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Abstract— We investigate state estimation via wireless sensor
networks over fading channels causing random packet loss.
Packet loss probabilities depend upon the time-varying channel
gains and transmission power levels used by the sensors.
We develop a predictive controller which trades off sensor
energy expenditure versus state estimation accuracy. The latter
is measured by the expected value of the future covariance
matrices provided by the associated time-varying Kalman Filter.
To further conserve energy at the sensors, the controller is
located at the gateway and sends coarsely quantized power
increment commands, only whenever necessary. Simulations
based on real channel measurements show that the proposed
approach gives excellent results.

I. INTRODUCTION

The interest in estimation and control over lossy communi-
cation links has increased tremendously in recent years; see,
e.g., [1]–[3] and the references therein. In particular, with
the rapid evolution of Wireless Sensor Networks (WSNs),
see e.g., [4]–[7] for recent achievements, the use of wireless
sensors (and actuators) has become an interesting alterna-
tive. The driving force behind this evolution from wired to
wireless is the low deployment cost: There is no need for
extensive wiring, either in new installations or for upgrading
old systems. In addition, wireless sensors and actuators can
be placed where wires cannot go, or where power sockets
are not available.

A drawback of using wireless channels lies in that they are
subject to fading and interference, which frequently lead to
packet errors.1 Interestingly, the time-variability of the fading
channel can be compensated for by adjusting the power
levels. Thus, an important challenge is to design suitable
power control schemes.

Depending on the application, the wireless channel can be
constant (the environment is static and receiver and trans-
mitter are not moving) or time varying. The time variability
may be caused by moving objects, vehicles, people and so
forth. Also, the receiver or the transmitter can be mounted
on a moving object, which may be the case in process
industry. Therefore, in addition to the propagation path loss,
the channel may be subject to slow and/or fast fading.
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1The situation is different to that of wired channels, where packet errors
and delays are caused by congestion.

Beside the fading channel, another important issue, which
arises in the absence of power sockets, is the need for energy
conservation. Even though power scavenging is presently
a hot topic in WSN research, saving energy is of utmost
importance to avoid unnecessary maintenance, such as the
replacement of batteries. Energy conservation has so far
been given little attention in the literature, although some
contributions have considered energy issues recently; see,
e.g., [8]–[11]. In particular, [9] uses convex optimization
to derive optimal power scheduling for a time-invariant
decentralized case.

In this paper we will study optimal state estimation via
WSNs when sensor data are transmitted over a fading chan-
nel generating random packet loss. The packet loss probabil-
ities depend, in a nonlinear fashion, upon the time-varying
channel gains and power levels used by the sensors. Thus, the
packet loss process can be regarded as a disturbance, which,
to some extent, can be manipulated by choosing transmission
power levels. Since at the gateway side, past and present
transmission outcomes are known, a time-varying Kalman
Filter can be used. We will develop a centralized dynamic
controller which is located at the gateway and decides upon
the transmission power levels to be used by each sensor. The
controller uses elements of predictive control [12] to trade
off estimation accuracy against energy use.

To further conserve energy, the proposed controller sends
coarsely quantized power increment commands to the sen-
sors, only whenever necessary. Consequently, the system to
be controlled is not only nonlinear and stochastic (due to
the occurrence of random packet errors), but also subject to
finite-set constraints on decision variables. Key to keeping
the computational burden limited is the fact that the occur-
rence of packet errors constitutes a binary random variable,
thus, expected values can be exactly evaluated via finite sums
over the possible transmission outcome scenarios, i.e., no
integrals need to be evaluated or approximated.

Before proceeding, we emphasize that in our approach, the
sensors are commanded by the controller to wake up, collect
data, transmit the data at the desired power level, and go to
sleep. This would keep processing power at the sensors to
a minimum. Scheduling schemes for related problems have
been proposed recently in the literature. For example, in [13]
a sensor selection schedule is presented which minimizes a
steady state estimation error covariance. In that work, sensors
share state information over error-free links and only one
sensor is allowed to transmit at a time. Here, we consider
time-varying channels affected by errors and propose a power

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB14.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1103

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on January 16, 2009 at 11:43 from IEEE Xplore.  Restrictions apply.



controller, which jointly minimizes the state estimation error
covariance and transmission power levels.

The remainder of this paper is organized as follows:
In Section II, the state estimation problem is formulated.
Section III describes energy aspects. Section IV presents the
predictive power controller which trades off state estimation
error versus energy usage and respects constraints on power
levels and their increments. Simulation results with channel
measurements are documented in Section V. Finally, in
Section VI conclusions are given.

II. STATE ESTIMATION VIA SENSOR NETWORKS

Consider an uncontrolled LTI n-dimensional system:

x(k + 1) = Ax(k) + w(k), k ∈ N0 , {0, 1, . . . }, (1)

where the initial system state is Gaussian distributed with
mean x0 and covariance P0 ∈ Rn×n, i.e., x(0) ∈ N (x0, P0).
Similarly, the driving noise process w = {w(k)}k∈N0 is
i.i.d., where each w(k) ∈ N (0, Q).

To remotely estimate the system state sequence x =
{x(k)}k∈N0 , a network of M sensors is used. Each sensor
provides a scalar noisy measurement signal, say ym =
{ym(k)}k∈N0 :

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . ,M}, (2)

where vm = {vm(k)}k∈N0 is an i.i.d. process with each
vm(k) ∈ N (0, Rm).2

The M values in (2) are transmitted through wireless links
to the single gateway. The received signals are then used to
remotely estimate the state of the system (1).

Since the M links between sensors and gateway are
wireless, transmission errors are likely to occur.3 Faulty
packets will be discarded when estimating the system state.
We will model transmission effects by introducing the M
binary stochastic arrival processes γm = {γm(k)}k∈N0 ,
m ∈ {1, 2, . . . ,M}, where:

γm(k) =

{
1 if ym(k) arrives error-free at time k,
0 if ym(k) does not arrive error-free at time k.

For further reference, we also define the overall arrival
process of all M links, say γ = {γ(k)}k∈N0 , via:

γ(k) ,
[
γ1(k) γ2(k) . . . γM (k)

]T
, k ∈ N0. (3)

In the present work, we will assume that the data trans-
mitted incorporates error detection coding [15]. Hence, the
gateway knows, whether packets received from the sensors
contain errors or not. Thus, at any time k, past and present
realizations of the overall transmission process, say γk, are
available at the gateway.

For state estimation purposes, the system amounts to
sampling (1)-(2) only at the successful transmission instants

2In addition to measurement noise, vm may also describe quantization
effects, which we model as white and Gaussian.

3In the present work, we will assume that sensor data is not affected by
delays or Multiple Access Interference (MAI). Extensions of our framework
to include MAI and time-delay issues, and also irregular sampling [14], does
not present any conceptual difficulties.

of each sensor link. Indeed, the conditional probability
distribution of the system state at any time k, given γk and
correctly received sensor measurements up to time k, say yk,
is Gaussian. Consequently, the conditional mean of x(k) and
covariance of the state estimation error, i.e,

x̂(k) , Ew,v,x(0)

{
x(k)

∣∣ yk, γk
}

P̄ (k) , Ew,v,x(0)

{(
x̂(k)− x(k)

)(
x̂(k)− x(k)

)T ∣∣ yk, γk
}

,

satisfy the Kalman Filter recursions (see, e.g., [16]):4

x̂(k + 1) = Ax̂(k)+K(k + 1)
(
y(k + 1)−C(k + 1)Ax̂(k)

)
P (k + 1) = AP (k)AT + Q−AK(k)C(k)P (k)AT (4)

P̄ (k) = P (k)−K(k)C(k)P (k),

where:

C(k) ,
[
γ1(k)(C1)T γ2(k)(C2)T . . . γM (k)(CM )T

]T
K(k) , P (k)C(k)T

(
C(k)P (k)C(k)T + R

)−1

R , diag
(
R1, R2, . . . , RM

)
and with initial values P (0) = P0 and x̂(0) = x0.

In the following section we will show how the arrival pro-
cess γ in (3) depends upon the transmission power used by
the sensors. In Section IV, we will then use the time-varying
Kalman filter presented above, to develop a predictive power
controller for the sensor network state estimation problem.

III. POWER ISSUES IN WIRELESS SENSOR NETWORKS

In this section we will discuss some fundamental aspects
on power control for wireless sensor networks.

As mentioned in Section II, for each of the M channels,
γm(k) is a Bernoulli trial with success probability

λm(k) , P
{

γm(k) = 1
}

. (5)

This probability is, in general, time-varying and depends
upon the propagation environment and on the transmission
power used by the sensor radio power amplifiers. Indeed, in
general it holds that:

λm(k) = fm

(
um(k)hm(k)

)
, m ∈ {1, 2, . . . ,M}, (6)

where fm(·) : [0,∞) → [0, 1] is a monotonically increasing
function, which depends upon the modulation scheme em-
ployed.

In (6), hm(k) denotes the square of the magnitude of the
channel gain. (Note that hm(k) is here defined to include
also path-loss, power amplifier efficiency, antenna gain and
noise figure.) The term um(k) denotes the power used by
the m-th radio power amplifier.

It follows from the reasoning above, that one can improve
transmission reliability and, thus, state estimation accuracy
for a given wireless propagation environment, by simply
increasing the power used by the transmitter. However, in
wireless sensor networks, it is of fundamental importance to
save energy: Sensor nodes are expected to be operational for

4The one sensor case, i.e., where M = 1, was investigated in [17].
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several years without maintenance. This motivates us to use
the available energy resources with care.

We will quantify the energy used by each sensor m ∈
{1, . . . ,M} at a given (discrete) time instant via gm(um(k)),
where

gm(·) : [0,∞) → [0,∞) (7)

is a monotonically increasing function. The total energy used
by the M sensors at each time instant k is, thus, given by:

G(u(k)) ,
M∑

m=1

gm(um(k)),

where

u(k) ,
[
u1(k) u2(k) . . . uM (k)

]T
. (8)

We note that the energy spent by the sensor radio
power amplifier for transmitting each measurement value is
bum(k)/r where r is the channel bit rate used and b is the
number of bits per measurement value.5

In order to save energy required to process the received
signal at the sensors, we would like to keep the signaling
from the gateway to the sensors as low as possible. This
motivates us to send only a few bits indicating whether power
should be kept as is, be increased, or decreased. The available
transmission power will also be constrained in magnitude.
Thus,

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}, (9)

for given values {umax
m }.

We conclude from the above that power control design
involves a trade-off between transmission error probabilities
(and, thus, state estimation accuracy) and energy consump-
tion.

Remark 1 (Channel Gain Predictors): We note from (6)
that power control ideally would require present and future
channel gains. These values can be estimated by transmitting
a fixed number of pilot bits based on which the channel can
be estimated. These and previously estimated channel gains
may then also be used for predicting future channel gains,
see, e.g., [18], [19]. Note that, even if received packets are
discarded for state estimation, they may still be used for
channel gain estimation and prediction. �

Example 1 (Constant AWGN Channel and BPSK): If Bi-
nary Phase Shift Keying is used over an additive white
Gaussian noise channel with constant signal-to-noise ratio,
say SNR, then the Bit Error Rate (BER), here denoted B, is
given by [15]

B = Q̄
(√

2SNR
)

, (10)

where Q̄(·) is the Q-function defined by

Q̄(z) ,
1√
2π

∫ ∞

z

e−η2/2dη.

5In addition to the energy used by the radio power amplifier, there are
also energy costs associated with the transmission and reception of each bit.
These costs are caused by the circuitry involved, e.g., DA-converters, mixers,
and oscillators. Furthermore, one may also include the cost for wake-up and
sensing. We will, however, not consider these aspects in more detail here.

Although the above model is only valid in the time-
invariant case, we shall adopt it also for time-varying chan-
nels and power levels. For that purpose, we introduce the
instantaneous signal-to-noise ratio for each channel m via6

SNRm(k) =
hm(k)um(k)

rkBT
,

where kB is the Boltzmann constant (in Joule per Kelvin)
and T is the temperature (in Kelvin).

To characterize the effect of packet length, let each mea-
surement value, to be transmitted over the fading channel,
consist of b bits, including error detection bits. If we adopt a
block fading model, where the channel is constant over the
duration of one packet, but may be subject to fading between
packets, then the probability of successful packet arrival (5)
is simply given by7

λm(k) = (1−Bm(k))b . (11)

In this light, the functions fm(·) and gm(·) in (6) and (7),
respectively, are now readily found to be:

fm(um(k)hm(k)) =

(
1− Q̄

(√
2hm(k)um(k)

rkBT

))b

gm(um(k)) = (b/r)um(k).

We will use this model in Section V. �

IV. PREDICTIVE POWER CONTROL

In what follows, we will present a predictive control
strategy which minimizes a cost function, which takes into
account energy consumption and estimation quality over a
future prediction horizon. To keep processing at the sensors
to a minimum, the controller is located at the gateway and
its output is coarsely quantized, i.e., each value has a short
word-length.

A. Control Signal Coding

Since we are tackling energy issues, in the present work
we choose to use only a small number of bits for the power
control commands sent from the gateway to the sensors. This
incurs only limited reception and processing power at the
sensor sides. Here, we will use coding ideas frequently used
in power control architectures for cellular networks, see, e.g.,
[20] (and compare also to our work on Networked Control
Systems in [21]). We, thus, send coarsely quantized power
increments, say ∆um(k), rather than actual power values,
um(k), to each sensor m ∈ {1, 2, . . . ,M}. All signals
{∆um} are constrained according to:

∆um(k) ∈ Um, ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}, (12)

where {Um} are given finite sets, each having a small
number of elements.

6SNRm(k) denotes the signal-to-noise ratio at the receiver, as seen by
the coherent detector.

7The instantaneous BER Bm(k) is obtained by inserting SNRm(k)
into (10). Note that if the received packet is found to have at least one
bit error, then it is discarded. The discarded packet may however still be
used for channel estimation, see Remark 1.
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In our approach, upon receipt of ∆um(k), each sensor m
reconstructs the power level to be used by its radio power
amplifier by simply setting

um(k) = um(k − 1) + ∆um(k).

For further reference, we define the signal:

∆u(k) ,
[
∆u1(k) . . . ∆uM (k)

]T
, k ∈ N0. (13)

Note that the quantization constraint on the transmitted
values, see (12), imposes

∆u(k) ∈ U , U1 × U2 × · · · × UM , ∀k ∈ N0. (14)

B. Predictive Power Controller

At each time instant k ∈ N0, the predictive power con-
troller calculates the value of the current posterior covariance
matrix P̄ (k), which results from iterating (4) for the (known)
past arrival process realizations γk, see (3), and uses channel
gain predictions over a finite horizon of fixed length N (recall
Remark 1), namely:

{ĥm(k + 1|k), . . . , ĥm(k + N |k)}, ∀m ∈ {1, 2, . . . ,M}.
(15)

With this information, the controller minimizes the finite-set
constrained cost function

J(∆U) , EΓ(k) {J1(Γ(k),∆U)}+ ρJ2(∆U), (16)

where ρ ≥ 0 is a design parameter which allows one to trade
estimation accuracy for energy consumption.

The stochastic aspect of the power control problem,
namely the possibility of transmission errors, is captured
in (16) by the discrete random variable

Γ(k) ,
[
γ(k + 1) γ(k + 2) . . . γ(k + N)

]T
.

Accordingly, EΓ(k) denotes expectation taken with respect
to the probability mass distribution of Γ(k). Note that this
distribution depends upon the power levels and channel
gains, see (5) and (6). Thus, Γ(k) can be regarded as a
controlled stochastic disturbance to the system.

In (16), the estimation error covariance and energy use are
quantified via

J1(Γ(k),∆U) ,
k+N∑

`=k+1

trace
(
P̄ ′(`)

)
J2(∆U) ,

k+N∑
`=k+1

G(u′(`)),

(17)

respectively. The decision variables, i.e, the vector of tenta-
tive future power value increments, are collected in8

∆U = {∆u′(k + 1),∆u′(k + 2), . . . ,∆u′(k + N)} (18)

see (13). In accordance with (8) and (14), ∆U yields the
tentative future power levels u′(`) in (17) via

u′(`) = u′(`− 1) + ∆u′(`), ` ∈ {k + 1, . . . , k + N},
8In the sequel, primed variables refer to tentative values of the corre-

sponding physical variables.

starting from the current power levels, i.e., u′(k) = u(k).
Finally, trace

(
P̄ ′(`)

)
denotes the trace of the a posteriori

conditional state covariance matrix obtained from iterat-
ing (4) with initial value P (k+1) and for a given realization
of Γ(k).

At each time instant k ∈ N0, and given channel gain pre-
dictions in (15), the controller finds the optimizing sequence

∆U opt , arg min J(∆U), (19)

subject to the constraints:

∆U ∈ UN

0 ≤ u′m(`) ≤ umax
m , ∀` ∈ {k + 1, . . . , k + N}, ∀m,

where
UN , U× U× · · · × U.

Following the moving horizon principle, see, e.g., [12], at
each time k, the proposed controller sends only the M power
updates contained in9

∆u(k + 1)opt ,
[
IM 0M . . . 0M

]
∆U opt

to the corresponding sensors. At the next time instant, namely
k + 1, the optimization procedure is repeated, giving rise to
control increments ∆u(k + 2)opt. This procedure is repeated
ad infinitum.

The proposed power controller jointly decides upon the
power levels of all M sensors by using future channel
gain predictions. The control law respects finite word-length
constraints and takes into account the coding system used for
the power level signaling, see Section IV-A. We emphasize
that, for general time-varying channels, the power levels ob-
tained are not constant, but are assigned dynamically through
optimization of the criterion in (16) and, thus, optimize the
resulting performance.

C. Computational Aspects

We note that minimization of J(∆U) in (19) is carried out
on-line at the gateway, where computational aspects play less
of a role than at the sensors. Nevertheless, in what follows,
we will briefly outline some computational aspects.

Despite the fact that we are dealing with a stochastic
nonlinear optimization problem, solving (19) in real-time is
surprisingly simple, due to the finite-set nature of Γ(k) and
of ∆U . To be more precise, Γ(k) takes only values in the
finite set {0, 1}MN , whose elements we will denote via di,
where i ∈ {0, 1, . . . , 2MN − 1}. The probability of a given
arrival process realization occurring, namely

Pi(k) , P
{
Γ(k) = di

}
depends upon future channel gains and power levels used
by the sensors. These probabilities can be calculated
by simply forming the product of the individual terms

9IM denotes the M ×M identity matrix and 0M , 0 · IM .
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fm(um(`)hm(`)), see (6). Consequently, taking expectation
in (16) reduces to evaluating the finite sum:

EΓ(k) {J1(Γ(k),∆U)} =
2MN−1∑

i=0

Pi(k)

(
k+N∑

`=k+1

trace
(
P̄ ′(`)

))
where the sum of the traces on the RHS is carried out for
each realization di and is independent of ∆U .

Furthermore, the optimization (19) requires evaluating
J(∆U) for at most10 |U|N possibilities of ∆U , see also [22].
Thus, the number of calculations to be carried out at each
time instant is proportional to, at most, (2M |U|)N .11 Note
that, if Γ(k) would be a continuous random variable and/or
∆U would not be finite-set constrained, then the optimization
procedure would, in general, be significantly more involved.

V. SIMULATION STUDY

In this section we will evaluate the proposed power
controller on measured channel data, which were acquired
in an office space area at the Signals and Systems Group
at Uppsala University, Sweden. The transmitter was placed
in an office and the receiver was located 8 m away in the
corridor outside the office. The transmitter position was fixed,
whereas the receiver was mounted on a rail allowed to move
over a distance of 1.25 m, perpendicular to the corridor. Mea-
surements were collected at the 2.4 GHz ISM band. Fig. 1
illustrates normalized channel gains of two realizations, one
with horizontal and one with vertical polarization.12

0 0.5 1 1.5 2 2.5 3
x 105

!25

!20

!15

!10

!5

0

5

 

 

Channel 1
Channel 2

Fig. 1. Normalized channel magnitudes (in dB),
√

h1 (solid) and
√

h2

(dashed). The horizontal axis is scaled in samples, where 3·105 corresponds
to approximately 1.25 m.

Fig. 1 illustrates the channel gains as a function of relative
position, and, thus, corresponds to what a receiver would
perceive if it moved through space. The gains shown in Fig. 1

10|U| denotes the cardinality of the finite set U.
11Future work may include the development of computationally more

attractive optimization algorithms.
12The channels were found to be well described by time-varying gains. It

is worth emphasizing here that, since we have real channel data, in this case
we do not require to ascribe probability distributions to the fading. However,
if we had knowledge about underlying fading statistics, then it could easily
be incorporated, e.g., by averaging (10) over the fading distribution.

also give an indication of what fading to expect, if objects
are moving between fixed sensor and gateway localizations.
We note that the channels vary considerably, with some dips
dropping as much as 20 dB. Without appropriate dynamic
power control, such large variations would require excessive
energy consumption to avoid frequent transmission errors,
and thus degraded estimation quality.

We will now apply the predictive power controller pro-
posed in Section IV with parameters N = 1 and ρ =
200 (µW )−1 on the measured channel data depicted in
Fig. 1. For that purpose, we will adopt the simple expres-
sions (10)–(11)13 and consider a second order state space
model (1) with Q = I2, R = (1/100) I2,

A =
[

1 0
1 0.7

]
, C1 =

[
1 0

]
, C2 =

[
0 1

]
.

The constraints on the power values, see (9), are

umax
1 = umax

2 = 40µW.

Increments are restricted to belong to the finite sets

U1 = U2 = {0,±3µW}.

We will furthermore assume that the controller has perfect
one-step-ahead channel predictions.14

Fig. 2 illustrates that the controller tries to find the best
compromise between the two sensors links.15 In particular,
the controller at times approximately inverts the channel
gains. At other times, it decides to send one of the sensors
to sleep, i.e., to set u1(k) = 0 or u2(k) = 0.

To give further insight, Fig. 3 shows the success probabil-
ities for both channels together with the achieved cost:

V (k) , trace
(
P̄ (k)

)
+ ρG(u′(k)).

Note that when the channel energies are small and, thus,
λ1(k) and λ2(k) drop to very low levels, V (k) quickly
increases, since the Kalman filter becomes blind to the
evolution of the states.

VI. CONCLUSIONS

An energy efficient power control scheme for state esti-
mation via wireless sensor networks operating over fading
channels was presented. The time variability of the fading
channels frequently leads to transmission errors with sub-
sequent random packet drops. State estimation in the face
of intermittent observations was then performed by a time-
varying Kalman filter.

In our scheme, the transmission power of the radio am-
plifier of each of the wireless sensors was controlled by
the gateway. For that purpose, we proposed a predictive
controller which utilizes predictions of radio channel gains
and incorporates signal coding. Performance was illustrated

13We choose rkBT = 2.5 · 10−10 µW, which corresponds to r = 60
kbits/s at room temperature. The number of bits per sensor value is 8.

14Good accuracy can be obtained for prediction lengths up to a quarter
of the carrier wavelength [18], [19].

15The mean values of h1(k) and h2(k) were 3.33·10−11, i.e., −105 dB.
At the maximum allowed power level, this corresponds to an SNR of 7 dB.
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Fig. 2. Channel gains h1 and h2 (top) together with control signals u1(k)
(middle) and u2(k) (bottom) provided by the predictive controller.

on measured channel data and the optimal control action
was shown to find a suitable compromise between estimation
quality and the amount of energy used.
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