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1 Introduction: what are our aims?

In the project, work has been carried out on problems
spanning the fields of Signal processing, Communi-
cations, and Control. A guiding principle has been
to formulate general problems, originating from rele-
vant applications. Here equalization of fading mobile
radio channels has served as a main source of inspi-
ration, and also a useful application for testing new
ideas. The aim is, however, to develop general tools
and methods useful for a large range of problems.

Very central in our work is the desire to obtain ex-
plicit solutions and to gain engineering insight. As
a means to accomplish that, the Polynomial Systems
framework has been used. It describes linear dynamic
systems in input—output form, and has been useful
in our study of general ITR-filter structures, implicit
adaptive schemes, probabilistic descriptions of model
errors, and utilization of a priori information. Our
long term goal is to provide a general model-based
design concept, for solving a variety of problems in
Signal Processing, Communications and Control. The
publication of the book chapters [B2], [B3] and [B4]
are steps towards this goal.

A short summary of the main activities within the
project will be given next. For a more complete pic-
ture, see the list of publications.

2 Multivariable estimation and control

The initial steps in this project were taken towards
linear recursive equalizers and decison feedback equal-
ization, [P1]-[P3]. During that work, in particular
while struggling with the decision feedback equal-
ization problem in [P3], we felt that no really sim-
ple and systematic method was available for solv-
ing (multivariable) estimation and control problems
formulated in input—output form. In [P5] and [P8],
such a metod was suggested. The simplicity of
this method has proved very useful in solving a va-
riety of estimation and control problems, see e.g.
[B2]-[B4]. The approach has also been generalized
to cope with robust estimation and control prob-
lems [P9],[P11],[P13],[C5]-[CT7],[N6]. Relations be-

tween this method, the classical Wiener approach,

and the inner—outer factorization approach were clar-
ified in [B3] and [B4]. See also [P5],[P12].

A duality between deconvolution and feedforward
control problems was demonstrated in [P10] and uti-
lized in [P9],[P13].

3 Adaptive equalization

We advocate the use of indirect adaptive schemes,
where a model of the system is adjusted, and the fil-
ter /estimator /receiver is modified accordingly. They
offer several advantages as compared to direct meth-
ods, in which the filter coefficients are adapted by e.g.
LMS.

For example, the number of parameters in the chan-
nel estimator is often smaller than the required num-
ber of equalizer parameters. This is particularly ev-
ident when a large smooting lag is used. In an in-
direct scheme, the equalizer parameters do not need
to be updated at every sample. The updating can be
tailored to the variability of the channel coefficients.
For severe time variations, as in e.g. a Rayleigh fad-
ing mobil radio environment, the channel parameters
vary more smoothly than the equalizer parameters do.
This makes tracking of channel parameters easier.

Also, time variations of the channel coefficients can
be modelled explicitely, e.g. by means of nonlinear
functions. If feasible, this would be much harder to
accomplish for the equalizer parameters directly. Fur-
thermore, there might exist several local minima to
the loss function used in the direct schemes.

For fading mobile radio channels, both determinis-
tic and stochastic modelling of the channel coefficients
have proved to be very useful. In a Rayleigh fading
environment, the time—variant channel coefficients be-
have approximately as sinusoids, with frequency pro-
portional to the speed of the mobile. An adequate
model would thus be a first order Fourier series ex-
pansion, see [N4] and [B1]. Such a priori information
can also be built into a Kalman filter, see [N7] and
[B1]. As a bonus, several methods for estimating the



speed of the mobile have been obtained.

Based on an estimated channel model, a Viterbi detec-
tor or DFE could be used to estimate the transmitted
sequence. When the approaches described above were
evaluated on a channel model utilized in the North
American mobile radio standard, they performed bet-
ter than both direct and indirect schemes based on
ordinary RLS-tracking. See [B1], [N7] and [C8].

4 Robust estimation and control

Irrespective of how models in signal processing, com-
munications and control are obtained, they are impre-
fect. This is so, for example, in mobile radio appli-
cations, where standards often impose constraints on
achievable model quality. To obtain filters and con-
trollers which are insensitive to spectral uncertainties,
we suggest a robust design philosophy based on prob-
abilistic descriptions of model errors. A guiding prin-
ciple is that large but unlikely model uncertainties
should be credited, but they are not allowed to dom-
inate the design. Therefore, we minimize the mean
square estimation error (MSE), averaged with respect
to the possible model errors. In this way, conservative
filters are avoided. See Figure 1.

As error models we use additive transfer functions,
having stochastic numerators and fixed denomina-
tors. Estimates of the size of model errors (coeffi-
cient covariance matrices) are easy to obtain in dig-
ital communications applications. Results have been
obtained for linear recursive equalizers, decision feed-
back equalizers, state estimation, and feedforward
control. Somewhat surprisingly, the resulting design
equations become almost as simple as in the nominal
case. For details, see [P9],[P13],[C5]-[C7] and [N6].
When used within the GSM standard, robust DFE’s
far outperform DFE’s based on nominal models. See
[CT7] and our poster at this conference.

Figure 1. Sensitivity of filtering result based on
channel model B(z71) = 0.527! + 1272, with b1 =
—0.4 nominal, and standard deviation 0.15. The MSE
of a nominal filter (solid) is sensitive. Robust filtering,
as in [P9], brings insensitivity at the price of only a
small MSE-increase in the nominal case. Compare to
the lower bound (dotted), achievable with knowledge
of the true parameter value.

4 Summary of results

We have participated in the Digital Communications
program for the full 5.5—-year period, but at decreas-
ing funding levels. Let us try to summarize the total
output of the project.

e One Licenciate thesis [B1] by Lars Lindbom.

e Three book chapters [B2]-[B4] summarizing
many results, but also containing novel work.

e The papers [P1]-[P12], of which many are full
papers in leading international journals, as well
as the conference contributions [C1]-[C9].

¢ One patent application [P14].

In addition, several more journal papers are in prepa-
ration. One person (Kenth Ohrn), who has been par-
tially supported by the project, will submit his licen-
ciate thesis this year. Lars Lindbom will complete his
doctorate thesis in 1994.

Several of the results have direct industrial relevance.
We would, in particular, like to mention the “KLMS”
algorithm by Lars Lindbom, for tracking fading mo-
bile radio channels [B1],[C8],[N7]. By utilizing a priori
information, it manages to achieve close to optimal
(=kalman predictor) performance, at only twice the
LMS computational load. See Figure 2 below. This
unequalled combination of high performance and low
complexity makes it attractive for use in the North
American Digital mobile radio system. A patent ap-
plication [P14] has been filed.

A lasting legacy of the project is that we have built
up a considerable expertise in digital communication
within our group, which was formerly focused on sys-
tem identification and automatic control. Finally,
working on a project which has generated such a flow
of ideas and results has been great fun for all of us.

Figure 2. Performance of an adaptive Viterbi re-
ceiver, based on the novel KLMS algorithm (dashed).
Compare to the ideal Kalman predictor (dash—
dotted), RLS tracking with optimal A = 0.7 (dotted)
and a known channel (solid) For details, see [B1] or
[C8]. USA system specifications assumed.
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