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Kalman Predictions for Multipoint OFDM

Downlink Channels

Rikke Apelfröjd

Abstract

Coordinated Multipoint (CoMP) transmission provides high theoretic gains in spectral e�ciency
with coherent Joint Transmission (JT) to multiple users. However, this requires accurate Channel State
Information at the Transmitter (CSIT). Unfortunately, coherent JT CoMP often is accompanied by
long system delays, due to e.g. data sharing over backhaul links. Therefore, the CSIT will be outdated.

This report provides a detailed description on how to increase the accuracy of the CSIT by utilizing
Kalman �lters to predict Orthogonal Frequency Division Multiplexing (OFDM) downlink channels. The
small scale fading of these channels are modeled by Auto Regressive (AR) models of �nite order. The
report includes descriptions on how to estimate these models based on past knowledge of the channel
as well as analytical result on the predictability of such models. Di�erent technical design aspects for
deploying the Kalman �lters in communication, such as pilot patterns, AR model estimations and the
location of Kalman �lters that predict downlink Frequency Division Duplex (FDD) channels, are also
discussed.

The aim of the report is to in detail describe the prediction procedure used in previous work. Some
of the results from this previous work are here presented and extended to provide a complete overview.
All simulation results are based on measured channels.

The report also includes a description on how to model block-fading channels with a speci�ed
channel accuracy that would have been obtained with Kalman predictions. This model can then be
used for system simulations.



2

Contents

1 Introduction 3

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Linear Filtering 7

2.1 Short term fading models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Predictability of Auto-Regressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Kalman �lter and predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The stationary �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Estimating AR models for multipath CoMP channels 14

3.1 State space modeling for one channel component . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Estimating the poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Sub-sampling with respect to the prediction horizon . . . . . . . . . . . . . . . . 17
3.3 State space modeling of channels from multiple base stations . . . . . . . . . . . . . . . 18
3.4 Estimation of covariance matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Design choices for AR modeling and Kalman prediction 22

4.1 The time interval for re-adjusting AR models . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 The choice of AR model order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The number of jointly predicted subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Initiating the �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Pilot patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Location of the Kalman �lters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Measurement based predictions 31

5.1 Channel measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Simulation assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Comparing outdated CSI and predicted CSI . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 The e�ect of resource-orthogonal versus code-orthogonal pilot patterns . . . . . . . . . . 34
5.5 The in�uence of intercluster interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 E�ect of the system delays on the prediction NMSE . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 41

Appendix A: Simulating Kalman predictions for block fading channels 42

Appendix B: Average NMSE statistics 43

Appendix C: Process noise covariance matrix for identically distributed or uncorrelated

channels 43

Appendix D: Estimating the process noise covariance matrix for correlated and di�er-

ently distributed channels 45



3

1 Introduction

Shadowed areas and interference at cell borders pose challenges for future wireless broadband systems. A
potentially powerful remedy would be Coordinated Multipoint (CoMP) transmission, which have presently
been added as a study item to the 3GPP LTE standard in Release 11 [1].

CoMP techniques for downlink transmission are often categorized into two groups [2,3]; joint scheduling
and/or joint beamforming and Joint Transmission (JT). The second group has the potential to provide
the largest gains, see e.g. [3, 4], but is also more sensitive to inaccurate Channel State Information at the
Transmitter side (CSIT). Near accurate CSIT is especially important for coherent JT CoMP [5, 6], also
known a network Multiple-Input Multiple-Output (MIMO).

For Frequency Division Duplex (FDD) systems the CSIT is based on measurements of downlink pilot
symbols, i.e. symbols that are known at both transmitter and receiver side. Depending on where the
channel estimation is localized, either these measurements or the CSIT is quantized at the receiver side
and fed back through the uplink to the base stations. For a centralized CoMP scheme, the CSIT is sent
over backhaul links to a Control Unit (CU)1. In the CU, CoMP decisions, such as which beamforming
weights to use, are made based on the CSIT and sent over backhaul to the cooperating base stations
which then serve the users. This process is time consuming and therefore the estimated channel might not
be valid at the time the messages are transmitted. This outdating of CSIT is especially severe for high
mobility users [5].

The problem of outdated CSIT can to some extent be counteracted by channel predictions. Linear
channel predictions through Kalman �ltering have been suggested repeatedly in the literature and have
shown to increase the accuracy of CSI, see e.g. [7, 8]. If the statistics of the channel (the channel model)
is perfectly known, then the Kalman �lter provides optimal prediction with respect to the Mean Squared
Error (MSE) [9, 10].

In [11] Kalman predictions for Orthogonal Frequency Division Multiplexing (OFDM) MIMO channels
where thoroughly investigated. In [12�14] these were further extended and utilized for CoMP systems.
Results showed that channel predictions through Kalman �lters provided large gains in CSIT accuracy.
The predicted channels were then used together with robust linear precoding techniques for coherent
downlink JT CoMP. The predictions were shown to be su�cient to ensure high gains for JT CoMP as
compared to single cell transmission with reuse 1.

Kalman �lters have the bene�t that they provide, not only the the optimal prediction, but also the
second order statistics of the prediction errors. These are used in the robust precoder design in [12�14]
to ensure that poorly predicted channels do not ruin the possibilities of having CoMP gains. They could
also be used for other applications. Such an application could be adjust the quantization granularity
in adaptive quantization schemes. The channels that are hard to predict would then be given a lower
quantization granularity than the channels that are easy to predict. If the feedback capacity is limited by
a total number of quantization bits, this type of adaptive quantization scheme allows di�erently strong
channels to be represented with balanced accuracy levels. The quantization errors can then be controlled
to have roughly the same order of magnitude as the prediction errors, thereby lowering the additional
impact of the quantization error on the precoder performance.

Channel predictions with Kalman �lters can, as was shown in [12, 14], push the limit of when users

1The CU is a logical entity that is responsible for making the CoMP choices. It may be located at one or more of the
base stations within the coordinated cluster of base stations.
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may bene�t from coherent JT CoMP. However, the bene�ts from channel predictions are not limited to
JT CoMP applications. Near accurate CSIT is also important for multi-user MIMO gains [15]. Moreover,
in [16] it was shown that accurate CSI enable the gain of adaptive modulation and coding schemes. The
covariance information obtainable by Kalman prediction can also be used to adjust the adaptive schemes
so that target bit error rates are attained also in the presence of channel uncertainty [17].

The small scale fading of a radio channel is a result of a user moving through a standing wave pattern.
This wave pattern can be described by a sum of damped sinusoids. Many schemes for linear prediction are
based on the propagation of ideal sinusoids, see e.g. [18]. In reality the sinusoid components of measured
channels are not perfect, but damped. The Kalman �lter is based on a state space channel model that
includes damped (or ideal) sinusoids and is the optimal linear predictor, under either of these assumptions.

The dampening of the sinusoids limits the predictability of small scale fading channels based on the
fading statistics [19]. For prediction horizons beyond these limitations on predictability other solutions
must be used. One such solution is to place a predictor antenna in front of the receive antenna in the
direction of travel of the user [20]. The predictor antenna then �looks into future�. This solution is ideal
for vehicles where antennas can be placed on the roof, but impractical for e.g. pedestrian user as it would
then be di�cult to place the predictor antenna correctly. In the here presented simulations of Kalman
predictions without a separate predictor antenna, we therefore focus on predictions for low mobility users
such as pedestrians or cyclists.

1.1 Contributions

This report provides a detailed description of the Kalman predictor that is used in [12�14]. In order to
provide a clear overview, some of the results in [11] are also included. The measurement based prediction
results of [12,14] are included and presented in more detail. These results include prediction performance
for di�erent prediction horizons, with di�erent levels of intracluster noise and with di�erent pilot patterns.

System delays, due to prediction calculations, feedback and backhaul transmission of CSIT, sharing of
payload data over backhaul, precoder calculations and transmission of precoding weights over backhaul,
will cause outdating of CSIT. The e�ect of the system delay on the CSIT is here studied, both with and
in the absence of Kalman �lters.

The small scale fading of channels is represented by Auto Regressive (AR) models. The theoretical
results on how to calculate the predictability of such channels are here provided.

For CoMP downlink transmission, base stations are assumed to be partitioned into cooperation clusters.
The base stations within a cluster would use CoMP to control the intracluster interference, while the base
stations outside a cluster cause intercluster interference. There is a trade-o� in the cluster size. A large
cluster size will provide less intercluster interference, but cause larger system delays due to e.g. backhaul
via multiple links and nodes. A large system delay will in turn cause more outdating of the CSIT, which
will cause higher intracluster interference. Fortunately, reasonably sized clusters, with respect to system
delays, can be formed if the intercluster interference is limited through di�erent schemes, see. e.g. [21�23].
In Section 5, intercluster interference suppression is shown to be very important for prediction performance.

An issue with CoMP, is that the total number of transmit antennas in the cluster will be large. If all
antennas are to transmit downlink pilots on orthogonal time-frequency resources of an OFDM downlink,
then the pilots must either be transmitted very sparsely or the pilot overhead will be large. In [24] a code-
orthogonal pilot pattern was suggested for multi-user uplink transmission. Pilots from di�erent terminals
are then transmitted on the same resources using Code-Division Multiple Access (CDMA) techniques. This
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pattern was adjusted for downlink MIMO transmission in [11]. Here, the e�ect of code-orthogonal and
resource-orthogonal pilot patterns are investigated. Based on these investigations, a solution is suggested
in which pilots from transmitters at the same base station should be code-orthogonal, while transmitters
from di�erent base stations should use resource-orthogonal pilots.

The simulations results in this report are all base on channel measurement. However, the report also
includes an appendix describing how to simulate predicted channels and prediction errors in a block-fading
simulator under the assumption that Kalman �lters are used for predictions. Such simulated channels were
used for the comparison of di�erent CoMP schemes in [5]. The main idea behind them is to ensure that
predictions and prediction errors are uncorrelated, as is the case with optimal predictors. A similar concept
is used in [25].

1.2 Structure of the report

In Section 2, the mathematical model of short term fading, used in this report, is described. Analytical
results on the predictability of such models is provided. The section also includes a description on the
Kalman �lter and prediction equations. These are brie�y motivated, but for a detailed derivation, readers
are referred to the extensive literature on the topic, e.g. [9, 10].

The problem of estimating the mathematical models of the small scale fading for MIMO CoMP channels
is described in Section 3. The description on how to estimate channel models for MIMO channels in the
frequency domain, Section 3.1-3.2, follows [11], with the exception that here the MIMO channels are not
assumed to be uncorrelated. The model is then extended to include channels from base stations at multiple
sites, Section 3.3.

Section 4 includes discussions on di�erent design issues when estimating the mathematical models of
Section 3 and when deploying the Kalman �lters. These discussions include

1. The model order for the models of fading channels,

2. The frequency with which the models should be re-estimated,

3. The issues and bene�ts of jointly predicting several correlated subchannels,

4. How to initiate the Kalman �lters,

5. How to design the pilot patterns,

6. Where to locate the channel predictors.

In Section 5 and Appendix B, simulations for di�erent prediction scenarios are presented. These simula-
tions are based on 20 MHz downlink channels that were measured in an urban environment at a carrier
frequency of 2.66 GHz, which is typical for 3GPP LTE systems.

The conclusions drawn from the simulations in Section 5 are summarized in Section 6.
Finally, Appendix A includes a description on how to simulate channel predictions in a block-fading

model with the assumption that they were obtained by Kalman predictors in a prescribed fading environ-
ment.
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1.3 Notations and assumptions

Assume that a cluster of NBS base stations, each with Ntx antennas, are participating in CoMP trans-
mission. The object is to estimate and predict the multipath OFDM channels between them and a single
user with Nrx receive antennas. Also, assume Nk pilot-bearing subchannels with negligible Inter Symbol
Interference (ISI) and Inter Carrier Interference (ICI). The channel between one transmit antenna and one
receiver at one subcarrier can then be represented as a scalar complex-valued gain. The equations are all
in discrete time where each time step is de�ned by the pilot spacing in time.

Unless otherwise speci�ed, capital letters refer to matrices and lower case letters to column vectors.
Sub-indices j, n,m, k will indicate the part of a matrix that is associated with base station j = 1, ...., NBS ,
transmit antenna n = 1, ...., Ntx, receive antennam = 1, ...., Nrx and subcarrier k = 1, ...., NK , respectively.

The conjugate transpose of a matrix A is denoted A∗ and diag {Ai}i=1,...,N indicates a block diagonal
matrix  A1

. . .

AN

 .
The trace of a matrix is denoted tr {A}, while � and � denote element-wise multiplication and element-
wise division respectively. An estimate of a vector a at the time t is denoted â(t|t − τ) if it is based on
measurements available for all past data up until time t− τ . Expectations, E [·], are over the statistics of
noise.
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2 Linear Filtering

The Kalman �lter was �rst introduced by Rudolf Kalman [9] in 1960. It is the optimal linear �lter with
respect to minimizing the Mean Square Error (MSE) of the estimate and can be derived from the Wiener
�lter [10]. Both the Kalman and Wiener �lters are optimal linear �lters. Their di�erence lies in the
execution. The Kalman �lter is based on the state space model of the system and, although each estimate
is based on all available measurements, only the latest measurement is needed to update the estimate in
every step. Therefore it is well suited for systems that cannot store large amounts of measurement data,
such as mobile phones where memory allocated to baseband signal processing applications is limited.
Furthermore, per-subframe processing over time is preferred to processing that uses large sets of past
data, due to complexity and implementation reasons. The Kalman �lter also provides the covariances of
the estimates as part of the updates. For the Wiener �lter, these must be calculated separately.

2.1 Short term fading models

Ideally, a set of fading channels can be described as a sum of perfect sinusoid representing the standing
wave pattern of the environment, due to re�ections from discrete re�ectors or scatterers. In reality, the
fading of the channels is often better described by a sum of damped sinusoid and a process noise, see [26].
Use of process noise with constant variance will then assure that the model is wide sense stationary, i.e.
that the statistical properties of the channel model does not change over time. This can be mathematically
expressed as an Auto-Regressive (AR) model or, more generally, as an Auto-Regressive Moving-Average
(ARMA) model, on state space form

x(t+ 1) = Ax(t) +Be(t),

h(t) = Cx(t).
(1)

Here, x(t) is a state vector and A, B and C are state matrices. The vector h(t) includes the MIMO
channels between a user with Nrx antennas and NBS base stations, each with Ntx transmit antennas. The
process noise e(t) used in this model is assumed white, i.i.d. zero mean and independent with respect to
the state vector. It has a covariance matrix

Q = E [e(t)e(t)∗] . (2)

The AR or ARMA model of (1)-(2) is a mathematically correct representation of a sum of dampened
sinusoid if its poles are all inside the unit circle, i.e. if the system is stable. The ideal case with undamped
sinusoids is described if the poles are exactly on the unit circle. The process noise will go to zero if all
poles are moved towards the unit circle. This means that the state vector that describes a sum of sinusoids
will regenerate itself, with no unpredictable exogenous in�uence e(t). That, in turn, implies that if the
current state is exactly known, then undamped sinusoids with perfectly known properties can be perfectly
predicted in�nitely into the future.

In this report, the focus will be on AR models, as the complexity with solving these, based on measured
training data, is lower than that associated with solving ARMA models.
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2.2 Predictability of Auto-Regressive models

The predictability of a channel that follows the model of (1) depends on the state matrices and on the
covariance matrix of the process noise. The one step prediction of the channel h(t) in (1) is given by

ĥ(t+ 1|t) = Cx̂(t+ 1|t). (3)

Here x̂(t+ 1|t) is the one step prediction of the state vector. Assume that we have full knowledge of the
channel up until time t, then x(t) is known. As e(t) is white and independent, the best estimate (that
which maximizes the entropy) of e(t) is given by its mean, i.e. ê(t) = E [e(t)] = 0. Then, the best estimate
of the state vector is

x̂(t+ 1|t) = Ax(t) + ê(t) = Ax(t), (4)

and for the channel vector it is

ĥ(t+ 1|t) = Cx̂(t+ 1|t) = CAx(t). (5)

As this prediction maximize the entropy, there is, on average, no prediction that performs better than (5).
Hence, if the model (1), (2) exactly describes the evolution of the channel vector h(t), then the covariance
matrix of the optimal one step prediction error vector is through (1)-(5) given by

E
[(
ĥ(t+ 1|t)− h(t+ 1)

)(
ĥ(t+ 1|t)− h(t+ 1)

)∗]
=E [(−CBe(t)) (−CBe(t))∗]
=CBQB∗C∗.

(6)

With a similar reasoning the covariance matrix of the optimal τ -step prediction error is given by

E
[(
ĥ(t+ τ |t)− h(t+ τ)

)(
ĥ(t+ τ |t)− h(t+ τ)

)∗]
=C

(
τ−1∑
i=0

AiBQB∗
(
Ai
)∗)

C∗.
(7)

Figure 1 shows the Normalized Mean Squared Error (NMSE) of the theoretical prediction error with
optimal prediction and known state vector x(t) as given by (7). The two curves show the achievable
performance for predictions of a scalar channel component h(t) with unit variance when the AR model
in (1) has model order four with poles in 0.91± 0.35i and 0.86± 0.33i or in 0.82± 0.29i and 0.70± 0.10i
respectively. Other parameters are stated in Table 1. These two models give rise to one very spiky spectrum
(resembling the Jakes' Doppler spectrum) and one �at spectrum as shown in Figure 2. The results are
shown as a function of the spatial prediction horizon expressed in number of carrier wavelengths dλ. This
can be translated into a prediction horizon L in time through

L =
dλ · c
v · fc

, (8)

where c is the speed of light, v is the users velocity and fc is the carrier frequency. This means that
if the prediction horizon in time, through the system delay, is �xed, then a fast user will have to use a
longer spatial prediction horizon than a slow user and hence experience a worse prediction performance.
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Figure 1: The theoretic predictability of AR models given by (7). The fourth order models have the poles
and spectra shown in Figure 2. Prediction horizons dλ are expressed in terms of number of wavelengths
in space.

Table 1: Parameter setting for theoretical results.

Parameter Value

Carrier frequency 3.7 GHz

Bandwidth 50 MHz

Number of subcarriers 2048

User velocity 50km/h

Pilot spacing in time 345.6 µs

Pilot spacing in frequency 24 kHz
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(a) Spectrum 1: �Jakes'-like� spectrum with poles in
0.91± 0.35i and 0.86± 0.33i.
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(b) Spectrum 2: �Flat� spectrum with poles in 0.82±0.29i
and 0.70± 0.10i.

Figure 2: The Doppler spectra of the AR models used for Figure 1. Both spectra are normalized to have
maximum Doppler frequency 1 and total power 1.

Note also, that as the poles move closer to the unit circle the spectrum gets more distinct peaks and the
predictability increases. This is because the signal more closely resembles a �nite sum of �pure� sinusoids,
which are easier to predict.

The curves in Figure 1 provide an upper bound on predictions performance. Errors in the AR model,
or the use of noisy measurements of the channels up until time t, will decrease the performance.

2.3 Kalman �lter and predictor

In this section the Kalman equations are stated with a brief motivation. For the detailed derivations of
these, please refer to some of the extensive literature on the subject, e.g. [10].

Assume that the statistical properties of the small scale fading can be described by (1)-(2). The �lter
input is a measurement or estimate of the channels at time t, described by

y(t) = Φ(t)h(t) + n(t), (9)

where Φ(t) is a matrix consisting of zeros and of pilot symbols, i.e. symbols that are known at the receiver
and transmitter side, and n(t) is a measurement noise term. The noise generally consists of interference
from base stations that are outside the cooperation cluster, thermal noise and additional background noise.
The covariance matrix of the measurement noise is

R = E [n(t)n(t)∗] . (10)

A rough estimate of this noise covariance matrix can be gained by e.g. using a smoothed estimate of
the channel ĥ(t|t + τ) and calculating the residual y(t) − Φ(t)ĥ(t|t + τ) as an estimate of the noise
n(t). However, this estimate might be very coarse, which can potentially a�ect the estimate of R and
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the prediction performance negatively. A more sophisticated method to gain an estimate of the noise
variances is described in [27]. A third alternative is to use time-frequency resource blocks without signal
transmission, and estimate noise properties from the received signals in these blocks.

The Kalman �lter is recursive, so for now we will assume that all measurements y(0) up until y(t− 1),
as well as an Minimum Mean Squared Error (MMSE) estimate of the state vector, x̂(t− 1|t− 1), and the
corresponding error covariance matrix

P (t− 1|t− 1) = E [(x(t− 1)− x̂(t− 1|t− 1)) (x(t− 1)− x̂(t− 1|t− 1))∗] , (11)

are available. For a discussion on how to initiate the �lter please see Section 4.4.
As the process noise is assumed zero mean, the one step MMSE prediction of the state vector is given

by
x̂(t|t− 1) = Ax̂(t− 1|t− 1). (12)

The corresponding covariance matrix is then

P (t|t− 1) = E
[
(x(t)− x̂(t|t− 1)) (x(t)− x̂(t|t− 1))

∗]
,

= AE
[
(x(t− 1)− x̂(t− 1|t− 1)) (x(t− 1)− x̂(t− 1|t− 1))

∗]
A∗ +BQB∗,

= AP (t− 1|t− 1)A∗ +BQB∗,

(13)

where the second equality holds if the estimate of the state vector is uncorrelated with the process noise at
time t−1. This holds as x̂(t−1|t−1) is estimated based on the measurements y(0), ..., y(t−1) which only
depend on e(0), ..., e(t − 2). From the covariance matrix (13) we now calculate the Kalman gain matrix
K as

K = P (t|t− 1)J∗ (R+ JP (t|t− 1)J∗)−1 , (14)

where J = Φ(t)C. Through this we can calculate an updated estimate of the state vector and the
corresponding estimation error as soon as the next measurement, y(t), is available. These are the given
by

x̂(t|t) = x̂(t|t− 1) +K (y(t)− Jx̂(t|t− 1)) ,

P (t|t) = (I −KJ)P (t|t− 1).
(15)

If the Kalman gain is high (has large elements), due to the measurement noise n(t) having small variance
compared with the one step prediction error, then the updated estimate will be based mostly on the latest
measurement y(t) [10]. If the measurement noise has large variance compared to the one step prediction
error variance then the Kalman gain will be low and the updated estimate will mostly be based on the
one step prediction that uses the model based extrapolation (12).

The τ step MMSE prediction follows the same reasoning as the one step prediction in (12) and is given
by

x̂(t+ τ |t) = Ax̂(t+ τ − 1|t),
= A2x̂(t+ τ − 2|t),
= Aτ x̂(t|t).

(16)

Note that if the system is stable then x̂(t + τ |t) → E [x(t)] as τ → ∞. The covariance matrix for the
prediction error can be calculated recursively, beginning with P (t|t) from (15) through

P (t+ ti|t) = AP (t+ ti − 1|t)A∗ +BQB∗, (17)
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for ti = 1, ..., τ resulting in

P (t+ τ |t) = AτP (t|t) (A∗)τ +

τ−1∑
i=0

AiBQB∗ (A∗)i . (18)

The τ step prediction of the channel is, through (1) and (16),

ĥ(t+ τ |t) = Cx̂(t+ τ |t) = CAτ x̂(t|t), (19)

and the corresponding covariance matrix can be calculated from (17) as

Ph(t+ τ |t) = E
[(
h(t)− ĥ(t+ τ |t)

)(
h(t)− ĥ(t+ τ |t)

)∗]
,

= CE [(x(t)− x̂(t+ τ |t)) (x(t)− x̂(t+ τ |t))∗]C∗,
= CP (t+ τ |t)C∗.

(20)

2.3.1 The stationary �lter

A property of the Kalman �lter is that for time invariant models, i.e. for time-invariant matrices A, B,
C and Q in (1), (2) and R and J = Φ(t)C in (14), as t → ∞, the covariance matrices P (t|t − 1) and
P (t|t) given by (13) and (15) converge as P (t|t) → Pf , P (t + 1|t) → Pp. This state is referred to as the
stationary state. Combining equations (13)-(15) we then see that the stationary covariance matrix of the
one step prediction error then obeys the algebraic Riccati equation

Pp = APpA
∗ +BQB∗ −APpJ∗ (JPPJ

∗ +R)−1 JPpA
∗. (21)

The stationary estimation error covariance matrix is then given by

Pf = Pp − PpJ∗ (JPpJ
∗ +R)−1 JPp. (22)

The corresponding stationary Kalman �lter gain will be a constant matrix, obtained by substituting Pp
for P (t|t−1) in (14). The prediction performance of a Kalman predictor will be signi�cantly worse during
its initial transient, before it has reached its steady state. How fast the �lter converges to the stationary
state depends on the placement of the poles of (1) and the SNR of the signal in (9). This is illustrated
in Figure 3 where P (t|t − 1) is calculated recursively from (13) and compared with its stationary value
Pp calculated through (21), for the settings in Table 1. The graphs show the maximum norm of the
matrix (P (t|t− 1)− Pp) normalized with the maximum norm of Pp as a function of time for di�erent
measurement SNR and for the two di�erent systems characterized by the Doppler spectra in Figure 2.
The �lter with the �at spectrum of 2b shows faster convergence that that with the Jakes'-like spectrum
of Figure 2a. Also, the �lters converge faster when the SNR is high.

If the symbol matrix Φ(t) in (9) is cyclic with a period T , then the covariance matrices will instead
converge towards a cyclic function of time, i.e. P (t|t) → Pf (t) = Pf (t + T ) and P (t + 1|t) → Pp(t) =
Pp(t+ T ) [11].
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(b) Spectrum 2.

Figure 3: The maximum norm of P (t|t− 1)− Pp normalized with the maximum norm of Pp. Results are
shown for di�erent SNR of the measurement signal (9). The system in (1) is a fourth order AR-model
with the poles in 0.91±0.35i and 0.86±0.33i (right) and in 0.82±0.29i and 0.70±0.10i (left) respectively,
i.e. with the Doppler spectra of Figure 2. The initial covariance matrix, P (0|0), is given by (50). Note
that these results are theoretical.
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3 Estimating AR models for multipath CoMP channels

The estimates and predictions of Section 2.3 assume that the statistics of the channel described by (1) is
perfectly known. In reality these properties must be estimated. The estimated models will be based on an
�nite set of past channels which may not be exactly known. This will lead to a residual error not included
in the analytical expressions of (15), (17) and (20). In applications where CoMP decisions are based not
only on the channel estimate, but also the covariance matrix of the estimation error, such as the robust
linear precoder in [12, 13], this can cause problems. It is therefore important that the channel model is
precise enough such that the residual error due to model inaccuracies are much smaller than the prediction
errors. Alternatively, the covariance matrices used for precoder design must be modi�ed to include also
these residual errors.

The Kalman �lter can be realized in the time domain or in the frequency domain. Depending on which
of these that is chosen, the process noise covariance matrix in (2) will be di�erent. This report focuses on
how to estimate AR models for Kalman �ltering in the frequency domain. The main results from Chapter
4 of [11] are included in this section. For details on derivations on how to estimate an AR model for
Kalman �ltering in the time domain approach, please see [11].

For the models in this section we shall make the following assumptions:

1. All MIMO channels between a user and a base station are identically distributed. This is reasonable
as the signal propagation is very similar for signals transmitted from closely spaced antennas at the
same base station.

2. All subcarriers have identically distributed channels. Generally, higher frequencies interact more with
matter and therefore experience higher path loss, but when the carrier frequency � the bandwidth,
a frequency independent distribution is a good approximation.

3. The correlation between channels on two subcarriers depends only on the separation (in Hz) of the
subcarriers, not on their individual carrier frequencies. As for the second assumption, this is a good
approximation if the carrier frequency � the bandwidth.

4. The small scale fading of the channels from di�erent base stations are independent. This is also
a reasonable assumption, as the signals from di�erent base stations will travel very di�erent and
widely spaced paths to the user2.

5. The channels are wide sense stationary. This is approximately true over small time intervals for the
short term fading. It is necessary for using the time independent state matrices in (1).

6. All channels are zero mean. Note that for Rician channels with strong Line of Sight (LOS) compo-
nents, the total channel is htot(t) = h(t) + h̄(t) where h(t) is a zero mean component which is traced
by the Kalman �lter and h̄(t) is the mean of htot(t), which could be estimated and added separately.
In practice, we mostly do not track LOS components separately, but let them be included in the AR
model as a strong spectral peak close to the Doppler frequency zero.

2Note that the same reasoning does not apply to the shadow fading, which is likely to be correlated for di�erent base
stations. For example, along a road more than one base station is likely to have good signal strength while all base stations
may have poor signal strength in a courtyard.
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3.1 State space modeling for one channel component

Let hjnmk(t) denote the fading scalar channel component from the n'th transmitter at base station j to
the m'th receiver of the user at pilot-bearing subcarrier number k. We can then �t a nAR order AR model
to that particular channel as

hjnmk(t) = −a1hjnmk(t− 1)− ...− anARhjnmk(t− nAR) + ejnmk(t). (23)

Here, the coe�cients {ai} are complex-valued constants, denoted the AR coe�cients, and the process
noise ejnmk(t) is zero mean, scalar, complex-valued and independent over time. There can, however, be
dependency between process noise at di�erent subcarriers, receive antennas and transmit antennas.

The AR model (23) can be transformed to the discrete temporal frequency domain (z transform
domain) as

hjnmk(z) =
znAR

znAR + a1znAR−1 + ....+ anAR
ejnmk(z), (24)

or

hjnmk(z) =
znAR

(z − p1)(z − p2)...(z − pnAR)
ejnmk(z), (25)

where {pi} are the poles of the AR model. Furthermore, the expression in (23) can be rearranged to state
space form as

xjnmk(t+ 1) = Ajnmkxjnmk(t) +Bjnmkejnmk(t),

hjnmk(t) = Cjnmkxjnmk(t),
(26)

where the dimensions are given by
xjnmk(t) ∈ CnAR×1,

Ajnmk ∈ CnAR×nAR ,
Bjnmk ∈ CnAR×1,

Cjnmk ∈ C1×nAR .

Based on the AR coe�cients in (23), the state matrices of (26) can be arranged on di�erent standard
(canonical) state space forms such as diagonal, controllable or observable form, see e.g. [28]. Here, the
diagonal form is chosen, as it will result in lower computational complexity in the Kalman �lters, see [11].
The poles {pi} can be obtained from the channel coe�cients in (23), see Section 3.2 for details. In the
following, assume that all poles are distinct, i.e. pi 6= pl for any l 6= i. Under that assumption, we can
create a state-space representation on diagonal form:

Ajnmk =


p1 0 · · · 0
0 p2 0
...

. . .
...

0 0 · · · pnAR

 ,

Bjnmk =

 (p1 − p2)−1 (p1 − p3)−1 .... (p1 − pnAR)−1

...

(pnAR − p1)−1 (pnAR − p2)−1 .... (pnAR − pnAR−1)−1

 ,
Cjnmk =

[
pnAR−1

1 · · · pnAR−1
nAR

]
.

(27)
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If some poles are close to each other (pi ≈ pl), then some of the elements of Bjnmk will be very large which
may cause computational problems. We might then replace Bjnmk and Cjnmk with 1

βBjnmk and βCjnmk
where β is a scaling constant chosen to normalize e.g. the largest element in Bjnmk. This scaling does not
change the solution with respect to (23).

If the poles are not distinct, then the Jordan form state space model, which is a generalization of the
diagonal form, can be used instead [28]. However, from our studies of measured radio channels we have
seen that in practice multipoles (pi = pl) do not occur in low order AR models of their short term fading.
Nevertheless, for very spiky spectra the poles may tend to be placed very close to each other.

3.2 Estimating the poles

Multiplying both sides of the expression in (23) with h∗jnmk(t− τ) for τ = 1, ..., nAR will provide a set of
nAR equations for any given t. Taking the expectation over both sides of these gives

rh,jnmk(1)
rh,jnmk(2)

...
rh,jnmk(nAR)

 = −


rh,jnmk(0) rh,jnmk(−1) · · · rh,jnmk(1− nAR)
rh,jnmk(1) rh,jnmk(0) rh,jnmk(2− nAR)

...
. . .

...
rh,jnmk(nAR − 1) rh,jnmk(nAR − 2) · · · rh,jnmk(0)

 a, (28)

where a =
[
a1 · · · aNAR

]T
and rh,jnmk(τ) = E

[
hjnmk(t)h

∗
jnmk(t− τ)

]
is the autocorrelation of the

channel hjnmk(t) over time.
Assume that we have access to a set of channel estimates h̃jnmk(t1), h̃jnmk(t1 + 1), ..., h̃jnmk(t2) which

may e.g. be estimates of the channel components, ĥjnmk(t|t), calculated from (15) or smoothed estimates

ĥjnmk(t|t+ τ), see [10]. These will be referred to as the training sequence. From the training sequence we
can estimate the autocorrelation function of each channel component over time through

r̂h,jnmk(τ) ≈ 1

t2 − t1 − τ

t2∑
t=t1+τ

h̃jnmk(t)h̃
∗
jnmk(t− τ). (29)

As the di�erent subchannels are assumed to follow the same statistical distribution, the estimate of the
autocorrelation can be improved upon if all channels over all subcarriers are taken into account. The same
argument can be applied for the MIMO channels, leading to an autocorrelation estimate of

r̂h,j(τ) =
1

NtxNrxNk

Ntx∑
n=1

Nrx∑
m=1

Nk∑
k=1

r̂h,jnmk(τ). (30)

The least square estimate of the coe�cients in (23) can then be obtained using the Yule-Walker equa-
tions [29] and the autocorrelation functions as

â = −


r̂h,j(0) r̂h,j(−1) · · · r̂h,j(1− nAR)
r̂h,j(1) r̂h,j(0) r̂h,j(2− nAR)

...
. . .

...
r̂h,j(nAR − 1) r̂h,j(nAR − 2) · · · r̂h,j(0)


−1 

r̂h,j(1)
r̂h,j(2)

...
r̂h,j(nAR)

 , (31)
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where â =
[
â1 · · · ânAR

]T
is a vector with the estimates of the parameters {ai} in (23). Now,

comparing (24) with (25) we see that through the coe�cients the poles {pi} can be extracted by solving
the equation

p(z) = znAR + a1z
nAR−1...anAR = 0. (32)

Estimating the parameters through (30) and (31) is, in [11], called the autocorrelation method. In
Chapter 8 of [11] two other least squares estimation methods, namely the covariance method and the
modi�ed covariance method are also described. These are similar to the method above but tend to place
the poles closer to the unit circle and provide di�erent end results in terms of prediction performance
metrics. Which of the methods to use depends on the channels that are to be predicted. In [11] the
di�erent methods were evaluated on measurement data (similar to that described in Section 5.1). The
autocorrelation method was then found to provide AR models that generate better prediction performance
and, in the investigated cases, the results were closer to the theoretic performance of (20).

3.2.1 Sub-sampling with respect to the prediction horizon

The use of (30) and (31) will �nd the AR parameters that minimize the variance of the one step prediction
error, obtained with the model, hjnmk(t)− ĥjnmk(t|t−1) = hjnmk(t) +

∑nAR
i=1 aiĥjnmk(t− i). However, the

end goal is to minimize the τ 'th step prediction. Then the pole estimation of (30)-(32) might no longer
be optimal from a prediction point of view. In fact, it was shown in [11] that the prediction performance
can be improved by sub-sampling the model in (23) by a factor τ as

hjnmk(t) = −b1hjnmk(t− τ)− ...− bnARhjnmk(t− τ · nAR) + εjnmk(t), (33)

where εjnmk(t) is the residual. Estimation of such an AR model will tend to minimize the τ -step model pre-
diction error. Use of such a subsampled model will therefore align the criterion used for model adjustment
more closely with the intended purpose of the model, which is τ -step prediction.

Applying the above reasoning we can then obtain the estimates of the AR parameters b̂ =
[
b̂1 · · · b̂nAR

]
of the subsampled model (33) through

b̂ = −


r̂h,j(0) · · · r̂h,j((1− nAR)τ)
r̂h,j(τ) r̂h,j((2− nAR)τ)

...
. . .

...
r̂h,j((nAR − 1)τ) · · · r̂h,j(0)


−1 

r̂h,j(τ)
r̂h,j(2τ)

...
r̂h,j(nARτ)

 , (34)

with covariance function values r̂h,j(τ) given by (30). The poles of the subsampled model, psub,i are
obtained as the roots of the polynomial pτ (z) = znAR + b1z

nAR−1 + ...bnAR and can then be translated to
the poles of the model in (23) through

pi = p
1/τ
sub,i, (35)

for i = 1, 2, ...nAR.
With the approach outlined in this section, there is a tendency that the poles are placed very close to

each other, especially in extreme cases such as e.g. if the fading statistics follows a perfect Jakes' model.
This in turn leads to Bjnmk in (27) having some very large elements causing computational errors unless
the state matrices are normalized as explained in Section 3.1.
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3.3 State space modeling of channels from multiple base stations

As the same estimate of the autocorrelation is used for all subchannels and all OFDM MIMO channels
between a base station and a user, the state matrices in (26) are the same for all k = 1, ..., Nk subcarriers,
m = 1, ..., Nrx receive antennas and n = 1, ..., Ntx transmit antennas. In addition, as the fading over the
subcarriers are correlated, the prediction errors can be improved by jointly estimating and predicting w
subcarriers. The Nk pilot-bearing channels will then be estimated by Nk/w parallel �lters which we shall
index with q = 1, ...,Nk/w. For simplicity we will assume that the number of subcarriers per �lter w is
chosen such that Nk is divisible with w.

3

Let the vector of w channel components from transmit antenna n at base station j to receive antenna
m that are to be estimated and predicted by Kalman �lter number q be denoted

hqjnm(t) =
[
hjnm((q−1)w+1)(t) · · · hjnm(qw)(t)

]T
. (36)

We can then set up a state space model that describes the joint statistical properties of these w scalar
channel components:

xqjnm(t+ 1) = diag {Ajnmk}k=1,...w x
q
jnm(t) + diag {Bjnmk}k=1,...w e

q
jnm(t),

hqjnm(t) = diag {Cjnmk}k=1,...w x
q
jnm(t),

(37)

where
xqjnm(t) =

[
xjnm((q−1)w+1)(t) · · · xjnm(qw)(t)

]
,T

eqjnm(t) =
[
ejnm((q−1)w+1)(t) · · · ejnm(qw)(t)

]T
.

(38)

Similar, the AR models for the MIMO channel from the Ntx transmit antennas to the Nrx receive antennas
with w parallel subchannels are given by

xqj(t+ 1) = Ajx
q
j(t) +Bje

q
j(t),

hqj(t) = Cjx
q
j(t),

(39)

where

xqj(t) =

[ (
xqj11(t)

)T
· · ·

(
xqj1Nrx(t)

)T
· · ·

(
xqjNtxNrx(t)

)T ]T
,

eqj(t) =

[ (
eqj11(t)

)T
· · ·

(
eqj1Nrx(t)

)T
· · ·

(
eqjNtxNrx(t)

)T ]T
,

hqj(t) =

[ (
hqj11(t)

)T
· · ·

(
hqj1Nrx(t)

)T
· · ·

(
hqjNtxNrx(t)

)T ]T
,

(40)

3If for some reason Nk is not divisible with w then an upwards rounded number dNk/we of Kalman �lters may be used
where e.g. the last two Kalman �lter overlap. Alternatively, the �lters may have di�erent values of w, i.e. predict over a
di�erent number of subcarriers.
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and

Aj = diag

{
diag

{
diag {Ajnmk}k=1,...w

}
m=1,...Nrx

}
n=1,...Ntx

,

Bj = diag

{
diag

{
diag {Bjnmk}k=1,...w

}
m=1,...Nrx

}
n=1,...Ntx

,

Cj = diag

{
diag

{
diag {Cjnmk}k=1,..w

}
m=1,...Nrx

}
n=1,...Ntx

.

Last, the full system model in (1) that describes the channels from NBS base stations is given by setting

xq(t+ 1) = Axq(t) +Beq(t),

hq(t) = Cxq(t),
(41)

with

xq(t) =

 xq1(t)
...

xqNBS (t)

 , eq(t) =

 eq1(t)
...

eqNBS (t)

 , hq(t) =

 hq1(t)
...

hqNBS (t)

 , (42)

and
A = diag {Aj}j=1,...,NBS

,

B = diag {Bj}j=1,...,NBS
,

C = diag {Cj}j=1,...,NBS
.

(43)

Note that as the channels from di�erent base stations will experience di�erent short-term fading and
shadow fading statistics, the matrices Aj , Bj and Cj must be estimated separately for each set of MIMO
channels.

3.4 Estimation of covariance matrices

The co-dependence between the channel components in the MIMO channels of hqj(t) are represented by the
covariance matrix for the process noise in (1)-(2). In order to calculate this, we �rst de�ne the covariance
matrix of the vector hqj(t) of channel components from one base station, in (39),(40), as

Rh,j = E
[
hqj(t)h

q∗
j (t)

]
, (44)

Further, let

Qj = E
[
eqj(t)e

q∗
j (t)

]
, (45)

and
Πj = E

[
xqj(t)x

q∗
j (t)

]
. (46)

Note that due to the Assumption 3, Rh,j , Πj and Qj are the same for all q, i.e. for all Kalman estimators
that operates on di�erent subsets of frequencies. For a wide sense stationary process described by (39),
Πj obeys the Lyapunov equation

Πj = AjΠjA
∗
j +BjQjB

∗
j . (47)
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Theorem 4.2.1 in [11] states that given the system in (39), the Lyapunov equation in (47) is satis�ed if Qj
is

Qj = Rh,j � Cj
(
Bj1B

∗
j �

(
1− aja∗j

))
C∗j , (48)

where aj is a vector containing the diagonal elements of Aj in (39) and 1 is an all one matrix of appropriate
dimensions. Further, as the matrix Aj is diagonal by (26) and (40), the second term on the right hand
side of the Lyapunov equation (47) can be rewritten as

AjΠA
∗
j = aja

∗
j �Πj , (49)

where aj is a column vector containing the diagonal elements of Aj . Then Πj is by (47) and (49) given by

Πj = E
[
xqj(t)x

q∗
j (t)

]
= BjQjB

∗
j �

(
1− aja∗j

)
, (50)

where 1 is an all one matrix of the appropriate dimensions.
While the matrix Qj and Πj found by (48) and (50), ful�ll the Lyapunov equation (47), they are not

guaranteed to provide positive de�nite matrices. As a covariance matrix by its de�nition must be positive
de�nite, this introduce a potential error to the state space model. As a result of this error, the convergence
of the Kalman �lter is not guaranteed, in fact it will tend to diverge when the matrix Qj is non-positive
de�nite. It is therefore important to �nd a covariance matrix Qj that ful�lls the requirement of being
positive de�nite.

For a wide sense stationary system, when the covariance matrix Rh,j and the state space matrices
Aj , Bj and Cj are estimated, then Qj by (48) will provide a positive de�nite matrix in some special
cases. The �rst of these is when all the entries of the channel vector hj(t) are assumed to be identically
distributed and hence modeled by identical AR models (23), as in e.g. the case when they represent the
di�erent subcarriers between one set of antennas, Ntx = Nrx = 1. The second case is when the entries
of the channel vector hj(t) is are assumed uncorrelated, e.g. when the transmit and receive antennas
are su�ciently spaced to ensure that the MIMO channels are uncorrelated in which case the covariance
matrix Rh,j is block diagonal. The process noise covariance matrix can also be estimated through (48)
in a combination of the two above, i.e. when the entries of the channel vector hj(t) are uncorrelated or
identically distributed. A proof to this is provided in Appendix C.

In a general setting when the entries of the channel vector are neither assumed block diagonal nor
identically distributed, (48) cannot be used to calculate the covariance matrix Qj . This applies e.g. when
the MIMO channels are both correlated and have di�erent dynamics. An alternative method is then
to approximate Πj and Qj by using the pseudo inverse. The covariance matrices Πj and Qj are then
estimated based on (44) and (47) by

Πj ≈ C†jRhj(C
∗
j )†,

Qj ≈ B†j
(
Πj +AjΠjA

∗
j

)
(B∗)†.

(51)

A second alternative is to de�ne an upper triangular complex-valued matrix M and then set the
covariance matrix of the process noise to

Qj = MM∗. (52)

The non-zero elements of the upper triangular matrix M can then be used as optimization parameters to
minimize a given cost function. Such a cost function may very well be non convex.
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An investigation of how di�erent start values impact the resulting estimation error for a speci�c sim-
ulation scenario where six subcarriers (spanning a total bandwidth of 90 kHz) between a single antenna
user and six transmit beams were estimated can be found in [35]. A brief overview of the these results
are provided in Appendix D. To summaries, we found that when using (52) with a number of di�erent
initial values for M , most resulted in worse estimation performance than when (51) was used to estimate
Qj and only one these was equally good as using (51) . We also found that for the given simulation
scenario, approximating Qj by a block diagonal matrix, where any subchannels between the user and two
di�erent transmit beam was assumed uncorrelated, also provided good estimation performance, of roughly
the same order as it was when using (52) with the best choice of initial value. In the speci�c scenario, the
correlation between the subcarriers are much higher than the correlation between di�erent beams, which
explains that the block diagonal structure of Qj is a sensible choice.

As the optimization through (52) is of very high in computational complexity, making it unfeasible in
practice, it is better to either assume a block diagonal matrix or to use the pseudo inverse to approximate
Qj . It should be checked which of the two that are preferable for the speci�c scenario.

If we choose to estimate the covariance matrix of the process noise covariance matrix Qj through (48)
or (51), it is necessary to �rst estimate the covariance matrix of the channel vector hj(t). The same applies
if we attempt to calculate Qj through (52) with a initial value of M that depends on Rh,j .

The covariance matrix Rh,j must be estimated for each base station. This can be done by using the
training sequences to create vectors

h̃kj (t) =




[
h̃j11k(t) · · · h̃j11(k+w−1)(t)

]T
...[

h̃j1Nrxk(t) · · · h̃j1Nrx(k+w−1)(t)
]T


...
[
h̃jNtx1k(t) · · · h̃jNtx1(k+w−1)(t)

]T
...[

h̃jNtxNrxk(t) · · · h̃jNtxNrx(k+w−1)(t)
]T



, (53)

for k = 1, ..., Nk + 1−w. Then an estimate of the covariance matrix Rh,j ; de�ned in (44) is calculated by
averaging over all pilot-bearing subcarriers and symbols within the time interval [t1, t2] through

Rh,j ≈
1

(t2 − t1)

1

(Nk + 1− w)

t2∑
t=t1

Nk+1−w∑
k=1

h̃kj (t)h̃
k∗
j (t). (54)

According to Assumption 4 we have E
[
hqj(t)h

q∗
i (t)

]
= 0 for i 6= j. It then follows that the covariance

matrices of the channel vector hq(t), the process noise vector eq(t) and the state vector xq(t) in (41) are
given by

Rh = [hq(t)hq∗(t)] = diag {Rh,j}j=1,...,NBS
,

Q = [eq(t)eq∗(t)] = diag {Qj}j=1,...,NBS
.

Π = [xq(t)xq∗(t)] = diag {Πj}j=1,...,NBS
,

(55)

where Qj are obtained by one of the methods discussed above.
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4 Design choices for AR modeling and Kalman prediction

This section includes discussions on some design aspects for AR model estimation and Kalman �ltering of
OFDM MIMO channels for CoMP applications.

A fading channel is generally not wide sense stationary. The Doppler spectrum which is modeled
through (1) depends on the mobility of the users and the shadow fading environment the user is in. As a
user moves this will change. However over small time periods, the fading channel can be approximated as
wide sense stationary. How long these time periods are depends on the user mobility and the environment.
For slow moving users, this is a longer period than for fast moving users. It is also a longer period if the
user is moving along a straight road with Line Of Sight (LOS) components than if the user is zig-zagging
through an urban environment turning corners of buildings very often. This time interval is one of the
system design choices that needs to be decided.

In Table 4.1 of [11], the complexities of the calculations involved in the Kalman �lter are stated, under
the assumption that the state space model is on diagonal form. The complexity of one single Kalman
�lter grows as more subcarriers are included in one �lter through (37) as w3 and with the order of the AR
model in (23) as (nAR)2. However, increasing these parameters might potentially provide more accurate
predictions as correlation over subcarriers can be used for noise reduction and a larger model order might
provide a more detailed model of the channels. Both the model order of the AR models and the number
of jointly predicted subcarriers are hence design parameters that need to be set.

Other design aspects addressed in this section are how to initiate the Kalman �lters, how to design
the pilot matrix Φ(t) in (9) and where to locate the Kalman �lters for estimating downlink channels: At
the terminals or at the network side.

4.1 The time interval for re-adjusting AR models

Let T be a time interval, in number of pilot-bearing OFDM symbols, during which the channel fading
can be considered approximately wide sense stationary. Then the AR model can be estimated from the
channel estimates of the �rst αT part of the interval. This AR model can then be applied in Kalman
�lters for the second (1− α)T part of the interval.

The channel estimates used for estimating the AR model would, in turn, be the output from a Kalman
�lter with an AR model based on the previous estimate. The very �rst AR model in this sequence might
be based on a simple estimate, that is based on the measurement signal (9).

For example, if α = 1
2 then we might get h̃(t) by smoothing a rough estimate based on y(t) in time and

frequency domain for t = 1, ..., T2 . From these we then estimate the AR model according to Sections 3.1-3.3.

This AR model is then used in Kalman �lters to provide channel prediction ĥ(t+ τ |t) for t = T
2 + 1, ..., T

through (19). The Kalman �lter also provides channel estimates h̃(t) e.g. from (15) for t = T
2 + 1, ..., T

which can be used to estimate a new AR model. This new AR model is then used in the Kalman �lters
for time t = T + 1, ..., 3T

2 , and so on.
In practice, it might be good to let the Kalman �lters with di�erent AR models overlap such that the

next Kalman �lter has already reached it's stationary or cyclo-stationary state (see Section 2.3.1) when
the previous �lter stops operating.

There is a trade o� when it comes to the length of T . On one hand, a shorter T will provide a �more�
wide sense stationary channel. On the other hand, a longer T lowers the computational overhead that will
come from estimating AR models and running time overlapping �lters. The time T should therefore be
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as large as possible without causing too large prediction performance loss. How long that is di�ers from
user to user and must be estimated for every speci�c case. Note also that a larger interval αT allows for
a more accurate estimate of the autocorrelation in (29), as the number of terms in the sum increases.

4.2 The choice of AR model order

The poles of the AR model are used to �t the power spectrum of the time variability of the estimated
channel to the Doppler spectrum of the measured channel, as illustrated in Figure 4. While the �true�
Doppler spectrum cannot be measured exactly, we here display a data-based estimate based on a limited
time interval, and denote it the measured Doppler spectrum. In this �gure we see that as the model order
increases, more of the peaks of the signal's measured Doppler spectrum are included in the AR model.
When nAR = 2, only one peak of the spectrum is included, and it is slightly o� compared to the maximum
peak of the signal's measured Doppler spectrum. The 6'th order model includes 4 peaks which are more
in accordance with the measured spectrum and the 10'th order model manage to include the 8 strongest
peaks. Hence a higher model order more accurately represents the spectral properties of the training

sequence h̃jnmk(t1), h̃jnmk(t1 + 1), ..., h̃jnmk(t2).
However, it is not necessarily true that a higher model order will provide more accurate channel

predictions. First, the channel estimates obtained from the training sequence may include some small
errors. Second, the accuracy of the estimation of the autocorrelation function in (30) is limited by the
length of the training sequence. Third, recall that the channel is not perfectly wide sense stationary.
Because of this, no matter how small we make T , there will always be some di�erences in the spectrum of
the training sequence and that of the channel which is to be predicted. Figure 5 shows how the peaks in
the spectrum of the measured channel shift from one time interval to another.

Due to this, there will be a limitation in the prediction performance which will be lower than the
theoretical limit described in Section 2.2, where the statistics was assumed to be exactly known and
constant. Moreover, there will be a �nite model order for which this limit is reached. The limit of when
the use of a higher model order starts to decrease prediction performance must be found for each speci�c
system.

4.3 The number of jointly predicted subcarriers

In a frequency selective OFDM system, predicting w subcarriers jointly increases the accuracy of the
channel estimate x̂(t|t) and, in extension, the prediction performance. This is illustrated in Figure 6.
Here, the theoretic performance is investigated for channel estimation ĥ(t|t) given a Doppler spectrum as
in Figure 2a, with a pilot SNR of 10 dB and the parameters settings of Table 1. The frequency selectivity
provided by the subcarriers are of the WINNER II C2 NLOS channel [30], see Table 2. The performance
gain from increasing the �lter width w is signi�cant, especially for the middle subcarriers. At the �lter
edges the NMSE increases. This is because the �lter edge subcarriers only gain noise reduction from using
the subcarriers on one side of them, whereas the middle subcarriers gain noise reduction from subcarriers
on both sides.

When increasing w for a given total channel bandwidth containing Nk pilot-bearing subcarriers, the
complexity of each Kalman �lter that estimates w subcarriers in parallel grows proportional to w3 for
diagonal state-space models [11] while the number of �lters (Nk/w) is inversely proportional to w. The
total complexity therefore grows as w2. A complexity case study in Section 8.6 of [11] indicates a quite
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Figure 4: The measured Doppler spectrum of an arbitrary training sequence (from channel measurements)
used for AR model estimation (solid line) and the corresponding spectra of the estimated AR models with
di�erent model orders.

Table 2: Power delay pro�le used in the example of Figure 6.

Delay [ns] 0 60 75 145 150 155 150 190

Power [dB] -6.4 -3.4 -2.0 -3.0 -5.2 -7.0 -1.9 -3.4

Delay [ns] 220 225 230 335 370 430 510 685

Power [dB] -3.4 -5.6 -7.4 -4.6 -7.8 -7.8 -9.3 -12.0

Delay [ns] 725 735 800 960 1020 1100 1210 1845

Power [dB] -8.5 -13.2 -11.2 -20.8 -14.5 -11.7 -17.2 -16.7
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Figure 5: The measured Doppler spectrum of the an arbitrary training sequence in Figure 4 and the
measured Doppler spectrum of an equally sized nearby time interval. (One time step here corresponds to
5.3 ms)
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Figure 6: Theoretic Normalized Mean Squared Error (NMSE) as a function of subcarrier number, calcu-
lated through (20) with τ = 0, of the �lter estimate when w = 4 and w = 16 subcarriers are predicted
jointly. The AR model of Figure 2a is used.
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reasonable level of complexity when w is small: With Nk = 432, w = 4 (108 Kalman �lters), nAR = 4,
and Nrx = 1, 1.6 · 108 complex arithmetic operations per second would be needed for NBS ·Ntx = 3, and
7 · 108 operations are required for NBS ·Ntx = 12.

The number of jointly predicted subcarriers w might therefore need to be kept low in order to achieve
a feasible solution. Then the prediction errors may be reduced in a second step, by Wiener smoothing over
estimates from multiple Kalman �lters, working on adjacent frequency groups. The true prediction error
covariances then di�er from those given by (20) due to two e�ects. First, the AR models are imperfect
which increases the errors. Second, Wiener-smoothing over frequency decreases the errors. In our studies,
these two e�ects leave the variance of the prediction error slightly lower than that given by (20).

4.4 Initiating the �lter

If the AR models are updated every T time steps based on channel estimates obtained by consecutive
Kalman �lters as described in Section 4.1, then this simpli�es the initialization of a new Kalman �lter. The
initial state vector in (12) and the corresponding covariance matrix (15) can be provided by the current
�lter as the latest �lter estimate with its corresponding covariance. This would decrease the convergence
time of the �lter as described in Section 2.3.1.

However, if this is not possible, e.g. if the user equipment has been out of reach from a base station,
the �lter can be initiated by setting the state vector to its mean

x̂(0|0) = E [x(t)] = 0. (56)

Then the corresponding covariance matrix is given by

P (0|0) = E [(x̂(0|0)− x(0)) (x̂(0|0)− x(0))∗] ,

= E [x(0)x∗(0)] ,

= E [x(t)x∗(t)] ,

= Π.

(57)

4.5 Pilot patterns

Recall that, by (9) and (41), the channel model and the pilot measurements yq(t) at �lter q are provided
by the equations

xq(t+ 1) = Axq(t) +Beq(t),

hq(t) = Cxq(t),

yq(t) = Φ(t)hq(t) + nq(t) = J(t)xq(t) + nq(t).

(58)

These are then used in the Kalman �lters through (12)-(20). An important design choice to ensure proper
predictions is to choose the structure of the pilot matrix Φ(t).

Each transmit antenna n at each base station j are here assumed to be allocated pilot resources on
the jointly estimated subcarriers according to a diagonal pilot matrix Φjn(t) ∈ Cw×w. Diagonal elements
set to zero, indicate that the transmitter shall not transmit any pilots on the corresponding subcarrier at
time slot t. The pilot Φ(t) in (58), for all antennas at all base stations, is then formulated as

Φ(t) =
[

Φ11(t) · · · Φ1Ntx(t) · · · ΦNBSNtx(t)
]
.
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The allocation of the pilots have been discussed for the uplink channels in [24] and for downlink
MIMO channels in Chapter 6.4 of [11]. The pilots transmitted from di�erent transmit antennas may be
code-orthogonal, or resources-orthogonal.

If the pilots are resource-orthogonal then only one transmit antenna will transmit on any give resource
slot. As an example, assume a CoMP Multiple-Input Single output (MISO) system with Binary Phase
Shift Keying (BPSK) with symbols {−1, 1} and NBS = 2 base stations each with Ntx = 2 transmit
antennas. A single antenna user (Nrx = 1) predicts the channels over w = 4 subcarriers jointly. Then the
following resource-orthogonal pilot pattern could be used for Φjn, for base station j = {1, 2} and antenna
n = {1, 2}:

Φ11(t) =


1

0
0

0

 , Φ12(t) =


0

1
0

0

 ,

Φ21(t) =


0

0
1

0

 , Φ22(t) =


0

0
0

1

 .
(59)

One bene�t from this is that the energy of pilots from one transmitter will not leak over into the pilots
of another base station, for the base stations within the cluster. A second bene�t is that the problem of
estimating channels from di�erent base stations are then not correlated, so they can be implemented as
separate parallel Kalman �lters, lowering the computational complexity. The drawback is that if the total
number of transmit antennas are large, then the pilots of each transmitter will have to be placed very
sparse in time and/or frequency to limit pilot overhead. Therefore, the received signals at consecutive
received pilots might have low correlation. This will decrease the noise reduction abilities of the Kalman
�lter, that work by utilizing such correlations.

If the pilots are code-orthogonal then some of the transmitters may transmit on the same resource.
They will then transmit with a symbol pattern such that they are orthogonal over a number of dependent
subcarriers. For the example above, the code-orthogonal pilot matrices might then be

Φ11(t) =


1

1
1

1

 , Φ12(t) =


1
−1

1
−1

 ,

Φ21(t) =


1

1
−1

−1

 , Φ22(t) =


1
−1

−1
1

 .
(60)

If each sub-channel hjnmk(t) estimated by the Kalman �lter, only di�ers from a nearby sub-channel
hjnm(k+κ)(t) by a known phase rotation ϕ, then the channel measurements based on code-orthogonal
pilots can be perfectly separated if w ≥ NBS ·Ntx. For the pilot matrices in (60), the measurement signal
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in (9) is then

y(t) = Φ(t)h(t) + n(t) =


1 1 1 1
ei·ϕ −ei·ϕ ei·ϕ −ei·ϕ
ei·2ϕ ei·2ϕ −ei·2ϕ −ei·2ϕ
ei·3ϕ −ei·3ϕ −ei·3ϕ ei·3ϕ


︸ ︷︷ ︸

Θ(t)


h1111(t)
h1211(t)
h2111(t)
h2211(t)


︸ ︷︷ ︸

h̃(t)

+ n(t). (61)

As Θ(t) has full rank it is invertible. Multiplying both sides of (61) with this inverse gives an estimate of
the vector of channels h̃(t) in (61) at subcarrier k = 1:

ỹ(t) = Θ−1(t)y(t) = h̃(t) + ñ(t). (62)

Here ñ(t) is a vector of independent Gaussians and each element of the measurement vector ỹ(t) only
relates to channels from one transmit antenna. However, if ϕ has an unknown component ∆ϕ then there
will be leakage of energy between the di�erent channels. This energy comes in as an extra noise term
in (62) and results in lowering the e�ective SNR of the measurement4. If some of the channel gains are
much larger than the others, then the e�ective SNR of the channel measurements of the weaker channels
will be signi�cantly lowered even if ∆ϕ is small. However, if the channels gains are equally strong and ∆ϕ
is small (relative to π) then the e�ective SNR is only little a�ected.

Note that to make a fair comparison between code-orthogonal pilots and resource-orthogonal pilots
the matrices in (60) should be re-scaled to ensure that the total transmit power is equal.

A third alternative is to let transmitters located at the same base station transmit code-orthogonal pi-
lots and transmitters at di�erent base stations transmit resource-orthogonal pilots. For the above example
this leads to the matrices

Φ11(t) =


1

1
0

0

 , Φ12(t) =


1
−1

0
0

 ,

Φ21(t) =


0

0
1

1

 , Φ22(t) =


0

0
1
−1

 .
(63)

This is a sensible alternative as channels from the same base stations normally have equally strong channel
gains on average, while channels from di�erent base station vary a lot.

With this scheme, the pilots transmitted from each antenna can be more densely placed than with
a fully resource-orthogonal pilot pattern. For example, assume a CoMP cooperation system with 9 base
stations, each with 4 transmit antennas, and a pilot spacing of 14×5 OFDM symbols in time, corresponding
to 5 subframes in an LTE downlink, or 5 ms. Further, assume 3GPP release 10 CSI speci�c reference
signal positions [31] are used, see Figure 7, and that these are repeated every 5 subframe. Then, with
fully resource-orthogonal pilots only one pilot per transmit antenna can be used for every resource block

4A similar problem of loss of orthogonality in uplinks in CDMA transmission systems is called the �near-far problem�.



29

(12 subcarriers), spaced by 5 subframes (5 ms) in time. With the combination of resource-orthogonal and
code-orthogonal pilots, each antenna can transmit 4 pilots per resource block, every �fth subframe.

Figure 7: The structure of CSI speci�c pilots (�lled) within a subframe in time (14 OFDM symbols or
1 ms) and one resource block width in frequency (12 subcarriers of 180 kHz) in 3GPP release 10. These
pilots may be repeated every �fth subframe [31].

If w < NBSNtx, then orthogonality cannot be kept over the subcarrier even if the phase correlation
between the subcarriers is perfectly known. Then di�erent pilots can be used in di�erent time slots in a
cyclical recurrent pattern in order to preserve orthogonality and obtain invertibility similar to (62) over a
whole time-frequency pattern, that comprise ≥ NBSNtx time-frequency pilot positions. For details, please
see [24] and Section 6.4.2 of [11].

4.6 Location of the Kalman �lters

Channel estimators or predictors for FDD downlinks may be physically located at the terminals (users)
or on the network side. In the former case, the estimators or predictions are fed back to the network
over uplink control channels. In the latter case, measurements need to be fed back, and the predictors
operate based on these measurements.The feedback load per predicted resource block per user depends
on the detailed system design in these two alternatives. There are di�erent advantages to each of these
alternatives.

In [32] the performance of JT CoMP was evaluated when channels where predicted at the user side
and network side respectively. In a centralized setup, with a central CU calculating the joint beamformers,
the placement did not a�ect the CoMP gains. However, in a distributed CoMP scenario, [32] found that
CoMP gains were increased if predictions were performed on the network side.

Another bene�t of locating the Kalman �lters at the network side is that this often allows for more
sophisticated equipments, so a higher computational complexity might be allowed and so the number of
jointly predicted subchannels, w, can be set high. In addition, the prediction quality of the users will vary
less as the di�erence in the di�erent users equipment will a�ect the predictions less.

On the other hand, if the channel estimators are located at the user side, adaptive quantization schemes
based on prediction performance may be used. Then, if a user feeds back e.g. two predicted channels
where one of them is very accurate and the other is very inaccurate, the more accurate channel may be
quantized with higher granularity than the inaccurate channel. The distribution of the feedback bits are
then based on the accuracy of the channels described by (20). That way, quantization errors will a�ect
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the performance less. Note that as the accuracy (the diagonal elements of the covariance matrix (20)) are
fed back on a slow time scale, they do not impose a large feedback overhead.

Moreover, scheduling and link adaptation decisions are today based on quite coarse Channel Quality
Index (CQI) that is fed back to the network side. As the number of users considered for scheduling is often
much larger than the number of users that is actually scheduled, the total feedback will be reduced if the
full CSIT is fed back only for the users that are actually scheduled. If the channel estimators are located
at the user side, and if a small extra reporting delay is acceptable between scheduling and transmission,
then the users may report complex channel gains only for the users/data streams that have actually been
scheduled. A similar two-step feedback concept has been proposed in [33].

If instead the predictor were placed on the network side, measurements would need to be reported
from all uses that may potentially be scheduled and for all resource blocks that may potentially be used.
This is because Kalman (and Wiener) predictors need a time-history of past measurements in order to
reach the steady state and perform reliable predictions, as described in Section 2.3.1.

Finally, if the users have multiple receive antennas then they may apply a receiver �lter in order to
increase their data rate. If Kalman �lters are located at the users, then these receiver �lters could be
based of the latest updated channel �lter estimates provided by (15). If the Kalman �lters are not located
at the users, then an additional channel estimation method must be applied for tuning the receiver at the
terminal.
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Figure 8: The variation of the power of the received signals that were transmitted from base station 1
(blue), base station 2 (green) and base station 3 (red). The time-axis is based on the upsampled system
with pilot spacing τ = 1.3 ms assuming pedestrian velocities. Three noise �oors of −130 to −110 dBm
indicated with dotted lines are used in the simulations, here and in [12, 14]. In [13], a set of noise levels
{-120 dBm, -110 dBm, -100 dBm}, i.e. 10 dB higher, is used.

5 Measurement based predictions

5.1 Channel measurements

All simulations in this section are based on channel sounding measurements carried out by Ericsson
Research. Three omnidirectional single antenna base stations, located at di�erent sites with 350-600 m
distance, were used to transmit channel sounding pilots at a carrier frequency of 2.66 GHz. These were
measured by a vehicle driving at a velocity of 10− 30 km/h in an outdoor urban environment in central
Kista, Stockholm. Resource-orthogonal pilots were transmitted every 5.3 ms and on every subcarrier à
15 kHz, with pilots from each base station on every third subcarrier. The received signal powers from the
base stations are plotted in Figure 8. The measurements are of high quality and can hence be assumed
to represent the true complex channel gains in space. For more details on the measurement setup, please
see [34].

The channels are upsampled 25 times over time giving a pilot spacing of 0.21 ms at the velocity of the
measurement. This corresponds to a pilot spacing of 1.3 ms at pedestrian velocities of up to 5 km/h. The
upsampling uses the fast Fourier transform to ensure that no extra frequency components are added.

The upsampled channels are used to create the measurement signals (9).

5.2 Simulation assumptions

The downlink channels from the NBS = 3 single antenna base stations are predicted for the entire mea-
surement route in Figure 8.

In Chapter 8 of [11], which used measurements similar to those in this report, it was concluded that
when the autocorrelation method described in Section 3.2 was used, a fourth order AR model su�ced.
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Figure 9: SNR distributions for the strongest base station (left) and all base stations (right) of the
measurement signal in (9) over three measurement where the three noise �oors in Figure 8 were used.

Therefore, the fading statistics in time and frequency, will here be represented by fourth order AR-models.
These are estimated periodically every 800 pilots in time (∼ 1 s) based on noise-free channel data, i.e.
on perfect CSIT, from the past 800 pilots in time. The timing interval discussed in Section 4.1 is hence
T = 1600 (∼ 2 s) with α = 0.5. From studying the measured data, we have found that this time interval
is appropriate with respect to the long term fading. It is short enough to ensure that the statistics of the
Doppler spectrum stays fairly constant within the interval, but also long enough to provide appropriate
prediction performance statistics and CoMP performance statistics for each interval. For high mobility
users the interval might need to be shorter.

Chapter 8 of [11], also investigated how the prediction performance was a�ected by estimating the
AR model using subsampled channels as described in Section 3.2.1. The investigations showed that
performance increased when using the subsampled channels. Therefore, the poles of the AR models are
here estimated as in Section 3.2.1, using a subsampling factor corresponding to the di�erent prediction
horizons used (for the �lter estimate, no subsampling is used).

Signal measurements with an appropriate range of SNRs are created by using (9) with a transmit
power of 1 (i.e. the non zero pilot symbols of Φ(t) will have unit power) and additive white Gaussian noise
of three di�erent power levels, σ2

n, see Figure 8. The covariance matrix of (10) is then given by R(t) = σ2
nI.

The noise is i.i.d. over subcarriers. On average over all three noise levels and for all three base stations,
the median SNR is 24 dB at the investigated positions. The SNR distribution, shown in Figure 9, is
similar to that obtained when applying the intercluster interference mitigation framework of [14, 21, 22].
That proposal forms overlapping static clusters that use di�erent time-frequency allocations and further
controls interference by using di�erent antenna downtilts and transmit powers to the outside and to the
inside of each cluster.

Computational complexity increases with w, so we use a low value of w = 4 when code-orthogonal pilot
patterns are used. To make a fair comparison (to keep the computational complexity equal) the number
of jointly estimated subcarriers per Kalman �lter is set to w = 12 when resource-orthogonal pilot patterns
are used and channels from di�erent base stations are predicted by parallel �lters (this can be done only
when using resource-orthogonal pilots). For both pilot patterns all pilots have the same transmit power,
as in (59) and (60). That means that SNR per pilot is equal for both patterns, but that the pilot transmit
power per base station, summed over all subcarriers, is three times higher for the code-orthogonal pilots.
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Table 3: Comparison of average NMSE for Kalman predictions and outdated CSIT for prediction horizons
of τ = 4 , 8, 12 and 18. Results are averaged (in dB) over all base stations and subcarriers. Noise �oors
−110 dBm, −120 dBm and −130 dBm and resource-orthogonal pilots are used.

τ
σ2
n Predictions Outdated CSI

[dBm]

-110 -12.8 dB -10.5 dB
4 -120 -15.3 dB -12.5 dB

-130 -17.6 dB -14.0 dB

-110 -11.0 dB -6.9 dB
8 -120 -12.9 dB -7.9 dB

-130 -14.8 dB -8.6 dB

-110 -9.6 dB -4.4 dB
12 -120 -11.2 dB -5.0 dB

-130 -12.8 dB -5.3 dB

-110 -7.9 dB -1.8 dB
18 -120 -9.2 dB -2.1 dB

-130 -10.3 dB -2.2 dB

The channels are predicted for 432 subcarriers using prediction horizons of τ = 0, 4, 8, 12 and 18
pilots in time. These correspond to distances dλ ≈ 0, 0.06, 0.13, 0.19 and 0.28 carrier wavelengths at
2.66 GHz. The results for prediction distances dλ are scalable and could be interpreted as predictions for
time horizons through (8). For example the prediction horizons correspond to time horizons of 0, 5, 10, 15
and 23 ms at the pilot spacing of 1.3 ms, pedestrian velocities ≤ 5 km/h and carrier frequency 2.66 GHz.

The prediction performance will be evaluated using the Normalized Mean Squared Error (NMSE) for
the channel from the k'th subcarrier at the j'th base station

NMSEjk =

∑(1−α)T
t=1 |hjk(t)− ĥjk(t|t− τ)|2∑T

t=1 |hjk(t)|2
, (64)

The NMSE are then sorted into three categories - that of the weakest base station, the second strongest
base station and the strongest base station. These categories are de�ned as the NMSE of the channels
that have the lowest average channel gain, the second lowest channel gain and the highest channel gain
on average over the 0.5 s evaluation interval. Note that which of the three physical base station that falls
into which category varies over time.

In [16] an NMSE of > −8 dB was found to be required to achieve most of the multi-user scheduling
gains that are obtainable with perfect channel estimates. This NMSE level is here used as a loose limit of
�acceptable NMSE�.

In the sections below the average NMSE is presented in tables for some particular cases. For the full
table of results, please see the Appendix B.

5.3 Comparing outdated CSI and predicted CSI

First, let us study the impact of using Kalman �lters to predict the channel h(t) instead of using the
outdated �lter estimate ĥ(t− τ |t− τ). Table 3 shows the average NMSE over all time intervals and base
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Figure 10: CDF of NMSE when using outdated CSIT for prediction horizons τ = 4 (blue dashed lines),
τ = 8 (purple solid lines), τ = 12 (orange dotted lines) and τ = 18 (green dashed-dotted lines). Results
for noise �oors of -130 dBm (circles), -120 dBm (diamonds) and -110 dBm (upwards triangles). Resource-
orthogonal pilots are used for the channel estimation. The performance limit of −8 dB is marked as a
black dotted vertical line. Note that the CSIT quality increases towards the left.

stations at the di�erent noise �oors and prediction horizons. These are compared with the NMSE of the
outdated channels, i.e. that which we would get if ĥ(t|t− τ) in (64) is replaced with ĥ(t− τ |t− τ).

Clearly, as the prediction horizon increase so does the importance of using predictions. For example,
at a horizon of τ = 12 the average NMSE of the predictions falls below the limit of −8 dB for all the noise
�oors but the average NMSE of the outdated channels is above the −8 dB limit.

In Figure 10 the CDF's of the NMSE of the outdated CSIT over all subcarriers and all (1 − α)T
sampled time intervals are presented. Here, we see that even at a prediction horizon τ = 8, a majority of
the channels have an NMSE higher than −8 dB. In fact, it is only at the lowest prediction horizon that
most of the CSIT falls withing an acceptable NMSE.

The CDF's for prediction horizons τ = 8 and τ = 18 are shown in more detail in Figure 11. Here, we
see that not only is most of the CSIT NMSE above the −8 dB limit, there is very little di�erence between
the NMSE of the CSIT for the strongest and weakest base station. Both the CSIT of the channels of the
strongest and second strongest base station experience poor NMSE. Hence, the possibility of having gains
from coherent JT CoMP are very small.

5.4 The e�ect of resource-orthogonal versus code-orthogonal pilot patterns

In this section the e�ect of the pilot pattern, discussed in Section 4.5, is studied. Table 4 shows the aver-
age NMSE for di�erent prediction horizons when resource-orthogonal pilots (ROP) and code-orthogonal
(COP). For the resource-orthogonal pattern, each base station transmits pilots on every third subcar-
rier and for the code-orthogonal pattern the �rst three matrices of (60) are used. For all noise �oors
here the NMSE of the predictions with resource-orthogonal pilots are below those of predictions with
code-orthogonal pilots. This is the case despite the fact that COP were allowed to use three times more
pilot power per base station than ROP in this experiment. However, as the number of total trans-
mit antennas are low (three), the subcarriers used by each base station have high correlation even for
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(a) τ = 8
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(b) τ = 18

Figure 11: CDF of NMSE of the outdated CSIT for τ = 8 (upper) and τ = 18 step predictions (lower)
sorted into groups of noise �oor σ2

n = −130 dBm (circles), σ2
n = −120 dBm (diamonds) and σ2

n = −110
dBm (triangles). The CDF's are shown for the strongest (brown), second strongest (gray) and weakest
(red) base station. The performance limit of −8 dB is marked as a black dotted vertical line. Resource-
orthogonal pilots are used. Note that the CSIT quality increases towards the left.
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Table 4: Results for resource-orthogonal pilots (ROP) and code-orthogonal pilots (COP) at prediction
horizons of τ = 0 (�lter estimate), 4 and 8. Results, in terms of NMSE, are averaged (in dB) over all
subcarriers. Noise �oors −110 dBm and −120 dBm.

τ
σ2
n NMSE (all) NMSE (weakest)

[dBm] ROP COP ROP COP

0
-110 -17.8 dB -16.8 dB -7.1 dB -5.6 dB
-120 -23.9 dB -19.6 dB -12.7 dB -6.9 dB

4
-110 -12.8 dB -12.4 dB -5.9 dB -5.2 dB
-120 -15.3 dB -13.9 dB -9.4 dB -6.6 dB

8
-110 -11.0 dB -10.8 dB -4.8 dB -4.4 dB
-120 -12.9 dB -12.2 dB -7.4 dB -5.9 dB

resources-orthogonal pilots and the noise reduction abilities of the Kalman �lter is fairly high. Therefore,
the bene�ts of using resources-orthogonal pilots, i.e. that no energy leak between the pilots, are more
dominant in this example than the drawbacks.

From studying Table 4 there are three important observations:

• The loss in prediction performance from using code-orthogonal pilots instead of resource-orthogonal
pilots increases as the noise �oor decreases. This is because the bene�t of code-orthogonal pilots is
that they allow for more noise reduction in the �lter estimate (15). However, as the noise �oor is
lowered, the need for noise reduction also becomes less important.

• The performance di�erences between the two pilot patterns decrease as the prediction horizon in-
creases. The pilot pattern only a�ects the prediction performance through the �lter estimate (15).
As the prediction horizon increases, the main errors are due to the theoretical predictability of the
channel, see Section 2.2, and the accuracy of the AR models, see Section 4.

• The drawback with using code-orthogonal pilots is largest for the predictions of the weakest base
station's channels.

The third observation is further validated from studying Figure 12 where the average NMSE is plotted
for each base station over the entire measurement route. Comparing this with Figure 8 we see that the
largest di�erence between the two pilot patterns occur when the weakest base station (that here have
largest NMSE) is much weaker than the strongest base station. When the channel gains di�er only by a
few decibel, as in the interval between 10 and 13 minutes, the di�erent pilot patterns a�ect the prediction
performance very little. This is in accordance with the reasoning in Section 4.5. If channels have very
di�erent gains then the e�ective SNR of (62) will decrease most for the signal from the weakest base
station.

Since the amplitudes of the channel gains often vary a lot for signals transmitted from di�erent base
stations, but not for signals transmitted from di�erent antennas at the same base station, the third pilot
pattern described in Section 4.5 is a good choice for CoMP systems that need to accommodate a large
number of transmit antennas in each coordination cluster of base stations. That is, transmitters located
at the same base station use code-orthogonal pilots and transmitters located at di�erent base stations use
resource orthogonal pilots, as in the example (63).
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Figure 12: Average NMSE over all subcarriers with a prediction horizon of τ = 4 and a −120 dBm noise
�oor. Predictions are over the channels from base station 1 (blue), base station 2 (green) and base station
3 (red). Dark colors indicate that code-orthogonal pilots are used and light colors that resource-orthogonal
pilots are used.

5.5 The in�uence of intercluster interference

In this section we study the e�ect of the the intercluster interference, or the noise term in (9), on prediction
performance. Figure 13 shows CDF's of the NMSE for di�erent prediction horizons. The results are sorted
into groups of pilot SNR. Note that these groups do not include all data as the SNR might both be above
30 dB and below 0 dB, see Figure 8. Results show that as the prediction horizon increases, the bene�t
from having a large SNR decreases, compare with the second bullet observation in Section 5.4. However,
the gain of having a large SNR is still signi�cant, e.g. the NMSE increases by 5 − 2 dB when going
from SNR ∈ [20, 30] to SNR ∈ [10, 20] at τ = 18. Note especially that when comparing the CDF for
SNR ∈ [20, 30] with that for SNR ∈ [10, 20], at τ = 18, the �rst CDF crosses the −8 dB limit at 96%
while the second CDF crosses this NMSE level at 52%.

In Figure 14 the CDF's are instead shown for the di�erent noise �oors. Each CDF now includes a large
range of pilot SNR's and the CDF's are therefore wider than those of Figure 13. Lowering the noise �oor
from −110 dBm to −130 dBm results in that the fraction of the channel predictions reaching the limit of
−8 dB increases from 49% to 70% and from 69% to 93% for τ = 18 and τ = 8 respectively.

5.6 E�ect of the system delays on the prediction NMSE

The required prediction horizon is given by the system delays caused by feedback, backhaul and compu-
tational delays. In Section 5.3 we saw that already at short system delays, of e.g. τ = 8, the outdated
CSIT does not provide an acceptable NMSE. However, as shown in Section 2.2, there is a performance
limit also for predicted channels. From Figure 14 we see that, depending on the noise �oor, some channel
predictions will also not reach the acceptable NMSE at τ = 8. In this section, we will study which these
channels are.

In Figure 15 the statistics in Figure 14 are sorted into groups of strongest, second strongest and weakest
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Figure 13: CDF of NMSE sorted into groups of pilot SNR in the intervals [20, 30] dB (squares), [10, 20] dB
(pluses) and [0, 10] dB (stars). Prediction horizons are τ = 0 (black dotted lines), τ = 8 (purple solid
lines) and τ = 18 (green dashed-dotted lines). The performance limit of −8 dB is marked as a black
dotted vertical line. Resource-orthogonal pilots are used. Note that the CSIT quality increases towards
the left.
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Figure 14: CDF of NMSE sorted into groups of noise �oor σ2
n = −130 dBm (circles), σ2

n = −120 dBm
(diamonds) and σ2

n = −110 dBm (triangles). Prediction horizons are τ = 0 (black dotted lines), τ = 8
(purple solid lines) and τ = 18 (green dashed-dotted lines). The performance limit of −8 dB is marked
as a black dotted vertical line. Resource-orthogonal pilots are used. Note that the CSIT quality increases
towards the left.
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base station for the prediction horizons τ = 8 and τ = 18. Here, we see that for the prediction horizon
τ = 8, which can be translated into a system delay of approximately 10 ms for pedestrian users with a pilot
spacing 1.3 ms at 2.66 GHz, the channels that do not reach the −8 dB target are mainly those from the
weakest base station. In Figure 8 we see that these have received powers that are mostly very much lower
than the strongest. In a coherent JT CoMP, they will therefore not cause a lot of interference, provided
that the precoding design does not allow for them to become �rotten� apples spoiling the precoding design.
However, this can be avoided by taking the uncertainties (20) into account in the precoding design, as was
done in [12].

However, as the system delay increases, see the CDF's for τ = 18, most of the channels from the
weakest base station and many of the channels for the second strongest base stations, especially for the
−110 dBm noise �oor, do not reach the −8 dB NMSE limit. This means that some of the useful channels
for coherent JT CoMP are very inaccurate, potentially lowering the CoMP gains. Therefore it is very
important to keep the system delays short. Note also that at the lowest noise level (−130 dBm) most of
the second strongest base stations channels have prediction errors with an NMSE below −8 dBm. Hence,
the reduction of inter cluster interference is of equal importance to the reduction of delays in transmission
control loops.

In [12] it was shown that the gains from using coherent JT CoMP compared to single cell transmission
did decrease when using the predictions at τ = 18 instead of those at τ = 8. However, as the strongest
and, for most times, also the second strongest base station still have acceptable NMSE, CoMP gains were
still signi�cant (in the range of 40%). This was not the case when using the outdated CSIT in Figure 11.
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(a) τ = 8
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Figure 15: CDF of NMSE sorted into groups of noise �oor σ2
n = −130 dBm (circles), σ2

n = −120 dBm
(diamonds) and σ2

n = −110 dBm (triangles). The CDF's are shown for the strongest (brown), second
strongest (gray) and weakest (red) base station. The performance limit of −8 dB is marked as a black
dotted vertical line. Resource-orthogonal pilots are used. Note that the CSIT quality increases towards
the left.
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6 Conclusion

From the measurement based prediction performance in Section 5, the following conclusions are drawn

• Even at, for JT CoMP, short system delays of 10 ms and for low mobility users (moving at pedestrian
velocities and at a carrier frequency of 2.66 GHz), the outdating of CSIT is large. This can potentially
destroy all gains for coherent JT CoMP. The e�ects are even more severe for longer prediction
horizons or higher user mobility.

• Prediction with Kalman �lters provide CSIT with acceptable NMSE to achieve signi�cant coherent
JT CoMP gains, even at large system delays, e.g. 24 ms for users moving at pedestrian velocities,
at a carrier frequency of 2.66 GHz.

• As the weak channels are often hard to predict, it is important that these are not allowed to dictate
the precoder for coherent JT CoMP. A robust precoder as in [12] can ensure that these channels do
not become �rotten apples� that destroy the potential CoMP gains.

• As prediction performance does not decrease noticeably for code-orthogonal pilots when the channels
have approximately equal channel gain, code-orthogonal pilots can be used for transmitters located
at the same base stations. This reduces the di�culty of allocating pilot resources with su�cient
time-frequency sampling density within cooperation clusters where base stations each have many
antennas.

• Prediction performance decrease signi�cantly for the weak channels when code-orthogonal pilots
and when the channels have very di�erent channel gain. If the weak channels are necessary for the
application, then resource-orthogonal pilots should be used for transmitters located at di�erent base
stations, unless the

• There are theoretical limitations for the prediction performance of fading channels, as shown in
Section 2.2. However, if system delays are kept short, e.g. < 10 ms, then predictions through
Kalman �lters can ensure coherent JT CoMP gains even at vehicular of e.g. 60 km/h users at a
carrier frequency of 500 MHz. It is hence important to keep the system delays low to achieve gains
from coherent JT CoMP.

• It is of equal importance to design the CoMP cluster such that intercluster interference is limited. As
the system delays and pilot overhead increase with increased cluster sizes, the intercluster interference
must be kept low also in clusters of limited size. The scheme of e.g. [21] can ensure this.
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Appendix A: Simulating Kalman predictions for block fading channels

The results in Section 5 of this report are all based on measured channel. However, sometimes channels
and channel predictions need to be generated for simulations.

If a block fading channel model is used, then each channel component hjnmk(t) is independent for all j,
n, m and k. We wish to provide channel estimates and predictions with appropriate statistical properties
of the prediction errors for such a simulation environment. At a given time instant t, the prediction
error statistics should be similar to one that would have been obtained if Kalman predictions have been
applied. (The time correlation of channel predictions and prediction errors are however not of interest in
a block-fading simulation environment.) Then, the simulated channels hjnmk(t) and channel predictions

ĥjnmk(t+ τ |t) should satisfy the conditions

E
[
hjnmk(t)h

∗
jnmk(t)

]
= σ2

h,j ,

E
[(
hjnmk(t)− ĥjnmk(t|t− τ)

)
ĥ∗jnmk(t|t− τ)

]
= 0,

E
[(
hjnmk(t)− ĥjnmk(t|t− τ)

)(
hjnmk(t)− ĥjnmk(t|t− τ)

)∗]
= σ2

δh,j ,

(65)

where the channel variance σ2
h,j is given by some pathloss model possibly in combination with a shadow

fading model and/or an antenna power gain factor. For a given assumed fading statistics, the variances of
the channel errors σ2

δh,j are given by the diagonal elements of (20) which can be calculated through (17)
with the assumption (21) that the �lter is stationary. For block fading channels, the w jointly predicted
subcarriers in each �lter are assumed to be be �atfading, i.e. perfectly correlated over subcarriers. The
covariance matrix of the channels Rh,j used to calculate Q in (48) and (55) is given by

Rh,j = diag
{
σ2
h,j

}
i=1,...,w·Ntx·Nrx

.

The poles should be placed to create a desired Doppler spectrum, e.g. one of the spectra in Figure 2,
re-scaled to the appropriate terminal velocity and carrier frequency.

For zero mean channels, the expected values of (65) are met if the prediction error δhjnmk(t) =

hjnmk(t)− ĥjnmk(t|t− τ) and the channel prediction ĥjnmk(t|t− τ) are modeled as mutually uncorrelated
circular symmetric, zero mean complex Gaussian with variances σ2

δh,j and σ
2
h,j − σ2

δh,j respectively.
In Appendix 4.E of [11] a di�erent approach for simulating channel predictions is described. However,

that approach only approximately meets the requirements of (65).
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Appendix B: Average NMSE statistics

The average NMSE for all investigations in Section 5 are shown in Table 5.

Table 5: Comparisons of the NMSE for channel predictions and outdated channel CSIT averaged over all
base stations and the weakest base station only. Results are presented for di�erent prediction horizons
and noise �oors with resource-orthogonal pilots (ROP) and code-orthogonal pilots (COP). Note that some
combinations have not been investigated and therefore do not have an average value.

τ σ2
n [dBm]

NMSE (all) NMSE (weakest)
Predicted Outdated Predicted

ROP COP ROP ROP COP

-110 -17.8 dB -16.8 dB -17.8 dB -7.1 dB -5.6 dB
0 -120 -23.9 dB -19.6 dB -23.9 dB -12.7 dB -6.9 dB

-130 -30.9 dB - -30.9 dB -20.0 dB -

-110 -12.8 dB -12.4 dB -10.5 dB -5.9 dB -5.2 dB
4 -120 -15.3 dB -13.9 dB -12.5 dB -9.4 dB -6.6 dB

-130 -17.6 dB - -14.0 dB -13.3 dB -

-110 -11.0 dB -10.8 dB -6.9 dB -4.8 dB -5.2 dB
8 -120 -12.9 dB -12.2 dB -7.9 dB -7.4 dB -6.6 dB

-130 -14.8 dB - -8.6 dB -10.3 dB -

-110 -9.6 dB - -4.4 dB -4.0 dB -
12 -120 -11.2 dB - -5.0 dB -5.9 dB -

-130 -12.8 dB - -5.3 dB -8.2 dB -

-110 -7.9 dB - -1.8 dB -3.0 dB -
18 -120 -9.2 dB - -2.1 dB -4.1 dB -

-130 -10.3 dB - -2.2 dB -5.4 dB -

Appendix C: Process noise covariance matrix for identically distributed

or uncorrelated channels

When all elements in the channel vector that can be described by the AR model in (39) are identically
distributed or uncorrelated, then equation (48) will provide a positive semi de�nite covariance matrix Qj .

In order to prove this, we need the following lemma:

Lemma 1 Assume that a wide sense stationary process obeys

x(t+ 1) = Ax(t) + Bw(t),

ϑ(t) = Cx(t),
(66)

where w(t) ∈ CK×1is a vector of zero mean circular symmetric Gaussian noise with covariance matrix
Q = E [w(t)w∗(t)], ϑ(t) ∈ CK×1, x(t) ∈ CKnAR×1 with Π = E [x(t)x∗(t)] and
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A = diag{diag {a} ...diag {a}} ∈ CKnAR×KnAR ,
B = diag{b...b} ∈ CKnAR×K ,
C = diag{c..c} ∈ CK×KnAR ,

(67)

where a ∈ CnAR×1 b ∈ CnAR×1 and c ∈ C1×nAR obeys the diagonal stet-space structure in (27) with at
least one non-zero pole. Then

γ = c (bb∗ � (1− aa∗)) c∗

is a real-valued positive constant.

Proof: As the system (66) is stationary it obeys the Lyapunov equation

Π = AΠA∗ + BQB∗ =

 a
...
a

 [ a∗ · · · a∗
]
� Π + BQB∗

where the second equality comes from the fact that Ai is diagonal. We can rewrite this into

Π = BQB∗ �

1−
 a

...
a

 [ a∗ · · · a∗
] ,

=


q11 (bb∗ � (1− aa∗)) q12 (bb∗ � (1− aa∗)) · · · q1K (bb∗ � (1− aa∗))
q∗12 (bb∗ � (1− aa∗)) q22 (bb∗ � (1− aa∗)) · · · q2K (bb∗ � (1− aa∗))

...
...

. . .
...

q∗1K (bb∗ � (1− aa∗)) q∗2K (bb∗ � (1− aa∗)) · · · qKK (bb∗ � (1− aa∗))

 .

(68)

As the covariance matrix Π is positive semi-de�nite, any of the principal submatrices qkk (bb∗ � (1− aa∗))
of the right hand side of (68) must also be positive de�nite and as Q is a covariance matrix, that implies
that its diagonal elements qkk must be real valued positive constants. Hence (bb∗ � (1− aa∗)) is a positive
semi de�nite matrix. That implies that for any vector c

c (bb∗ � (1− aa∗)) c∗ ≥ 0.

To see that this can be turned into a strict equality, we assume the diagonal form of (27). Then

γ =

nAR∑
n1=1

nAR∑
n2=2

nAR∏
n3 = 1
n3 6= n1

nAR∏
n4 = 1
n4 6= n2

(
pn1p

∗
n2

)nAR−1
((pn1 − pn3) (pn2 − pn4)∗)

−1

1− pn1p
∗
n2

.

As at least one pole is assumed non-zero,γ > 0.
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Theorem 1 Assume that all elements in the channel vector hj(t) are identically distributed or uncorre-
lated. That is, the elements in the channel vector can be arranged such that

hj(t) =
[
hTj2(t) hTj3(t) · · · hTjN (t)

]T
,

where hjν(t) is a vector consisting of a total of Mν identically distributed elements {hjνµ(t)}µ=1,...,Mν

that can be modeled by identical stable AR models

xjνµ(t+ 1) = diag {ajν}xjνµ(t) + bjνejνµ(t),

hjνµ(t) = cjνxjνµ(t).
(69)

and any element in hjν(t) is uncorrelated with any element in hjθ(t) for ν 6= θ. Then the process noise
covariance matrix estimation by (48) will provide a positive semi de�nite matrix.

Proof: Let hj(t) follow the model (39), then the covariance matrix of the channel vector and the state
space matrices, have the structure

Aj = diag {diag {diag {aj1} , ..., diag {aj1}} , ..., diag {diag {ajN } , ..., diag {ajN }}} ,
Bj = diag {diag {bj1, ...,bj1} , ..., diag {bjN , ...,bjN }} ,
Cj = diag {diag {cj1, ..., cj1} , ..., diag {cjN , ..., cjN }} ,

Rhj = diag {Rhj,1, ..., Rhj,N } ,
Πj = diag {Πj1, ...ΠjN } .

Here, Rhj,ν = E
[
hjν(t)h∗jν(t)

]
are positive semi de�nite matrices. By (48) we then have that Qj is a block

diagonal matrix with

Qj = diag

{
1

γjν
Rhj,ν

}
ν=1,...,N

,

where γjν = cjν

(
bjνb

∗
jν �

(
1− ajνa

∗
jν

))
c∗jν is a real-valued positive scalar due to Lemma 1. This implies

that 1
γjν
Rh,ν are positive semi de�nite matrices leading to Qj being positive de�nite.

Appendix D: Estimating the process noise covariance matrix for corre-

lated and di�erently distributed channels

The di�erent methods of estimating the covariance matrix Qj that where discussed in subsection 3.4 have
been evaluated by simulations in [35]. Here, we have assumed an OFDM massive MIMO CoMP system
with nine base stations located at three sites spaced by 500 m, each with three sectored base stations. The
base stations were each equipped with 32 antennas. In the evaluation discussed below a single antenna user
was positioned at a distance of 407 m, 383 m, 738 m from the three sites. Then channels were simulated
using the quadriga channel simulator [36]. Each set of 32 antennas was used to create eight beams, giving
a total of 72 beams. Measurements were created by transmitting overlapping non code orthogonal pilots
from each of the 72 beams over a total of 18 time-frequency resources (consisting of six frequency selective
subcarriers spanning 90 kHz by three subsequent OFDM symbols). From the perspective of the user,
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di�erent beams will in this situation have very di�erent strength. In [35], this is utilized to lower the
complexity of the estimation. Instead of estimating the channels from all 72 beams, each user only has to
estimate the subset of the channels from those beams that are strongest, as seen from that user.

To evaluate the di�erent alternatives of estimating the process noise covariance matrix, we therefore
introduced a reduced channel vector consisting of the channels on the six adjacent subcarriers from the six
strongest beams only. The subchannels to these beams were then modeled using fourth order AR models
where the state space matrices where estimated according to Section 3. The process noise covariance
matrix Qj is estimated both by the pseudo inverse as in (51) and also by optimizing the elements in the
upper triangular matrix M of (52) . For the later alternative, we use four di�erent starting points for M
as follows

chol The initial matrix M is found by cholesky decomposition of the solution to (51) .

diag The initial matrix M is a diagonal matrix with diagonal elements, given by the squared root of the
diagonal elements of the solution Qj to (51) .

rand The elements of the initial matrix M are randomly drawn from a zero mean complex Gaussian
distribution with unit variance.

unit The initial matrix M is given by the unit matrix.

The upper triangular matrixM (52) is optimized by using the matlab optimization function fmincon. As
a optimization criterion we evaluate the NMSE that would be achieved for a Qj given by each M through
(52) and aim to minimize this. For further details regarding the simulations, please refer to [35].

Figure 16 shows the results of Kalman estimations when the process noise covariance matrix Qj is
estimated by the pseudo inverse in (51) and by optimizing the elements in the upper triangular matrix
M of (52) with respect to the NMSE. For comparisons there is also an option in which the channels from
di�erent beams were assumed to be uncorrelated by setting the covariance matrix Rhj in (54) to a block
diagonal matrix and then calculate Qj through (48).

The results show that the initial values ofM have a signi�cant impact on the NMSE. As the optimiza-
tion algorithm is very slow, it is an unfeasible option for any realistic scenario.

However, we see that both the pseudo inverse and the block diagonal versions of Qj provide a low
NMSE and can be used successfully for these kinds of data.

When studying the cross correlations between the channels in further detail, it was clear that the
cross correlation between di�erent subcarriers of the same beam had a cross correlation above 0.9 while
the channels that belonged to di�erent beams had a cross correlation of less than 0.25. While the cross
correlation between the beams is still signi�cant, it does give the channel covariance matrix a block
diagonal dominant structure, which may be why the block diagonal structure works so well. Why the
pseudo inverse works so well is di�cult to say, but to date, we have not been able to �nd any option that
works signi�cantly better.
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Figure 16: CDF of the NMSE when the process noise covariance matrix Qj is estimated by the pseudo
inverse in (51), solid lines, by optimizing the elements in the uppertriangular matrix M of (52) with
di�erent initial values, dotted lines and when the beams are assumed to be uncorrelated, dashed lines.
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