for the
presence of the second echos are difficult to find, but one explanation may
be that they originate from the structure of the cracks implanted into the
weld. These two peaks do not always occur in signals from center cracks, an
example is shown in Figure 3.2(a), where the crack has been scanned from
the other side of the weld. Here only a single peak is seen. The double echos
are also less pronounced if a higher angle probe is used. Figure 3.3 shows
B-scans of the same defects obtained with a 60 degree transducer, and only

'For a more detailed description of the aluminum blocks see [7].
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Defect Direct Indirect Backside D-scan

45160 |70 | 45|60 | 70 | 45| 60 | 70 | 45

(=2}
e}

70

RC 1
RC 2
RC 3
RC 4
RC 5
RC 6

LOF 7
LOF 8
LOF 9
LOF 10
LOF 11
LOF 12

SWC 13
SWC 14
SWC 15
SWC 16 °
SWC 17
SWC 18

CC 19 .
CC 20
CcC21
CC 22
CC 23
CC 24 ° °

S 25
S 26
S 27

P 28
P 29
P 30

OP 31
OP 32
OP 33

LOP 34
LOP 35
LOP 36

Table 3.3: B-scan and D-scan measurements made on the Steel-block welds
with both 2.25 MHz and 3.5 MHz Transducers, using 45, 60, and 70 degree
angle wedges.
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Figure 3.2: Indirect measurements from center cracks using the 45-degree
transducer.
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Defect || 45 | 60 | Block
S 4-7 ° B1
S T7-4 . B1
SBH1 | e B1
SBH2 || e B1
SBH3 || e B1
S1 o | o B2
S2 o | o B2
S3 e | o B2
S4 e | o B2
S5 e | o B2
S6 o | o B2

Table 3.4: B-scan measurements made on the aluminum blocks with artifi-
cial defects. The measurements were made with the 2.25 MHz and 3.5 MHz
transducers.
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Figure 3.3: Backside measurements from center cracks using the 60-degree
transducer.
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one echo can be seen in Figure 3.3(b).

Sidewall Cracks

The sidewall cracks are located in the steel-weld junction and are, hence,
tilted with the same angle as the weld (30 degrees). This makes it difficult to
apply direct measurements, and all measurements are, therefore, performed
from the backside or indirectly. Figure 3.4 and Figure 3.5 show backside
measurements performed with the 45- and 60-degrees transducers. = No
double echos were noted for the sidewall cracks.

Lack of Fusion

The lack of fusion (LOF) defects are also located in the in the steel-weld
junction. This results in the same difficulty, as for the sidewall cracks, to
make direct measurements. Hence, the measurements have been performed
from the backside (or indirectly) here as well. Figure 3.6 and Figure 3.7
show measurements with the 45- and the 60-degree transducers, respectively.
The echos seen around 60 mm for the 45-degree transducer originates from
the top weld surface. Some of the LOF measurements also had two peaks
(Figure 3.6(b) and (c)). However, the double echos were more separated
than for the center cracks. The double echos were only seen when the 45-
degree transducer was used.

Slag

The echos from the slag inclusions were rather distinct regardless of the
transducer used. Figure 3.8 and Figure 3.9 show four examples using the
45- and 60-degree transducers. No direct measurements were performed,
since the probe was obstructed by the weld surface (see Section 3.3.2).

Porosity

Porosity can rather easily be separated from other types of defects due to
the multiple echos encountered in the ultrasonic signal. Figure 3.10 and
Figure 3.11 show 6 examples of B-scans acquired using both the 45- and
60-degree transducer from backside measurements. The echos observed at
approximately 60 mm (in Figure 3.10) are, again, from the top surface of
the weld. Note that the echos at approximately 25 mm in Figure 3.10c and
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Figure 3.8: Backside measurements from slag using the 45-degree trans-
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40 mm in Figure 3.11c probably come from a rather strong reflection due to
the steel-weld junction in test block PL4503.
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Figure 3.10: Backside measurements from porosity using the 45-degree
transducer.

Root Crack
Root cracks result in strong reflections from the crack-bottom surface corner.

In some cases, a small echo from the crack itself appears slightly before the
crack-bottom echo. This “pre-echo” are somewhat difficult to see in the B-
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scans presented in Figure 3.12 and Figure 3.13, but will be more easily seen
in A-scans presented later in Section 3.4.2 (Figure 3.29(c)). The origin of
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Figure 3.12: Direct measurements from root cracks using the 60-degree
transducer.

these echos are unclear, but it may be due to the same phenomena as the
double echos encountered in the signals from the center cracks.
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Lack of Penetration

The echos from lack of penetration defects look rather similar to root cracks,
but they are more “distinct” since there is no echo from the top parts of the
defect, only echos from defect-bottom surface corner is present. Figure 3.14
and Figure 3.15 show four examples using the 60- and 70-degree transducers
(from direct measurements).
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(a) 2 mm lack of penetration (b) 2.5 mm lack of penetration

Figure 3.14: Direct measurements from lock of penetration using the 60-
degree transducer.

Over Penetration

Over penetration can rather easily be distinguished from root cracks and
lack of penetration since it is characterized by a proportionately long tail
of small pulses after the main pulse (which comes from the bottom weld
surface). Figure 3.16 shows three examples.

D-scans

D-scans provide information of how the response signal varies along a flaw.
In particular, one can estimate the length (side-wise) of the flaw from these
type of measurements. Two examples of D-scans are shown in Figure 3.17.
Note the response from the bottom weld surface—shown as a horizontal
line trough the D-scan—and how it is “shadowed” by the root crack in
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Figure 3.15: Direct measurements from lack of penetration using the 70-
degree transducer.

Figure 3.17(a). Note also the typical ringings after the weld surface response,
shown in Figure 3.17(b), that are characteristic for the over penetration.

3.4 Defect Characterization

3.4.1 Signal Features and Feature Extraction

In order for a classification task to be successful there are a number of issues
that must be considered. The number of available training examples must
be compared to the complexity of the classifier (i.e. number of parameters in
the classifier). If the training examples are few and the classifier is complex,
then the classifier will perform well on training data and poor on unseen
data [4, 3]. However, the parameters in the classifier can be reduced if the
dimension of the input vector is reduced. The process of describing features
in data in a compact way is known as feature extraction, and was briefly
introduced in Chapter 1 and 2. In this application the number of training
examples is very low and, hence, feature extraction is an essential part of
the classification process. To succeed well the features must be descriptive,
so that differences vital for classification are not lost. These aspects are
illustrated in Figure 3.18, where a fictitious example characterized by only
two features is shown. In this figure there are three classes present: one
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labeled A (with dashed boundary), and one B (with dotted boundary) and
finally class C (with dash-dotted boundary). There is also a number of
examples from each class shown in the figure, where the x:es are from class
A, the +:es from class B, and the o:es are from class C. As one can see class
A and B are overlapping and they also have a low number of examples which
makes it difficult to design a classifier with a proper decision boundary based
on those examples. Class C exemplifies the desired case with a sufficient
number of examples and non-overlapping class boundaries. The two features
used in this example are clearly not suitable for separating the A and B
classes. However, for a different choice of features the classes may not be
overlapping, and the problem can be solved.

In this section, some choices of feature extraction methods are discussed,
as well as issues regarding pre-processing and region of interest selection.

Pre-processing

In this study, only the envelope of the acquired ultrasonic data is used. This
was also the strategy the previous study [5, 6, 7]. The envelope is calculated
by means of the Hilbert transform. The resulting data is also smoothed with
a low-pass filter to reduce the measurement noise present in data.

Extracting Defect Position

The flaw position is used for both region of interest (ROI) selection the
depth normalization (which is required for the feature extraction performed
later). It is therefore important that the position estimation is accurate and
robust. The current method to find the flaw position is based on fitting
an hyperbolic function to the flaw response in B-scan data, see [6]. This
method is summarized below:

The curves formed by a point scatterer in a B-scan, obtained
with the contact measuring setup in shown Figure 3.19(a), are
shaped as a part of an hyperbola given by the equation

r=\/Ti+ 23, (3.1)

where T4 = Zfaw — Ztr iS the horizontal distance between trans-
ducer and the flaw, and zq,, is the vertical position of the flaw.
The position estimate (Zfaw, Zfaw) 1S found by minimizing the
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summed squared error Y, || OO I%2,i=1,2,... ,N, for

the N selected A-scans, where r%)aw is the position of the max
amplitude of the envelope of the ith A-scan.

Consider the A-scan 48 mm from the center of the weld, marked with a
vertical line in Figure 3.19(b) (also included in the box in the same figure).

The maximum response appears approximately at r%)aw = 45 mm.
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Figure 3.19: Illustration of the different distances used in Eq (3.1). The
r%)aw positions in the A-scans appears along echo-dynamic curve marked in
the B-scan.

Depth Normalization

In an ultrasonic B-scan, a defect located close to the transducer will be
seen in a fewer A-scans than a similar defect present further away from the
probe, due to the lobe characteristics (cone-beam geometry) of the probe.
By studying the echo-dynamics from two flaws at different depths, the echo-
dynamics of the flaw closest to the transducer will have a narrower shape
than the other flaw. A simple way to normalize is to re-sample the echo-
dynamics (or wavelet coefficients) in some angle interval. That is, the feature
vector (or matrix) is re-sampled in an angular scale instead of the original
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linear scale. This is illustrated in Figure 3.20, where the two horizontal
arrows indicates the distances where the flaws fi, and fs, are inside the
ultrasonic beam. The depth normalization procedure consists of re-sampling

Figure 3.20: Illustration of the effect of the cone beam geometry for two
defects at different depths. The defect “fi” will be seen in fewer A-scans
than defect “fs”, which must be compensated for, before the features can
be used for classification.

the features for a suitable angular interval given the depth of the flaw. This
implies interpolating features from flaws located close to the probe, and
down sampling features for flaws that lie further away from the probe.

ROI Selection

Selection of ROI is an important issue since all further processing rely on
it. The positioning of the analyzing window must be precise. If this is not
the case, then the features fed to the classier will vary between different
measurements, giving inconsistent results. However, it is not a trivial task
to position an analyzing window accurately in the ultrasonic B-scan images
encountered. Ideally an hyperbolic shaped analyzing window should be
positioned around a flaw response in a B-scan, where the position of the
window should be determined based on the (exact) position of the flaw.
The problem is that the defect position is unknown and must be estimated.
The procedure described above is, however, not accurate enough for the
precise horizontal positioning required here. In the previous studies [6, 7] the
echo-dynamics (max amplitude variation) of the flaw response was used for
horizontal positioning. Figure 3.21 shows two examples of echo-dynamics.
As one can see the echo-dynamics curves may be skewed, have more than one
peak, etc. If a B-scan has two (or more) separate peaks (as in Figure 3.2(a)),
then the situation becomes even more complicated. The approach used
previously was to smooth the echo-dynamics, with low-pass filtering, which
partially solves the problem. This method was suitable for the simulated
and artificial defects. Experiments have been performed using center-of-
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Figure 3.21: Two examples of echo-dynamics (max amplitude variation
between consecutive A-scans).

mass calculations in order to find a robust estimate for the center of the
echo-dynamics. This approach was, however, too sensitive to long tails with
high amplitude (energy) in the echo-dynamics. Therefore, the previously
used algorithm is utilized here as well. The algorithm is summarized below:

1. Low-pass filter the echo-dynamics.
2. Find the A-scan of max amplitude of the filtered echo-dynamics.

3. Select a number N of A-scans centered around this position. The
number N depends on the depth of the defect. Re-sampling will also
be necessary to obtain features of equal length (as described above).

Classical Features

The perhaps most commonly used features for classification of defects during
ultrasonic inspection is the rise time, pulse duration and fall time [16, 17].
These three features are calculated from the envelope of an A-scan as de-
picted in Figure 3.22. Typically one uses the 90% and 10% levels for the cal-
culation. In the previous studies 90% and 35% where used [7], but these lev-
els may be adjusted according to the level of noise and disturbances present
in the measurements.
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Figure 3.22: The four times used for calculating rise time, pulse duration
and fall time.

When 2D data are available (B-scans) one commonly uses the echo-
dynamics, discussed above, which gives a description of the amplitude vari-
ation between consecutive A-scans in a B-scan.

These basic features are reliable provided that the US pulses (echos)
are well defined. However, realistic defects result in pulses with envelopes
that are much different from the well defined bell in Figure 3.22, which
considerably impairs the reliability of such features. Smoothing (low-pass
filtering) partly alleviates these problems, but at the expense of some loss of
information. Figure 3.23 shows the envelope of A-scans from three different
types of defects. In spite of the very different shape of the waveforms, the
rise time, pulse duration and fall time are rather similar for all of the signals
in Figure 3.23. It is evident that more powerful features are needed if the
classification should be feasible for this type of signals.

Feature Extraction using the Discrete Wavelet Transform

The discrete wavelet transform (DWT) described in Chapter 2 has several
interesting features also for this application. The impulse-like nature and the
locality of the basis functions in the DWT makes it suitable for modeling of
ultrasonic signals. If, for example, an analyzing window is centered around
an ultrasonic pulse, then it is possible to examine at which position and scale
this pulse has significant energy, which is reflected in the wavelet coefficients
given by the DWT. It should be noted that the envelopes of typical ultrasonic
signals can be well described with only a few of the large scale components
(wavelets), which result in a good data compression ability.
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Figure 3.23: Envelope of A-scans from three different flaws. The pulse

duration and the raise- and fall times are similar despite the very different
pulse shapes.
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There are several different types of pre-defined mother wavelets available
in common software packages, like the Wavelet toolbox for MATLAB [15].
The Coiflet 2 mother wavelet, used in Chapter 2, is a fairly smooth wavelet
suitable also for this application. The echo-dynamics, and the first 16
DWT coefficients, from the same (consecutive) A-scans are displayed in
Figure 3.24. One can clearly see how the echo-dynamics is reflected in the

s25b 45 0 2 25.mat - Echo dynamics s25b 45 0 2 25.mat — Wavelet coefficients
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Figure 3.24: (a) The echo-dynamics from a slag inclusion. (b) The first 16
wavelet coeflicients from the same A-scans as in (a).

wavelet coefficients. Note also that there are significant energy (information)
for more than one scale. Obviously, if only the echo-dynamics is used, a sig-
nificant amount of information is lost, which then may impair classification
performance.

3.4.2 Defect Classes

A conclusion, from the performed measurements, is that the characterization
task is much more complex for the realistic defects than for the artificial,
and simulated, counterpart. The variability of ultrasonic responses from
the same type of defects appeared to be very large, which resulted in a
considerable overlapping of flaw classes in feature space. This obviously
causes problems with the flaw classification. A realistic goal is to categorize
defects in sharp defects, like cracks and lack of fusion, and volumetric (or
soft defects), like porosity and slag inclusions. Defects in the bottom of the
weld are also easy to distinguish from other flaws since they all occur at the
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same position. The flaw types are, therefore, divided in three main groups
which are: sharp (crack-like) defects, volumetric defects, and defects at the
bottom of the weld.

Sharp Defects and Volumetric Defects

The Figures 3.25-3.28 show envelopes of A-scans and echo-dynamics for
crack-like defects and volumetric defects, respectively. At least two
observations can be made from these images:

e The ultrasonic responses from crack type defects exhibit a large vari-
ation of features. This is especially clear for center cracks and lack of
fusion defects.

e It is very difficult to distinguish sidewall cracks, and lack of fusion,
from slag inclusions.

Analysis of Figure 3.25 to Figure 3.28 leads to the conclusion, which can be
expressed in pattern recognition terms, as too large within-class variation for
cracks and overlapping class regions between slag inclusion and LOF /SWC:s.
Porosity is the type of defect that is easiest to separate from the other classes,
due to the multiple echos which this type of defects produces. Another
observation is that it is difficult to draw any general conclusion from the
echo-dynamics (Figure 3.26 and Figure 3.28).

One conclusion from the measurements is that a larger number of ex-
amples from the sharp class of defects would be required, in order to see as
many variations as would be needed to construct a fully automatic classifier
based on training examples only. It is obvious that the use of the classi-
cal type of features is unsatisfactory in this case. This implies that more
sophisticated tools are needed for feature extraction.

Defects at the Bottom of the Weld

The defects located at the bottom of the weld include three types of flaws:
over penetration, lack of penetration, and root cracks. Figure 3.29 shows
one example of each type. The within-class variation seems much smaller for
these defects than for the other defects. The class separation between the
three different flaw types also appears larger than in the former case. Lack
of penetration has a rather “clean” pulse shape, over penetration has typical
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Figure 3.25: Envelope of A-scans from sharp defects. The pulse shapes are
well defined, but occasionally double echos are found.
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Figure 3.29: Envelope of A-scans from defects at the bottom of the weld.
The pulse shape from lack of penetration is well defined which makes it easy
to distinguish from the overpentration, which exhibits large ringings after
the main pulse, and from root cracks, which has a small pre-pulse before
the main pulse.
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ringings after the main pulse, and root cracks result often in a pulse which
comes slightly before the main pulse, which can be seen in Figure 3.29.

The classical features may be sufficient for separation of the three flaw
types, at least if the ringings of the over penetration, and the “pre-pulse”
of the root cracks, are not separated too far from the main pulse. A large
separation between the ringings (or pre-pulse) and the main pulse may result
in that only the main pulse is used for feature extraction. In fact, the pre-
pulse or ringings might not even have a pulse amplitude that is higher than
lower limit (see Figure 3.22), which results in a total loss of these features.

However, if the DWT is used, more information is preserved about the
pulse shape, and then there is no risk of loosing information of low amplitude
pulses as long as they occur inside the analyzing window.

3.4.3 Natural Contra Artificial Defects

As mentioned earlier B-scan data was also acquired for the aluminum blocks
with artificial defects used in the previous studies [5, 6, 7]. In these stud-
ies the classical features, described above, was shown to be sufficient. The
purpose here for acquiring data from artificial defects was 1) to briefly ver-
ify some of the previous results and 2) to elucidate the difference to data
acquired from realistic defects. Figure 3.30 shows a B-scan from block B1
with four artificial cracks (notches). The cracks have a depth of 2 mm, 4
mm, 4 mm and 8 mm (from left to right in the figure). One can see the
diffraction echos, slightly above the main echos, whose location in the B-scan
is in agreement with the size of the defects. Figure 3.31 shows one A-scan
(and the envelope) from the same B-scan as in Figure 3.30. The pulse shape
from the artificial defects are very “clean” compared to the ones in the steel
blocks with real defects. There are no double echos or irregular pulse shapes
present in the signals from the artificial cracks in the aluminum data.

The defect characterization (i.e. classification) task becomes much sim-
pler since the within-class variation is much lower than for real flaws. The
main implication of this is that the number of data needed “to span” the
room of possible flaw signals is much lower for artificial defects than for
the real defect counterpart. The features needed for classification are also
simpler, echo-dynamics, rise time, pulse duration and fall time work well for
artificial defects [7], contrary to the real flaw signals were more sophisticated
features are needed.
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3.5 Conclusions

During the evaluation of ultrasonic data acquired from the V-welded steel
blocks it became evident that the characterization task is much more com-
plex than for simulated and artificial flaw signals. The feature space of
possible flaw signals is also considerably larger for the real defects than for
the artificial counterparts, i.e., the variation of the ultrasonic signals within
one type (class) of defects is much larger for real than for artificial defects.

Our goal was to separate soft (or volumetric) defects from the sharper
ones (crack-like defects), but if one studies the echo-dynamics and the pulse
shapes (i.e. the envelope) it becomes apparent that some sharp and soft de-
fect types are very hard to separate. This implies that overlapping feature
regions are encountered, especially when using classical features (fall/raise
times, pulse duration and echo dynamics). To avoid overlapping class bound-
aries, more powerful feature extraction algorithms are needed to achieve a
good classification performance.

High variation of the ultrasonic signals also has two further consequences:
flaw position estimation (needed for feature extraction) may be poor and the
amount of data needed to construct a reliable classifier is large. Below, a
number of conditions that must be fulfilled in order to successfully build a
classifier based on training examples is listed:

e Ensure that the measurements are good (informative) enough to dis-
tinguish between different types of defects. This is vital, because it can,
of course not, be expected to be able to distinguish between different
defects if the information needed is not present in the measurements.

e The features must be representative. The features that are fed to the
classifier must preserve the information needed for successful classifi-
cation.

e The number of training examples must be sufficient. As a rule of
thumb one needs at least ten times as many examples as the param-
eters in the classifier, to avoid that the classifier learns the training
examples and performs poor on unseen examples. Moreover, the exam-
ples must be enough representative to span the whole room of possible
flaw signals for each defect class. If the last condition is not fulfilled
the classifier will not able to classify all defect signals properly.

The second condition is clearly not fulfilled with classical features and more
powerful methods are, therefore, needed. Note also that the first condition
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may not be fulfilled using a single B-scan measurements only. A common
practice in situations when it is difficult to categorize a measurement, is
to combine measurements from several transducers (with different angles,
center frequencies etc.) and TOFD measurements. This technique is usually
known as data fusion.

The last condition is more cumbersome. Clearly the number of training
examples was not sufficient to span the room of all possible flaw signals,
which is huge since one must account for different orientation, flaw size,
crack roughness etc. Therefore, one could not expect to obtain a feasible
classifier, based on the low amount of training data available here, using a
standard pattern recognition approach. Hence, a priori knowledge must be
incorporated to solve this difficult characterization problem. This knowl-
edge can, for example, take the form of expert knowledge of experienced
operators or the form of a advanced flaw modeling. A reasonable approach,
for characterization of the type of defects encountered in this study, is to
concentrate on improving flaw imaging and leave the classification tasks to
experienced operators.
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Chapter

Temperature Mapping using
Ultrasonic Tomography

4.1 Introduction

Accurate control of gas temperature in closed spaces is an important issue
for several applications such as power plant boilers and air-conditioning sys-
tems. The performance of a temperature control system depends on several
factors, where the response time and the accuracy of the transducers are
two important factors. A common method to obtain an estimate of the gas
temperature is to insert one or several probes inside the volume of interest.
The temperature distribution is then estimated from these measurements
and then the heating system is controlled based on the estimate. There are,
however, difficulties using this method to measure the temperature distri-
bution. Typically the probes have a rather long response time and it may
also be difficult to place the probes at suitable positions, due to hot envi-
ronments (the probes may be damaged) etc. The application studied here
is temperature mapping in air-conditioning systems. Here the probes must
located somewhere on the walls or in the ceiling in the room, which is not
optimal, since one usually is interested of the temperature inside the room
and not on its boundaries.

An idea to improve the performance is to replace the probes, which
usually are cheap thermocouples, with ultrasonic (US) transducers. The
physical property that is used is the temperature dependence of the sound
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velocity. Thus, by sending ultrasonic pulses along suitable paths, and mea-
suring the time taken for each pulse, it should, in theory, be possible to
reconstruct the temperature distribution in the room. Similar systems have
been developed for other applications, such as, measurement of temperature
distribution in industrial boilers, or in the outlet of the burner to measure
the temperature of exhaust gases [18, 19, 20, 21].

The goal of this, so called amenity sensor, was to measure the tempera-
ture distribution in a room, using as few ultrasonic sensors as possible. The
application was the next generation of office air-conditioning systems with
improved comfort achieved by measuring the temperature distribution in a
room and using this information in a temperature control system. In Fig-
ure 4.1, an example of a temperature distribution and a measurement setup
using four (fan-beam) US paths, with a hot air-jet resulting in a temperature
gradient in the center of the room is presented. The amenity sensor has a

Figure 4.1: Example of a time of flight measurement setup.

number of advantages compared to an ordinary point measurement system
using thermoelements. Firstly, the number of sensors required to achieve
a reasonable mesh in the temperature map is relatively low. Secondly, the
sensors can be placed along the walls, which facilitates their installation.
Thirdly, the response time of the system should be much faster (cheap ther-
moelements have a response time in the range of 30 seconds and a TOF
measurement will only take fractions of a second).
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The development of the amenity sensor may be split in two separate
tasks, the ultrasound measurement system, and the temperature reconstruc-
tion algorithm. Here we focus on the temperature reconstruction algorithms
based on time of flight (TOF) measurements. The transducers contribute
to a substantial part to the overall system cost, so it is important to re-
duce the number of transducers as much as possible without sacrificing the
performance of the whole system too much. The objective here is to inves-
tigate feasibility of methods suitable for an accurate reconstruction of room
temperature distribution based on a few TOF measurements. Qur aim is
to maximize the system accuracy while using as few sensors as possible.
It is apparent that this problem is similar to computed tomography (CT)
used in medicine but the fundamental difference is the number of measure-
ments which is generally much larger in medical applications. This fact will,
of course, influence the design/choice of reconstruction algorithm. We will
show that number of sensors can be reduced if a priori knowledge on the
temperature distribution is available.

The basic physical properties of the Amenity sensor are discussed briefly
in Section 4.2. In Section 4.3 the problem is formulated in discrete space
which results in a linear system of equations for solving the temperature
mapping problem. The dimension of this equation system is high and it is
in general also ill-conditioned. Since the number of equations also is smaller
than the number of unknowns it is necessary to make certain prior assump-
tions in order to obtain reasonable performance. Strategies from CT, tra-
ditional regularization schemes, and a recent method by M. Gustafsson [22]
are also discussed in this section, as well as aspects on dimension reduction
and error performance. Since no real data were available for the simulations
described in Section 4.4, a smooth phantom model was used to generate
data for evaluation of the different algorithms. Finally, in Section 4.5 the
conclusions are given.

4.2 Physical Model

The sound speed dependence of the temperature T' can be described by

cs:\/ﬂ%:K\/f (4.1)

where v = C,/C, is the ratio between the heat capacitivities of the gas (air),
R is the universal gas constant, and m is the molar weight of the gas. The
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sound speed also depends of the humidity and the pressure etc, but these
are second order effects [23] which are neglected here. If the temperature
distribution is not constant the sound speed will be a function of the position
in the room, ¢4(z,y), and hence the TOF will depend on the path traveled
by the sound. For simplicity two dimensions are considered here, but the
extension to three dimensions is straightforward.

Let the reciprocal of cs(x,y) be referred to as the slowness function
f(z,y). Then the reconstruction of the temperature distribution (i.e. the
slowness function) can be formulated as the estimation of f(z,y) from P
parallel beam projections z,, along straight lines defined by sp(lp), or

Zp z/ f(z,y)dl, p=12,..., P (4.2)
Sp

The equation of a line can be expressed as z cosf + ysinf = t.

For f(z,y) to be uniquely determined, the TOF (z,) must be known for
all angles and rays [24], that is

zg(t) = //R2 f(z,y)é(z cos @ + ysinb — t)dzdy (4.3)

must be known for all (continuous) 6 and ¢, where §(-) is the Dirac delta
function. Equation (4.3) is known as the Radon transform of f(z,y) [25,
24, 26, 27]. Here we do not have access to all zy(¢) and consequently, the
estimate of f(x,y) must be performed using the P available projections.

4.3 Reconstruction Techniques

There exist numerous approaches for solving the inverse problem of esti-
mating f(z,y) from the measurements z, in Eq. (4.2). In traditional CT
the approaches can roughly be divided in two groups, one transform based,
and one which is based on finite series-expansion. The latter method can be
divided further in subgroups depending on which basis functions that are
used in the series-expansion, and which method that is used to solve the
resulting linear equation system.

The transform based methods are based on the Fourier slice theorem
which (mostly) leads to the filtered back-projection algorithm (FBA) [25].
The FBA requires a large number of projections to obtain good performance.
In this application the number of projections is limited, mostly due to the
cost of installing a large number of US sensors.
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4.3.1 The Algebraic Approach

In the series-expansion approach one assumes that the function f(z,y),
which we want to estimate, can be expressed as a linear combination of
the basis functions b;(z,y),

Thus, f(z,y) is expressed as a weighted sum of a number of “base images”.
By using (4.2) and (4.4), the TOF measurements can be expressed as

zp:Zaj/ bj(z,y)dl, +e, p=12,...,P (4.5)
J Sp

where e, is a noise term and a; is the parameters we want to estimate.

The most commonly used basis in the series-expansion approach is the
standard (or the natural) basis which consists of a unity value at the position
corresponding to each pixel (m,n) of a (sampled) image and zero otherwise.
Other examples are the Fourier basis, splines etc. [28, 18].

In a discrete formulation the integral in (4.5) will simply be replaced by
a (weighted) sum

zZp = Z aj Z Z b (Zm, Yn)O(zm cos Oy + yp sinb, — t,) + €. (4.6)
J m n

More specifically, let f(z,y) and b;(x,y) be sampled on a rectangular M x N
grid. Denote the sampled version of bj(z,y) as the M x N matrix B,
and the sampled f(z,y) as F (also a M x N matrix). The discrete sum
approximation of the line-integral in Eq. (4.6) can be written in matrix
from as, z, = >, ajqb;Col(Bj) +ep =2 ajqbgbj + e,, where Col(-) is an
operator which organizes a M x N matrix in lexicographic order (one single
column vector of length M N). The vector ¢, contain ones only at those
positions (pixels) which are intersected by the projection s,, and otherwise
Z€ros.

Let B = [blbg...bMN], f = CO](F), a = [(1,1 ag ... CI,MN]T, z —
[z1 22 ... zp)l, e =[e1ea ... ep]’, and ® = [, ¢, ... dp]. Then Eq. (4.4)
can be approximated as

f = Ba (4.7)
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and hence, (4.6) can be written as
z=&"f+e=®"Bat+e=Wa+te. (4.8)

If the standard basis is considered, B reduces to B = I, and hence a = f.

The projection matrix ® will be sparse—containing only ones and ze-
ros. This crude binary method will however introduce model errors in the
projections. The errors can be reduced by replacing the binary weight val-
ues in the projection matrix with the relative length of the ray inside each
pixel intersected. This method is known as the conventional line integral
method (CLI) [29]. More accurate approximations of (4.2) exists, known as
strip projections [25, 29], but the CLI method is sufficient for our purposes.
Figure 4.2 shows a comparison of the the binary and the CLI projection
method, using parallel beam projections, for a smooth phantom (which is
used in the simulations later in this chapter, see Figure 4.6(a)). Each peak

25 25
20f 20k
15t 15}

10f 10

0 100 200 300 400 500 0 100 200 300 400 500

Projection # Projection #
(a) Binary method (b) CLI method

Figure 4.2: Projections from a smooth phantom (shown in Figure 4.6(a))
using 64 parallel rays and 8 angles.

in the figure corresponds to 64 parallel projections, and there is one peak
for each angle, which is 8 equally spaced angles between 0 and =, giving
512 projections in total. Clearly one can see that the binary method results
in artifacts in the projections, especially for the angles /4 and 37 /4 (the
second and the sixth peak in 4.2(a)). There is some evidence that some
iterative algoritms may even diverge if the crude binary version of calculat-
ing projections is used [30], and therefore, the CLI method is adopted here.
Figure 4.3 illustrates how the different elements in the projection matrix are
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(a) Binary method (b) CLI method

Figure 4.3: An illustration of the two projection methods where the weight
values in the projection matrix is proportional to is level of the shade in
the corresponding pixels.

assigned in the binary and the CLI method—the gray level in each pixel is
proportional to the element weight value.

4.3.2 Closed Form Solutions

The model in Eq. (4.8) can be seen as a system of equations which can be
solved for a and consequently for f. However, there will only be a unique
solution to (4.8) if there is no noise, and if P = M N, that is, the number
of measurements equals the number of basis functions used. If P # M N or
e # 0, then the least-squares solution can be used,

a=(W'w)"'wTyz (4.9)
which is the solution to the optimization problem
4 = arg min||z — Wa||. (4.10)
a
This solution will not exist if the matrix WI'W is singular, which for ex-
ample happens if dim(z) < dim(a). If z has a lower dimension than a, then

there will be infinitely many a that gives the same z. A unique solution can
be found by means of the generalized, or pseudo, inverse solution [31, 32]

a=Wtaz. (4.11)
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The generalized inverse is calculated by means of a singular value decompo-
sition (SVD), that is

W =UDV7’ (4.12)

where U is a P X P matrix, V is MN X MN matrix, which both are
orthogonal, and D is a P x M N matrix of the block form

D-— [E] . (4.13)

The diagonal matrix 3 contains the square root of the r nonzero eigenvalues
of both WI'W and WWT, where r is the rank of W [33]. The pseudo
inverse, or the Moore-Penrose inverse, of W is then

Wt =vDTu” (4.14)

where DT = [£710]. If some of the singular values are close to zero = be-
comes ill-conditioned which implies strong noise amplification. The solution
is simply to truncate the SVD (TSVD)—only the “sufficiently” large singu-
lar values are used. This is then an approzimate generalized matrix inverse.
If the equation system (4.8) is inconsistent (P # M N or e # 0), then the
estimate a in Eq (4.11) is the minimum norm least squares solution. That
is, if a is split in one part which is in the row space of W, a,, and one
part which is the null-space, a,, then the pseudo inverse gives the a which
minimizes the norm ||a||? = ||a,||? + ||a,||? subject to z = Wa. Note that all
Wa,, = 0 since a,, is in the null-space of W. The pseudo inverse solution
simply sets & = a,.

4.3.3 Regularization Techniques

The remedy for solving the ill-posedness by truncating the SVD above is a
form of regularization. Regularization is the standard approach for solving
these types of ill-conditioned inverse problems. The basic feature of regular-
ization is the trade off between the belief in the measurements and the belief
in the a priori knowledge. Following Demoment [31], a regularized solution
to (4.8) can be formulated as the solution to the following optimization
problem

a(z, ) = arg min{Jy(a, &) + pJo(a,85)}

= argamin{V(a)} (4.15)
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where J7 is a measure of the fit to the measurements, J, is a measure of the
fit to the a priori knowledge, &y is the least-squares solution (4.9), and &,
corresponds to an a priori (smooth) distribution. Thus, the factor y controls
the belief in the measurements &y vs the belief in the prior knowledge a..
A common choice for J; is the weighted quadratic distance

J1 (a, é()) = (a — éo)Tsl(a — é()) (4.16)

where S; is a diagonal matrix. If the measurement noise is Gaussian, the
matrix S1 is usually chosen as

S, =WIA W (4.17)

where A is diagonal matrix containing the eigenvalues of the noise covariance
matrix C.. = E{ee’}. A common choice for J, is the Kullback distance [31,
34, 35]

P
~ a
Jo(a,800) = ) ap log(= ) (4.18)
p=1 P

o0,

which is the negative of the relative entropy of distribution a, relative to
the prior distribution Goep.! Another choice for Jj is

Jo(a) = a’'S?S,a (4.19)

where Sy can be a finite difference operator, which punishes high gradients
in a giving more smooth reconstructions. If So =1 in (4.19), then only the
variance in a will be punished.

This technique has, for example, been used by Bramantini et. al. [18], to
measure temperature distributions in power plant boilers. A Fourier series
basis was used with S; =T in (4.16), and a gradient operator as So, yielding
the solution

a=(WIW +uSls,) W'z, (4.20)

The tuning parameters in J; and Jo above (u,S1,So etc.) are known as
the hyperparameters, and they determine the behavior of the reconstruction.

'Note that the (relative) entropy used here is not really the same as the entropy used
in the statistical sense. Here we assume that f(z,y) > 0 and [[ f(z,z)dzdy = 1, which
results in a strong resemblance of f(z,y) with a probability density function (PDF).
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It is generally not an easy task to estimate these parameters, some examples
are given in [31] and in the next subsection.

Note that the methods discussed in this section results in linear opti-
mization problems (if the methods based on entropy are excluded), and any
linear method can be formulated as f = Hf, where H is the degradation
matrix or the point spread function matrix of the reconstruction system.
The columns in h; in H tells how the corresponding elements f; in f will
spread to neighboring elements. Thus, by inspecting H, the resolution at
different parts of f can be determined (see Appendix 4.A).

Note also the high dimensionality involved in this kind of image recon-
struction. For example, if the standard basis (or any other complete basis)
is used, computation of a (regularizied) least squares solution to (4.8) in-
volves inversion of an M N X M N matrix, which is huge already for relatively
small N and M. Consider for example N = M = 64, then an inversion of a
4096 x 4096 matrix is required. To avoid the large matrix inversion, Eq. (4.8)
can be solved in an iterative manner. Iterative methods is also the only op-
tion if the maximum entropy criteria above is used since the solution to the
optimization problem (4.15) can not be expressed in a closed form.

4.3.4 Perturbation Analysis

As described above, the hyperparameters control the trade-off between the
belief in a priori knowledge and the belief in the measurements. Another
way of expressing this is that the reconstructions should be consistent with
the measurements, that is, the goal is high fidelity, but at the same time f
should not be too sensitive to fluctuations in the measurements z. In other
words, stability with respect to measurements errors is also important. Let
Az be a small perturbation in z, Af be the corresponding perturbation
in f. Then assume a linear estimation method of the form f = Qz. If for
example, Eq (4.16) and (4.19) are used, then Q becomes Q = B(W''S; W+
1S¥S2)~*WT'. Then the error Af is bounded according to

IAE] < |1Ql- [|Az] (4.21)

where the Euclidean norm has been used [36].> The Euclidean norm of
Q is equal to the largest singular value of Q, 0,4, The singular vectors
corresponding to the largest singular values will tell how the perturbation
is “spread” over f. Marechél et. al. call these the critical modes of the

*If Eq (4.18) is used Eq (4.21) will be a first order approximation.
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reconstruction [36]. Note that the error will be maximal if Az is equal to the
singular vector corr(ﬁspﬁnding to omaz- Thus, the maximum amplification
Az

of the error is Tmaz|[af| which we denote o(u) (a function of ). Now the

different regularization algorithms of the form (4.15) can be compared for
a desired level of fidelity. The best algorithm will be the one that gives the
lowest amplification o () of the relative error, defined as

1A
[1£1l

<o) ””Az]”. (4.22)

Figure 4.4 illustrates one example of the trade-off between fidelity and stabil-
ity. A large p will give a low 0,54, at the expense of a large mean quadratic
error. The matrix WTW in (4.20) is singular in this example since the
number of projections is fewer than the number of parameters to estimate,
which results in a large SSE, defined as

1 72
Visw = 2= ;(fi - £) (4.23)
for small values of y. Adding noise shifts the optimal value of u to higher
values. The optimum value of u in the noiseless case, for this example, is
approximately 0.8.

4.3.5 Iterative Algebraic Reconstruction Algorithms

The parameter vector in Eq. (4.8) can be estimated using recursive algo-
rithms that are not explicitly based on a particular optimization criteria.
The iterative, or the recursive, reconstruction techniques can roughly be
divided in two main groups, additive algebraic (ART), and multiplicative
algebraic reconstruction techniques (MART) [25, 37, 28, 38]. As their name
implies the correction term is additive for the first type and multiplicative
for the latter. The updating formula is

a;(n+1) = a;(n) + £ (n) (4.24)
for additive ARTs, and for MART's
a;(n+1) = a;(n) x k™ (n). (4.25)

The sub-script j indicates that the jth element in ¢ is updated, n is the
iteration number, and k;(n) is the correction factor. The super-scripts (a)
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(a) Average SSE vs. (b) Omaz vS. @
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(c) Average SSE vs. Omax

Figure 4.4: Plot of the dependence of the sum squared error and 0,4, Of
the hyperparamter u for 15 rays and 10 angles using a wavelet basis (256
basis functions). The average Visp is calculated from 1000 examples of a
the smooth phantom (used later Section 4.4), and S2 = I in (4.20). Solid
lines—Noise-free, dashed lines—White Gaussian noise added.
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and (m), meaning additive and multiplicative, respectively. The most com-
(a)

mon correction factor k;”(n) in (4.24) is based on Karczmarz “method of
projections” for solving algebraic equations [25],

T a
zp — W, a(n)
Oy = 2= W0 (4.26)
J wg;wp
where WZ; is the pth row in W (by convention all vectors are expressed in

a column format here) and wy; is the jth element in w,. The updating is
performed using one projection per iteration, that is p = (n mod P) + 1.

The correction factor for the MART algorithm is
“p

¢t (n)

where 7 is a relaxation factor which takes values between 0-1 [28, 37]. It
can be shown that the MART algorithm maximizes the entropy under the
constraints of the measurements, and that f is positive (see [35] for a proof).
This implies that MART can not be applied to other basis directly because
a will not be positive. In order for MART to handle other bases than the
standard one, Eq. (4.25) must be modified. This can be accomplished by,
first expressing (4.25) in matrix form

k](_m) (n) = ( )1%p.s (4.27)

f(n+1) =K(n)f(n) (4.28)

where K (n) is a diagonal matrix K(n) = diag{kYn) (n) kgm) (n) --- kg\:[nz)v (n)},
and use (4.7) to express f(n), and finally multiply (4.28) from left with B

a(n+1) = BTK(n)Ba(n). (4.29)

This becomes, however, computationally in-efficient since two matrix mul-
tiplications has to be performed for every TOF measurement z, in (4.27).
Hence, the modified MART algorithm (4.29) is not used here.

There exist several other ways to compute the correction factors for the
(M)ART algorithms [28, 38, 38, 37]. For example, a similar relaxation factor
as in (4.27) can be added to the ART algorithm as well. Note that if w;; =0
there is no updating of a;, that is, k](-m) (n) =1 for MART, and kj(-a) (n)=0
for ART. Using the standard basis in (4.8) implies that only elements in f
that are intercepted by a projection is updated.

The convergence rate of the algorithms is dependent on the order which
the projections are treated, and on the relaxation parameter 7. Herman [39]
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has shown that a careful choice of updating order can result in a significant
improvement in convergence speed for the ART algorithm.

Note also that when (4.8) is over-determined, P > M N, the ART solu-
tion will oscillate around the intersections of the hyperplanes that each row
in (4.8) defines. If (4.8) is underdetermined there will be infinitely many
solutions, but the ART algorithm will converge to the solution & which
minimizes ||a(0) — a||?>, where a(0) is the initial guess [25]. That is, for
underdetermined problems, ART finds a solution that will depend on the
initial guess, namely the & which is closest to the initial guess a(0).

4.3.6 Simultaneous Updating in Algebraic Algorithms

In the previous section, the updating of a;(n) in (4.24) and (4.25) was per-
formed projection by projection. Another idea is to compute the average
update from all projections and then update a;(n). Using this method to
update a for the ART algorithm is known as the simultaneous iterative re-
construction technique (SIRT) [25]. Equation (4.24) then becomes

_ s -
X i
i—wla(n)
3 %w',g
an+1)=am)+ | = wiw (4.30)
_wTh
I
The sums in (4.30) can be rewritten as
wi
Zzz,,—wgél(n) 1 [ 1( wy A(n))
Wy = = W1, wa,; - wpgl(z— | | an
o wlw, Pd TS Wy, j :
Wh
1 . N
= s Vi (2 = Wal)
p Vo W
— 4! (2 — 3(n))
(4.31)

where W; is j:th column vector of W, n = and z(n) = Wa(n).

Eq (4.30) can then be written

1
2 wiwp’

a(n+1) = a(n) + nW7 (z — a(n)). (4.32)
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Note that WY (z — #(n)) = 250 with J; = ||z — 2(n)||? and p = 0
in (4.15). That is, Eq (4.32) is a steepest descent algorithm for solving
the (non-regularized) LS problem in (4.9), also known as the Landweber

algorithm [40, 41].

The two different orders of updating a(n), used in ART and SIRT re-
spectively, are known in the neural network community as pattern and batch
learning.®> The updating of weights in a neural network can be accomplished
after presenting each example (pattern learning) or after presenting all ex-
amples (batch learning).

Batch versions of the MART algorithm can similarly be found by calcu-
lating a correction factor for all projections, as in the simultaneous MART
(SMART) algorithm by Byrne [42] where

(m) .y _ 7P 2p \n®,;
70 = T (433)

or as in the ezpectation mazimization mazimum likelihood method [43] where

P
(m) 0y _ “p ,
kj (n) = pz::l(d)gvf(n))q)pg' (4.34)

Here is the modified version (4.29) more attractive since the (costly)
matrix multiplications is only computed after each batch (all projections),
and not after every single projection as in the previous section. Two other
benefits of the simultaneous approach are also that; 1) the noise on the pro-
jections is averaged—simultaneous algorithms are known to produce much
smoother images than the sequential (pattern) versions [30], and 2) they are
easy to parallelize for multiprocessor machines.

Stability of the Steepest-descent Algorithm

If n is not carefully chosen the recursive algorithms above can easily become
unstable and the solution may diverge. Small values of n will give a very
slow convergence and large values may give an unstable algorithm. For the
steepest-descent algorithm (4.32), the necessary and sufficient conditions for
stability is that n < ﬁ, where Apqz is the largest eigenvalue of WW7T [43,

3The objective for neural nets (see also Chapter 2) is, for example, to train a net from
a number of known examples and then classify the unknown patterns.
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44]. This can be shown by noting that, in order for the error to decrease at
each iteration, the following property must hold

Vin)=Vin+1) >0, (4.35)

where V(n) = ||z — Wa(n)||?, and the updating in Eq. (4.32) has been used
to calculate V(n+1). Then V(n) — V(n+1) = (z — Wa(n)) " nWWT (2I —
nWWT7)(z — Wa(n)), where I is the identity matrix. Thus if (4.35) should
hold the matrix (2I — WW?) must be positive-definite, that is, \%| >

IWWT| which is guaranteed if < 2

Amaz
The convergence of (4.32) will be slow if the spread between the eigenval-
ues of WW7 is large—a large eigenvalue spread will give “narrow valleys”
in the error surface which will give slow convergence if the starting vector is
not chosen carefully [40].

4.3.7 Adaptive Learning Rate

One way to circumvent the problem of choosing an explicit 7, also known
as the learning rate, is to make the learning rate adaptive. A strategy for
updating 7 can, for example, be:

The learning rate is increased by a factor lr, if the present sum
squared error, Visg(n) (defined in (4.23)), is smaller than the last
one, Vgsp(n — 1). If the present error exceeds the last one by a
factor of Iry4t0, there is no parameter updating and the present
learning rate, n is decreased by a factor Irge.

The factors lr;,. and lr,44;, should be chosen slightly larger than one and
the factor Irg,.. should be smaller than one.

In the simulations performed later in this chapter the learning rate was
adjusted after each pass. That is, all projections were considered before 7
was updated according to the algorithm above.

4.3.8 Choice of Basis

The (regularized) LS solution involves a matrix inversion which is very com-
putationally demanding due to the high dimensionality of the problem. One
way to alleviate this problem is to use a truncated basis instead of the full
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standard basis. This is accomplished by approximating f using

Ny
f=> a;bj, (4.36)
7j=1

where N, < M N. Vaguely speaking, the dimension Ny of the vector a should
be chosen according to the amount of information contained in the measure-
ments z. If standard regularization using the full standard basis is used, and
only a few measurements are available, one has to use a large p in Eq (4.20)
which will smooth the estimate f heavily.* However, if the number of vari-
ables is reduced—using a truncated basis—there are fewer parameters to
estimate and the variance of the estimates should be lower. The choice of
basis, and the number of parameters to use will depend on the available
amount of prior knowledge. In our application it is reasonable to assume
that the temperature distributions are rather smooth with local (smooth)
gradients where heat sources are located—we will not have the high (con-
trast) gradients found in medicine, for example. Interesting families of basis
are, for example, the wavelet family [11, 15, 45], comprised of local functions
(functions with compact support). Examples of 1D wavelets can be found
in Chapter 2. We use the 2D version of the same smooth wavelet (Coiflet
2) that was used in Chapter 2. Four examples of the 2D Coiflet 2 wavelet
are shown in Figure 4.5.

The choice of basis can be seen as a user variable which depends on
the application at hand. The optimal basis, in a sense that it minimizes
E{||f — Ba||?} for a given Nj, consists of the eigenvectors of the covariance
matrix, Css = E{(f — my)(f — my)T} of f, where E{-} is the expectation
operator and my the mean of f [4]. The basis comprised of the eigen vectors
is denoted as the principal component (PC) basis.

In order to use the PC basis, a number of representative examples of
f is needed for estimation of the covariance matrix Cys;. This is usually
accomplished using the standard formula
J
. 1 X o
C= 7.1 (£ — m)(f; —m)", (4.37)
j=1
where m is the estimated mean and J is the number of available exam-
ples. Suitable temperature distribution examples can be found by means of
simulations, real measurements, or a combination of both.

“If P < MN then the matrix WIW = &&7 in (4.20) will not have full rank, and
hence will not be invertible without regularization.
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Figure 4.5: Four examples of the 2D Coiflet 2 wavelet.
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If the prior knowledge is too weak to define a useful adapted basis, then
one must resort to other more general bases, like the wavelet basis described
above. Another common choice is the Fourier basis which is comprised of
complex exponentials of the form exp[—i27(uz/M + vy/N)], where u and v
are the spatial frequencies. This basis can be motivated by the fact that tem-
perature distributions must be smooth and can, therefore, be approximated
by truncated Fourier series. Note that this basis is also used (implicitly)
in the FBA algorithm. The FBA uses the full basis, but usually a Ham-
ming window is applied to filter out high frequencies which otherwise are
amplified due to the high-pass wedge filter which results from the polar to
rectangular co-ordinate transformation used in the FBA algorithm [25].

4.3.9 Minimizing Reconstruction Errors (MRE)

All algorithms described above focus on estimating a parameter vector a
which minimizes the measurement error ||z — ® Ba||? = ||z — 2||>. Another
more natural approach is to minimize the reconstruction error ||f — f|[2.
Following [22], the idea is the choose the parameter vector which minimizes
the expected reconstruction error Vigs = E{||f — f]|2}. Instead of first
estimating a this can be accomplished in a single step as f = Qlz + d.
Strait forward calculations (see [22]) give

Q=C e"Cyy, (4.38)

where C,, = E(z — m,)(z — m,)”, and m, is the mean vector of z. The
optimal estimate of d is

d=(1-Q"®")m;. (4.39)

Note that, if one studies the expression (4.38) above for the MRE method, it
has strong resemblance with methods using the PC basis. The optimal MRE
method also uses the eigenvectors of the covariance matrix of the tempera-
ture distributions. However, the MRE method also takes the covariance of
the measurements into account which should result in superior performance.

4.4 Simulations

In this section the performance of the algorithms described above are com-
pared for simulated data. At the time of printing no useful physical model
was available for simulation of temperature distributions. It is, however,
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[ oz lo|n]w|a]
min | 0.2 | 0.1 | -0.2 | -0.35 | 0.6
max | 0.45 [ 0.35 | 0.05 | -0.1 |14

Table 4.1: Parameter limits for the phantom.

reasonable to assume that the distributions should be rather smooth. There
will, of course, be gradients due to sun light, air jets, heat radiators, humans,
computers etc, in a real measurement situation. This temperature change
will, though, not be unbounded. Here an artificial model based on a smooth
phantom is used, also found in [22, 28]. This model suffice for the purpose
here, which is to measure reconstruction performance from a low number of
projections. The phantom is given by

ph(z,y) = 1.09(0.3 cos(z,y) + 0.8 exp[—81(z — z1)? — 36(y — y1)?]
+exp[—64(z — x2)* — 36(y — y2)%]) (4.40)

where cos(z,y) is given by
cos(z,y) = 0.2(1 — cos(2m(z + 0.5)*/°)) x (1 — cos(2n(y + 0.5)*/3)) (4.41)

for |z| < 0.5, |y| < 0.5, otherwise zero. The parameters in (4.40) and (4.41)
were drawn from uniform distributions on intervals given in Table 4.1. The
phantom were sampled in [—0.5, —0.5] x [0.5,0.5] on a 64 x 64 grid giving
4096 measurements. Figure 4.6 shows four realizations of the phantom. For
simplicity parallel beam projections have been used, where the the number
of projections and the angles of the projections have been varied. The
performance has been measured with the sum squared error (Eq. (4.23)),
for each method.

4.4.1 TIterative Algorithms vs. The Filtered Back-projection
Algorithm

The iterative algorithms ART and MART, where first compared with the fil-
tered back-projection algorithm (FBA) [25]. It is known that FBA requires
a large set of projections in order to produce good reconstructions. In Fig-
ure 4.7 the FBA is compared to ART and MART (using the standard basis)
with 91 x 8, and 91 x 64 projections respectively, for the example shown in
Figure 4.6(a). They all perform well if 91 x 64 projections are used, but when
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Figure 4.6: Four realizations of the phantom.
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Filtered Back—Projection (Hamming window)

—91rays, 8 angles Filtered Back-Projection (Hamming window) - 91 rays , 64 angles

(a) FBA 91 x 8

ART - 91 rays , 8 angles

(c) ART 91 x 8

MART - 91 rays , 8 angles

(e) MART 91 x 8

(b) FBA 91 x 64

ART - 91 rays , 64 angles

0.6 ’;;‘i:'f\‘\h
/};‘::::“\‘}&\\

/".'%'.t“\\“\\‘\
i ' SO

i
’,'" \\\‘\\ \
o

0.4

0.2

0.5
0.5

(d) ART 91 x 64

MART - 91 rays , 64 angles

0.6

0.4

T

\\\
‘\\\\\\\\\‘\\
02 " ‘:\\\\ ‘\

0.5
0.5

(f) MART 91 x 64

Figure 4.7: Reconstructions of the phantom shown in Figure 4.6(a) using
91 rays and, 8 and 64 angles respectively (the standard basis has been used
in the ART and MART algorithms). As can bee seen the FBA do not
perform well, compared to ART and MART, for the case when 8 angles
(and 91 rays) has been used. Using 8 angles and 91 rays gives a total of
728 measurements which is too large for this application, indicating that the
FBA is not suitable algorithm for reconstruction from sparse measurements.



4.4. Simulations 97

using 8 angles the FBA method clearly has the worst performance. In the
temperature problem considered in this work 91 x 8 = 728 projections is still
too large. One should also that, when using a low number of projections,
some pixels will not be updated if the standard basis is used, since they are
not intersected by a projection. Figure 4.8 shows reconstructions where the
number of projections has been substantially reduced to 150. Some pixels in
Figure 4.8(a) and (b) are not updated (= 600 out of 4096) but the number
of parameters to estimate is still much higher then the number of measure-
ments. This results in the high variance in the estimates, (a) and (b), which
clearly requires some form of regularization. Using a reduced basis, like
the wavelet basis in (c) and (d), reduces the variance substantially (at the
expense of increased bias).

The conclusion from this experiment is that the FBA is not suitable
method for reconstruction from sparse measurements. The experiments also
showed the necessity to substantially reduce the dimension of the parameter
vector (using a suitable reduced basis) for the ART algorithm.

4.4.2 Simulation Results

In this section the performance of a selection of the algorithms discussed
previously in this chapter are compared. The propose is to evaluate the
performance when the number of measurements is very low (in the order
of 10 projections). One consequence of this is that it is not feasible to
use the standard basis, which implies that some algorithms are unsuitable
(see last subsection). Here the ART, SIRT, modified SMART (M-SMART),
regularized least squares (R-LS), the truncated singular value decomposition
method (TSVD), and the MRE method have been compared. The methods
where compared by calculating the average sum squared error (SSE) from
100 examples, using a PC and a wavelet basis. Table 4.2 and Table 4.3
show the results using a PC basis (with 25 eigenvectors) and a wavelet basis
(using the 64 largest scale wavelets) respectively.

All simulations with the iterative algorithms where performed using the
adaptive learning rate method. For the R-LS method the 1 which yielded
the lowest (average) SSE on the test set was chosen and the number of
singular values used in the TSVD method was chosen in the same way. For
the MRE method the regularity was assured by noting that the inverse of a
symmetric matrix C can be expressed using its eigenvalues and eigenvectors
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ART - 15 rays , 10 angles MART - 15 rays , 10 angles
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Figure 4.8: Reconstructions of the phantom shown in Figure 4.6(a) using
the iterative ART and MART algorithms, with 15 rays and 10 angles for the
Standard basis and the Coiflet 2 wavelets (with 64 and 256 basis functions
respectively). The performance is clearly unsatisfactory for the standard
basis when this relatively low amount of measurements (150 projections)
has been used. Using the (reduced) wavelet basis improves the performance
significantly.
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Rays | Angles Average SSE
ART | SIRT | M-SMART | R-LS | TSVD || MRE
3 3 58.0 | 49.3 54.0 48.8 | 48.8 12.5
5 5 25.2 | 16.1 10.9 11.9 14.9 2.9
15 10 2.0 1.25 1.33 1.23 1.20 0.46

Table 4.2: Average SSE using a 25 component PC basis (for 100 examples).

Rays | Angles Average SSE
ART [ SIRT | M-SMART [ R-LS | TSVD || MRE
3 3 125.7 | 124.1 214.0 123.9 | 124.1 12.5
5 5 52.7 | 52.3 49.1 50.0 | 51.7 2.9
15 10 10.5 | 10.4 9.5 9.8 9.6 0.46

Table 4.3: Average SSE using a 64 component wavelet basis (for 100 exam-
ples).

with the formula
1 vT
Z—A % (4.42)

where r is the rank of C, v; are the eigenvectors and A; the corresponding
eigenvalues. If C is ill-conditioned, only the first (sufficiently large) eigenval-
ues \; (and corresponding eigenvectors) are used for calculating the inverse.
Note that the rank of C,, will depend on both the (number of) measure-
ments and the distribution of f. Typically, the eigenvalues of C,, drops
off faster than the corresponding ones for Cyy, indicating that z does not
contain all information about f (see also [22]).

By observing the SSE one can conclude that the MRE method and meth-
ods using the PC basis have superior performance compared with methods
using the wavelet basis. The particular choice of algorithm (if the MRE
method is excluded) seems to be of less importance. The important issue is
the choice of basis. The PC basis clearly has superior performance compared
to the wavelet basis, and the MRE method has superior performance com-
pared to all the other algorithms studied here. However, the SSE does not
give a complete picture of the behavior of the methods. In Figure 4.9 and
Figure 4.10 three reconstruction examples are shown which give a clearer
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view of the reconstruction performance. Note that the reconstruction error
is dependent on both the distribution of f and the location of the mea-
surements ¢,. Using a low number of measurements (projections) that are
located at positions outside areas where the main temperature variation oc-
cur will result in poor performance. If one has knowledge of the distribution
of f one should, of course, choose the projections ¢; based on that prior
knowledge to obtain a low reconstruction error. There are however cases
where it is reasonable to tolerate larger errors at some parts of f(z,y). An
example is an office space where the temperature in the center of the room
probably is of more importance than the sidewall temperature. The US
paths should then be chosen accordingly.

For this application, and in general when the number of measurements
is much lower than the parameters to estimate, the importance of prior
knowledge is vital for the reconstruction/estimation performance. This can
be illustrated with the following example. Let us assume that the image
(object) to be reconstructed is a cylinder with fixed radius but with a vary-
ing height. If no prior knowledge is available, one has to assume that the
spatial frequencies of the image are unlimited and as a consequence of the
Nyquist condition, one must sample infinitely dense in order to avoid alias-
ing. However, if it is known that the reconstructed object is a cylinder,
only measurement is needed (projection) to estimate its height. Thus, the
performance of the reconstruction process, in particular the choice of basis
functions is to a large extend dependent on the available prior knowledge.

The simulations performed here clearly shows that that, using basis func-
tions learned from example data (which can be regarded as prior knowledge)
outperforms methods using more general bases, like the wavelet basis.

4.5 Conclusions

A short review of reconstruction algorithms appropriate for reconstruction of
temperature distributions, which are based on a time of flight measurements
performed by ultrasonic transducers, has been presented. The feasibility of
the algorithms have been analyzed for this temperature mapping applica-
tion. This has been accomplished by performing simulations for a standard
soft phantom model. The temperature distribution was expressed using a
linear model taking the form of a linear combination of basis functions. Two
main issues, the choice of basis functions and the estimation algorithm was
considered.
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Figure 4.9: Reconstructions using 5 angles and 5 rays for, the Coiflet 2
wavelet basis (using 64 wavelets), the PC basis (using 25 eigenvectors), and
the MRE method. The US sensors (marked with circles) and the paths
are overlaid in subfigure (a). The reconstruction using the wavelet basis
exhibits rather large deviations from the original in areas which not are
intersected by any projections. This behavior is not seen when the PC
basis, and the MRE method, has been used.
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Figure 4.10: Reconstructions using 3 angles and 3 rays for, the Coiflet 2
wavelet basis (using 64 wavelets), the PC basis (using 25 eigenvectors),
and the MRE method. The US transducers (marked with circles) and the
paths are overlaid in subfigure (a). The deviations from the original for the
wavelet reconstruction is even more pronounced than in Figure 4.10, and
the PC reconstruction starts to have a similar behavior. The MRE method
do not have these artifacts and the performance is clearly superior to the
other methods.
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Generally, the choice of reconstruction algorithm depends on several fac-
tors, such as, number of measurements, amount of prior knowledge, required
resolution, available computational capacity and real time requirements,
cost, etc. If the number of measurements is low, prior information about the
reconstructed image must be incorporated to achieve good performance. We
have shown that for this application it is possible to, based on simulations
or real measurements, find particular basis functions adapted to the prob-
lem that clearly improve the reconstruction performance. For the iterative
algorithms studied here, the estimation speed will depends on a convergence
rate of the chosen algorithm for the particular basis functions. The slow-
est iterative algorithm tested was the M-SMART algorithm. However, the
M-SMART algorithm has the advantage that it generates smoother recon-
structions than both the ART and the SIRT algorithms. If the ART and
the SIRT algorithms are compared, the SIRT algorithm generates smoother
reconstructions than the ART ditto. This is probably due to the noise av-
eraging performed in the simultaneous updating when all projections are
considered before each update. Note that the SSE (sum squared error)
measure does not reveal whether the estimates are smooth or not a large
over-shoot and small oscillations may have the same SSE.

The general conclusion that can be drawn from all simulations is that
the most important factor, determining the reconstruction performance, is
the proper choice of basis. If the MRE method is excluded, all the other
methods gave an SSE in the same order for the bases examined here. The
MRE method was, however, superior to all other methods. The optimal
MRE method also uses the eigenvectors of the covariance matrix of the
temperature distributions, but the MRE method also takes the covariance
of the measurements into account which results in superior performance.

It should also be noted that if a basis that is very well adapted to the
problem at hand is used, poor performance can expected for new data that
does not fit this basis. This can be both an advantage and a disadvantage
depending on the application, since it makes the system less sensitive to
outliers but also less general. In this application rather strong assumptions
regarding the temperature distributions must be made, due to the low num-

ber of available measurements. Thus, the clearly preferred reconstruction
algorithm is the MRE method.
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4.A Point Spread Function Interpretation

The reconstruction algorithms, described previously in this chapter, all give
estimates f which to a varying degree are degraded compared to the original
f. This is due to the ill-posedness of the problem and the limited number of
measurements. If linear algorithms are considered, this degradation can be
written f = Hfn where the matrix H is the degradation matrix. Now it is
easy to see that each column h; in H describes how pixel 7 in f “spreads” to
neighboring pixels. The h;s are therefore known as the point spread functions
(PSF) of the system. Note that the system in general is not translational
invariant resulting in different PSFs for all pixels.

Let us begin by re-formulating the problem. First, assume for simplicity
that f is expressed using an ON-basis

f = Ba, (4.43)

and that the measurements are projections of the form
z = ®'Ba (4.44)
= Wa. (4.45)

Then, perform a singular value decomposition of W
W = UDVT, (4.46)

and let W be the generalized inverse (which can be truncated as described
in Section 4.3)

wt =UD"VT. (4.47)

Then the estimate, a, can be expressed as
a=W"Wa. (4.48)

Inserting (4.46) and (4.47) in (4.48), gives
a=VD'UTUDV’a (4.49)
=VD™DVTa (4.50)

since U is orthonormal. Then, by using (4.43), f can be expressed as
f =BVDtDVTB’f (4.51)
— Hf (4.52)
— [hihy... haslf. (4.53)
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The vector h; is now the PSF for element 7 in f. If W is invertible (regular),
then & = W~ !'Wa = Ia = a, and if B is a complete ON-basis, then H
will be the identity matrix and the reconstruction will be perfect. Since W
generally is ill-conditioned, and hence no exact inverse exists (H # I), the
h;:s will have some spread around element 3.

This method gives us a powerful method of examining the resolution in
different locations in the image f, for the particular reconstruction method
that is used. This technique has been used by Smith et. al. [32] in recon-
struction of SPECT images, using truncated generalized inverses. In general
if a is linearly estimated as

a=0Qz (4.54)
= QWa (4.55)
= Q¥®'Ba (4.56)
= Qd'f (4.57)
then f will be
f=Ba (4.58)
= BQ®'f (4.59)
= Hf (4.60)

that is, H can easily be determined from Q, and we have a method to
examine the expected resolution for any linear estimation method. This can
be very useful since H can be designed so that good resolution is obtained
in important areas in f. The choice of H then involves choosing suitable
basis functions, a suitable estimation method (choice of Q) and, of course,
suitable projections @, for the problem at hand. Figure 4.11 shows the PSFs
using 100 and 2500 singular values respectively for a corner pixel and for
the center pixel using the standard basis. Clearly the resolution is poorer
(larger spread) in the corner than in the center. This depends on the way
the projections were performed. Here 64 parallel projections at 64 angles
were used, giving 4096 projections. The projections were made in such a
way that for the projection angle 8§ = 0, there was precisely one projection
passing each pixel. For an angle 6 = 7/4 there will be no projections passing
through some of the pixels—the ones in two of the “opposite corners” of the
image relative to the projections. This was done deliberately just to show
the difference between PSFs at different pixel positions. The resolution
using 2500 singular values is much better both in the corners and the center
compared to using only 100 singular values.
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PSF for pixel (1,1) using 2500 singular values PSF for pixel (32,32) using 2500 singular values

(c) Pixel (1,1) using 2500 singu- (d) Pixel (32,32) using 2500 sin-

lar values gular values

Figure 4.11: Point spread functions using 100 and 2500 singular values in
the approximate generalized inverse.
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Note that if the number of projections used is low some pixels will have
PSF:s that are zero everywhere—because no projections is passing these
particular pixels. Thus, neighboring pixels must “spread” information to
these pixels as well. This implies that if a low number of projections is used,
then it is desirable to have some spread in the PSF:s so that information
“average out” to neighboring pixels, which otherwise would be zero. Another
implication of this is that if high resolution is required one must measure
densely at regions of interest.
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