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Abstract—In this paper, we, based on NS-2 simulator, evaluate
the performances of different TCP protocols with network coding
in wireless multihop networks, and then propose two schemes
to enhance the performances of TCPs with network coding.
In particular the network coding scheme considered and used
here is COPE, which is one of the well-known practical network
coding schemes, the TCP protocols evaluated are TCP-NewReno,
TCP-FeW and TCP-AP, and the TCP protocols with COPE are
implemented in NS-2. The simulation results show that COPE
performs very differently in improving the performances of the
TCP’s in different wireless network topologies. In some topolo-
gies COPE performs well, resulting in significant performance
improvement; while in other ones it performs worse than the
same cases without network coding. To overcome this problem,
we propose two schemes to improve the performance of TCP
with network coding. One is called Encode Once, which ensures
the packet being encoded at most one time. The other is called
Network Coding Aware TCP, in which the transmitting rate of
TCP is made adaptive to the status of the node’s output queue.
The evaluation results indicate that the proposed two schemes
can significantly improve the goodputs of TCP’s with network
coding, and the latter scheme performs better.

Index Terms—TCP, COPE, NS-2, network coding, wireless
multihop networks

I. INTRODUCTION

In multihop wireless networks, it is challenging to provide
high goodput service due to the scarce bandwidth resources
and harsh radio propagation environments. Network coding is
a promising techniques that can improve wireless goodghput
essentially. Network coding was originally proposed for wired
networks by Ahlswede et.al. [1], and then it was shown to
be able to offer benefits for wireless networks [2]–[4]. The
basic idea of network coding is to ask an intermediate node
to mix the messages it received and forward the mixture to
several destinations simultaneously. Compared to time sharing
based schemes where destinations are served in turn, the use of
network coding can increase the overall goodput dramatically.
COPE is one of the practical network coding schemes for
wireless networks. It was proposed by S. Katti et.al. in [5].
In COPE, each node opportunistically overhears those packets
transmitted by its neighbors, which are not addressed to itself,
and notices what packets the neighbors currently possess (by
adding piggyback reception reports on the data packets the
node transmits). Each node can intelligently XOR multiple

packets destined to nodes in next hop such that multiple
packets can be forwarded in a single transmission, resulting
in a significant improvement in node transmission efficiency.
Results obtained from the first test bed deployment of wireless
network coding showed that COPE can substantially improve
the goodput of multihop wireless networks.

However, extending coding technologies to the network
setting in a practical way has been a challenging task. In the In-
ternet, flow control and congestion control are predominantly
based on transmission control protocol (TCP), i.e., controlling
transmission rate according to sliding transmission window
of packets, whose size is controlled based on feedback from
destination nodes [6], [7]. Most wireless applications rely on
legacy TCP to communicate with TCP-dominant wired hosts,
and it is likely that TCP will remain as the major transport
protocol for the clients of 802.11 networks [8]. But it was
shown in [9] that the performance gain of TCP with COPE
in a 802.11 network can be neglected. A lot of research has
been done on jointing implementation of TCP and network
coding such as [10]–[12]. However, as we know, no attention
has been paid to the performance degradation of TCP caused
by the rate control mechanism of TCP itself and the routing
protocol [8], [13], [14] has not been noted.

To find the reasons that cause the performance degradation
of TCP in wireless multihop networks, especially with focus
on the rate control mechanism of TCP, we will evaluate the
performances of three TCP protocols: TCP-NewReno [15] for
wired communication, TCP-FeW (Fractional Window Incre-
ment) [8] and TCP-AP (TCP with Adaptive Pacing) [14] for
wireless communication using network simulator NS-2, and
then compare the performances of the protocols with COPE
to those without COPE in order to observe the improvement
of performance due to use of COPE. Finally, we provide two
new schemes which jont TCP and network coding better in
wireless multihop networks.

The rest of the paper is organized as follows: we first
introduce the three TCP protocols and the model for im-
plementation of tcp with cope in NS-2 in Section II. Then,
we present simulation results in Section III. Afterwards, we
provide two novel schemes in Section IV and conclude the
whole paper in Section V.



II. IMPLEMENTATION TCP WITH COPE ON NS-2

A. COPE - Coding Opportunistically

COPE is the first practical network coding-based packet
forwarding architecture that substantially improves the good-
put of wireless networks. It inserts a coding shim between
the IP and MAC layers, which identifies coding opportunities
and benefits from them by forwarding multiple packets in a
single transmission. COPE incorporates three main techniques:
Opportunistic Listening: COPE sets the nodes in promiscuous
mode, makes them snoop on all communications over the
wireless medium and store the overheard packets for a limited
period; Opportunistic Coding: the node aims to maximize the
number of native packets delivered in a single transmission,
while ensuring that each intended next hop has enough infor-
mation to decode its native packet; Learning Neighbor State:
each node announces to its neighbors the packets it stores in
reception reports. When reception reports get lost in collisions,
a node can not rely solely on reception reports to make code
decisions, then it will leverage the routing computation to
guess whether a neighbor has a particular packet. Occasionally,
a node may make an incorrect guess, which causes the coded
packet to be undecodable at some next hop. In this case,
the relevant native packet is retransmitted, potentially encoded
with a new set of native packets.

B. TCP Protocols

TCP is one of the core protocols of the Internet Protocol
Suite, which is a connection oriented protocol, provides end-
to-end, reliable and ordered delivery of a stream of bytes
between computers. In this work, we consider the following
three TCP protocols: TCP-NewReno, TCP-FeW and TCP-AP.

1) TCP-NewReno: TCP-NewReno is a slight modification
over TCP Reno. When receiving three duplicate ACKs, TCP
Reno assumes there is packet loss happening on the link,
and then starts up the ’Fast Retransmit’ and ’Fast Recov-
ery’ processes, which will immediately retransmit the lost
packet. TCP Reno doesn’t perform well under the condition of
high packet loss. To overcome this problem, TCP-NewReno
improves retransmission during the ’Fast Recovery’ stage of
TCP Reno. For every lost packet, TCP-NewReno retransmits
it and waits for the acknowledgment before exiting from ’Fast
Recovery’ process. TCP-NewReno successfully prevents TCP
from going back to ’Slow Start’ when there are multiple packet
drops. TCP-NewReno keeps the same performance at low
packet loss ratio, and substantially outperforms TCP Reno at
high packet loss ratio.

2) TCP-FeW: In the TCP-FeW scheme, it prevents the over-
reaction of the on-demand routing protocol by limiting TCP’s
aggressiveness. TCP-FeW allows the TCP congestion window
to grow by a fractional rate α 6 1 (packets) in each RTT
(Round-Trip-Time). That means adding one packet into the
congestion window at every 1/α RTT. Assumming the size of
the current congestion window is W current, the source node
transmits W current packets to destination node and receives
the same number of ACKs from the destination node during

each RTT. When receiving an ACK, the source node updates
the current congestion window size through the following
formula (1):

Wnew = W current +
α

W current
(1)

where 0 < α 6 1. When α = 1, the pattern of increase of
the formula above is the same as the traditional style, i.e.,
increasing the window size by 1 when receiving an ACK. So
TCP-FeW keeps the original mechanism of TCP congestion
window growth. In addition to that, TCP-FeW can monitor the
network traffic without any other additional information and
provide quick reactions.

3) TCP-AP: TCP-AP is a rate-based scheduling of trans-
missions within the TCP congestion window. The source node
adapts its transmission rate according to the estimation of the
current 4-hop propagation delay and coefficient of variation
of recently measured RTTs. Unlike the previous solutions,
TCP-AP keeps the end-to-end semantics of TCP, does not
need to modify the routing or link layer, and does not rely
on the cross-layer information from intermediate nodes along
the path. Moreover, TCP-AP achieves excellent fairness and
quick reaction to control network traffic conditions.

C. NS-2 and Simulation of TCP with COPE

1) Network Simulator NS-2: The network simulator, is a
discrete event simulator targeted at networking research. NS-
2 provides substantial support for simulation of TCP, routing,
and multicast protocols over wired and wireless (local and
satellite) networks [16]. NS-2 includes almost all the main
parts of network, and it is a free and open-source platform
for network simulation. That’s why NS-2 is used widely
in academic fields, and chosen here in this work for the
simulation of TCP with network coding and the evaluation
of its performance.

2) Implementation of TCP with COPE on NS-2: The
core of the wireless module in NS-2 is mobile node, which
was originally ported as CMU’s (Carnegie Mellon University)
Monarch group’s mobility extension to NS [16]. It is a basic
node object equipped with wireless functionalities, and the
mobile node can move within the given topology, receive
and send radio signals through wireless channel. The char-
acteristics of mobility like node movement, periodic location
update, topology maintenance, etc., are implemented by C++,
while the internal network components (like classifier, Link
Layer (LL), Media Access Control (MAC), Channel, etc.) are
assembled using OTcl, which is an object oriented extension
of the scripting language Tcl (Tool Command Language).

We implement three key parts of COPE as well as com-
plementary parts for IEEE 802.11 network, pseudo-broadcast,
asynchronous acknowledgment and retransmission. We modify
IEEE 802.11 MAC and the Interface Queue (IFq) protocol
stacks on NS-2 to adapt to the present application. Further-
more, the original structure of the mobile node in NS-2 are
modified for COPE (refer to our work [17] for detail). For
opportunistic listening, the up-target of MAC is no longer LL,
because the COPE is implemented on IFq layer and all the



incoming packets should pass through COPE. If the destination
or next hop of incoming packet is this node, then the packet is
passed to LL, which now is the up-target of IFq. Otherwise,
COPE saves it in the packet pool or drops it depending on
whether the packet can be decoded or not. The new structure
of the mobile node with COPE looks like that shown in fig. 1.
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Fig. 1. Structure of mobile node with COPE in NS-2

III. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this section, the performances of three different TCP
protocols: TCP-Newreno, TCP-FeW and TCP-AP, are eval-
uated using NS-2 simulator. Three topologies, namely, chain
topology, classic X topology (named as X-I topology) and an
extended scenario of X-I topology (called X-II topology), are
considered. For the MAC layer, IEEE 802.11 with RTS/CTS
(Request to Send/Clear to Send) are adopted. For TCP traffic,
FTP (File Transfer Protocol) traffic is used. In all the topolo-
gies, TCP flows start randomly between first 2sec and 3sec.
The evaluated metrics are listed as follows:

• Network goodput: the measured total end-to-end goodput
of all flows. The average goodput T of each flow in the
network is computed according to

T =
received packets size× 8

simulation time
(kbps) (2)

• Goodput Gain:the ratio between the measured network
goodput with COPE to the traditional TCP [5], i.e.,

Goodput Gain =
Gcope

Gnocope
(3)

where Gcope and Gnocope are the average goodputs of
TCP with and without COPE, respectively.

The chain topology shown in fig. 2 is the first one considered
in the present work. In this topology, the distance of the
contiguous nodes is 200 meters and the transmission range

of each node is 250 meters. The simulation results are shown
in fig. 3, in which the network goodputs of TCP with COPE
for TCP-NewReno and TCP-FeW are significantly higher than
those without COPE, which proves the benefits of network
coding. The results also show that TCP-NewReno is the worst
choice for network coding, and TCP-AP with COPE performs
better than TCP-FeW with COPE when the number of hops is
less than and afterwards the former becomes worse than the
latter.
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Fig. 2. Chain Topology
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Fig. 3. Goodput in Chain Topology

More realistic topologies are X-shaped. The first X topology
considered is shown in fig. 4 , and called X-I topology to
distinguish from an extended X topology to be dealt with
below. In this topology there are two flows: one from n0 to
n2 via n1 and the other from n3 to n4 via n1. The simulation
results for this topology are illustrated in fig. 5. From the figure
we can observe that COPE brings marginal improvement of
performances for both TCP-NewReno and TCP-FeW (with
about and respectively); and the worst case is TCP-AP with
COPE, where network coding has no contribution. One reason
is that TCP-AP is based on the estimation of the current 4-
hop propagation delay and coefficient of variation of recently
measured RTTs. However, there are only 2 hops, which
restricts the performance of TCP-AP. The other reason is that
TCP-AP is too proactive for congestion control, and as a result,
fewer packets in the output queue are used for network coding.

To evaluate the performance of COPE and find out the
reason that leads to no gain for TCP-AP, we extend the X-
I topology to another X topology as shown in fig. 6, which
is called as X-II topology. X-II topology is similar to X-I
topology except it has four more nodes, so each of the two
TCP flows traversing from n0 to n4 and from n5 to n8,
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Fig. 5. Goodput in X-I Topology

respectively, has 4 hops, which satisfies the prerequisite of
TCP-AP.
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Fig. 6. X-II Topology

As described in fig. 7, both TCP-NewReno and TCP-FeW
with COPE get worse results compared to TCP-NewReno and
TCP-FeW without COPE. That’s because of TCP-NewReno’s
bursty behavior and due to the fact that TCP is agnostic to the
underlying network coding. While TCP-FeW alleviates this
bursty situation, but still not so suitable for network coding.
Similar to the X-I topology, TCP-AP with COPE still has no
contribution to the TCP Performance. We believe that this is
caused by the rate control mechanism of TCP-AP.

IV. PROPOSED SCHEMES

As shown above, COPE does not make performance im-
provement for X-II topology. In this section, we propose
two schemes to improve the goodput of TCP with COPE.
Improvement of the performance is made from two aspects:
COPE mechanism and TCP protocols, respectively.
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Fig. 7. Goodput in X-II Topology

A. Encode Once

From simulation, we find that retransmission can not sig-
nificantly improve the probability to decode a packet if the
packet can not be decoded at the first time. For example,
in the X-I topology, node n1 encodes packet p1 of node n0
and p2 of node n3, then n1 broadcasts the encoded packet
p1

⊕
p2. Node n0 decodes the encoded packet correctly but

node n3 dose not. Therefore n3 informs node n1 that it has not
yet obtained packet p2. Then, node n1 starts retransmission
process, and encodes packets p2 and p3 which is a native
packet of n0 and broadcasts the encoded packet p2

⊕
p3.

However, node n3 can not decode the encoded packet packet
to obtain packet p2. To solve this problem, we modify the
retransmission scheme of COPE. The main idea is that each
packet only can be encoded once, which, therefore, we call
Encode Once. As a special case, a node directly retransmits a
lost native packet instead of encode it again and then send.

Fig. 8 shows the comparison of the goodputs of three TCP’s
(TCP-NewReno, TCP-FeW and TCP-AP) without COPE, with
COPE and with COPE and Encode Once scheme, respectively,
in the case of X-I topology. The comparison demonstrates
that the goodputs of the three TCP’s with COPE and Encode
Once scheme are improved by 5%, 4% and 2%, respectively,
compared to the TCP’s with COPE.
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Fig. 8. Goodput of X-I topology with Encode Once



B. Network Coding Aware TCP
COPE carries out network coding on the packets within

the output queue. So the performance of this scheme depends
on the number of packets in the output queue. If the output
queue is empty or holds only one packet there is no chance
to do network coding, leading to no improvement made by
network coding, e.g. TCP-AP with COPE in the X-I topology.
If there are too many packets in the output queue, then severe
congestion happens, giving rise to bad goodput, e.g., TCP-
NewReno and TCP-FeW with COPE in the X-II topology.

To solve this problem, we let the TCP rate be adaptive to
the length of the output queue to increase the opportunity of
network coding. For example when the output queue does not
contain enough packets for encoding for TCP-AP with X-I
topology, we increase the number of the packets in the output
queue by adapting the rate interval, which is the duration
between successive packets to generate an appropriate number
of packets. To let the number of packets change in a reasonable
range, i.e., be large enough to implement network coding but
not too large to cause the overflowing in the output queue, we
introduce a factor λ to adjust the rate interval so that the new
rate interval becomes

rnew = λrold (4)

where rold is the original rate interval of TCP-AP and rnew
is the new one that is adaptive to improve the performance
of TCP-AP with COPE. Through various simulations and
analyses, we have found an empirical value for λ, namely
λ = 0.2 at which TCP-AP achieves the highest goodput.

Using the TCP protocol with COPE proposed above, we
calculate the goodput. The result is illustrated in fig. 9 together
with TCP’s in other three cases. The compassion of the
goodputs in four cases in the figure shows that the proposed
new TCP scheme with COPE yields about 12% increase
of network goodput compared to TCP-AP with COPE, and
performs even better than TCP with Encode Once.
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Fig. 9. Goodputs of TCP-AP without COPE, with COPE, with Encode Once
and with Network Coding Aware, respectively.

V. CONCLUSIONS

In this paper, we have presented three TCP protocols (i.e.,
TCP-NewReno, TCP-FeW and TCP-AP) with COPE and the

implementation of them in network simulator NS-2. Then
we have evaluated their performances in chain, classic X-
I and X-II topologies, respectively. The simulation results
demonstrate that in the chain topology both TCP-FeW and
TCP-AP with COPE could greatly improve the performances
of the TCP protocols without network coding; in the X-I topol-
ogy COPE results in significant performance improvement for
TCP- NewReno and TCP-FeW but not for TCP-AP; and in the
X-II topology COPE only improves TCP-AP’s performance.
After evaluating TCP’s with COPE, we have proposed two
schemes to improve the performances (in terms of goodputs)
of the TCP protocols with network coding. The first scheme
is called Encode Once that ensures the packet being encoded
at most one time and the second is called Network Coding
Aware TCP in which the transmitting rate of TCP is made
adaptive to the status of the node’s output queue. The NS-2
simulation results for TCP-AP demonstrate that the proposed
two schemes provide significant improvement on the goodputs
of TCP’s with network coding, and the network coding aware
TCP scheme yields even better improvement.
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