Kalman Smoothing for Irregular Pilot Patterns; A Case Study for Predictor Antennas in TDD Systems

Addressing long downlink TDD frames for high-velocity communication

- Rikke Apelfröjd
 ERICSSON (Previously Uppsala University)
- Joachim Björsell
 UPPSALA UNIVERSITY
- Mikael Sternad
 UPPSALA UNIVERSITY
- Dinh-Thuy Phan-Huy
 ORANGE
Outline

September 11, 2018 Bologna, Italy

Channel information
- Problem with outdated info
- TDD vs FDD
- Channel prediction

Predictor antenna
- Concept
- Prediction => Interpolation

Kalman smoothing
- Concept
- Channel smoothing performance
- Conclusion
Outdated channel information

- Outdated information
- Larger problem for TDD?
- Channel prediction

- Full
- Some info
- No info
• Encounter same position twice
• Predicts the channel at the second time
• Horizon limited by antenna distance
• \(h_{\text{main}}(\text{pos}) = a h_{\text{pred}}(\text{pos}) \), \(a \) - coefficient
• Encounter same position twice
• Predicts the channel at the second time
• Horizon limited by antenna distance
• $h_{\text{main}}(\text{pos}) = a h_{\text{pred}}(\text{pos})$, a - coefficient
Predictor antenna performance

8 ms predictions (1λ)

September 11, 2018 Bologna, Italy
Predictor antenna for FDD

- One subcarrier in an OFDM FDD system
- Limit of 10 ms prediction horizon in this example
 - Assume 5 ms here
- Allows buffering for lower prediction horizon

Pilot rate: 1 per ms
Velocity: 90 km/h
Antenna separation: 25 cm (2λ)
Carrier frequency: 2.5 GHz
• One subcarrier in an OFDM FDD system
• Limit of 10 ms prediction horizon in this example
 • Assume 5 ms here
• Allows buffering for lower prediction horizon
Predictor antenna for FDD

- One subcarrier in an OFDM FDD system
- Limit of 10 ms prediction horizon in this example
 - Assume 5 ms here
- Allows buffering for lower prediction horizon

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot rate</td>
<td>1 per ms</td>
</tr>
<tr>
<td>Velocity</td>
<td>90 km/h</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>25 cm (2λ)</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2.5 GHz</td>
</tr>
</tbody>
</table>

- Time

- Position

- Main antenna

- Predictor antenna

- Latest prediction

- 25 cm
Predictor antenna for TDD

- Case study of TDD
 - 2 ms uplink frames
 - 4 ms downlink frames
- For 5 ms prediction we can buffer 5 ms before predicting the channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot rate</td>
<td>1 per ms</td>
</tr>
<tr>
<td>Velocity</td>
<td>90 km/h</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>25 cm (2λ)</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2.5 GHz</td>
</tr>
</tbody>
</table>

Time

0 1 2 3 4 5 6 7 8 9 10 [ms]

Main antenna

Predictor antenna

25 cm

Position

Latest prediction

Predictor antenna measurement

September 11, 2018 Bologna, Italy
Predictor antenna for TDD

- Case study of TDD
 - 2 ms uplink frames
 - 4 ms downlink frames
- For 5 ms prediction we can buffer 5 ms before predicting the channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot rate</td>
<td>1 per ms</td>
</tr>
<tr>
<td>Velocity</td>
<td>90 km/h</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>25 cm (2λ)</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2.5 GHz</td>
</tr>
</tbody>
</table>

Time [ms]:

0 1 2 3 4 5 6 7 8 9 10

Main antenna

Predictor antenna

25 cm

Position

Latest prediction

Predictor antenna measurement
Predictor antenna for TDD

- Case study of TDD
 - 2 ms uplink frames
 - 4 ms downlink frames
- For 5 ms prediction we can buffer 5 ms before predicting the channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot rate</td>
<td>1 per ms</td>
</tr>
<tr>
<td>Velocity</td>
<td>90 km/h</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>25 cm (2λ)</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2.5 GHz</td>
</tr>
</tbody>
</table>

Time

0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

Main antenna

Predictor antenna

25 cm

Predictor antenna measurement

Latest prediction
Kalman smoothing

- Using same AR-model of order 4
- Jointly modeling and estimating 4 subcarriers

```
Kalman filtering/prediction  Backwards Kalman prediction
```

- Used for forward filtering/prediction
- Used for backward predictions

Optimally weighted average
Results

- 3 case studies (different fading environments)
- Real measurements
- Artificial noise levels

<table>
<thead>
<tr>
<th>Predictor antenna measurement</th>
<th>Kalman prediction only</th>
<th>Kalman smoothing</th>
<th>Smoothing spline</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Predictor antenna measurement</th>
<th>Kalman prediction only</th>
<th>Kalman smoothing</th>
<th>Smoothing spline</th>
</tr>
</thead>
</table>

September 11, 2018 Bologna, Italy
Main Conclusion

- Restrictions to the length of TDD frames due to channel aging can be loosened through the use of Kalman smoothing in combination with predictor antennas.
- Increased flexibility in system design is desirable from operators perspective.

