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Abstract— Channel estimation and prediction algorithms are
developed and evaluated for use in broadband adaptive OFDM
downlinks over fading channels for vehicular users. Accurate
channel estimation may be obtained by using a combined pilot-
aided and decision-directed approach based on Kalman filtering
and prediction. The correlation properties of the channel in both
time and space are taken into account. Kalman performance at
much lower computational complexity is attained with recently
developed constant gain adaptation laws. We present and evaluate
a state-space realization of such an adaptation law, with compu-
tational complexity of the order of the square of the number
of parallel tracked pilot subcarriers. In an adaptive OFDM
system, prediction of the channel power a few milliseconds ahead
will also be required. Frequency-domain channel estimates can
be transformed to the time domain, and used as regressors in
channel predictors based on linear regression. We also make
a preliminary evaluation of the direct use of complex channel
prediction in the frequency domain for channel power prediction.

I. OUTLINE

Adaptive transmission can radically improve the spectral
efficiency when multiple users have independently fading
links. The users may then share the available bandwidth, and
resources are allocated to terminals who need them best and/or
can utilize them best via link adaptation. This paper focuses
on the downlink of an adaptive OFDM system that employs
Frequency Division Duplex (FDD).1 The aim is to attain high
spectral efficiency for wide area coverage and to serve also
vehicular users, with velocities around 100 km/h.

In this adaptive OFDM downlink, packet data streams to
a number of active users are multiplexed on a common
bandwidth. Each user must estimate and predict the channel
over the whole utilized bandwidth, and report which parts of
the spectrum will have the best signal to interference ratio.
A scheduler, located at the base station, then allocates time-
frequency resources based on the requirements and channel
qualities of each user. This system is outlined in Section II
and is discussed in more detail in [2] and [3].

Channel estimators located in terminals of such systems
would have to meet three challenges:

1) The OFDM channel must be estimated with sufficient
accuracy so that payload information can be detected
also when using high modulation formats. Otherwise, a
high spectral efficiency becomes unattainable.

2) The fading channel must be predicted with sufficient
accuracy over time horizons that correspond to the
feedback delay of the adaptive transmission system.

1The system serves as a focus for research within the Wireless IP project
[1], supported by the Swedish Foundation for Strategic Research SSF.

3) The computational complexity of the estimator must be
limited, both to reduce the computational delays and to
attain low power consumption at terminals.

The present paper outlines research aimed at meeting the
above requirements. We start from a combined pilot-aided and
decision directed channel estimator in the form of a Kalman
state estimator. This estimator is based on ARMA models of
the fading and on frequency domain covariance information.
It provides minimal mean square estimation errors (MMSE
estimates) at the pilot locations. The main computational
complexity of this Kalman algorithm resides in the required
update of a Riccati difference equation. That update may be
avoided by using the recently developed General Constant
Gain (GCG) class of adaptation laws [4], which are well suited
to the present problem. They provide performance close to that
of the Kalman algorithm, but with much lower computational
complexity. In this paper, we present and evaluate a GCG
algorithm in state-space form.

The performance of the algorithms is evaluated on flat
Rayleigh fading simulated channels. We also present prelim-
inary results for measured channels, obtained from channel
sounding in an suburban environment.

II. THE PROPOSED ADAPTIVE OFDM DOWNLINK

We assume the use of FDD, and of a base station infra-
structure with sectored antennas. User terminals are in this
paper assumed to have only one antenna.

The available downlink bandwidth within a sector (cell) is
assumed to be slotted in time. Each slot of duration T is
furthermore partitioned into time-frequency bins of bandwidth
∆fb. We here assume T = 0.667 ms and ∆fb = 200 kHz,
which is appropriate for stationary and vehicular users in urban
or suburban environments [3]. We also assume a subcarrier
spacing of 10 kHz, a cyclical prefix of length 11µs and an
OFDM symbol period (including cyclic prefix) of Ts = 111µs.
Thus, each bin of 0.667 ms × 200 kHz carries 120 symbols,
with 6 symbols of length 111µs on each of the 20 10 kHz
subcarriers. Of these 120 symbols, 12 are allocated for training
and downlink control, leaving 108 payload symbols, see Fig. 1.

During slot j, each terminal predicts the signal to interfer-
ence and noise ratio (SINR) for all bins, with a prediction hori-
zon mT that is larger than the time delay of the transmission
control loop. All terminals then signal their predicted quality
estimates on an uplink control channel. They transmit the
suggested appropriate modulation formats to be used within
all bins of the predicted time slot j + m. A scheduler that is
located at the base station then allocates these time-frequency
bins exclusively to different users and broadcasts its allocation
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Fig. 1. One of the time-frequency bins of the proposed system,
containing 20 subcarriers with 6 symbols each. Known 4-QAM pilot
symbols (black) and 4-QAM downlink control symbols (rings) are
placed on four pilot subcarriers. The modulation format for the other
(payload) symbols is adjusted adaptively. All payload symbols within
a bin use the same modulation format.

decisions by using some of the downlink control symbols.
In the subsequent downlink transmission of slot j + m, the
different modulation formats used in different bins are those
which were suggested by the appointed users.

For the payload symbols, we utilize an adaptive modulation
system that uses 8 uncoded modulation formats: BPSK, 4-
QAM, 8-QAM, 16-QAM, 32-QAM 64-QAM, 128-QAM, and
256-QAM, with constant transmit power [3]. The use of 256-
QAM requires SNR ≥ 30 dB, and a correspondingly low
channel estimation error.

The 12 pilots and control symbols are located within each
bin as indicated by Fig. 1. They are assumed to use 4-QAM
and can be detected by all users within the sector. (The sector
boundary is defined as the range at which 4-QAM symbols
can on average be detected with low probability of error.)

The spacing between pilots in time, 0.666 ms, corresponds
to 0.115 wavelengths at 1.9 GHz carrier frequency and 100
km/h vehicle speed. Pilot symbols are transmitted over every
fifth subcarrier, in the following denoted pilot subcarriers.
Their spacing in frequency, 50 kHz, is designed to be adequate
to handle the frequency selectivity encountered in suburban
propagation environments.

Thus, all active users must estimate the channel within the
whole bandwidth. The channel estimates are used for two
purposes: In bins addressed to a user, the payload symbols
are de-rotated for coherent detection. Channel estimates for
all bins are furthermore used by the predictor.

III. CHANNEL ESTIMATION

The received scalar complex-valued baseband signal yn,t on
the pilot subcarrier n is described by

yn,t = sn,thn,t + vn,t , (1)

where the time index t will here be incremented in steps of two
symbol times 2Ts = 222µs, sn,t is a pilot or control symbol,
hn,t is the scalar complex channel and vn,t represents noise
and interference.

Pilot-based channel estimates could be obtained at all loca-
tions where sn,t are known 4-QAM pilot symbols as

ĥp
n,t = yn,ts

∗
n,t = hn,t + vn,ts

∗
n,t , (2)

since sn,ts
∗
n,t = 1. In a second step, the noise vn,ts

∗
n,t can be

reduced by 1-D or 2-D MMSE (Wiener) filtering, see e.g. [5],
[6], [7]. The downlink control symbols can furthermore be
utilized in a decision-directed scheme. (However, note that
the payload symbols of all bins cannot be used for decision-
directed channel estimation. They may be destined for other
users and may therefore use high modulation formats that
cannot be detected reliably by the terminal of interest.)

2-D FIR Wiener filtering of a set of p subcarriers at time t,
using a block of pN estimates given by (2) at p different
frequencies from N time instants τ = t, . . . , t − N , would
require on the order of p2N complex operations. Our aim
will be to obtain an algorithm that corresponds to a 2-D IIR
Wiener filter, with infinite support backward in time. It should
require only p2c operations, where c is small, for the same
calculation The derivation of such an algorithm begins with
the Kalman estimator for linear regressions of the form (1).

IV. KALMAN CHANNEL ESTIMATION

Our aim is to simultaneously estimate a set of p channel
coefficients hn,t, n = 1, . . . , p recursively in time, based on p
measurements yn,t, n = 1, . . . , p.

The scalar complex channel coefficients hn,t are described
by ARMA models of order nD in state space form,

xn,t+1 = Fxn,t + Gen,t ; hn,t = Hxn,t , (3)

with scalar driving noises en,t. The same ARMA model will
be used to describe the fading statistics on all pilot subcarriers.
To utilize the frequency-domain correlation of hn,t in the
estimation, one should use a model with combined state vector

xt = ( xT
1,t . . . xT

p,t)
T (4)

of length nx = pnD, that simultaneously describes the p
measurements and the p channel coefficients

yt = ( y1,t . . . yp,t )T ; ht = ( h1,t . . . hp,t )T . (5)

Such a model is given by

xt+1 = diag(F)xt + diag(G)diag(en,t) = Axt + wt

ht = diag(H)xt (6)

yt = diag(sn,t)diag(H)xt + diag(vn,t) = Ctxt + vt .

Here, diag(·) represents (block)diagonal matrices. The ARMA
model of hn,t describes the correlation in time (or Doppler
spectrum). The covariance matrix Rv of vt = diag(vn,t)
describes the frequency-domain correlation of the noise and
interference, while the covariance matrix Rw of wt =
diag(G)diag(en,t) describes the frequency-domain correlation
of the channel taps hn,t. These parameters can be adjusted
to the data series, either periodically or recursively. If this is
impractical, simple and robust choices can be used. Robust
selections are suggested by [6].
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The Kalman filter estimate ĥt|t, and the predictor estimate
ĥt+L|t, are then given by [8], [9]

εt = yt − Ctx̂t|t−1 (7)

x̂t|t = Ax̂t−1|t−1 + Kf
t εt (8)

x̂t+1|t = Ax̂t|t (9)

ĥt|t = diag(H)x̂t|t (10)

ĥt+L|t = diag(H)ALx̂t|t . (11)

Note that the output matrix Ct = diag(sn,tH) of (6) is time-
varying. Therefore, the Kalman filter gain matrix Kf

t will also
be time-varying. It is updated by iterating a Riccati difference
equation forward in time.

This algorithm can be applied in several ways on a set
of p pilot subcarriers. A decision-directed algorithm which
produces estimates at t = 1, 2, 3, . . . , proceeds as follows. At
time t = 1, a Kalman estimator will use the received signal y1,
the known pilots sn,1, n = 1, . . . , p and its previous state x̂0,0

to obtain a filtering estimate ĥ1|1 of the channels at t = 1 and
a one-step prediction x̂2|1 and ĥ2|1 for t = 2. The p downlink
control symbols sn,2 are then detected, using

ŝn,2 = f(yn,2/ĥn,2|1) n = 1, . . . , p , (12)

where f(·) is the decision nonlinearity. This procedure is
repeated at t = 2 and t = 3. At t = 4, training symbols
are available and estimation is performed as for t = 1.

V. CHANNEL ESTIMATION BY A CONSTANT-GAIN

KALMAN APPROXIMATION

A theory for designing constant-gain Wiener-LMS adapta-
tion laws in transfer operator form was presented in [4], [10].
We here outline how this framework can also be used to ap-
proximate Kalman estimators by state observers with constant
gains. Starting from (6), define the regressor covariance matrix

R = E [diag(s∗n,t)diag(sn,t)] , (13)

the autocorrelation matrix noise, given by

Zt = diag(s∗n,t)diag(sn,t) − R , (14)

the gradient noise, given by

ηt = Zt(ht − ĥt|t−1) + diag(s∗n,t)vt , (15)

and the alternative measurement signal ft, of dimension p,

ft = Rĥt|t−1 + diag(sn,t)∗εt = Rht + ηt . (16)

For the last equality, please see (14),(15) in [4]. Instead of the
state space model (6), which has a time-varying output matrix
Ct, and thus requires a time-varying Kalman gain, we may
now instead consider the linear time-invariant model

xt+1 = Axt + wt (17)

ft = Rht + ηt = R diag(H)xt + ηt (18)

where ηt acts as measurement noise. The steady-state Kalman
state estimator for the model (17),(18) constitutes the General

Constant Gain (GCG) estimator for the original model (6). It
is given by (7)-(11), but with (8) exchanged for

x̂t|t = Ax̂t−1|t−1 + K(ft − R ĥt|t−1) . (19)

The steady-state filter gain matrix K is calculated via an
algebraic Riccati equation, which needs to be recalculated
only when the model (17),(18) is changed. The covariance
matrix of the gradient noise ηt is required in that calculation.
The feedback via the estimation error in (15) would here in
general require the use of an iterative design, as suggested in
[4]. However, in our case, where the symbols sn,t are 4-QAM
and thus have constant modulus sn,ts

∗
n,t = 1,

diag(s∗n,t)diag(sn,t) = I = R

so Zt = 0. Thus, the gradient noise (15) is in this case

ηt = diag(s∗n,t)v(t) , (20)

with covariance matrix Rη = Rv . The total number of
complex multiplications required per time step will, with a
state vector xt of length nx = pnD, be2

5nx + pnx = 5pnD + p2nD . (21)

The order nD of the ARMA fading model can in general be
chosen small, nD ≤ 4, see [11].

VI. CHANNEL INTERPOLATION WITHIN BINS

The channels may vary significantly within bins. For the
purpose of coherent detection of payload symbols destined
to “our” terminal, the channel estimates on pilot subcarriers
must be interpolated over the payload symbols. We use 2D
quadratic interpolation, a method also discussed in e.g. [12].
(Other methods, such as Wiener interpolation, could also be
used.) A 2D quadratic interpolation of the complex channel
within the bin is fitted to the estimated channels at t = 1, 2, 3
and t = 4 (early in the next bin), using also a pilot carrier
outside the bin (subcarrier number 21 in Fig. 1). Payload
symbols are then detected as f(yi,j/h̄i,j), where h̄i,j is the
interpolated channel estimate at symbol location i, j within
the bin.

VII. CHANNEL POWER PREDICTION

A long-term prediction of the channel power is required
for allocating the resources and determining the modulation
formats to be used in future bins. One alternative is to use the
L-step prediction (11) to extrapolate the estimated complex
channels on all pilot subcarriers 2L symbols into the future.

The square of the predicted complex tap would then consti-
tute a biased prediction of the channel power [13]. If hn,t has
zero mean, an unbiased quadratic prediction estimate of the
power pn,t+L of pilot carrier n is obtained as ([14] p. 162)

p̂n,t+L|t = |ĥn,t+L|t|2 + σ2
h − σ2

ĥ
, (22)

2If a complex-valued diagonal realization is used in (3), which is attractive
numerically, then the number of complex multiplications required in (7), (9),
(10) and (11) will all be (at most) nx each, while (19) requires nx + nxp
multiplications, since the dimension of K is nx by p.
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where σ2
h and σ2

ĥ
are the variances of hn,t and ĥt+L|t,

respectively.
Alternatively, we may use the Kalman or GCG estimators

as noise-reducing front-ends to the time-domain estimator that
were presented and investigated in [13] and [14]. It is at
present unclear which of these two strategies provides the best
performance and this question is under current investigation.

An appropriate measure for evaluating power prediction
algorithms is the normalized mean square power estimation
error (NMSE)

NMSE =
E ||hn,t|2 − p̂n,t|t−L|2

E |hn,t|4 . (23)

VIII. EVALUATION ON FLAT RAYLEIGH FADING CHANNEL

The methods outlined in Section IV-VII are now evaluated.
We begin by applying the Kalman and the GCG channel
estimators on a simulated flat Rayleigh fading 5 MHz channel
at 1900 MHz. The terminal has velocity 100 km/h, so the
maximal Doppler frequency fD is 174 Hz and fDTs = 0.0193.
The noise vn,t is uncorrelated in time and among subcarriers.
The 5 MHz bandwidth is partitioned into 25 bins. We begin
by using 25 parallel estimators, which each uses p = 4 pilot
subcarriers. Thus, one estimator is used for each bin width.
We first investigate the Channel Signal-to-Error Ratio (SER)
of the estimator output, defined by

SER =
E |hn,t|2

E |h̃n,t|t−L|2
(24)

where h̃n,t|t−L = ht−ĥn,t|t−L. Both the Kalman and the GCG
algorithms are based on autoregressive models of order 4 that
are adjusted to the Jakes fading spectrum. Correct estimates of
the noise and channel covariances are used. The resulting SER
as a function of the SNR, shown in Fig. 2, is identical for the
Kalman and the GCG algorithm. A significant noise reduction
SER - SNR is observed. When estimated regressors are used
at the downlink control locations, the performance degrades at
low SNR’s. An increase of the estimator width p results in the
expected noise averaging effect: Each doubling of p results in
a 3 dB SNR improvement of the SER performance curves.

We then investigate the performance of the 2-D quadratic
channel interpolation. Kalman and GCG filter estimates on the
pilot and control locations shown in Fig. 1 are interpolated as
described in Section VI. Since the channel power is varying
between bins, the local SNR will vary both between and within
bins. The symbol error rate is approximately determined by the
worst SNR (lowest channel power) within the bin [3]. We use
this SNR measure, SNRmb = minbin |hn,t|2/σ2

v , and compare
it to the bin-averaged SER, defined by

SERb =
E bin|hn,t|2
E bin|h̃n,t|2

. (25)

As long as SERb > SNRmb, the bit error rate for detected
payload symbols will essentially be determined by the noise
level, rather than by the estimation error. According to Fig. 3,
this will be the case for flat Rayleigh fading channels.
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Fig. 2. Channel signal to estimation error ratio (SER) for a Jakes flat fading
channel at 100 km/h, as a function of the SNR. Kalman (rings) and GCG
(triangle) filter estimates ĥn,t|t are obtained when using correct regressors
(solid) and when using estimated downlink control symbols (12) (dashed).
The curves overlap. The solid line SER=SNR is added for comparison.
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Fig. 3. The bin-averaged SER (25) as a function of the minimal SNR within
the bin, for 2-D quadratically interpolated GCG filter estimates (triangles), for
a Jakes flat fading channel at 100 km/h. Kalman estimation gives the same
performance. The cloud of points illustrates the distribution of the worst SNR
(lowest channel power) within the bin SNRmb and the corresponding SERb,
when the average SNR is 40 dB. The dotted line indicates SNRmb = SERb.

Fig. 4 shows some preliminary results from performing
long-range prediction in the frequency domain, using (22).
The NMSE (23) is shown at SNR 20 dB as a function of the
prediction horizon, scaled in carrier wavelengths. The results
are compared to that of using the average power as predictor
(upper solid, NMSE=0.5). It is also compared to the theoretical
performance of perfectly adjusted 16-tap FIR predictors in the
time domain, that utilize noise reduced regressors, from Fig.
2 in [13]. Frequency-domain Kalman predictors with p = 4
(dashed) and p = 8 (dash-dotted) outputs give NMSE’s that
correspond to the time-domain FIR results for short prediction
horizons. They do however have a higher NMSE for longer
horizons.
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Fig. 4. Prediction NMSE as function of the prediction horizon at SNR
20 dB on the Jakes flat fading channel for Kalman predictors that use p = 4
(dashed) and p = 8 (dash-dotted) outputs. Compare to average predictor
p̂n,t = σ2

h (upper solid) and an unbiased quadratic prediction in the time
domain, based on a 16 tap sub-sampled FIR predictor from [13] (lower solid).

IX. TEST ON A MEASURED CHANNEL

We finally illustrate the noise reduction properties on
a 5 MHz channel measured in suburban Stockholm at
1900 MHz. This particular channel has delay spread 0.28 µs
and a 3 dB coherence bandwidth of 6.4 MHz, see Fig 5.
The mobile travels at 92 km/h, corresponding to a maximal
Doppler frequency of 161 Hz.
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Fig. 5. Time-frequency plot of channel power. Vertical scale is subcarrier
number and horizontal scale is symbol number.

The channel is estimated as described in [14] and this
estimate is used as the true channel.3 One estimator is then
used for each bin width of 20 subcarriers. Thus, p = 4. Both
the Kalman and the GCG algorithms are based on autoregres-
sive models of order 4 that are adjusted to the Jakes fading
spectrum. The channel statistics deviates significantly from the
Jakes Rayleigh fading statistics, so there is a model mismatch.
Correct estimates of the noise and channel covariances are
used. The resulting SER is shown in Fig. 6 as a function of
the SNR. In contrast to the Jakes channel of Fig. 2, the GCG

3We thank Ericsson Research for providing measurements and Torbjörn
Ekman for providing the estimated channel.

algorithm here has a higher estimation error (lower SER) than
the Kalman algorithm. The two algorithms are affected in a
similar way by regressor estimation errors at low SNR’s.
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Fig. 6. Channel signal to estimation error ratio (SER) as a function of the
SNR for the channel shown in Fig. 5, that is estimated from channel sounding
data. Kalman (rings) and GCG (triangle) filter estimates ĥn,t|t are obtained
when using correct regressors (solid) and when using estimated downlink
control symbols (dashed). The solid line SER=SNR is added for comparison.
(The point at SNR=50 dB, SER=24 dB is due to numerical misbehavior.)
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