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Abstract— The Bayesian approach offers three key advantages
in the present problem of estimating the frequency offset when
synchronising a mobile to a base station in an orthogonal
frequency division multiplexing system: a systematic way to
include important information via prior probabilities; ability to
update our probability distributions consistently using Bayes’
theorem; access to reliability measures for the actual estimate
at hand. We show that the Bayesian approach in these ways
enables fast frequency acquisition without pilots at low SNR,
and also provides a good indicator of when the mobile is
sufficiently synchronised to transmit for the first time. Our
analysis and simulations indicate that oversampling and nulling
of subcarriers can speed up the acquisition further. When pilot
and (incomplete) channel information is available, it can be
successfully included via priors to significantly improve the
synchronisation performance.

I. INTRODUCTION

Accurate frequency and time synchronisation of orthogonal
frequency division multiplexing (OFDM) systems is required
in order to achieve good performance. The very property that
these systems rely on – orthogonality of the subcarriers –
will be lost if synchronisation is inaccurate. In the uplink
of multiple access systems, where several transmitting users
must all synchronise to the base station, the need for efficient
synchronisation algorithms is especially evident. We focus
here on the frequency synchronisation of a mobile terminal
to the base station in a future OFDM system.

There are several publications on OFDM synchronisation,
covering many different scenarios. Most of them rely on the
insertion of pilot symbols known to the receiver (e.g. [1]),
while some are based only on the redundancy present in the
cyclic prefix of each symbol (e.g. [2]), and a few are so-called
fully blind and rely solely on the OFDM symbol structure
(e.g. [3]). We see from these, and other, examples that the
attainable performance is crucially dependent on efficient use
of the available information.

In this paper we present a Bayesian analysis of the fre-
quency synchronisation problem based on a model introduced
in section II (this model and the analysis relies heavily
on the work by Bretthorst [4]). The Bayesian approach is
adopted because it focuses on efficient information processing
and provides tools for inclusion of cogent prior information,
consistent processing of new data, and reliability measures
for estimates obtained with the actual data set. We perform a
general analysis in section III, which is followed by a study
of two special cases in section IV, simulation studies of these
cases in section V, and finally the conclusions in section VI.

II. RECEIVED SIGNAL MODEL

Consider a mobile OFDM terminal whose local oscillator is
to be matched to the oscillator in the base station in order
to ensure functionality. The adjustment of the oscillator will
be based on an estimate of its frequency offset ∆ω relative
to the base station. This offset is the parameter of interest in
this paper. In our model, the mobile is receiving an OFDM
symbol consisting of quadrature amplitude modulated (QAM)
sinusoids. These complex-valued sinusoids are attenuated and
phase-shifted by a dispersive channel, and when received they
are also shifted in frequency by the mismatched receiver
oscillator. We assume that symbol time synchronisation is
sufficiently accurate to avoid inter-symbol interference and that
the cyclic prefix is properly removed. The channel is modelled
as frequency selective but constant over one symbol period (i.e.
as slowly fading). Mathematically, the model of the received
data d is

d = WB + e. (1)

Here, W are the m frequency-shifted sinusoids,

Wik = exp(j[ωk + ∆ω]ti)
{

k = 1, . . . ,m
i = 1, . . . , N

, (2)

corresponding to subcarriers ωk, sampled uniformly at times
ti. The sinusoids have complex-valued amplitudes Bk, and
B ≡ [B1 . . . Bm]T therefore models the transmitted QAM
symbols, their transmit energy and the channel jointly. The
additive thermal measurement noise is represented by e.

III. BAYESIAN ANALYSIS

The product and sum rules of probability theory have been
shown to constitute the only internally consistent quantitative
rules for reasoning from incomplete information [5]. Probabil-
ity distributions are from this point of view valid descriptions
of our state of knowledge regarding any entities of interest, in
this case the frequency offset ∆ω. When we in this way regard
probabilities as carriers of information, it becomes evident that
both the data d and all other available cogent prior information
– henceforth denoted I – will determine our ability to infer the
value of ∆ω. The state of knowledge regarding ∆ω is sum-
marised in the posterior probability distribution p(∆ω|d, I),
the distribution which in turn will determine the best possible
estimate based on the available information.

In the following three subsections we study our present
problem with respect to the inclusion of prior information, the
updating of probability distributions when receiving new data,
and the estimation of ∆ω and the reliability of this estimate.



A. Including cogent prior information

By the use of Bayes’ theorem (i.e. the product rule) we can
express the posterior for ∆ω as

p(∆ω|d, I) ∝ p(d|∆ω, I)p(∆ω|I). (3)

Here, our signal model (1) comes into play when we assign
the direct probability, or likelihood, p(d|∆ω, I). In this model,
let us first consider the noise term e. If we know that the noise
has zero mean – which is reasonable considering the nature
of thermally induced noise – and power σ2, we can apply
the maximum entropy principle [5] and thereby assign an
uncorrelated Gaussian distribution carrying this information;
p(e|σ, I) = N (0, σ2I). As a consequence of the additive
noise model we then have p(d|∆ω,B, σ, I) = N (WB,σ2I).
This is essentially our model (1) dressed up as a probability
distribution.

Next, we expand the likelihood for ∆ω using the sum rule:

p(d|∆ω, I) =
∫∫

p(d|∆ω,B, σ, I)p(B, σ|I)dBdσ. (4)

In (3) and (4) we now see how our prior information about ∆ω,
B and σ enters the calculation in the shape of prior probability
distributions. The prior information can vary considerably be-
tween different situations. Consider for example a mobile that
is switched on and tries connect to the base station for the first
time, and compare with a mobile in full operation with access
to pilot symbols and channel predictions. The former will
generally have considerably less precise information regarding
∆ω, and other related parameters, than the latter.

Let us take another, more specific, example in which it is
known at the receiver that subcarrier k is not used in the trans-
mission. This information is represented by p(Bk|I) = δ(Bk),
where δ(·) is Dirac’s delta function. Hereby the amplitude of
sinusoid k is fixed to zero and this subcarrier is effectively
removed from the model. A receiver to which this information
is unavailable will however try to fit sinusoid k in the model
to the noise in the data.

In section V we will see examples of the impact of useful
prior information: channel predictions and pilot symbols.

B. Updating the state of knowledge using new data

Every new OFDM symbol that is received brings with it new,
potentially important, information about the frequency offset.
In order to consistently update the information about ∆ω when
using new data d2 we apply Bayes’ theorem and the sum rule

p(∆ω|d1, d2, I)∝ p(d2|∆ω, d1, I)p(∆ω|d1, I), (5)

p(d2|∆ω, d1,I) =
∫∫

p(d2|∆ω,B,σ,I)p(B,σ|d1,I)dBdσ.(6)

We would like to stress the importance of p(∆ω|d1, I) as
a complete description of the state of knowledge regarding
∆ω before taking d2 into account, and that no information
is lost when updating this to p(∆ω|d1, d2, I) according to
(6) and (6). This Bayesian procedure is quite different from
the conventional approach in which we obtain only a point
estimate. An ad hoc way to use several point estimates,

calculated for d1, d2 and so on, is to average them. By
use of the latter approach we may loose crucial information,
information that is contained in p(∆ω|d1, d2, I). Numeric
examples in section V show that repeated updating of the
posterior according to (6) eventually gives good estimates
even at low signal-to-noise ratios (SNR), despite the fact that
every individual p(∆ω|dn, I) is very broad and multimodal.
Averaging of the corresponding point estimates performs, in
these examples, considerably worse. (In this paper we do not
include any model of time variations in ∆ω, B and σ between
the symbols, but in case such models are used this is the place
to introduce them.)

C. Optimal estimates, the posterior and reliability

According to [6], the disturbance (in terms of equivalent
noise variance) introduced in an OFDM system by frequency
synchronisation errors is roughly proportional to ∆ω2. When
calculating our estimates it therefore seems reasonable to
minimise the mean squared error, i.e. use the mean value of
the posterior distribution for ∆ω as our estimate.

Although the mean value hereby is the single most impor-
tant feature of the posterior probability distribution – as it is
our point estimate of ∆ω which is to be used for adjusting
the local oscillator – it is certainly not the only feature of
use to us. One important thing that a Bayesian approach
provides through the posterior distribution is a measure of
the accuracy for the particular estimate at hand. The variance
of the posterior tells us something about the reliability of
our estimate, not asymptotically in an imagined ensemble of
experiments, but for the actual data set we have.

In our present problem we therefore propose to use the
variance of the posterior as an indicator for when it is okay for
a mobile to transmit. Consider, again, a mobile that is about
to connect for the first time. It can, by use of the posterior
variance, determine when it is sufficiently well synchronised
in frequency in order not to introduce significant interference
in the uplink. In addition to the theoretical motivation for using
the posterior variance, the simulation studies in section V
indicate that there is good correspondence with the actual
squared error.

IV. THE IGNORANT AND THE WELL-INFORMED

For the model given in (1) and (2) the above analysis is
completely general and can in principle include any type of
prior information. But there is such a wide range of possible
scenarios that we cannot analyse all scenarios in detail here.
We choose instead to concentrate on what we believe are
two interesting special cases which roughly correspond to
acquisition and fine tuning/tracking. These special cases are
then simulated as shown in section V.

A. The ignorant receiver – frequency acquisition

While there always is some quantitative information available
regarding the values of B, σ and ∆ω, it might be very
vague during frequency acquisition. We can acknowledge this
large uncertainty by assigning uninformative prior probability



distributions. Complete ignorance is in this case represented by
p(B|I) = constant, p(σ|I) ∝ 1/σ and p(∆ω|I) = constant
[5]. From (3) and (4) we obtain

p(∆ω|d, I) ∝
∫∫

1
σ

p(d|∆ω,B, σ, I)dBdσ, (7)

where

p(d|∆ω,B,σ,I) = (πσ2)−Ne−
1

σ2 (dHd− 1
N dHWW Hd+NXHX),(8)

X ≡ B − 1
N

WHd. (9)

Here (·)H denotes the Hermitian transpose. Carrying out the
marginalisation in (7) gives

p(∆ω|d, I) ∝
(

dHd − 1
N

dHWWHd

)m−N

. (10)

The term (1/N)dHWWHd in (10) is the energy projected
onto the m orthogonal subcarriers in W (remember that W
is a function of ∆ω). If the number of samples equals the
number of subcarriers, i.e. if N = m, all energy in d can be
projected onto W regardless of ∆ω. In this case the posterior
distribution will be constant and gives no indication of the
value of ∆ω. There is nothing in the prior information that
can help to distinguish between the noise and the sinusoids in
the data, and a receiver this ignorant is in this case helpless.

Fortunately, every practical OFDM system uses a couple
of subcarriers as guard bands, and this information must
be available even to the most ignorant receiver of interest.
Therefore, as m < N , the posterior distribution will not
be flat. It can however be multimodal, which we intuitively
can realise as follows. Assume that the true frequency offset
is ∆ω0. If there are, say, 512 subcarriers, we are likely to
get good matches between the model and the data when
∆ω = ∆ω0 + wk, for quite a large range of k’s since most of
the subcarriers in the model then still correspond to a sinusoid
in the data. A very good SNR is required if a mismatch of
only one subcarrier out of, say, 480 is going to make a decisive
difference and suppress all but one mode in the posterior.

We can also see from (10) that the greater the difference
N − m is, the sharper the peaks in p(∆ω|d, I) can be. This
suggests that nulling of many subcarriers, or oversampling,
will improve the estimation accuracy. These strategies have
indeed been studied and shown to be quite successful [7],
[8]. Our simulations show the same result, but when it comes
to nulling of subcarriers we stress that this requires that
the receiver has information about the location of the nulled
subcarriers. Otherwise, nulling of subcarriers will only make
things worse as the receiver then essentially will try to fit the
model subcarriers to the noise (see section V).

Finally, we observe that the highest peak in p(∆ω|d, I)
corresponds to the maximum likelihood estimate of ∆ω (in
this case identical to the nonlinear least-squares solution). We
use this as a reference in the simulation study in section V.

B. The well-informed receiver – fine tuning and tracking

Let us move on to a more well-informed synchroniser. We now
assume that the mobile terminal is sufficiently synchronised to

the rest of the system to have access to channel predictions and
pilots (inserted for channel prediction purposes). The channel
prediction is accompanied by a measure of its accuracy, in this
case the covariance matrix computed in the Kalman channel
predictor assumed in use [10]. Kalman predictors inherently
use Gaussian probability distributions, and we therefore have

p(B|bRI) = π−m |R|−1
e−(B−b)HR−1(B−b), (11)

where b is the predicted received signal – pilot and channel
– and R is the covariance matrix describing the uncertainty
in this prediction. We conservatively consider uncorrelated
prediction errors, R = α2I . Furthermore we assume that the
noise power σ2 is known, at least with an accuracy sufficient
to ignore any uncertainty. Marginalising B in (4) then yields

p(∆ω|σbαdI)∝ p(∆ω|I)

× e
α2

Nα2+σ2 ( 1
σ2 dHWW Hd+ 1

α2 (bHW Hd+dHWb)),(12)

where the exact shape of p(∆ω|I) depends on the previous
synchronisation. Equation (12) shows how the extra channel
information results in additional terms bHWHd that correlate
the predictions b with the projection WHd of the data onto the
subcarriers. One of the main effects is that a multimodal dis-
tribution is less likely as these correlations help to distinguish
between individual subcarriers. The ignorant receiver can not
do this.

While nulling of some pilot subcarriers in an OFDM pilot
symbol is recommended for the ignorant receiver by (10), the
case is less clear for the well-informed receiver in (12). The
term dHWWHd will be more discriminating when including
fewer subcarriers, but there will on the other hand be less
pilot information to exploit through the correlations bHWHd.
This suggests that nulling could be more efficient in cases of
low SNR and poor channel predictions, than in cases of high
SNR and good channel predictions. Simulations in section V
support this suggestion.

V. SIMULATION STUDIES

We test the synchronisers by simulation of a system centred
at 5 GHz, using 512 subcarriers of 50 kHz width. The guard
bands are 16 subcarriers at each end. Fading frequency selec-
tive channel characteristics are from the Case II Vehicular A
model of [9], at a mobile speed of 25 m/s. The channel was
in the simulations constant during each symbol interval.

The ignorant receiver was simulated when receiving un-
known 4QAM symbols on all subcarriers (excluding guard
bands and the central carrier), using both symbol rate sampling
and oversampling by a factor of two. It was also simulated
when receiving OFDM pilots in which only every eighth
subcarrier was used and the rest were nulled. The purpose of
these test cases were mainly to study the frequency acquisition
performance for an ignorant mobile just switched on.

The well-informed receiver was tried on fully loaded OFDM
pilot symbols in which all subcarriers carried known 4QAM
symbols, as well as for the previously mentioned sparsely
loaded OFDM pilots in which only every eighth subcarrier



was used. Its performance for different channel prediction
accuracy was assessed by studying the normalised mean
squared estimation error.

A. The ignorant receiver needs several symbols for acquisition

We see from Figure 1 that the ignorant synchroniser in (10)
is not very successful in estimating the frequency offset by
use of only one OFDM symbol, unless the SNR is very high.
This is mostly due to the multiple modes in the posterior.
But we also see that updating of the posterior according
to (6) results in a considerable improvement over the next
few symbols (by suppressing all modes but one). Actually,
the simulations were carried out using a simplified updating
p(∆ω|d1, d2, I) ∝ p(d2|∆ω, I)p(∆ω|d1, I) where the logical
dependence between d1 and d2 was ignored.

B. Oversampling improves the ignorant receiver

As we noted in section IV-A, it is suggested by (10) that
oversampling might improve the estimation accuracy. This is
indeed shown in Figure 1 were oversampling by a factor of
two reduces the error noticeably. In order to achieve estimation
accuracies approaching 10−3 at an SNR as low as 6 dB,
oversampling could be an option during acquisition.
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Figure 1. The performance of the ignorant receiver can improve quite
significantly when consecutive symbols are used. Two extra symbols can give
an improvement of up to 100 times at an SNR of 12 dB, no oversampling
(−−). Oversampling of the signal (−∗−) yields a noticeable error reduction.

C. Averaging of maximum likelihood estimates not sufficient

In the present problem there are indeed good reasons to
retain the whole posterior rather than just the corresponding
point estimate. This is shown by the simulations presented
in Figure 2 where we compare successive averaging of the
point estimates with updating according to Bayes’ rule. We
clearly see that there must be crucial information present in
the posterior p(∆ω|dn, I) that is not captured by the maximum
likelihood reference estimate. It is most likely the ability to
eventually rule out all the ”false modes” that in this case
renders the Bayesian approach so much more powerful.
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Figure 2. Successive averaging of maximum likelihood estimates (−◦−)
does not yield the same performance as updating the posterior by the use of
Bayes’ rule (−−). Results pertain to the ignorant receiver using symbol rate
sampling.

D. The width of the posterior is a good reliability measure

What we also get from the posterior probability distribution for
∆ω is a reliability measure: how good is our present estimate.
We propose that a mobile should use the variance of the
posterior distribution as an indicator of when it can transmit its
first message without causing excessive interference. Figure 3
shows the good correspondence between simulated errors and
the uncertainty as given by the posterior variance.
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Figure 3. Simulations support the use of the variance of the posterior (−�−)
as an indicator of when the mobile is sufficiently synchronised to the system.
It is here compared with the actual error in the simulations (−−).

E. The impact of pilot symbols and channel predictions

A mobile that is sufficiently synchronised to the base station to
have access to the OFDM pilot symbols can make use of these



when fine tuning its frequency synchronisation. In Figure 4
we present the increase in estimation accuracy obtained when
using fully loaded OFDM pilots and channel predictions of
different quality, as given by the signal-to-estimation error
ratio (SER) BHB/(mα2) [10]. The results were obtained with
a vague prior in (12); p(∆ω|I) = N (0, 4). We see from a
comparison of Figure 1 and Figure 4 that a SER of 9 dB can
give an improvement of almost three orders of magnitude at
an SNR of 6 dB (regarding the accuracy obtained by use of
one OFDM symbol).

−3 0 3 6 9 12 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SER−SNR [dB]

Normalised mean square error
SNR   0 dB
SNR   6 dB
SNR 12 dB
SNR 18 dB

Figure 4. Access to pilots and channel predictions can substantially increase
the estimation accuracy. This fact can be exploited when fine-tuning the local
oscillator during operation.

F. The effects of subcarrier nulling

If we consider a sparsely loaded OFDM pilot symbol, i.e. one
in which some subcarriers are nulled while the others carry
QAM pilot symbols, instead of a fully loaded we note some
quite dramatic effects. Figure 5 shows the performance of the
well-informed receiver when only every eighth subcarrier is
used. The channel predictions now seem to have only marginal
impact. The estimation accuracy is increased significantly for
low SNR and low SER, but seems to decrease for high SNR
and high SER (compare with Figure 4).

These results then also suggest that subcarrier nulling can
speed up frequency acquisition, i.e. increase the performance
of the ignorant receiver, by increasing the discriminating
power of the term dHWWHd in (10). But this requires that the
receiver is a little bit less ignorant than presently: it must know
that these sparsely loaded pilots exists (which is reasonable).
Otherwise the performance is decreased by subcarrier nulling:
simulations show that the normalised mean square error is
around 1.5 at an SNR of 18 dB.

VI. CONCLUSIONS

Our main conclusions from the preceding analysis and sim-
ulations are: 1) Updating of the full posterior probability
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Figure 5. Nulling of subcarriers in an OFDM pilot seems to render the
channel predictions almost useless for the well-informed receiver, unless they
are of extremely good quality. This also means that the ignorant receiver, if
it knew the locations of the nulls, could perform very well with sparse pilots.

distribution for ∆ω according to Bayes’ rule retains informa-
tion that can be crucial at low SNR. 2) The variance of the
posterior is a good indicator for when a mobile can transmit
without incurring other users excessive interference due to
a frequency offset. 3) Fast frequency acquisition is possible
at low SNR without the use of pilot information. Pilots
with nulled subcarriers can on the other hand speed up the
acquisition provided that the receiver knows which subcarriers
are nulled (it need not know the QAM pilot information,
however). Oversampling can also speed up acquisition.
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