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Abstract. We introduce a method for making approximate Bayesianémfez based on quantizing
the hypothesis space and repartitioning it as observalienesme available. The method relies on
approximating an optimal inference by using a probabilistribution for quantized intervals of
the unknown quantity, and by adjusting the intervals so abtain higher resolution in regions of
higher probability, and vice versa.

We repartition the hypothesis space adaptively with the @fimmaximizing the mutual infor-
mation between the approximate distribution and the exattilaltion. It is shown that this ap-
proach is equivalent to maximizing the entropy of the appnate distribution, and we provide
low-complexity algorithms for approximating multi-dims&ional posterior distributions with tun-
able complexity/performance.

The resulting quantized distribution for a one-dimensi@aae can be visualized as a histogram
where each bar has equal area, but in general unequal widéhniEthod can be used to provide
adaptive quantization of arbitrary data sequences, orgiooapmate the posterior expectation of for
instance some loss function by summing over a pre-specifiether of terms.
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1. INTRODUCTION

In this paper we present a method for approximate Bayesianeinte in cases where
the unknown quantities vary in an unknown manner but wher@tlicomes at different
times are observed.

The method relies on approximating an optimal inferencediggia probability dis-
tribution for quantized intervals of the unknown quantand by adapting the quanti-
zation so as to obtain higher resolution in regions of higivebability. The probability
distribution is partitioned int&K bins. After a block of data is observed, the posterior
probability for each bin is computed by the use of Laplacefs bf succession. The to-
tal probability in each bin is then spread out uniformly otrex individual values within
the bin. Based on this posterior probability distributidre boundaries of thi€ bins are
adjusted so as to maximize the mutual information betweemjtiantized distribution
and the unquantized distribution. As we shall see, this@ggr is equivalent to max-

Ln this paper, whenever we speak of a quantized distributienreally mean a continuous-valued
distribution over discrete intervals of the variable ofirgst. It is not the probabilities that are quantized,
but rather the variables for which the probability is caddat!.



imizing the entropy of the approximate distribution. Foe ttne-dimensional case, the
resulting quantized distribution can be regarded as adrniato withK bars of equal area,
but in general of unequal width. Using this strategy, thetgricsr quantized distribution
will increase the resolution in regions of high probabibtyd decrease it in low-intensity
regions.

In the following example taken from mobile communicatioresprovide a motivating
application for the method.

Example 1. Consider the problem of scheduling transmissions to useis mmobile
communications system. A controller wishes to schedulegbeofia communications
channel for T time slots ahead, but then faces the problemthieachannel quality and
the arrival rates into each buffer is unknown. Focusing herly @n the arrival rates, a
possible approach for handling the uncertainty regarding humber of bits entering the
buffer would be to assign a probability distribution basedyamm the maximum entropy
principle, as discussed in [1]. For instance, this is a vafigproach if the controller
has information about the average arrival rate in each buffowever, as time evolves
the controller can monitor the arrival rates and thus leamyapatterns in the arrival
rates by the use of Bayes’ rule. Assuming that the statisfitse arrival rates do not
change considerably during a certain period, we could usdaaass rule of succession
to obtain the probability pfor an influx of size k bits,

ng+1

Pk
where i is the number of times over the N most recent observatiortsthieainflux
consisted of k bits, and K is the number of possible influxsssBet if the possible data
rates vary over a large interval, say fro@rbits/second td megabit/second, K would be
so large that the posterior distributiongmvould be uniforr for all practical purposes
(since the number of observations N would then typically behnsmaller than K).

Instead, it could prove useful to partition the interval afsgible influxes into a
smaller set of regions, or bins, and apply the rule of sudoesen this smaller set
of possibilities. For improved performance we should let e widths be adapted
based on incoming data. Then the bins should spread out atwhiie wide in regions
where little activity is observed, and become denser in the naterval of frequent
observations. Thus, high fidelity is attained where it is ®sggd by the data, and less
attention is paid to atypical rate regions. Within each lime probability for individual
values is assigned by the principle of indifference. Theetgtion of any function of the
arrival rates can then be obtained by a simple summation dweiquantized posterior
distribution and the functiori]

2 By uniform, we here refer to the fact that the majority of adspible outcomes will be equally likely,
although the distribution will have occasional peaks. Whersay that a distribution is close to uniform,
we mean this in the sense that the entropy of the distribugictose to that of a uniform one (i.e. 1&g.



2. MAXIMIZING THE MUTUAL INFORMATION

We here show that maximizing the mutual information betwaempproximate poste-
rior distribution and an exact posterior is equivalent taxmmzing the entropy of the
approximate distribution. Leéf be the number of bins to use in the approximation, and
Imin < 1 < imax be the lower and upper bounds on the unquantized varidbddween
which we want to approximatp(i | DI) (whereD is the observed data ahcour om-
nipresent background information). Denoting the mutufarimation between the quan-
tized and the exact distributiong (k,i) and writing p(k) = p(k | DI) for the posterior
probability for obtaining an observation in bkpandp(i) = p(i | DI) for the posterior
probability for obtaining the exact valugwe now prove the following theorem.

Theorem 1. The optimum approximation to an exact distributiofi)dor a quantity i,
in terms of maximum mutual information betwedn pnd an approximate distribution
p(k) for quantized intervals (bins) k of the same underlying afale, is obtained when
the bin boundaries of the latter distribution are adjustedisat the resulting distribution
for k has maximum entropy.

Proof. The mutual information between the distribution for themfizzed variablék and
the distribution for the unquantized variablis given by

F(ki) = H(K) —H(K|i) 2
K imax K
= 5 [ pliklogp(k i)di— Y p(k)logp(K) -
k=1 " 'min &
K imax K imax
= ik) log p(k | i)di — i | K)p(k)log p(k)di 4
kzl/imin p(ik) logp(k | i)di kzl/imin p(i | K)p(k) log p(k)di (4)
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= —kz p(k)logp(k) , (6)
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where (4) follows from (3) by using the fact thﬁt";gx p(i | k)di = 1 We obtain the
second equality in (5) by noting that given knowTedgei aofe know in which bink
the observation lies, i.@(k | i) =1 or p(k | i) = 0 depending on whethéiis in bin k
or not. Sincep(i | k) integrates to unity we finally have (6) from (5). The theorean c
also be obtained directly from (2) by proving thdtk | i) = 0. (Giveni, there is no
uncertainty concerning which is the correspondingkojn

]

Thus, in order to obtain a quantized distribution which issamsilar in information
content to the unquantized distribution as possible, weilshadjust the bin sizes to
obtain equal probability mass in each bin.



3. ANOTHER RATIONALE FOR MAXIMUM ENTROPY
DISTRIBUTIONS?

We phrased the theorem above in terms of an approximatédistn based on reparti-
tioning the hypothesis space into a smaller number of iatenBut note that the proof
only requires that there is a known mapping betwleandi. It may be a 1-to-1 mapping,
or an n-to-1 mapping fromto k, of any kind, and the result is still that we should use
a maximum entropy distribution. If there is no ambiguity diieh mapped valuk& that

a given exact valuée corresponds to (i.e. there is a deterministic mapping betvike
two), then the proof goes through.

This means that if we are to approximate a distribution witimapler one (maybe
using exactly the same hypothesis space, i.e. without uadioin) under arbitrary
constraints on the probability distribution, for instanicethe form of known mean
values, then the distribution which looses the least amo@inbformation from the
exact distribution is the one with maximum entropy subjedhie imposed constraints.
For example, wishing to approximate the distribution foraaiablex using only first
and second moments, we should use a Gaussian distribug@ndiess of the exact
distribution’s shape (and regardless of whether we knowdiséribution or not!).

Note that this provides an explicit motivation for using nmaxm entropy distri-
butions: they approximate any known or unknown probabdiigtribution with mini-
mum information loss regardless of the 'underlying’ distition. We can thuselect
any testable information (any information which can be esped as a function of the
probability distribution) that we find convenient to workttviand determine the 'best’
approximation tanydistribution (and again, it does not matter whether the edistri-
bution is known or unknown) by simply maximizing the entrapyder the constraints
imposed by this information.

The most common rationale for using maximum entropy distiims takes as its
starting point that we know certain testable informatiord then argues that by using the
distribution with maximum entropy, we should add the fewashber of assumptions.
Here, on the other hand, we see that it is also motivatedydkggs of the reason for
how we chose the constraints, to pick any subset of knowaltstnformation, use it
In a maximum entropy assignment and thus obtain an appraé&idistribution which
achieves minimum information loss under those constriints

4. MAXIMIZING THE ENTROPY

Assume that we obseri samples of data before updating the bin sizes. In the multi-
variate case, each sample is a vector-valued observatsmigpg which bin the obser-
vation corresponds to. Within bikwe obtainng observations, and we hakebins in
total. Assuming that the underlying causal mechanismswtietermine the outcomes

3 Of course, if there are relevant constraints that are ndudtec! in the approximation there may be a
performance loss as compared to using the exact distriblfie should always strive for including the
most relevant constraints.



are stationary over thB observations and the coming period dfobservations, and
ignoring possible time-dependencies, the probabilityaféwture observation in bikis

. ng+1
- N+K

according to Laplace’s rule of succession (see Ch. 18 of [2hfoexcellent discussion
on this rule).

Now, how we choose to adjust the bin boundaries so as to obdial probability for
all bins (and thus maximum entropy of the approximate distion) depends on how
flexible we allow the geometry of the bins to become. We witiehgrioritize simplicity
over performance, and propose a method that at each stepgsesthe entropy although
it does not guarantee to actually maximize it. The algoritliorks by halving bins in
thesplit step, and combining two neighboring bins in thgansiorstep.

(7)

Pk

Split. In ann-dimensional case, the bin with the highest probabilityab/éd in the
one of then directions that has the steepest probability gradient2hdamensional case,
the bin can thus be halved either vertically or horizontally

Expansion. The expansion step, the combination of one bin with a neighg@ne,
is slightly more complicated. In order to facilitate thigst we will use a multidimen-
sional tree representation of bins and their probabilifié®e example in Figure 1 shows
the principle for the one-dimensional case, and Figure #stibe 2-dimensional case.
Higher dimensions follow in a similar way. Each leaf reprégse bin and has a probabil-
ity attached to it as well as the bin boundaries. Since the &ia all obtained by halving
the bin represented by the node directly above it in the theeebin boundaries do not
have to be stored but can be computed from knowledge of thth @éphe correspond-
ing leaf in the tree and the minimum and maximum possibleasthat the variable can
take in any direction. We only allow leaves connected to #mesnode at the preceding
depth to be combined into one bin. This simplifies the alganitbut could in principle
be avoided for higher flexibility.

Only bins, i.e. leaves, at the same depth and connected gathe node are allowed
to be combined. Out of the possible bins to be combined, tivenin the lowest sum
probability is chosen. If there are several candidatesp#iewith lowest probability
gradient is chosen.

A split is always followed by an expansion to guarantee thatrtumber of bins is
held constant. The computational complexity and the rathahge can be adjusted by
choosing the number of split-expansion steps to take afteln block of observations.
Full details of the algorithm cannot be given here due to tz#ckpace.

5. COMPUTING POSTERIOR EXPECTATIONS

In order to compute the expectation of some function of thienown quantities, we
need to determine the probability for an individual valughivi an arbitrary bink.
Assume that the volume of bik is w, i.e. the bin covers exactly a volume of that
size of the underlying (vector-valued) quantityThen our task reduces to distributing



Jy 0

FIGURE 1. One-dimensional example of how a tree is built from a sudoass splits. The left side
shows an axis representing possible values of an unknowmtityueivided into 2, 3, 4, and 5 bins. The
right column depicts the corresponding tree. Since eadtidesbtained by halving the leaf above it, the
bin widths can be computed from the depth of the leaf and thbajlminimum and maximum of the
unknown quantity. Information about the probability foickain must be stored with the corresponding
leaf.
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FIGURE 2. This shows how a tree is created in a 2-dimensional case, Herborizontal and vertical
axes of the left sides correspond to 2 different variableshEnode in the tree now has the possibility
to have up to four nodes, two for each dimension. (1) showdrde=when the horizontal part of the
2-dimensional plane is split into two halves. In (2), the leifi is further split in the vertical direction,
generating two new leaves from the previous left leaf. Ir),(86s0 the right leaf of depth 1 is halved in the
vertical direction, creating two new leaves on that nodb) {8 an alternative representation of the same
situation. (4) shows a horizontal split of the top right bin.

the probabilitypx over the volume of size. In order to assume anything else than a
uniform distribution within the bin we would require somdammation which is not
indifferent between the different values inside the voluidere, we shall keep our
solution general and therefore assume information indiffee between the different
values. Then the principle of indifference requires thadmtribute the probability as

Pi = px/Wk | €bink. (8)

Given the approximate posterior distributigm, what is the expectation of some
function f(-) of the n-dimensional unquantized variable? The expectation gif’en



the N most recent data is obtain®e@forerepartitioning the bins (because the statistics
were collected based on the previous partition, not on theame) by summing over all

K bins the probability for that bin multiplied by thredimensional mean within that bin,
le.

K ikl‘f’ikT
(i) ="> px 9)
22
where we defingy; andiy as the (-dimensional) upper and lower limit of bik,
respectively.
Similarly, the posterior expectation for an arbitrary ftiao f (i) is given by

K ik
f(i)) = i k)f(i)di
() = 3 pef Pl TG

_ ki%t/l” £(i)di , (10)
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where the second equality was obtained by noting giat k) = 1/wy. (Given which
bin we are in, each value within the bin is equally likely ara$a probability equal to
the inverse of the bin volume.)

6. EXAMPLE: A TWO-VALUED ALTERNATING SEQUENCE

We here study the performance of the proposed adaptive xipmate inference for

a one-dimensional case witih = 100 samples per block of data. In this case, the
algorithm from Section 4 was not used. Our focus here is onptireciples, not on
the exact algorithm used. Thus, we repartitioned the bimsrding to an algorithm
described in [3] (Ch. 8), sweeping through the entire datgeamce after each block
and repartitioning the bin limits to attain close to maximentropy after each block.
For multidimensional cases, this algorithm is prohibitveomplex since it has to sweep
through all possible data values.

The data were generated so that each data block consistss#mfles taking the
valuei = 1 and 50 samples of value= 7, i.e. there are only two values and they occur
with equal frequency. An approximate inference is carrigtom the interval of integers
between 0 and 100 usirtg = 6 bins, and an initial uniform partition over the integer
interval Q..100. Figure 3 shows the probabilities for each bin after edche first five
updates. The resulting repartitioning of the bins was olei@ias:

Block1l: 0 3 6 9 12 14 100
Block2: 0 1 2 6 7 8 100
Block3: 0 1 2 7 8 54 100
Block4: 0 1 2 7 8 54 100
Block5: 0 1 2 7 8 54 100

The bins quickly concentrate arounet 1 andi = 7, the only bins where any activity
IS registered, leaving larger implausible values nearlgtiemded. After the first update
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FIGURE 3. The evolution of the probabilities in each bin based on aptgly quantized hypothesis
space in an example where each blockNof 100 samples contained only two values; 1 andi = 7,
occurring with exactly the same frequency. The convergé&ngeick and nearly all attention is focused
around the two observed values.

the expectation of becomes 9, after the second and the later updates the expectation
is between 4 and 5, near the arithmetic méan 1) /2 = 4 of the sequence.

7. CONCLUSIONS

We have shown that when there is a knowto-1 (for arbitraryn) mapping between
some variable and some other arbitrarily chosen variak)ehe distribution fork that
approximates the probability distribution fowith the least amount of information loss
is the distribution that maximizes the entropy founder any chosen constraints. We
provided a simple adaptation rule for changing bin sizeb@general multidimensional
case according to incoming data with tunable complexity pedormance. Due to the
limited space here, a performance study of this algorithith lve offered elsewhere.
Likewise, the important problem of adapting not only the boundaries but also the
number of bins will be investigated in future work. FinaNye would like to point out
that time dependencies can be inferred by treating vasadtielifferent time delays as
additional dimensions. All ideas given above are thus apple also in the case of time-
dependencies.
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