
Kalman Smoothing for Irregular Pilot Patterns; A Case 
Study for Predictor Antennas in TDD Systems

Addressing long downlink TDD frames for high-velocity communication

September 11, 2018     Bologna, Italy

• Rikke Apelfröjd ERICSSON  (Previously Uppsala University)

• Joachim Björsell UPPSALA UNIVERSITY

• Mikael Sternad UPPSALA UNIVERSITY

• Dinh-Thuy Phan-Huy ORANGE



Outline

September 11, 2018     Bologna, Italy

Channel information
• Problem with outdated info
• TDD vs FDD
• Channel prediction

Predictor antenna
• Concept
• Prediction => Interpolation

Kalman smoothing
• Concept
• Channel smoothing 

performance
• Conclusion



Outdated channel information

September 11, 2018     Bologna, Italy

Outdated information

Larger problem for TDD?

Channel prediction

Full
Some 
info

No info



• Encounter same position twice
• Predicts the channel at the second time
• Horizon limited by antenna distance
• ℎ"#$%('()) = ,ℎ-./0('()) , , - coefficient

15 cm

September 11, 2018     Bologna, Italy

Predictor antenna



• Encounter same position twice
• Predicts the channel at the second time
• Horizon limited by antenna distance
• ℎ"#$%('()) = ,ℎ-./0('()) , , - coefficient

15 cm

September 11, 2018     Bologna, Italy

Predictor antenna



September 11, 2018     Bologna, Italy

Predictor antenna performance
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Fig. 6. NMSE distribution for measurement sets with antenna distance
�d = 1� and prediction horizon L = 8 ms for the theoretically opti-
mal predictor coefficient ( ), theoretically pre-estimated predictor
coefficient ( ) and simulated predictions ( ).
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Fig. 7. NMSE distribution for measurement sets with antenna distance
�d = 1 �, prediction horizon L = 8 ms and v > 25 km/h for the
theoretically optimal predictor coefficient ( ), theoretically pre-
estimated predictor coefficient ( ), simulated predictions ( )
and outdated channel measurements ( ).

In [13] it was found that the right-hand tails of the
NMSE distribution were almost eliminated when looking
at measurements at which the velocity was 25 km/h or
higher. In Fig. 7, we see the same NMSE distribution as
in Fig. 6 but only for the measurements at which the ve-
locity is 25 km/h or higher. Almost all of the predictions
with an NMSE above �7 dB have here disappeared.5
The figure also shows the uselessly bad NMSE obtained
when the outdated channel measurements are used as
8 ms predictions.

The results in Fig. 6 and Fig. 7 are based on mea-
surement with an antenna separation of �d = 1� and
can provide a prediction horizon in time of at least
8 ms for velocities up to 50 km/h at 2.53 GHz. The
corresponding NMSE distributions for the 221 utilized
measurements with antenna separation of �d = 3� are
shown in Fig. 8 and Fig. 9. These measurement provide
a prediction horizon of at least 24 ms up to 50 km/h.

5The cause of the reduced performance in some of the cases at
lower velocities is under current investigation. It should not be a major
problem as there are other solutions that work well for low velocities,
for example Kalman predictions.
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Fig. 8. NMSE distribution for measurement sets with antenna distance
�d = 3� and prediction horizon L = 24 ms for the theoretically op-
timal predictor coefficient ( ), theoretically pre-estimated predictor
coefficient ( ), simulated predictions ( ).
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Fig. 9. NMSE distribution for measurement sets with antenna distance
�d = 3�, prediction horizon L = 24 ms and v > 25 km/h for the
theoretically optimal predictor coefficient ( ), theoretically pre-
estimated predictor coefficient ( ), simulated predictions ( ).

Although the shape of the NMSE distribution is dif-
ferent for the measurements with �d = 3� as compared
to �d = 1�, the trends are the same between the
methods and also the effect of placing a lower limit
on velocities. This also applies to measurements with
�d = {0.25, 0.5, 2}� (not shown here), for which
statistics for the optimal case was presented in [13].

V. DISCUSSION AND CONCLUSIONS

We have evaluated the use of predictor antennas
directly on a large set of channels that were obtained by
channel sounding in different urban propagation environ-
ments. We found that the method works well at medium
vehicular velocities of 25-50 km/h for OFDM channels
at 2.53 GHz in non-line-of-sight as well as line-of-sight
environments. The results confirm that the distribution of
the NMSE is close to that indicated by the correlation-
based model that was introduced in [13].

The obtained prediction accuracy, typically a NMSE
of �13 dB to �7 dB, is of a quality that could support
many important adaptive transmit methods, but not all
schemes that require accurate CSIT. For example, it

Predictor antenna vs extrapolation

J. Björsell et al., “Using Predictor Antennas for the Prediction of Small-
scale Fading Provides an Order-of-Magnitude Improvement of Prediction 
Horizons,” IEEE International Conference on Communications, ICC, 
Workshop WDN-5G ICC2017, Paris, France, May 2017.

J. Björsell et al., “Predictor Antennas in Action,” IEEE Annual 
International Symposium on Personal, Indoor, and Mobile Radio 
Communications, PIMRC, Montreal, Canada, October 2017.



Predictor antenna for FDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz
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• One subcarrier in an OFDM FDD system
• Limit of 10 ms prediction horizon in this example
• Assume 5 ms here

• Allows buffering for lower prediction horizon

Latest prediction



Predictor antenna for FDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz

Predictor antenna measurement

Main antenna measurement

Predictor antennaMain antenna

25 cm 

Time
0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

• One subcarrier in an OFDM FDD system
• Limit of 10 ms prediction horizon in this example
• Assume 5 ms here

• Allows buffering for lower prediction horizon

Latest prediction



Predictor antenna for FDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz

Predictor antenna measurement

Main antenna measurement

Predictor antennaMain antenna

25 cm 

Time
0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

• One subcarrier in an OFDM FDD system
• Limit of 10 ms prediction horizon in this example
• Assume 5 ms here

• Allows buffering for lower prediction horizon

Latest prediction



Predictor antenna for TDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz

Predictor antenna measurement

Predictor antennaMain antenna

25 cm 

Time
0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

• Case study of TDD
• 2 ms uplink frames
• 4 ms downlink frames

• For 5 ms prediction we can buffer 5 ms before 
predicting the channel

Latest prediction



Predictor antenna for TDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz

Predictor antenna measurement

Predictor antennaMain antenna

25 cm 

Time
0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

• Case study of TDD
• 2 ms uplink frames
• 4 ms downlink frames

• For 5 ms prediction we can buffer 5 ms before 
predicting the channel

Latest prediction



Predictor antenna for TDD

September 11, 2018     Bologna, Italy

Pilot rate 1 per ms
Velocity 90 km/h
Antenna separation 25 cm (2!)
Carrier frequency 2.5 GHz

Predictor antenna measurement

Predictor antennaMain antenna

25 cm 

Time
0 1 2 3 4 5 6 7 8 9 10 [ms]

Position

• Case study of TDD
• 2 ms uplink frames
• 4 ms downlink frames

• For 5 ms prediction we can buffer 5 ms before 
predicting the channel

Latest prediction



Kalman smoothing

September 11, 2018     Bologna, Italy

Kalman filtering/prediction Backwards Kalman prediction

Optimally weighted average

Backward 
prediction

Forward 
filtering

Used for backward predictions

Used for forward filtering/prediction

• Using same AR-model of order 4
• Jointly modeling and estimating 4 subcarriers
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been filtered before subsampling to reduce noise, using
a 20th order finite impulse response (FIR) low pass filter.
The filtered channels are estimated to have a channel-to-
estimation error power ratio (here denoted SNR) of 28-
32 dB. We assume these to be an accurate representation
of the channel in our simulations.

We form 22 channel vectors h(⌧) that each consists of
four subcarriers spaced by 60 kHz (in total 88 subcarriers
that span 5.28 MHz). For each channel vector, we
simulate measurement signals through (1) by adding
i.i.d. circular symmetric Gaussian noise with a power set
to simulate a pilot SNR of �5, 5 and 15 dB. To model a
TDD system with frame structure as in Figure 1, the pilot
matrix �(⌧) of (1) is a unit matrix for ⌧ = {1, 2, 3}+3m
and an all zero matrix for ⌧ = {4, 5, 6} + 3m with m
being an integer. If pilots are transmitted at the very
beginning and at the end of the downlink subframe, then
this corresponds to an uplink subframe of length 2 ms
and a downlink subframe of length 4 ms. This downlink
subframe duration would at 80 km/h correspond to a
distance of 89 mm, or 0.75�.

For the example in Fig. 1 the channel prediction
for the main antenna will be given by ĥf (⌧ |⌧+5) by
(20). The remaining signal to estimation noise error of
the smoothed estimate of the predictor antenna SNRp

translates to the inverse of the normalized MSE (NMSE).
Through the NMSE of the smoothing interpolation error
at the predictor antenna NMSEp, we can calculate the
NMSE of the channel prediction for the main antenna
NMSEm as given by equation (14) in [6]

NMSEm = 1�
|b|2SNRp

SNRp + 1
= 1�

|b2|

1 + NMSEp
, (22)

where b is the maximum normalized cross-correlation
between the channel of the main antenna and the delayed
channel of the predictor antenna. This parameter is
|b| = 1 in the ideal case, and it determines the ultimate
performance for error-free measurements of the channel
of the predictor antenna [6], [7]. If |b| is close to |b| = 1,
then by (22) NMSEm ⇡ NMSEp for NMSEp  �8 dB.

We model the small scale fading by using fourth
order AR models (2) and (14). The autocorrelation of
a single carrier channel, rk(t) and the correlation matrix
of the channel vector Rh are found by averaging over
all subcarriers and over 210 OFDM symbols for each
antenna separately.

B. Results
In the scenario described above, the channel estimate

of interest (used as predictor for the main antenna
channels) is at the position where the predictor antenna
was 5 time steps before it reached its current position.
We therefore evaluate the Kalman smoothing estimate
ĥf (⌧ |⌧+5) for the predictor antenna. The resulting
NMSEp will depend on the SNR and on the location
of ⌧ inside or outside of the downlink subframes. For

⌧ = {1, 2, 3} it is within an uplink subframe, where
pilots are available. For ⌧ = {4, 5, 6} we target a
point that was passed during a downlink subframe. We
compare this to the Kalman filter estimate ĥf (⌧ |⌧).
Note that the filter estimate will constitute a predictor
from past estimates for ⌧ = {4, 5, 6}. We also compare
to an estimate gained by using the measurement at
⌧ = {1, 2, 3} + 3m and performing smoothing cubic
interpolation through the matlab function csaps1.
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Fig. 2. The average NMSE for ⌧ = 1, . . . , 6 + 6m where m is
an integer. Results are shown for Kalman filtering (squares), Kalman
smoothing (crosses) and interpolation through smoothing cubic inter-
polation (circles).

Fig. 2 shows the average NMSE over all subcarriers
and transmit antennas for the different fading scenarios
and SNR levels. As a benchmark for estimation perfor-
mance, we can use an NMSE of  �8 dB, which will
result in good prediction performance for a prediction
horizon of one wavelength assuming that |b| is close to
|b| = 1 in (22).

For this particular scenario, our findings can be sum-
marised as follows:

• Smoothing cubic interpolation is insufficient for
estimating all downlink channels in any of the
scenarios, whereas Kalman smoothing ensures good
estimation performance for both the LOS scenario
and the NLOS with Rayleigh fading at an SNR of
5 dB and above.

• An added bonus from Kalman smoothing is the
noise reduction at low SNR. For the LOS scenario
this ensures an NMSE below -8 dB for time slots
⌧ = {1, 2, 3} at an SNR of �5 dB, which the
filter/predictor does not achieve.

1This requires a smoothing factor s 2 [0, 1] where 1 means no
smoothing and 0 gives the mean of the measurements as an estimate
for all ⌧ . For each SNR value and fading scenario we here choose the
s 2 {0, 0.1, 0.5, 0.9, 1} that gives the best average NMSE.
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Fig. 2 shows the average NMSE over all subcarriers
and transmit antennas for the different fading scenarios
and SNR levels. As a benchmark for estimation perfor-
mance, we can use an NMSE of  �8 dB, which will
result in good prediction performance for a prediction
horizon of one wavelength assuming that |b| is close to
|b| = 1 in (22).

For this particular scenario, our findings can be sum-
marised as follows:

• Smoothing cubic interpolation is insufficient for
estimating all downlink channels in any of the
scenarios, whereas Kalman smoothing ensures good
estimation performance for both the LOS scenario
and the NLOS with Rayleigh fading at an SNR of
5 dB and above.

• An added bonus from Kalman smoothing is the
noise reduction at low SNR. For the LOS scenario
this ensures an NMSE below -8 dB for time slots
⌧ = {1, 2, 3} at an SNR of �5 dB, which the
filter/predictor does not achieve.

1This requires a smoothing factor s 2 [0, 1] where 1 means no
smoothing and 0 gives the mean of the measurements as an estimate
for all ⌧ . For each SNR value and fading scenario we here choose the
s 2 {0, 0.1, 0.5, 0.9, 1} that gives the best average NMSE.
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• Restrictions to the length of TDD frames due to channel 
aging can be loosened through the use of Kalman 
smoothing in combination with predictor antennas.

• Increased flexibility in system design is desirable from 
operators perspective.
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