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Abstract— We study the coexistence of IEEE 802.11b and
Bluetooth, and more specifically the performance gains ob-
tained using a frequency domain Bluetooth interference sup-
pression scheme at the IEEE 802.11b physical layer. Focus is
on the reduction of packet error rates in heavily interfered
environments.

The frequency domain structure of the signals is utilised
to separate multiple interferers, thereby simplifying the fre-
quency domain suppression. We develop a minimum mean
square optimal suppression method for batch-wise processing
of baseband data, and a reduced complexity sub-optimal
implementation. The latter turns out to be equivalent to a
Wiener smoother based on estimated signal energies.

Simulations indicate that the Wiener based smoother dras-
tically reduces the packet error rate in interfered transmis-
sions, especially for the lower transmission rates. The gains
are substantial for single as well as multiple interferers.

1 Introduction
As the license exempt use of the 2.4 GHz band increases,
so does the need for communication systems to efficiently
handle interference. Several theoretical and empirical stud-
ies concerning coexistence of IEEE 802.11b and Bluetooth
have been published, showing that substantial performance
losses may be caused in both systems (see for example
[1] and [2]). In this paper we investigate the suppression
of Bluetooth interference in an IEEE 802.11b receiver.
We propose a method which tracks and suppresses the
interfering Bluetooth signals at the IEEE 802.11b physical
layer.

Previously proposed coexistence approaches include
collaborative methods for interference avoidance by coor-
dination of Bluetooth and IEEE 802.11b packet transmis-
sions. While effective, these coordinated actions require
collocated systems, or changes in the standards, to enable
inter system communication. Also non-collaborative solu-
tions aimed at interference avoidance have been investi-
gated. Typically, they adapt packet scheduling – in time
or frequency – based on measured channel quality [3].
An adaptive frequency hopping scheme of this kind was
recently adopted in the Bluetooth specification [4].

A complement to interference avoidance is interference
suppression at the physical layer, which is the approach we
adopt in this work. In [5], a recursive least squares filter
is used to remove Bluetooth signals from IEEE 802.11b
baseband data. It is shown to perform well for the 1 Mbit/s
rate with only one interferer, but performs worse for the
11 Mbit/s rate and fails to handle more than one interferer.

2 Overall Goal and Proposed Approach
We consider an IEEE 802.11b device in receive mode. The
aim is a non-collaborative, physical layer method that relies
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on received baseband data only, and does not impose any
changes in the Bluetooth or IEEE 802.11b standards. The
overall goal is to minimise the packet error rate. We pursue
this goal indirectly by minimising the mean square error in
the data.

The suppression algorithm handles multiple simultane-
ous interferers, and we use the following frequency domain
structure of the signals to simplify this. First, compared
to the bandwidth of the IEEE 802.11b receiver, roughly
22 MHz, Bluetooth signals are narrow-band and cover
approximately 1 MHz. Second, the Bluetooth transmitters
hop between 79 known carrier frequencies, spaced 1 MHz
apart. We therefore apply the fast Fourier transform (FFT)
as an efficient method for separation of simultaneous in-
terferers present within the receiver bandwidth. The FFT
approach implies batch-wise processing of data, which in
turn introduces a delay. This delay, and the tracking of
hopping interferers, require the batches to be much shorter
than the IEEE 802.11b packet length.

In summary, we batch-wise minimise the mean square
error in discrete Fourier transformed baseband data, with
the goal of minimising the packet error rate.

3 Signal Models and Parameter
Uncertainties

In this section we present our models of the signals, along
with all relevant prior information I about their parameters.
Based on these models and the parameter uncertainties, we
assign the probability distributions relevant to the suppres-
sion scheme. We will throughout this paper use probability
theory as extended logic, thus using it to do plausible
reasoning based on our state of knowledge. The product
and sum rules of probability theory constitute the only
internally consistent way of reasoning under uncertainty,
and they process our incomplete information with full
efficiency. All prior probabilities are assigned using trans-
formation groups and the principle of maximum entropy
(MaxEnt) [6].

In our model of the received baseband data rn, we
include the IEEE 802.11b signal sn, thermal noise vn, and
Bluetooth interferers xm,n, where n denotes the sample
number and m the channel number. Sampling is at 802.11b
symbol rate. We model the frequency domain data as

Rk = Sk +
M
∑

m=1

Xmk + Vk, (1)

where k =0, 1, . . . , N−1 is the frequency bin number, N
is the batch size and M is the number of non-overlapping
Bluetooth channels within the receiver bandwidth. We use
the subscript mk when bin k is within channel m. All



propagation channels are modelled as slowly flat fading,
i.e. as a constant attenuation over each batch.

3.1 IEEE 802.11b
These systems use differential BPSK or QPSK combined
with a spreading sequence or complementary codes [7].
Assuming perfect symbol synchronisation and no inter
symbol interference, we use the received transformed sig-
nal model

Sk =

√
Es√
N

ejθs

N−1
∑

n=0

Cne−j2π kn

N (2)

where
√

Ese
jθsCn = sn. Here, Es is the received energy

per symbol, θs is a phase rotation, and Cn are the transmit-
ted complex symbols.
Es At the start of the reception, the energy is unknown

but bounded. From above by regulations and receiver
efficiency, and from below by the sensitivity of the re-
ceiver. Since Es is a scale parameter, this uncertainty
prescribes p(Es|I)∝1/Es over [Es−, Es+].

θs The differential demodulator does not track absolute
phase, and therefore θs is unknown. We assign a
uniform distribution p(θs|I) over [0, 2π].

Cn The received symbols are from the alphabet
{exp(j(1/2 + d)π/2)}, where d is the encoded un-
known transmitted information (BPSK: d = 0, 2
QPSK: d = 0, 1, 2, 3). All symbols are independently
equally probable.

We conclude from (2) that, given Es, all Sk are uncor-
related and have probability distributions p(Sk|EsI) with
zero mean and variance Es. By virtue of the central limit
theorem these distributions are Gaussian for large N , and
independent.

3.2 Bluetooth
A Bluetooth signal is well described as a continuously
phase modulated signal [4], and its transform is

Xmk =

√
Em√
N

ejθm

N−1
∑

n=0

ejφ(nTs−to,Y)−j2π(fmTs+
k

N )n.(3)

Here, Em is the received energy per receiver sample,
φ(t,Y) is the continuous phase modulation of the binary
information sequence Y (modulation index h, GMSK
pulse of bandwidth 0.5 MHz), fm is the frequency offset
between the receiver’s and interferer’s carriers, t0 is the
timing offset, θm is the phase difference, and Ts is the
receiver sampling time:
Em Bounded in the same manner as Es, provided an inter-

ferer actually is present. Assign p(Em|BmI)∝1/Em

over [Exmin, Exmax], where Bm denotes interferer
presence in channel m.

θm Unknown: p(θm|I) is uniform over [0, 2π].
t0 Unknown, but maximally one Bluetooth bit period:

p(t0|I) is uniform over [0, 1] µs.
Y Unknown information sequence: ±1 equally proba-

ble.
fm The allowed deviation according to the Bluetooth

specification is roughly ±100 kHz. We assign a uni-
form distribution p(fm|I) over this range.

h Required to be within [0.28, 0.35], over which p(h|I)
is uniform.

We treat the parameters Em and θm analytically, while
resorting to numeric calculations for the others. We do
this by computing the variance σ2

mk for p(Xmk|EmθmI)
using Monte Carlo simulation of (3). The uniform p(θ|I)
assures further that p(Xmk|EmI) has zero mean. Now, by
use of only the mean and variance as prior information, this
latter probability distribution is Gaussian according to the
maximum entropy principle. The numerical procedure is an
approximate marginalisation over the nuisance parameters
t0, Y, fm and h. In this way we include our initial uncer-
tainty about their values in p(Xmk|EmI), but we have also
permanently removed them from subsequent calculations.
This simplification of our model in (3) will degrade the
suppression performance, but we believe that it is a very
small degradation, especially compared to the reduction in
complexity.

3.3 Thermal Noise
The noise power is assumed to be known with good
accuracy. We assign a Gaussian zero mean probability
distribution p(Vk|I) with variance Ev corresponding to the
noise power.

3.4 Interferer Presence
Let B stand for Bluetooth presence within the receiver’s
range, and let B stand for an interference free situation.
Denote the presence of exactly i interferers Bi. We make a
conservative probability assignment P (B|I) = P (B|I) =
0.5 based on the fact that we do not know in which
type of environment – heavily disturbed or undisturbed
– the IEEE 802.11b receiver is operating. Furthermore,
Bluetooth networks operate independently of each other, so
we assign independent probabilities P (Bi|I) = P (B1|I)i

for i≥1. In summary, we get

P (Bi|I) =

{ 1
2 , i = 0

(

1
3

)i
, i > 0

. (4)

There are L = 79 Bluetooth channels, which leads to
P (Bm|BiI)=1−(78/79)i. Marginalisation over Bi gives

P (Bm|I) =
P (B1|I)

1 − P (B1|I)
− (L − 1)P (B1|I)

L − (L − 1)P (B1|I)
, (5)

which numerically is P (Bm|I)=1/106.

4 Optimal Interference Suppression Scheme
Our goal is to make a minimum mean square estimate of
{sn} for each batch {rn} in order to reduce the packet
error rate. This estimate is given by the mean value of the
probability distribution p({sn} |DI), where D denotes the
batch of data. An equivalent procedure is to find the mean
of p({Sk} |DI) for the frequency domain data. For brevity,
let E denote Es, {Em} and Ev collectively. Then

p({Sk} |DI) =

∫

p({Sk} |EDI)p(E|DI)dE (6)

in which

p({Sk} |EDI) =
∏

k

p(Sk|EDI). (7)



Proceeding with the individual distributions for Sk and
Bayes’ theorem, we get

p(Sk|EDI) = p(Sk|RkEI)

=
p(Rk|SkEI)p(Sk|EI)

p(Rk|EI)
. (8)

All distributions on the right hand side in (8) are Gaussian:
p(Rk|SkEI) has mean Sk and variance Emσ2

mk + Ev;
p(Sk|EI) has zero mean and variance Es; p(Rk|EI) has
zero mean and variance Es+Emσ2

mk+Ev . It can be shown
that

〈Sk|EDI〉 =
Es

Es + Emσ2
mk + Ev

Rk. (9)

Insertion of (9) in (6) leads to the minimum mean square
estimate

〈Sk|DI〉 = Rk

∫

Es

Es+Emσ2
mk+Ev

p(E|DI)dE. (10)

This is a marginalisation over uncertain energies in a
Wiener smoother – weighting the smoother for each set of
energies with their respective probability density gives the
optimal result.

The evaluation of p(E|DI) in (10) does not lead to
a closed-form solution. We work out everything needed
for the implementation of a suppression scheme, but leave
some details out due to space limitations. Let Dm denote
data from channel m, and let Esv denote Es and Ev

collectively. The posterior probability for E is

p(E|DI) = p({Em} |EsvDI)p(Esv|DI)

= p(Esv|DI)
∏

m

p(Em|EsvDmI). (11)

We proceed by studying p(Em|EsvDmI) and p(Esv|DI)
separately. The posterior probability distribution for Em

depends on the probability for Bm:

p(Em|EsvDmI) = p(Em|BmEsvDmI)P (Bm|EsvDmI)

+δ(Em)P (Bm|EsvDmI) (12)

where

p(Em|BmEsvDmI)∝ p(Dm|BmEmEsvI)p(Em|BmI)
(13)

and
P (Bm|EsvDmI)

P (Bm|EsvDmI)
=

P (Bm|I)
∫

p(Dm|BmEmEsvI)p(Em|BmI)dEm

P (Bm|I)p(Dm|BmEmEsvI)p(Em|BmI)
. (14)

The posterior for Esv depends on the probability for Bi as

p(Esv|DI) ∝ p(D|EsvI)p(Esv|I) (15)

= p(Esv|I)
∑

i

p(D|BiEsvI)P (Bi|I).

All the terms in the sum in (15) are straightforward to find
by application of the product and sum rules of probability
theory, but are not displayed here. Except for this last part,
we have now broken up p(E|DI) into already quantified
probabilities and probability distributions. Inserting them
in (10), we have the mean square optimal solution. Un-
fortunately, there is no analytically tractable solution. The
optimal scheme is however the basis for the approximate

solution we develop in the next section, and could be im-
plemented numerically provided enough computing power
is available.

5 Reduced Complexity Implementation
We consider the complexity of a direct numerical im-
plementation of the optimal scheme prohibitive. This is
mainly due to the marginalisation over E and Bi in (10)
and (15). In this section we develop a reduced complexity
scheme based on the optimal scheme. We go backwards
from (15) to (9) in the following steps:

1) Signal energy estimation assuming no interferers

Using only the first term in the sum in (15), we make an
initial estimate Êsv =〈Esv|B0EvDI〉 from

p(Esv|B0DI)∝ p(Esv|I)p(D|B0EsvDI) (16)

= p(Esv|I)
∏

k

p(Rk|B0EsvI)

where the distributions p(Rk|B0EsvI) are Gaussian with
variance Es +Ev , while p(Esv|I) ∝ (Es + Ev)−1. This
leads to

p(Esv|B0DI)∝ 1

(Es+Ev)N+1
exp

(

−
∑ |Rk|2
Es + Ev

)

. (17)

This distribution is zero outside [Ev+Es−, Ev+Es+], and
its mean value is

Êsv =
Γ(N−1, b)−Γ(N−1, a)

Γ(N, b)−Γ(N, a)

N−1
∑

k=0

|Rk|2. (18)

Here a=
∑|Rk|2/(Ev+Es−) and b=

∑|Rk|2/(Ev+Es+).
Within the range of possible signal energies, the first factor
in (18) is very close to N−1. This suggests

Êsv =
1

N − 1

∑

|Rk|2 (19)

as a reasonable approximation. Note that this estimate is
based on the truth of B0, so we are likely to be in large
error if B0 turns out to be false. This is the price we pay
for reduced complexity.

2) Approximate marginalisation over all Em

We perform the marginalisation involved in (14), for all m,
by approximating the integral with a sum over discrete Em,
and replacing Esv with Êsv . Here we have a clear tradeoff
between precision and complexity.

3) Channel classification and energy re-estimation

The posterior odds in (14) are computed and we introduce
a threshold to classify channels as clear or interfered.
We use this classification to re-estimate Es without the
contaminated data. For the first batch in each packet we
also redo the marginalisation in step 2).

4) Interference energy estimation

By application of (12), (13), and the results from steps 2)
and 3), we compute minimum mean square estimates Êm=
〈Em|ÊsvDmI〉 for all channels classified as interfered.



5) Wiener smoothing with estimated signal energies
Finally, we use a Wiener smoother based on Êm, Ês and
Ev to estimate Sk. The integral in (10) collapses to

Ŝk =
Ês

Ês + Êmσ2
mk + Ev

Rk, (20)

which basically is the smoother in (9). Go back to step 2)
for the next batch in the packet.

For further reduction in computational complexity, we can
use a subset of the data from each channel. For example,
when estimating Em we may use data from the frequency
bins where most of the interferer energy is concentrated.

6 Suppression Performance
Simulations indicate that large performance improvements
are obtainable with the proposed suppression scheme.
In Figure 1 and Figure 2 we present results for the
IEEE 802.11b rates 2 Mbit/s and 11 Mbit/s. Note that
the packet error rates shown pertain to interfered trans-
missions. The actual rates are therefore not representative
for a real situation, where not all packet transmissions are
interfered.

The simulation code is available at www.signal.uu.se.

6.1 Simulation Parameters
The results reflect a constant flat fading environment and
a signal-to-noise ratio of 15 dB. Batches are 256 samples
(≈ 23 µs).

A) IEEE 802.11b: Only the physical layer demodu-
lation and symbol decoding is simulated, using perfect
symbol synchronisation. The packets are 1500 bytes for
11 Mbit/s, 1024 bytes for 2 Mbit/s, containing pseudo-
random data.

B) Bluetooth: The simulations include one, two or four
interfering Bluetooth networks, hopping at 1600 Hz. In
order to provide a severe test, all interferers are restricted to
hop only within the receiver bandwidth. The given carrier-
to-interference (CIR) ratios are with respect to the total
interference power, which is distributed unevenly between
the interferers. As suggested by [5], the transmit power is
ramped up/down over 2 µs.

C) Reduced Complexity Implementation: The interferer
energy Em is quantised in steps of 1 dB. Out of the 46 bins
per Bluetooth channel, only 10 are used in steps 5)-5) in
the algorithm.

7 Conclusion
We have shown that a frequency domain approach using
a Wiener smoother based on estimated signal energies is
very effective in reducing Bluetooth induced packet errors.
The gains are especially evident for the 2 Mbit/s rate.

The results, obtained with the reduced complexity ap-
proach without any tuning of the parameters, indicate that
i) we can do even better by implementing of the full solu-
tion ii) we can achieve significant performance gains also
when using more heavily reduced complexity. It should
be kept in mind, however, that the results pertain to a
flat fading environment and perfect synchronisation. The
effects of interference on the synchronisation have not been
taken into account, neither have the effects of fast fading.
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Fig. 1. Packet error rates (PER) for 2 Mbit/s rate. One interferer
(top), two interferers (middle) and four interferers (bottom). Solid
lines represent results with suppression, dashed lines without
suppression.
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Fig. 2. Packet error rates (PER) for 11 Mbit/s rate. One in-
terferer (circle), two interferers (diamond) and four interferers
(star). Solid lines represent results with suppression, dashed lines
without suppression.
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