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Abstract— A compartment model is proposed to describe
the HIV infection in humans. The compartments describe the
blood, several lymph nodes and connecting lymph vessels. The
dynamics in each compartment are described by a simplified
HIV model considering the healthy and infected T-cells. A
bifurcation analysis based on the variation of the proliferation
rate is discussed and supported by simulations. Additional
simulations illustrate the effect of a simple mutation model.

I. Introduction

A variety of mathematical models of HIV infection have
been examined with perhaps the earliest those in [1]–[3].
More recently, variants of these models (e.g. [4]) have
been shown to exhibit several of the main traits of clinical
observations of the disease. Most models only describe
infection dynamics within the circulatory system. However,
it is known that the lymphatic system plays an important role
in the progression of HIV infection, e.g. [5], [6]. However,
the lymphatic system exhibits some significant differences
compared to the circulatory system:

An adult human body contains a huge number of small
lymph capillaries, vessels and approximately 500–600 bean
shaped lymph nodes varying in size up to approximately 1–
2cm in diameter, [7]. Overall the adult human body contains
approximately ten litres of lymph. The lymph flows are on-
uniform and at a much slower rate than the blood.

More recently, the lymphatic system has been included in
a three compartment HIV model in [8]. The compartments
modelled are the blood, a remote region of the lymphatic
system and an isolated sanctuary site. While Highly Active
Anti-Retroviral Therapy (HAART) is assumed to be very
efficient in the first compartment, it is much less efficient in
the second and not efficient at all in the third compartment.
The simulations in [8] revealed that due to the non uniform
HAART efficiency, the viral load may be undetectable in
the blood, whilst higher concentrations of virus persist in
compartments 2 and 3.

This paper aims to extend these results. Due to the slow
flow rate of the blood and the huge volume of lymph
flowing in a very finely branched system it is unclear whether
the lymphatic system can accurately be modelled as one
single compartment as in [8]. Thus, we propose a model
consisting of one compartment describing the blood and a
chain of five lymph vessels alternating with five lymph nodes
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Fig. 1: Scheme of compartment model

modelled as one compartment each. Despite the fact that
lymph vessels are very thin, the overall volume of the finely
branched system is much higher than the combined volume
of all lymph nodes [7]. A rough estimation reveals that even
assuming all 600 lymph nodes to be rather large, with a
volume of (10mm)3, they only contain approximately 600mL
which is less than 10% of the overall lymphatic system.

The paper is organised as follows: The model and all
modelling assumptions are discussed in Section II. A bi-
furcation analysis is presented in Section III. Section IV
contains simulation results and interpretations thereof.The
paper closes with discussions in Section V.

II. Model and Modelling Assumptions

A. Modelling Assumptions

The model used in this paper is a combination of the HIV
model presented in [4] and an extension of the compartment
model in [8]. Note that the description in [4] is a widely used
model while [8] recently introduced a compartment model
of the infected body.

Similar to [8] the system in this paper is assumed to
be divided in several compartments. The first compartment
represents the blood. The remaining compartments are parts
of the lymphatic system. We assume that the lymphatic
system consists of lymph vessels alternating with lymph
nodes. The last compartment is a larger lymph vessel leading
into a vein close to the heart. The volume of compartmenti
is denoted byVi . We assume that the volumes are constant.

The pressure in the blood capillaries is higher than in the
lymph capillaries. This causes blood plasma and some cells
from the blood to be pushed into the lymph capillaries. These
lead to lymph vessels of increasing size connecting lymph
nodes of increasing size. The lymph vessel at the end of this
chain (here the last compartmentN) feeds into a vein close
to the heart. The lymph only flows in one direction, i.e. from
the capillaries towards the final vessel leading into the blood
stream close to the heart. More details can be found in [7].

Thus, the concentration of cells in compartmenti for
lymph compartments (i.e. fori = {2,3, . . . ,N}) depends on
the concentration of cells in compartmenti − 1 but noti + 1.



The flow of lymph is very slow compared to the flow rate of
blood. We assume that the lymph flow rate is approximately
one metre per 6 days. We assume that there is a static flow
of plasma/ lymph and cells from the blood to each part of
the lymphatic system.

Both flows are modelled asvi−1Ai−1,i and v1,iA1,i where
vi−1 is the lymph flow rate in compartmenti − 1 andAi−1,i

is the effective area between compartmentsi − 1 and i. For
the flow from the blood into the lymph vessels the flow rate
v1,i and the effective areaA1,i are unknown.

To simplify and reduce the size of the model we use a
simple HIV infection model consisting of healthy T-cells,
denoted byTi, and infected T-cells, denoted byT∗i . T-cells
are supplied by ratesT in the thymus and then according to
[9] discharged into the last lymph vessel that feeds into the
heart. The T-cells and infected T-cells die with ratesdT and
dT∗ respectively.

As in [4], in the case of an infection, the immune
system is stimulated to multiply T-cells with rateρi . This
effect is known as infection induced proliferation. T-cells in
compartmenti get infected with rate constantβi . Even if a
lymph vessel and a lymph node of the same volume have
the same concentration of healthy and infected T-cells, an
infection is less likely in the vessel due to its shape. We
therefore assume that the infection rate in the blood and the
lymph nodes is much higher than the infection rate in the
lymph vessels. Under HAART treatment (u = 1) the infection
rate in compartmenti is reduced toβi(1 − ηξi) whereη is
the efficiency of the drug andξi its relative efficiency in
compartmenti.

B. Compartment model

Thus, the dynamics of the first compartment of the overall
system (blood) can be described by

Ṫ1 = − dTT1
︸︷︷︸

death

− β1(1− uηξ1)T1T
∗
1

︸                ︷︷                ︸

infection

+
vNAN,1

V1
TN

︸      ︷︷      ︸

inflow

−

N∑
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V1
T1

︸          ︷︷          ︸

outflow

+ ρ1
T1T∗1
c+ T∗1
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, (1)

Ṫ∗1 = − dT∗T
∗
1
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death

+ β1(1− uηξ1)T1T∗1
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outflow

. (2)

Similarly, the first lymph compartment, i.e.i = 2, is modelled
as

Ṫ2 = − dTT2 − β2(1− uηξ2)T2T∗2 −
v2A2,3

V2
T2 +

v1,2A1,2

V2
T1

+ρ2
T2T∗2
c+ T∗2

, (3)

Ṫ∗2 = − dT∗T
∗
2 + β2(1− uηξ2)T2T

∗
2 −

v2A2,3

V2
T∗2 +

v1,2A1,2

V2
T∗1.

(4)

The remaining lymph compartments fori = {3,4, . . . ,N − 1}
are described by the differential equations

Ṫi = − dTTi − βi(1− uηξi)TiT
∗
i +

vi−1Ai−1,i

Vi
Ti−1 −

vi Ai,i+1

Vi
Ti

+
v1,iA1,i

Vi
T1 + ρi

TiT∗i
c+ T∗i

, (5)

Ṫ∗i = − dT∗T
∗
i + βi(1− uηξi)TiT

∗
i +

vi−1Ai−1,i

Vi
T∗i−1 −

viAi,i+1

Vi
T∗i

+
v1,iA1,i

Vi
T∗1. (6)

The last lymph compartment is given by the model

ṪN =sT − dTTN − βN(1− uηξN)TNT∗N +
vN−1AN−1,N

VN
TN−1

−
vNAN,1

VN
TN +

v1,NA1,N

VN
T1 + ρN

TNT∗N
c+ T∗N

, (7)

Ṫ∗N = − dT∗T
∗
N + βN(1− uηξN)TNT∗N +

vN−1AN−1,N

VN
T∗N−1

−
vNAN,1

VN
T∗N +

v1,NA1,N

VN
T∗1. (8)

C. Simplifying Assumptions

The model can be simplified considerably using the as-
sumptions that the lymph flow rate in all lymph vessels is
equal, i.e.vi = v for all i. Together with the assumption that
the volume of each compartment remains constant this yields
v1,iA1,i = v

(

Ai,i+1 − Ai−1,i
)

and
∑N

i=2 v1,iA1,i = vAN,1 wherev
is the lymph flow rate of one metre per six days.

D. Simplified Compartment Model

Hence, the simplified system becomes





Ṫ1
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(9)

and

Ṫ∗ = −dT∗T
∗ + φβ + vAtrans.T

∗ (10)

whereT∗ is the vector of infected T-cells.



Description Parameter Value Unit Ref.

Blood iB 1 – –
Lymph nodes iLN {3,5,7,9,11} – –
Lymph vessels iLV {2,4,6,8,10} – –

Death rate forT dT 0.01 1
day [4]

Death rate forT∗ dT∗ 0.3 1
day [4]

Infection in blood β1 1.74 · 10−3 mm3

day [4]

Infection in lymph nodes βiLN 1.74 · 10−3 mm3

day –

Infection in lymph vessels βiLV 1.74 · 10−5 mm3

day –
Drug efficiency η 0.9 – [4]

Relative effic. in blood ξi 1 – [8]
Relative effic. in lymph ξiLN , ξiLV 0.1 – [8]

Prolifer. in blood ρ1 0 1
day –

Prolifer. in lymph nodes ρiLN {0,.1,.5,5} 1
day –

Prolifer. in lymph vessels ρiLV 0 1
day –

50% prolifer. const. c 3.45 1
mm3 [4]

Supply rate forT s 50000 1
mm3day

[4]

Lymph flow rate v 166.67 mm
day [9]

TABLE I: Parameter values for simplified model

E. Parameter Values

Note that most parameters have been adapted from a
similar model presented in [4]. They can be found in Table I.
The areas between the compartments (inmm2) and the
volumes of the compartments (inmm3) are given by





A2,3

A3,4
...

A10,11

A11,1





=





0.1
0.1001
0.1002
0.1003
0.1004
0.1005
0.1006
0.1007
0.1008
0.101





, and





V1

V2
...

V11





=





5 · 106

1 · 103

1 · 103

7 · 103

2 · 103

15 · 103

3 · 103

20 · 103

4 · 103

40 · 103

5 · 103





. (11)

Note that similar to the compartment model in [8] the
combined volume of all lymph compartments make up
approximately one percent of the overall body volume mod-
elled. Thus, only a small portion of the lymphatic system
is considered exemplary. Due to simplifying modelling as-
sumptions such as a constant flow rate of the lymph and
constant volume of all compartments, the areas between the
compartments have to increase very slowly to facilitate a
small inflow of liquid from the blood system.

III. B ifurcation Studies

A. Simplified case without inflow of infected T-cells

This section aims to investigate the bifurcation of steady
states in one single, simplified compartment model. Assume
for simplicity the dynamics of one compartment can be
described by

Ṫ =sT − dTT − f T − βTT∗ + ρ
TT∗

T∗ + c
, (12)

Ṫ∗ = − dT∗T
∗ − f T∗ + βTT∗. (13)

Note thatsT is the complete supply of healthy T-cells. This
includes the supply from the Thymus, i.e.s, for one lymph
compartment and inflow from other surrounding compart-
ments. (The inflow of infected T-cells from surrounding
compartments is neglected for simplicity. A perturbation
analysis studying the case of a small inflow/ supply of
infected T-cells will be discussed in the next subsection.)

The outflow out of the compartment is modelled byf T
and f T∗ where f depends on the flow velocityv and the
combined relative area towards neighbouring compartments
as for instance in the fourth right hand term of (1). Note
that the outflow rate affects both species in the same way
but can vary between compartments. In contrast the death
rates are different for healthy and infected T-cells but do
not change in different compartments. Setting (13) to zero
yields Ṫ∗ = −dT∗T∗ − f T∗ + βTT∗ = (βT − dT∗ − f ) T∗ = 0.
Thus, the system has two equilibria. For the first oneT∗s,1 = 0
and for the secondTs,2 =

dT∗+ f
β

. SubstitutingT∗s,1 = T∗ into
(12) set to zero yieldsTs,1 =

sT
dT+ f . In order to study the

stability of this equilibrium the system is linearised around
the equilibrium. The linearised system becomes (whereδ
denotes a perturbation in a variable)

(
˙δT
˙δT∗

)

=





−dT − f −
βsT

dT+ f +
ρsT

c(dT+ f )

0 −dT∗ − f + βsT

dT+ f





(

δT
δT∗

)

(14)

The first eigenvalue at−dT − f is negative asdT > 0
and f > 0. The second eigenvalue at−dT∗ − f + βsT

dT+ f is
negative forβsT < (dT∗ + f ) (dT + f ). Thus, this equilibrium
(representing the uninfected body) is stable if and only if
βsT < (dT∗ + f ) (dT + f ). Hence, if the infection rate or the
supply is too high or the death and outflow rates too low,
the equilibrium is unstable which means the infection is
persistent.

Using Ts,2 =
dT∗+ f
β

in (12) leads to

T∗s,2 =
α

2(dT∗ + f ) β
−

c
2
+
ρ

2β

+

√
(

α

2(dT∗ + f ) β
−

c
2
+
ρ

2β

)2

+ c
α

(dT∗ + f ) β
(15)

whereα = βsT−(dT∗ + f ) (dT + f ). Note that this equilibrium
only exists forα > 0 and thereforeβsT > (dT∗ + f ) (dT + f ).
Otherwise the equilibrium would be negative or complex. To
study the stability of the second equilibrium the system is
linearised around the equilibrium. The resulting matrix is





−dT − f − βT∗s,2 +
ρT∗s,2
T∗s,2+c (dT + f )

(

cρ

β
(

T∗s,2+c
)2 − 1

)

βT∗s,2 0




. (16)

The eigenvalues of a 2× 2 matrix are negative if

• the trace is negative:−dT − f − βT∗s,2 +
ρT∗s,2

T∗s,2+c < 0 is

equivalent toρ < (dT + f )
T∗s,2+c

T∗s,2
+ βT∗s,2 + βc, and

• the determinant is positive:

−βT∗s,2 (dT + f )

(

cρ

β
(

T∗s,2+c
)2 − 1

)

> 0 impliesρ <
β
(

T∗s,2+c
)2

c .



Thus, for choices ofρ small enough the second equilibrium
is stable. The exact upper bound ofρ depends on the
equilibrium that depends onρ itself. In caseρ does not satisfy
the stability conditions, the equilibrium is unstable.

Note that this is a simplified model. For a more accurate
analysis a supply rate of infected T-cells will be added in the
following subsection.

B. Perturbation analysis for small inflow of infected T-cells

In case the concentration of infected T-cells is non zero
in the neighbouring compartments, the dynamics of one
compartment can be described by (12) and

Ṫ∗ =sT∗ − dT∗T
∗ − f T∗ + βTT∗ (17)

where sT∗ describes the combined, effective inflow of in-
fected T-cells from neighbouring compartments. Assume that
sT∗ is very slow, i.e.sT∗ = ε.

It can be shown that, in this case, the first equilibrium
is a perturbed version of the first, healthy equilibrium in
Subsection III-A. Thus,T∗s,1 =

ε
βTs,1−dT∗− f . Assume thatε

is much smaller thenβTs,1 − dT∗ − f and we therefore can
simplify T∗s,1 ≈ ε. ThenTs,1 =

s
dT+ f+ε(β− ρ

ε+c ) . It can be shown
that the first eigenvalue of the linearised system matrix is
approximately−dT− f +ε(β− ρ

ε+c). SincedT+ f > 0 the eigen-
value will be negative for small perturbationsε. The second
eigenvalue can be approximated by−dT∗ − f + βsT

dT+ f+ε(β− ρ

ε+c )
.

Thus, for small perturbations and a low infection rate and
supply of healthy T-cells compared to the combination of
the death and outflow rates, the equilibrium is stable. Note
that the compartment is “infected” as a small concentration
due to the static inflow of unhealthy T-cells remains.

The perturbed second equilibrium can be approximated for
small sT∗ = ε by

T∗s,2 =
α

2(dT∗ + f ) β
−

c
2
+
ρ

2β

+

√
(

α

2(dT∗ + f ) β
−

c
2
+
ρ

2β

)2

+ c
α

(dT∗ + f ) β
+ ε

dT + f − ρ
(dT∗ + f )β

(18)

where now we haveα = β(sT + ε) − (dT∗ + f ) (dT + f ). Note
that again this equilibrium only exists forα > 0 and therefore
β(sT + ε) > (dT∗ + f ) (dT + f ). Otherwise the equilibrium
would be negative or complex. It can further be shown
that, similar to the unperturbed equilibrium, the perturbed
equilibrium is stable for sufficiently small values ofρ.

It should be noted that the different compartments are cou-
pled and the outflow of one compartment appears as a supply
to another compartment. Hence, studying the bifurcation of
a single isolated compartment can only give partial results.
However, as we will see in the next section, this simplified
analysis is still suitable to explain some results that can be
observed in simulations.

IV. Simulation Results and Interpretations

A. The Effect of Virus Induced Proliferation of T Cells

In all scenarios we assume that the body is infected with a
single infected T-cell in the blood after one year. Treatment
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Fig. 3: Scenario 1 withρi = 0 for all i ∈ iLN : T∗i for i = 1
(red), 2 (orange),· · · , N (purple)

is started one year after the infection.
In the first scenario assume that infection does not stim-

ulate T-cell proliferation, i.e.ρi = 0 for all i. Using the
approximate results from Section III we expect the infected
equilibrium to be present for a sufficiently high infection rate
and supply rate. It is stable (if it exists) sinceρ = 0 andc = 0.
Simulations in Fig. 2 and Fig. 3 reveal that upon infection
the infected equilibrium is stable and the concentration of
T settles to an equilibrium. After starting the treatment,
β is reduced, leading to the change towards the heathy,
now stable equilibrium. Hence, the concentration ofT∗

decreases. However, under the treatment, the concentration
of T recovers. This leads to an increased supply ofT in all
compartments. As soon as the supply rate is high enough
in some lymph compartments the infected, again stable
equilibrium appears. Thus, the concentration ofT∗ increases
again and settles to a new equilibrium. In some compartments
the infected equilibrium after treatment ishigher than the
infected equilibrium without treatment such as in the 3rd,
4th and 5th compartment drawn in yellow, light green and
green. Note that in the blood and the first lymph compartment
the effective supply rate together with the reduced infection
rate (due to the drug treatment) is low enough to maintain
the healthy equilibrium.

In scenario 2, see Fig. 4 and Fig. 5, we assume that in-
fection does stimulate T-cell proliferation in all lymph nodes
of ρi = 0.1 for i ∈ iLN . Upon infection the system settles
to the infected equilibrium that is stable in all compartments
as ρ is small enough (or even 0) everywhere. As treatment
is started the infection rate is reduced sufficiently in the
blood for the healthy equilibrium to be stable. However,
the lymph compartments remain at the infected equilibrium
since the treatment is ineffective in the lymph system. This
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Fig. 4: Scenario 2 withρi = 0.1 for all i ∈ iLN : Ti for i = 1
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Fig. 5: Scenario 2 withρi = 0.1 for all i ∈ iLN : T∗i for i = 1
(red), 2 (orange),· · · , N (purple)

equilibrium is shifted to a lower concentration ofT∗ in some
lymph compartments while it remains almost unchanged in
others. This behaviour cannot be fully explained using the
bifurcation analysis in Section III as it seems to be influenced
by the supply rate ofT∗ that has not been considered in the
bifurcation analysis.

In scenario 3 the proliferation rate is further increased to
ρi = 0.5 for i ∈ iLN. Simulations displayed in Fig. 6 and
Fig. 7 reveal that even before commencing treatment the
concentrations of healthy and infected T-cells start oscillating
in some small compartments of the lymphatic system. This
can be explained by observing that the infected equilibrium
seems to be unstable in these compartments asρ is too high.
Thus, the states do not settle to the infected equilibrium but
rather start oscillating. However, this effect does not cause
significant infection of T-cells in the blood asT∗1 (red dashed
line in Fig. 7) remains low. Here, the healthy equilibrium
remains stable.

B. Allowing Simple Mutation

When allowing mutation of the wild type of the virus
to a resistant variant the equations forṪi and Ṫ∗i of each
compartment are extended by adding the terms

−βiTiT
#
i and + µβiTiT

#
i , (19)
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Fig. 7: Scenario 3 withρi = 0.5 for all i ∈ iLN : T∗i for i = 1
(red), 2 (orange),· · · , N (purple)
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Fig. 8: Scenario 4 withρi = 0 for all i ∈ iLN : Ti for i = 1
(red), 2 (orange),· · · , N (purple)

respectively, whereT#
i is the concentration of T-cells infected

with the mutant in compartmenti and µ = 10−20 is the
mutation coefficient. (Note that we take this extremely small
value since we are assuming that at least 3 simultaneous
mutations are required to confer resistance to all drugs in the
combination ART). As we assume that the mutant is resistant
to the treatment, the infection rateβi here is not affected by
the treatment or its relative efficiency in any compartment.
For simplicity we assumeβi to be similar for the wild type
and the mutant. To model a fitness advantage for the wild
type over the mutant we assume that the death rate of the
mutant is higher than that of the wild type:dT# = 0.5/day.

In scenario 4 (shown in Fig. 8 and Fig. 9) a simple model
without proliferation, i.e.ρi = 0 for all i, is simulated. The
concentration of T-cells infected with the resistant mutant
increases upon the start of treatment while the number of
T-cells infected with the wild type decreases rapidly. The
overall number of infected T-cells seem to be approximately
the same as before starting treatment. Further work is needed
for a detailed analysis of the system dynamics.

When setting the proliferation rate toρi = 0.1 in scenario
5 (shown in Fig. 10 and Fig. 11) the concentration ofT∗

in most compartments (including the blood) decreases to a
similar steady state value reached in scenario 4 (i.e. withρi =
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Fig. 11: Scenario 5 withρi = 0.1 for all i ∈ iLN : T∗i (dashed)
andT#

i (dotted) fori = 1 (red), 2 (orange),· · · , N (purple)

0). However, in some small compartments of the lymphatic
system the concentration ofT∗ remains almost unchanged
upon the start of treatment despite the increased number of
T#. The simulation results for the third compartment, i.e. the
first and smallest lymph node, is shown in Fig. 12.

V. Discussions

In this work we have proposed a HIV model consisting of
ten compartments describing several parts of the lymphatic
system such as lymph nodes and vessels of different sizes
and one compartment representing the blood. A simplified
standard model has been used to describe the interaction
between healthy and infected T-cells in each compartment.
While the model in this paper and its parameters could not
be validated, it is based on basic, known properties of the
anatomy of the human body (such as size and structure of
lymph vessels and nodes) and uses a well established model
to describe the dynamics of healthy and infected T-cells.

A bifurcation analysis reveals that in the simplified model
two equilibria (representing the healthy and infected case)
might be present. It was shown that the existence of the
infected equilibrium and its stability depend on system
parameters such as death, supply, infection, flow and pro-
liferation rate. The influence of the proliferation rate was
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examined by simulating different scenarios considering dif-
ferent proliferation rates. This revealed that the proliferation
rate might play a vital role in the effect of HIV treatment.

It was also shown that within different body compartments
different equilibria can be obtained. While in most simulated
scenarios the concentration of infected T-cells in the blood
under treatment approached zero, it settled on a nonzero
value in most other compartments. In some cases the number
of infected T-cells under treatment was higher than without
treatment in some compartments of the body. Furthermore,
in some cases interactions between model compartments led
to changes of equilibria without a change of treatment.

These effects have so far usually been neglected in the
existing body of work on HIV models. However, the authors
believe that a better understanding of these compartments
and their interactions might help to gain a better understand-
ing of the infected body. In particular it might be potentially
important to explain phenomena such as the rapid temporary
increase of the viral load in the blood (known as viral “blips”)
currently not covered by the existing models.

Further investigations and simulations as well as a val-
idation of the model are necessary to understand the role
of proliferation and the overall lymphatic system in HIV
infection and treatment. For instance, it is necessary (but
potentially very difficult) to validate the model and the model
parameters used to describe the dynamics in the lymphatic
system. Further, it seems necessary to investigate whether
a larger system with a more detailed network of lymph
vessels and nodes leads to a significantly better model of
the infected body. Using a more comprehensive HIV model
(including for instance virus population, using different in-
fection or proliferation models, allowing a supply of healthy
T-cells in all compartment or considering a more detailed
mutation model including crossover mutations among other
extensions) might also lead to a better understanding of
the role of the lymphatic system in HIV infection. A more
detailed bifurcation analysis of the system might further help
to understand the underlying dynamics.
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