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Abstract. We introduce a method for making approximate Bayesian inference based on quantizing
the hypothesis space and repartitioning it as observationsbecome available. The method relies on
approximating an optimal inference by using a probability distribution for quantized intervals of
the unknown quantity, and by adjusting the intervals so as toobtain higher resolution in regions of
higher probability, and vice versa.

We repartition the hypothesis space adaptively with the aimof maximizing the mutual infor-
mation between the approximate distribution and the exact distribution. It is shown that this ap-
proach is equivalent to maximizing the entropy of the approximate distribution, and we provide
low-complexity algorithms for approximating multi-dimensional posterior distributions with tun-
able complexity/performance.

The resulting quantized distribution for a one-dimensional case can be visualized as a histogram
where each bar has equal area, but in general unequal width. The method can be used to provide
adaptive quantization of arbitrary data sequences, or to approximate the posterior expectation of for
instance some loss function by summing over a pre-specified number of terms.
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1. INTRODUCTION

In this paper we present a method for approximate Bayesian inference in cases where
the unknown quantities vary in an unknown manner but where the outcomes at different
times are observed.

The method relies on approximating an optimal inference by using a probability dis-
tribution for quantized intervals of the unknown quantity,and by adapting the quanti-
zation so as to obtain higher resolution in regions of higherprobability. The probability
distribution is partitioned intoK bins. After a block of data is observed, the posterior
probability for each bin is computed by the use of Laplace’s rule of succession. The to-
tal probability in each bin is then spread out uniformly overthe individual values within
the bin. Based on this posterior probability distribution, the boundaries of theK bins are
adjusted so as to maximize the mutual information between the quantized distribution1

and the unquantized distribution. As we shall see, this approach is equivalent to max-

1 In this paper, whenever we speak of a quantized distributionwe really mean a continuous-valued
distribution over discrete intervals of the variable of interest. It is not the probabilities that are quantized,
but rather the variables for which the probability is calculated.



imizing the entropy of the approximate distribution. For the one-dimensional case, the
resulting quantized distribution can be regarded as a histogram withK bars of equal area,
but in general of unequal width. Using this strategy, the posterior quantized distribution
will increase the resolution in regions of high probabilityand decrease it in low-intensity
regions.

In the following example taken from mobile communications we provide a motivating
application for the method.

Example 1. Consider the problem of scheduling transmissions to users ina mobile
communications system. A controller wishes to schedule the use of a communications
channel for T time slots ahead, but then faces the problem that the channel quality and
the arrival rates into each buffer is unknown. Focusing here only on the arrival rates, a
possible approach for handling the uncertainty regarding the number of bits entering the
buffer would be to assign a probability distribution based only on the maximum entropy
principle, as discussed in [1]. For instance, this is a validapproach if the controller
has information about the average arrival rate in each buffer. However, as time evolves
the controller can monitor the arrival rates and thus learn any patterns in the arrival
rates by the use of Bayes’ rule. Assuming that the statisticsof the arrival rates do not
change considerably during a certain period, we could use Laplace’s rule of succession
to obtain the probability pk for an influx of size k bits,

pk =
nk +1
N+K

, (1)

where nk is the number of times over the N most recent observations that the influx
consisted of k bits, and K is the number of possible influx sizes. But if the possible data
rates vary over a large interval, say from0 bits/second to1 megabit/second, K would be
so large that the posterior distribution pk would be uniform2 for all practical purposes
(since the number of observations N would then typically be much smaller than K).

Instead, it could prove useful to partition the interval of possible influxes into a
smaller set of regions, or bins, and apply the rule of succession on this smaller set
of possibilities. For improved performance we should let thebin widths be adapted
based on incoming data. Then the bins should spread out and become wide in regions
where little activity is observed, and become denser in the rate interval of frequent
observations. Thus, high fidelity is attained where it is suggested by the data, and less
attention is paid to atypical rate regions. Within each bin,the probability for individual
values is assigned by the principle of indifference. The expectation of any function of the
arrival rates can then be obtained by a simple summation overthe quantized posterior
distribution and the function.�

2 By uniform, we here refer to the fact that the majority of all possible outcomes will be equally likely,
although the distribution will have occasional peaks. When we say that a distribution is close to uniform,
we mean this in the sense that the entropy of the distributionis close to that of a uniform one (i.e. logK).



2. MAXIMIZING THE MUTUAL INFORMATION

We here show that maximizing the mutual information betweenan approximate poste-
rior distribution and an exact posterior is equivalent to maximizing the entropy of the
approximate distribution. LetK be the number of bins to use in the approximation, and
imin ≤ i < imax be the lower and upper bounds on the unquantized variablei between
which we want to approximatep(i | DI) (whereD is the observed data andI our om-
nipresent background information). Denoting the mutual information between the quan-
tized and the exact distributionsI (k, i) and writing p(k) = p(k | DI) for the posterior
probability for obtaining an observation in bink, andp(i) = p(i | DI) for the posterior
probability for obtaining the exact valuei, we now prove the following theorem.

Theorem 1. The optimum approximation to an exact distribution p(i) for a quantity i,
in terms of maximum mutual information between p(i) and an approximate distribution
p(k) for quantized intervals (bins) k of the same underlying variable, is obtained when
the bin boundaries of the latter distribution are adjusted so that the resulting distribution
for k has maximum entropy.

Proof. The mutual information between the distribution for the quantized variablek and
the distribution for the unquantized variablei is given by

I (k, i) = H(k)−H(k | i) (2)

=
K

∑
k=1

∫ imax

imin

p(ik) logp(k | i)di−
K

∑
k=1

p(k) logp(k) (3)

=
K

∑
k=1

∫ imax

imin

p(ik) logp(k | i)di−
K

∑
k=1

∫ imax

imin

p(i | k)p(k) logp(k)di (4)

=
K

∑
k=1

∫ imax

imin

p(ik) log
p(k | i)
p(k)

di = −
K

∑
k=1

∫
i∈bin k

p(i | k)p(k) logp(k)di (5)

= −
K

∑
k=1

p(k) logp(k) , (6)

where (4) follows from (3) by using the fact that
∫ imax

imin
p(i | k)di = 1 We obtain the

second equality in (5) by noting that given knowledge ofi we know in which bink
the observation lies, i.e.p(k | i) = 1 or p(k | i) = 0 depending on whetheri is in bin k
or not. Sincep(i | k) integrates to unity we finally have (6) from (5). The theorem can
also be obtained directly from (2) by proving thatH(k | i) = 0. (Given i, there is no
uncertainty concerning which is the corresponding bink.)

Thus, in order to obtain a quantized distribution which is assimilar in information
content to the unquantized distribution as possible, we should adjust the bin sizes to
obtain equal probability mass in each bin.



3. ANOTHER RATIONALE FOR MAXIMUM ENTROPY
DISTRIBUTIONS?

We phrased the theorem above in terms of an approximate distribution based on reparti-
tioning the hypothesis space into a smaller number of intervals. But note that the proof
only requires that there is a known mapping betweenk andi. It may be a 1-to-1 mapping,
or an n-to-1 mapping fromi to k, of any kind, and the result is still that we should use
a maximum entropy distribution. If there is no ambiguity of which mapped valuek that
a given exact valuei corresponds to (i.e. there is a deterministic mapping between the
two), then the proof goes through.

This means that if we are to approximate a distribution with asimpler one (maybe
using exactly the same hypothesis space, i.e. without quantization) under arbitrary
constraints on the probability distribution, for instancein the form of known mean
values, then the distribution which looses the least amountof information from the
exact distribution is the one with maximum entropy subject to the imposed constraints.
For example, wishing to approximate the distribution for a variablex using only first
and second moments, we should use a Gaussian distribution regardless of the exact
distribution’s shape (and regardless of whether we know that distribution or not!).

Note that this provides an explicit motivation for using maximum entropy distri-
butions: they approximate any known or unknown probabilitydistribution with mini-
mum information loss regardless of the ’underlying’ distribution. We can thusselect
any testable information (any information which can be expressed as a function of the
probability distribution) that we find convenient to work with and determine the ’best’
approximation toanydistribution (and again, it does not matter whether the exact distri-
bution is known or unknown) by simply maximizing the entropyunder the constraints
imposed by this information.

The most common rationale for using maximum entropy distributions takes as its
starting point that we know certain testable information, and then argues that by using the
distribution with maximum entropy, we should add the fewestnumber of assumptions.
Here, on the other hand, we see that it is also motivated, regardless of the reason for
how we chose the constraints, to pick any subset of known testable information, use it
in a maximum entropy assignment and thus obtain an approximate distribution which
achieves minimum information loss under those constraints3

4. MAXIMIZING THE ENTROPY

Assume that we observeN samples of data before updating the bin sizes. In the multi-
variate case, each sample is a vector-valued observation specifying which bin the obser-
vation corresponds to. Within bink we obtainnk observations, and we haveK bins in
total. Assuming that the underlying causal mechanisms which determine the outcomes

3 Of course, if there are relevant constraints that are not included in the approximation there may be a
performance loss as compared to using the exact distribution. We should always strive for including the
most relevant constraints.



are stationary over theN observations and the coming period ofN observations, and
ignoring possible time-dependencies, the probability fora future observation in bink is

pk =
nk +1
N+K

(7)

according to Laplace’s rule of succession (see Ch. 18 of [2] for an excellent discussion
on this rule).

Now, how we choose to adjust the bin boundaries so as to obtainequal probability for
all bins (and thus maximum entropy of the approximate distribution) depends on how
flexible we allow the geometry of the bins to become. We will here prioritize simplicity
over performance, and propose a method that at each step increases the entropy although
it does not guarantee to actually maximize it. The algorithmworks by halving bins in
thesplit step, and combining two neighboring bins in theexpansionstep.

Split. In ann-dimensional case, the bin with the highest probability is halved in the
one of then directions that has the steepest probability gradient. In a2-dimensional case,
the bin can thus be halved either vertically or horizontally.

Expansion. The expansion step, the combination of one bin with a neighboring one,
is slightly more complicated. In order to facilitate this step, we will use a multidimen-
sional tree representation of bins and their probabilities. The example in Figure 1 shows
the principle for the one-dimensional case, and Figure 2 shows the 2-dimensional case.
Higher dimensions follow in a similar way. Each leaf represents a bin and has a probabil-
ity attached to it as well as the bin boundaries. Since the bins are all obtained by halving
the bin represented by the node directly above it in the tree,the bin boundaries do not
have to be stored but can be computed from knowledge of the depth of the correspond-
ing leaf in the tree and the minimum and maximum possible values that the variable can
take in any direction. We only allow leaves connected to the same node at the preceding
depth to be combined into one bin. This simplifies the algorithm, but could in principle
be avoided for higher flexibility.

Only bins, i.e. leaves, at the same depth and connected to thesame node are allowed
to be combined. Out of the possible bins to be combined, the pair with the lowest sum
probability is chosen. If there are several candidates, thepair with lowest probability
gradient is chosen.

A split is always followed by an expansion to guarantee that the number of bins is
held constant. The computational complexity and the rate ofchange can be adjusted by
choosing the number of split-expansion steps to take after each block of observations.
Full details of the algorithm cannot be given here due to lackof space.

5. COMPUTING POSTERIOR EXPECTATIONS

In order to compute the expectation of some function of the unknown quantities, we
need to determine the probability for an individual value within an arbitrary bink.
Assume that the volume of bink is wk, i.e. the bin covers exactly a volume of that
size of the underlying (vector-valued) quantityi. Then our task reduces to distributing



FIGURE 1. One-dimensional example of how a tree is built from a succession of splits. The left side
shows an axis representing possible values of an unknown quantity divided into 2, 3, 4, and 5 bins. The
right column depicts the corresponding tree. Since each leaf is obtained by halving the leaf above it, the
bin widths can be computed from the depth of the leaf and the global minimum and maximum of the
unknown quantity. Information about the probability for each bin must be stored with the corresponding
leaf.

FIGURE 2. This shows how a tree is created in a 2-dimensional case. Here, the horizontal and vertical
axes of the left sides correspond to 2 different variables. Each node in the tree now has the possibility
to have up to four nodes, two for each dimension. (1) shows thetree when the horizontal part of the
2-dimensional plane is split into two halves. In (2), the left bin is further split in the vertical direction,
generating two new leaves from the previous left leaf. In (3a), also the right leaf of depth 1 is halved in the
vertical direction, creating two new leaves on that node. (3b) is an alternative representation of the same
situation. (4) shows a horizontal split of the top right bin.

the probabilitypk over the volume of sizewk. In order to assume anything else than a
uniform distribution within the bin we would require some information which is not
indifferent between the different values inside the volume. Here, we shall keep our
solution general and therefore assume information indifference between the different
values. Then the principle of indifference requires that wedistribute the probability as

pi = pk/wk i ∈ bin k . (8)

Given the approximate posterior distributionpk, what is the expectation of some
function f (·) of the n-dimensional unquantized variable? The expectation ofi given



theN most recent data is obtainedbeforerepartitioning the bins (because the statistics
were collected based on the previous partition, not on the new one) by summing over all
K bins the probability for that bin multiplied by then-dimensional mean within that bin,
i.e.

〈i〉 =
K

∑
k=1

pk
ik↓ + ik↑

2
(9)

where we defineik↑ and ik↓ as the (n-dimensional) upper and lower limit of bink,
respectively.

Similarly, the posterior expectation for an arbitrary function f (i) is given by

〈 f (i)〉 =
K

∑
k=1

pk

∫ ik↑

ik↓
p(i | k) f (i)di

=
K

∑
k=1

pk

wk

∫ ik↑

ik↓
f (i)di , (10)

where the second equality was obtained by noting thatp(i | k) = 1/wk. (Given which
bin we are in, each value within the bin is equally likely and has a probability equal to
the inverse of the bin volume.)

6. EXAMPLE: A TWO-VALUED ALTERNATING SEQUENCE

We here study the performance of the proposed adaptive approximate inference for
a one-dimensional case withN = 100 samples per block of data. In this case, the
algorithm from Section 4 was not used. Our focus here is on theprinciples, not on
the exact algorithm used. Thus, we repartitioned the bins according to an algorithm
described in [3] (Ch. 8), sweeping through the entire data range once after each block
and repartitioning the bin limits to attain close to maximumentropy after each block.
For multidimensional cases, this algorithm is prohibitively complex since it has to sweep
through all possible data values.

The data were generated so that each data block consists of 50samples taking the
valuei = 1 and 50 samples of valuei = 7, i.e. there are only two values and they occur
with equal frequency. An approximate inference is carried out on the interval of integers
between 0 and 100 usingK = 6 bins, and an initial uniform partition over the integer
interval 0...100. Figure 3 shows the probabilities for each bin after eachof the first five
updates. The resulting repartitioning of the bins was obtained as:

Block 1: 0 3 6 9 12 14 100
Block 2: 0 1 2 6 7 8 100
Block 3: 0 1 2 7 8 54 100
Block 4: 0 1 2 7 8 54 100
Block 5: 0 1 2 7 8 54 100

The bins quickly concentrate aroundi = 1 andi = 7, the only bins where any activity
is registered, leaving larger implausible values nearly unattended. After the first update
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FIGURE 3. The evolution of the probabilities in each bin based on an adaptively quantized hypothesis
space in an example where each block ofN = 100 samples contained only two values,i = 1 andi = 7,
occurring with exactly the same frequency. The convergenceis quick and nearly all attention is focused
around the two observed values.

the expectation ofi becomes 9.9, after the second and the later updates the expectation
is between 4 and 5, near the arithmetic mean(7+1)/2 = 4 of the sequence.

7. CONCLUSIONS

We have shown that when there is a knownn-to-1 (for arbitraryn) mapping between
some variablei and some other arbitrarily chosen variablek, the distribution fork that
approximates the probability distribution fori with the least amount of information loss
is the distribution that maximizes the entropy fork under any chosen constraints. We
provided a simple adaptation rule for changing bin sizes in the general multidimensional
case according to incoming data with tunable complexity andperformance. Due to the
limited space here, a performance study of this algorithm will be offered elsewhere.
Likewise, the important problem of adapting not only the binboundaries but also the
number of bins will be investigated in future work. Finally,we would like to point out
that time dependencies can be inferred by treating variables at different time delays as
additional dimensions. All ideas given above are thus applicable also in the case of time-
dependencies.
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