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Abstract—For future large-scale multi-antenna systems,
channel orthogonal downlink pilots are not feasible due
to extensive overhead requirements. Instead, channel reci-
procity can be utilized in time division duplex (TDD) sys-
tems so that the downlink channel estimates can be based
on pilots transmitted during the uplink. User mobility
affects the reciprocity and makes the channel state infor-
mation outdated for high velocities and/or long downlink
subframe durations. Channel extrapolation, e.g. through
Kalman prediction, can reduce the problem but is also
limited by high velocities and long downlink subframes.

An alternative solution has been proposed where channel
predictions are made with the help of an extra antenna,
e.g. on the roof of a car, so called predictor antenna, with
the primary objective to measure the channel at a position
that is later encountered by the rearward antenna(s). The
predictor antenna is not directly limited by high velocities
and allows the channel in the downlinks to be interpolated
rather than extrapolated.

One remaining challenge here is to obtain a good inter-
polation of the uplink channel estimate, since a sequence
of uplink reference signals (pilots) will be interrupted by
downlink subframes. We here evaluate a Kalman smooth-
ing estimate of the downlink channels and compare it to a
cubic spline interpolation. These results are also compared
to results where uplink channels are estimated through
Kalman filters and predictors. Results are based on mea-
sured channels and show that with Kalman smoothing,
predictor antennas can enable accurate channel estimates
for a longer downlink period at vehicular velocities. The
gaps in the uplink pilot stream, due to downlink subframes,
can have durations that correspond to a vehicle movement
of up to 0.75 carrier wavelengths in space, for Rayleigh-like
non-line-of-sight fading.

I. INTRODUCTION

For many wireless transmission schemes, accurate
channel state information at the transmitter (CSIT)
of a downlink is crucial to achieve desirable gains.
Such schemes include adaptive modulation and coding,
channel aware scheduling and multi user multiple-input
multiple-output (MIMO) transmission, e.g. zero forcing,
[1], [2]. If the CSIT becomes outdated the gains as-
sociated with advanced transmission schemes may be
lost, but this could be compensated by extrapolating

channel estimates from the uplink, e.g. by using Kalman
predictions [3]. However, prediction of the small scale
fading through extrapolation of past estimates is very
difficult for a prediction horizon that corresponds to a
travelled distance beyond 0.1λ−0.3λ, where λ is the
carrier wavelength [4]. For pedestrian users, the required
prediction horizon is usually within this limitation,
whereas for high mobility users a prediction horizon
beyond 0.3λ is often required.

This limit of prediction horizon has been circum-
vented by the predictor antenna concept. It uses an
extra antenna, predictor antenna, placed in front of
the main antenna, e.g. on the roof of the vehicle, to
scout the channel that will later be encountered by the
main antenna, as originally proposed in [5]. Further
experimental studies have shown a prediction normalized
mean squared error of about -10 dB for velocities up to
50 km/h for all measured predictions horizons up to 3λ,
ten times longer than the limit for channel extrapolation
[6], [7]. To produce accurate predictions, the concept
requires channel estimates for the predictor antenna
from positions close to where the main antenna will
transmit or receive signals. For a frequency division
duplex (FDD) system, this requires dense enough down-
link channel estimates, which was the case in [6], [7],
[8], where orthogonal frequency division multiplexing
(OFDM) pilots, evenly distributed in time and frequency,
were used.

For a time division duplex (TDD) system, the predic-
tor antenna would transmit known pilots in the uplink
subframes, that are used for channel estimation on
the network side. Assuming channel reciprocity, these
channel estimates are then used to calculate predictions
of the channel to the main antenna during a subsequent
downlink subframe. The uplink/downlink ratio of the
TDD frame might be adjusted so that the downlink trans-
mission of the main antenna occurs close to a position
where the predictor antenna already has measured the
channel, as proposed in [9] and evaluated in [10]. How-
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ever, such a scheme would require individually adaptable
uplink/downlink ratios based on the velocity of each
user which is problematic from a system perspective.
Instead, as suggested in [10], interpolation can be used
for any given uplink/downlink ratio to generate channel
estimates for the gaps in the uplink pilot sequence.

Interpolations can be used not only in TDD systems
but also for FDD systems when the pilots are sparsely
distributed in time relative to the vehicle velocity. How-
ever, the TDD case will be more challenging as the pilots
are irregularly spaced in time and the longest durations
without any pilots (due to downlink frames) are longer
than for the FDD case. This motivates us to study the
performance of interpolation schemes in this setting.

The Kalman smoother is the minimum mean squared
error (MMSE)-optimal linear interpolator of noisy data,
for known second order statistics of signal and noise
[11]. It has been studied in applications such as the
compensation for packet loss in wireless sensor network
system [12] and channel equalization on the receiver side
[13], both where partial observation losses occur.

In this paper we apply the Kalman smoother for the
interpolation of the predictor antenna for TDD systems
with a two-filter approach, using two state space mod-
els. The measurement based simulation results provided
show that in the presence of predictor antennas when
CSI is interpolated based on Kalman smoothing, the CSI
quality of the downlink slot can be improved so that
the downlink slot duration can be extended significantly
compared to when only extrapolation of CSI into the
downlink slot is utilized. The results can be used to
determine how the flexibility that is left open within de-
veloping 5G standards in terms of reference signal rates
and TDD subframe duration, can be used for vehicular
users, some of which may use predictor antennas.

Notations

We here use diag{·} to represent a block diagonal ma-
trix, aj represents the jth element of the vector a and Ak

is the part of the matrix (or vector) A associated with the
kth channel component. The average is denoted E[·] and
the covariance matrix of a zero mean vector is denoted
cov(a) = E[aa∗]. The estimate of a vector a(τ1) at
time τ1 based on measurements y(1), . . . ,y(τ2) will be
denoted âf (τ1|τ2) while âbp(τ1|τ1+N) is the estimate
based on future measurements y(τ1+1), . . . ,y(τ1+N).

II. SYSTEM MODEL

For simplicity, we outline the scheme for a single
antenna base station and a vehicle with a single predictor
antenna and a single main antenna. We assume an
OFDM system where known pilots may be transmitted
on OFDM symbols separated by an integer time index
τ . The predictor antenna is located on the roof of the
vehicle, a distance d forward from the main antenna.
This means that prediction horizons in time of up to

Tmax = d/vmax, where vmax is the maximal vehicle
velocity, can be accommodated. At times indexed by τ ,
the predictor antenna may transmit uplink pilots. If it
does so, the main antenna is assumed not to transmit at
the time-frequency resources used by these pilots. The
baseband measurements at the base station antenna at a
set of K potentially pilot-bearing subcarriers at time τ
can then be written as

y(τ) = Φ(τ)h(τ) + v(τ), (1)

where the channel h(τ) is a channel vector consisting
of the zero mean scalar complex-valued channels at K
subcarriers and v(τ) is the measurement noise vector
which may include many different components such as
thermal noise, background noise and pilot contamination
from other cells. The matrix Φ(τ) is a known pilot
matrix which will be an all zero matrix for all τ when
no uplink pilots are transmitted, e.g. during the TDD
downlink subframes. We assume that the noise term
v(τ) is uncorrelated over time and uncorrelated with
the state vector, and that it is zero mean Gaussian with
known covariance matrix Rv = cov(v(τ)).

A. Channel modelling
The small scale fading of a channel vector h(τ) can

be modelled as an autoregressive (AR) model on state
space form

x(τ+1) = Ax(τ) + Bw(τ),

h(τ) = Cx(τ).
. (2)

Here, x(τ) is the zero mean complex-valued state vector
with covariance matrix Π = cov(x(τ)), w(τ) is the
zero mean complex-valued Gaussian process noise with
covariance matrix Q = cov(w(τ)) and A, B, C are
state space matrices.

The model (2) can be estimated from previous channel
estimates. For this purpose, each component hk(τ) in
h(τ) is individually modelled by an nAR

th order AR
model

hk(τ) = −ΣnAR
i=1 αihk(τ−i) + wk(τ), (3)

where {αi}i=1,...,nAR
are the complex-valued model co-

efficients. By multiplying both sides of (3) by h∗k(τ−t)
for t = 1, . . . , nAR and taking the expected value we
obtain a set of equations

rk(t) = −ΣnAR
i=1 αirk(t−i), t = 1, . . . , nAR, (4)

where rk(t) is the autocorrelation function of hk(τ).
Solving (4) provides the coefficients {αi}i=1,...,nAR

through which the poles {pi}i=1,...,nAR
of the AR model

are found by solving

znAR + ΣnAR
i=1 αiz

nAR−i = 0. (5)

Next, we set up the AR model (3) on state space form

xk(τ+1) = Akxk(τ) + bkwk(τ),

hk(τ) = ckxk(τ),
(6)



where Ak ∈ CnAR×nAR , bk ∈ CnAR×1 and ck ∈
C1×nAR . We use the diagonal state space form, which
reduces the complexity of the Kalman filters [3]. Then

Ak = diag{pi}i=1,...,nAR
,

bkj
= Πi=1,...,nAR,i6=j(pj − pi)−1,

ckj
= pnAR−1

j

(7)

for j = 1, ..., nAR. The state vector in (2) is of dimen-
sion n = KnAR and given by x(τ) = [x1(t), ...,xK(τ)]
and the state transition matrices are given by

A = diag{Ak}k=1,..,K ,

B = diag{bk}k=1,..,K ,

C = diag{ck}k=1,..,K .

(8)

The correlation of the fading of hk(τ) at different
subcarriers k is modelled by the process noise covariance
matrix Q. If Rh = cov(h(τ)) has been estimated from
previous measurement and if A, B and C in (2) are
know, then a covariance matrix of w(τ), Q ∈ Cn×n

which generates the current channel covariance matrix
Rh ∈ CK×K is given by Theorem 4.2 in [3] as

Q = Rh �C(B1B∗ � (1− aa∗))C∗. (9)

Here 1 is an all one matrix of appropriate dimension, a
is a vector given by the diagonal of the state space matrix
A and � represents element wise division. We also
obtain the covariance matrix of the state space vector
as

Π = BQB∗ � (1− aa∗). (10)

The expressions (9) and (10) assume a state space
model on diagonal form (7), based on a stable AR
model with distinct and nonzero poles {pi}i=1,...,nAR

.
The element wise divisions appearing in (9) are then
guaranteed to be nonsingular, since 1−aa∗ 6= 0 and all
elements of C(B1B∗ � (1− aa∗))C∗ will be nonzero.
Additional aspects on AR modeling of fading multipoint
MIMO channel models, where the use of (9) can be
problematic in some FDD downlink situations, can be
found in [14].

B. Backwards recursions

Similarly to (3)-(6) we can set up a backwards re-
cursive model of the channel. The time inversion for
the backwards recursive filter requires the introduction
of an inverted complex plane ζ = z−1 where the the
z-transform of the backwards time shift gives x(τ) →
x(τ−1)↔ ζX(ζ). The time reversed AR model of order
nAR with zero mean i.i.d. process noise wb

k(τ) is defined
by

hk(τ) = −ΣnAR
i=1 α

b
ihk(τ+i) + wb

k(τ). (11)

The model coefficients {αb
i}i=1,...,nAR

are found by
solving

rk(t) = −ΣnAR
i=1 α

b
irk(i+t), t = 1, . . . , nAR. (12)

The similarity between (4) and (12) and the auto-
correlation symmetry rk(t) = r∗k(−t) gives us the
backwards recursive model coefficients αb

i = α∗i for
i = 1, . . . , nAR. The model poles in the ζ-domain are
given by solving

ζnAR + ΣnAR
i=1 α

b
iζ

nAR−i = ζnAR + ΣnAR
i=1 α

∗
i ζ

nAR−i = 0,
(13)

which with the similarity to (5) gives us the poles
{pbi}i=1,...,nAR

which will be related to the poles of the
forward AR model by pbi = p∗i .

We can then set up a backwards recursive model for
the channel vector

xb(τ) = Abxb(τ+1) + Bbwb(τ),

h(τ) = Cbx(τ).
(14)

Assuming diagonal form, then through (7)-(10) we have

Ab = A∗, Bb = (BT )∗, Cb = (CT )∗,

Qb = Rh �Cb(Bb1(Bb)∗ � (1− ab(ab)∗))(Cb)∗,

Πb = BbQb(Bb)∗ � (1− ab(ab)∗),
(15)

where Qb = cov(wb(τ)), Πb = cov(xb(τ)) and ab is a
vector given by the diagonal elements of Ab.

C. Upsampling

It can be convenient to use the Kalman filter, not
only to interpolate over those time steps τ when there
are no pilot transmissions, but also in between the pilot
transmission, e.g. in cases where pilots are transmitted
sparsely and accurate CSIT is needed in between these.
If the channel needs to be upsampled by a factor n then
we can use a Kalman filter based on AR models (2) and
(14) with a time index spaced by τ/n. The poles of the
forward model are then given by {p1/ni }i=1,...,nAR

, [3],
and likewise {(p∗i )1/n}i=1,...,nAR

for the time reversed
model.

III. KALMAN SMOOTHING

Based on the measurements y(1), . . . ,y(τ) through
(1) we can estimate the channel vector hf (τ) through
the model (2) as

ĥf (τ |τ) = Cx̂f (τ |τ), (16)

where the vector of state filter estimates x̂f (τ |τ) can be
estimated recursively

x̂f (t|t) = K(t)y(t)+(I−K(t)Φ(t)C)Ax̂f (t−1|t−1)),
(17)

for t = 1, . . . , τ . Here, the n × K matrix K(t) is the
Kalman filter gain based on the model (3).

Similarly, based on y(τ+1), . . . ,y(τ+N) through (1)
we can estimate the channel h(τ) through the backwards
recursive model (14) as

ĥbp(τ |τ+N) = Cx̂b
bp(τ |τ+N), (18)



where the state vector x̂b
bp(τ |τ+N) can be estimated

recursively backwards through

x̂b
bp(t−1|τ+N) =

Ab(Kb(t)y(t) + (I−Kb(t)Φ(t)Cb)x̂b
bp(t|τ+N)),

(19)

for t = τ+N+1, . . . , τ+1 and where the n × k matrix
Kb(τ) is the Kalman filter gain based on the model (11).

Details on how to initialize the filters and how to cal-
culate the Kalman gains and the error covariance matri-
ces Γ(τ |τ) = cov(h(τ)− ĥf (τ |τ)) and Γbp(τ |τ+N) =
cov(h(τ)− ĥbp(τ |τ+N)) are provided in the Appendix.

Provided that the models (2) and (14) are accurate,
the forward recursive Kalman filter provides the linear
optimal estimate of h(τ) through (16) based on all mea-
surements y(1), . . . ,y(τ). The backwards Kalman filter
provides the linear optimal estimate of h(τ) through
(18), based on all measurements y(τ+1), . . . ,y(τ+N).
As the two estimates are based on different measure-
ments and, as the measurement noise v(τ) in (1) is
assumed independent over time and uncorrelated with
h(τ), the estimation errors of ĥf (τ |τ) and ĥbp(τ |τ+N)
are uncorrelated. The mean squared error (MSE) optimal
smoothed estimate of the channel vector is therefore
given by the weighed average of these two estimates
[11]

ĥf (τ |τ+N) = W3(W1ĥf (τ |τ) + W2ĥbp(τ |τ+N)),
(20)

with weighting W1 = Γ−1(τ |τ), W2 = Γ−1bp (τ |τ+N)
and

W3 = Γ(τ |τ+N) = cov(h(τ)− ĥf (τ |τ+N))

=
(
W1 + W2 −R−1h

)−1
.

(21)

(The term −R−1h in (21) come in as both W1 and W2

include the prior information of R−1h , and hence one of
these must be removed.) For details, please see Sections
3.4.3 and 10.4 of [11].

A comment on the computational complexity of the
Kalman smoother can be found in Appendix D.

IV. CASE STUDY: PREDICTOR ANTENNAS FOR TDD

We consider a channel for one base station antenna
in a TDD system where pilots are transmitted in the
uplink for three consecutive pilot slots, indexed by τ ,
followed by a downlink with three consecutive slots
without pilots. Two antennas, spaced by 2λ are placed
in a straight line in the direction of travel on a vehicle.
The required prediction horizon is 5 time slots and we
assume that the vehicle is traveling with a velocity such
that it takes 10 time slots for the main antenna to reach
the position of the predictor antenna. The prediction
horizon of 5τ then corresponds to a prediction horizon
of λ in space. This is illustrated in Fig. 1, where we at
time index τ = 9 would need to predict the channel for

the main antenna at time index τ = 14. We then have
CSIT based on the predictor antenna pilots at positions
1-3 and 7-9 and but want to know the CSIT for the
main antenna when it reaches position 4. There is no
measurement for that position, so interpolation will be
needed.

position1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ=1

τ=6

τ=9

τ=11

τ=14

main predictor

main predictor2λ

predictor

predictor

predictor

Fig. 1. A TDD system where pilots are transmitted in the uplink for
three consecutive pilot slots followed by a downlink subframe with
three consecutive slots without pilots. The figure shows the position
of the predictor antenna and the main antenna at different times τ .
Crosses mark positions for which the predictor antenna has transmitted
pilots and thus made channel estimates available.

In situations when the positions of the main antenna
and predictor antenna do not overlap (or are sufficiently
close), the CSIT from the predictor antenna would also
have to be interpolated in a denser pattern. This can be
achieved by the upsampling described in Section II-C.
Such upsampling would be required since the predictions
are based on the property that the antennas are located
at exactly the same position in space but at different
times. Upsampling would typically be required at higher
velocities as this reduces the spatial resolution of the
channel estimate time series.

A. Measurements and simulation assumptions

To evaluate our scheme we use measurements col-
lected while driving at a velocity of 25-39 km/h in down-
town Dresden. The measurements were collected by TU
Dresden. Channel sounding pilots were transmitted every
0.5 ms from four antennas mounted on the roof of the
car at a carrier frequency of 2.53 GHz (λ = 119 mm) and
were received at a base station. Three measurement sets
are here used. These represent three different scenarios;
A line of sight (LOS) scenario, a non-LOS (NLOS)
scenario with a Doppler spectrum similar to that of
Rayleigh fading and a NLOS scenario with a relatively
flat Doppler spectrum. The measurements are selected
from a larger set, which is described in greater detail in
[6].

The original channel measurements were here sub-
sampled (by a factor 4 or 6 depending on the original
velocity) such that they would correspond to the chan-
nels collected when pilots are transmitted every 1 ms
at a velocity of 75-83 km/h. Further, the channels have



been filtered before subsampling to reduce noise, using
a 20th order finite impulse response (FIR) low pass filter.
The filtered channels are estimated to have a channel-to-
estimation error power ratio (here denoted SNR) of 28-
32 dB. We assume these to be an accurate representation
of the channel in our simulations.

We form 22 channel vectors h(τ) that each consists of
four subcarriers spaced by 60 kHz (in total 88 subcarriers
that span 5.28 MHz). For each channel vector, we
simulate measurement signals through (1) by adding
i.i.d. circular symmetric Gaussian noise with a power set
to simulate a pilot SNR of −5, 5 and 15 dB. To model a
TDD system with frame structure as in Figure 1, the pilot
matrix Φ(τ) of (1) is a unit matrix for τ = {1, 2, 3}+3m
and an all zero matrix for τ = {4, 5, 6} + 3m with m
being an integer. If pilots are transmitted at the very
beginning and at the end of the downlink subframe, then
this corresponds to an uplink subframe of length 2 ms
and a downlink subframe of length 4 ms. This downlink
subframe duration would at 80 km/h correspond to a
distance of 89 mm, or 0.75λ.

For the example in Fig. 1 the channel prediction
for the main antenna will be given by ĥf (τ |τ+5) by
(20). The remaining signal to estimation noise error of
the smoothed estimate of the predictor antenna SNRp

translates to the inverse of the normalized MSE (NMSE).
Through the NMSE of the smoothing interpolation error
at the predictor antenna NMSEp, we can calculate the
NMSE of the channel prediction for the main antenna
NMSEm as given by equation (14) in [6]

NMSEm = 1− |b|
2SNRp

SNRp + 1
= 1− |b2|

1 + NMSEp
, (22)

where b is the maximum normalized cross-correlation
between the channel of the main antenna and the delayed
channel of the predictor antenna. This parameter is
|b| = 1 in the ideal case, and it determines the ultimate
performance for error-free measurements of the channel
of the predictor antenna [6], [7]. If |b| is close to |b| = 1,
then by (22) NMSEm ≈ NMSEp for NMSEp ≤ −8 dB.

We model the small scale fading by using fourth
order AR models (2) and (14). The autocorrelation of
a single carrier channel, rk(t) and the correlation matrix
of the channel vector Rh are found by averaging over
all subcarriers and over 210 OFDM symbols for each
antenna separately.

B. Results

In the scenario described above, the channel estimate
of interest (used as predictor for the main antenna
channels) is at the position where the predictor antenna
was 5 time steps before it reached its current position.
We therefore evaluate the Kalman smoothing estimate
ĥf (τ |τ+5) for the predictor antenna. The resulting
NMSEp will depend on the SNR and on the location
of τ inside or outside of the downlink subframes. For

τ = {1, 2, 3} it is within an uplink subframe, where
pilots are available. For τ = {4, 5, 6} we target a
point that was passed during a downlink subframe. We
compare this to the Kalman filter estimate ĥf (τ |τ).
Note that the filter estimate will constitute a predictor
from past estimates for τ = {4, 5, 6}. We also compare
to an estimate gained by using the measurement at
τ = {1, 2, 3} + 3m and performing smoothing cubic
interpolation through the matlab function csaps1.
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τ
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Fig. 2. The average NMSE for τ = 1, . . . , 6 + 6m where m is
an integer. Results are shown for Kalman filtering (squares), Kalman
smoothing (crosses) and interpolation through smoothing cubic inter-
polation (circles).

Fig. 2 shows the average NMSE over all subcarriers
and transmit antennas for the different fading scenarios
and SNR levels. As a benchmark for estimation perfor-
mance, we can use an NMSE of ≤ −8 dB, which will
result in good prediction performance for a prediction
horizon of one wavelength assuming that |b| is close to
|b| = 1 in (22).

For this particular scenario, our findings can be sum-
marised as follows:
• Smoothing cubic interpolation is insufficient for

estimating all downlink channels in any of the
scenarios, whereas Kalman smoothing ensures good
estimation performance for both the LOS scenario
and the NLOS with Rayleigh fading at an SNR of
5 dB and above.

• An added bonus from Kalman smoothing is the
noise reduction at low SNR. For the LOS scenario
this ensures an NMSE below -8 dB for time slots
τ = {1, 2, 3} at an SNR of −5 dB, which the
filter/predictor does not achieve.

1This requires a smoothing factor s ∈ [0, 1] where 1 means no
smoothing and 0 gives the mean of the measurements as an estimate
for all τ . For each SNR value and fading scenario we here choose the
s ∈ {0, 0.1, 0.5, 0.9, 1} that gives the best average NMSE.



• When the temporal correlation is lower, as in the
case of the flat Doppler spectrum, it is harder
to achieve the here targeted NMSE, even with
smoothing.

• The performance difference between smoothing and
filtering is largest for τ within downlink subframes
τ ∈ {4, 5, 6}. Here, the filter/predictor ĥf (τ |τ) is
forced to perform a prediction based on previous pi-
lot bearing symbols, while the smoother ĥ(τ |τ+5)
also utilizes measurements from the next uplink
subframe.

V. CONCLUSIONS

The present paper illustrates and evaluates an ad-
vantage of having a ”predictor antenna” available. In
a TDD system, where uplink and downlink channels
are estimated based on uplink transmissions of known
pilot symbols, such transmissions would be unavailable
during the downlink transmission subframes. The only
way to predict the downlink channels would then be
to extrapolate forward in time from pilot-based mea-
surements in previous uplink slots. The presence of a
predictor antenna makes estimates of the ”future” chan-
nel available. We can use this to improve the estimate
of the channels that will be encountered within the
next downlink subframe. The results here indicate that
for many realistic fading scenarios, user mobility of
80 km/h, uplink pilot spacing of 1 ms and a downlink
subframe duration of 4 ms, during which the vehicle
in our example has travelled 0.75 wavelengths, Kalman
smoothing can provide good interpolation estimates of
the downlink of TDD channels at relatively low SNR (of
5 dB). Thus, with Kalman smoothing, predictor antennas
can push the bound for advanced transmission scheme
at high mobility in TDD systems. However, for some
fading scenarios, here represented by the NLOS sce-
nario with a flat Doppler spectrum, the TDD downlink
channels will be very difficult to estimate, for so long
downlink subframes.

The simulation in this paper is restricted to a few
selected channels and a larger simulation with a larger
variety of fading scenarios, pilot SNRs and downlink
subframe lengths is required to draw conclusions as to
what system requirements are needed to achieve suffi-
cient estimation performances through Kalman smooth-
ing. The effect of how the correlation between the
channels at different base station antennas affects the
estimates should also be investigated. This is the objec-
tive of a larger ongoing study where the results here
are combined with the method for estimation predictor
antenna system performance in [6].

APPENDIX A
FORWARD RECURSION KALMAN FILTER

Assume that P(τ1|τ2) = cov(x(τ1)− x̂(τ1|τ2)) is the
covariance matrix of the estimation error of x̂(τ1|τ2).

The Kalman filter can be divided into two parts, the one
step prediction and the state update. Based on a recursive
channel model as in (2) the one step prediction is given
by

x̂(τ |τ−1) = Ax̂(τ−1|τ−1), (23)
P(τ |τ−1) = AP(τ−1|τ−1)A∗ + BQB∗, (24)

and the update, given the current measurement y(τ), is

x̂(τ |τ) = K(τ)y(τ) + (I−K(τ)Φ(τ)C)x̂(τ |τ−1)),
(25)

P(τ |τ) = P(τ |τ−1)−KΦ(τ)CP(τ |τ−1). (26)

Here K(τ) is the Kalman gain given by

K(τ) = P(τ |τ−1)C∗Φ(τ)∗·
(Φ(τ)CP(τ |τ−1)C∗Φ∗(τ) + Rv)−1.

Substituting (23) into (25) and assuming available mea-
surements from times t = 1, . . . , τ yields the expression
(17).

Through the state vector estimation error matrix (26)
we can find the covariance matrix of the estimation error
for the filtered channel estimate (16) through

Γ(τ |τ) = cov(h(τ)− ĥf (τ |τ)) = CP(τ |τ)C∗. (27)

APPENDIX B
BACKWARDS RECURSION KALMAN FILTER

By reversing the time we can calculate the one step
backwards Kalman prediction based on the backwards
AR model (14) and given an estimate x̂b(τ+1|τ+1) as

x̂b(τ |τ+1) = Abx̂b(τ+1|τ+1), (28)

Pb(τ |τ+1) = AbPb(τ+1|τ+1)(Ab)∗ + BbQb(Bb)∗.
(29)

The backwards filter update, based on an estimate
x̂b(τ+1|τ+1) and the current measurement y(τ) is

x̂b(τ |τ) = x̂b(τ |τ+1)+Kb(y(τ)−Φ(τ)Cbx̂b(τ |τ+1)),
(30)

Pb(τ |τ) = Pb(τ |τ+1)−KbΦ(τ)CbPb(τ |τ+1), (31)

where Pb(τ1|τ2) = cov(xb(τ1)− x̂b(τ1|τ2)) and Kb(τ)
is the Kalman gain given by

Kb(τ) =Pb(τ |τ+1)(Cb)∗Φ(τ)∗·
(Φ(τ)CbPb(τ |τ+1)(Cb)∗Φ∗(τ) + Rv)−1.

Substituting (30) into (28) and assuming available mea-
surements from times t = τ+1, . . . , τ+N gives (19).

Through the state vector estimation error matrix (29)
we can calculate the covariance matrix of the estimation
error for the backwards one step channel prediction (18)
through

Γp(τ |τ+N) = cov(h(τ)− ĥp(τ |τ+N))

= CbPb(τ |τ+1)(Cb)∗.
(32)



APPENDIX C
INITIATING THE FILTERS

As the forward filters (17) and backwards filter (19)
are both recursive, they must be initiated, which we
choose to do by setting x̂(0|0) and x̂b(τ+N+1|τ+N)
to all zero vectors. Then the covariance matrices of the
estimation error of the state vectors are given by

P(0|0) = Π, Pb(τ+N+1|τ+N) = Πb.

APPENDIX D
COMPUTATIONAL COMPLEXITY

In Chapter 4.3 in [3] the required number of (arith-
metic complex) operations, here referring to one multi-
plication and one addition, for the Kalman filter with a
model on diagonal form is presented. From there we can
derive the required number of operations for one Kalman
recursion (23)-(26), CKal rec. The Kalman smoother, as
presented here, will require one forward recursion and
N backward recursions for every time slot. The total
number of operations related to the Kalman filter will
then be

CKal tot = (N + 1)CKal rec. (33)

The smoothed estimate requires further calculation by
(20) which in turn requires calculations of (16), (18),
(27) and it’s inverse, (32) and it’s inverse and (21), in
total Csmo. The total number of operation by the Kalman
smoother per time slot will then be

Csmo tot = CKal tot + Csmo. (34)

The exact number of operations is not presented here
due to lack of space. However, Csmo tot will have a
complexity of O((KnAR)2).

Both CKal tot and Csmo can be reduced by pre-
calculating the converged Kalman matrices by Riccati
equations. These matrices will be cyclo-stationary func-
tions when the pilot patterns are cyclic over time and
the environment is stationary [3]. The complexity is in
this case O(nAR,K

2).

A. Numerical example

For a setup as in the case study in Section IV, Ktot =
88, K = 4 and nAR = 4, the Kalman smoother would
require Csmo tot = 172480+11352 = 183832 operations
per step τ . The cyclo-stationary version would require
Csmo tot = 50688 + 1848 = 52536 operations, without
the required pre-calculations taken into account.

The case study also makes a comparison to a smooth-
ing spline method which has a complexity of O(n3x)
where nx + 1 is the number of measurement of which
the spline coefficients are calculated from. When using
five measurement every sixth time slot to smooth and
interpolate a total of eight time slots, the smoothing

spline method requires approximately 15000 operations
every sixth time slot.

In this example the stationary Kalman filter requires
3.5 times more operations (and six times as often)
compared to smoothing spline and the regular Kalman
smoother requires 3.5 more operations than the station-
ary Kalman. It is worth mentioning that many of these
calculations are parallelized by nature which is beneficial
implementation wise.
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[7] J. Björsell, M. Sternad, and M. Grieger, “Predictor antennas in
action,” in Proc. of IEEE PIMRC 17, Montreal, Canada, Oct.
2017.

[8] D.-T. Phan-Huy, S. Wesemann, J. Björsell, and M. Sternad,
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