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Abstract - Adaptation laws that estimate time-
varying communication channels can be tuned for
efficient tracking, by adjusting filters and gains
within their structure. However, this requires
knowledge of statistical properties that may be
poorly known or time-varying. A possible ap-
proach is then to adjust the gains of the adapta-
tion law adaptively. The Wiener LMS adaptation
algorithm (WLMS) attains efficient tracking by in-
corporating filters that are attuned to the fading
statistics. It includes a gain parameter that will
here be adjusted adaptively on line. A WLMS
channel predictor with adaptively adjusted gain
is then evaluated as a component of receivers for
EDGE systems, which use delayed decision feed-
back sequence estimation. The channel variations
for such cases have a wide variety of properties
that are tracked by gain adaptation.

I. Introduction

When adaptively estimating time-varying systems,
such as fading mobile radio channels, an appropriate
adjustment of the adaptation step size will be crucial.
It is desirable to adjust it to optimize the tracking
performance, while stability is preserved.

If the parameters to be estimated have time-
invariant and known dynamics, the step-size selection
can be accomplished by off-line Monte Carlo simula-
tions. However, if the channel parameter properties
are unknown or time-varying, then there are three
possible approaches:

• Robust design. The adaptation law may be de-
signed for a set of possible situations, and its per-
formance is optimized on average over this set, or
for the worst case [1, 2]. A robust design may be
unsatisfactory if one single estimator is to be ad-
justed to a very wide variety of situations.

• Gain scheduling. A set of adaptation laws can
be pre-adjusted for different environments, such

as fading rates and SNR’s. These properties are
measured on-line, so that the appropriate algo-
rithm can be utilized. This approach becomes
cumbersome if a high-dimensional space of pa-
rameters has to be covered by appropriately de-
signed estimators.

• On-line tuning. This can be performed by indi-
rect adaptation involving the updating of mod-
els of the environment followed by an on-line re-
design of the adaptation algorithm. An alterna-
tive is to use direct adaptation of gains1.

This paper focuses on direct adaptation.
In the literature, adaptation of the step size has

been proposed and successfully applied for LMS al-
gorithms, see e.g. [3],[4]. However, in applications
such as e.g. communication over fading channels, the
LMS algorithm is frequently inappropriate. A major
reason is that the LMS algorithm is most suitable for
tracking parameters varying as random walks [5], a
statistics that does not describe fading channels well.

It is therefore motivated to investigate other, more
flexible, tracking algorithms such as Wiener LMS
(WLMS). The tracking MSE can for such algorithms
be minimized for a given parameter statistics. Com-
pared to LMS, we may then cope with a larger class of
time variations, while maintaining almost LMS com-
plexity. See [5, 2, 6] for details.

In this paper we introduce the variable step-size
WLMS (VSWLMS) and investigate the properties of
the WLMS algorithm with an adaptively adjusted
step-size. As illustrations we consider equalization of
EDGE [7] channels and frequency offset compensa-
tion. We also compare the adaptively optimized step-
size with the optimal step-size that may be calculated
analytically my means of recent results in [8].

1Combinations of these two approaches, or combinations
with robust design and gain scheduling, may also be considered.
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II. The WLMS Algorithm

The WLMS algorithm can be summarized as follows.
For measurements described by linear regression mod-
els

yt = ϕ∗
tht + vt , (1)

with ht being the parameters, ϕ∗
t the regressors with

known correlation matrix R, and vt the noise, the
WLMS adaptation algorithm can be expressed as

εt = yt − ϕ∗
t ĥt|t−1 (2)

ĥt|t = ĥt|t−1 + µR−1ϕtεt (3)

ĥt+k|t = Pk(q−1)ĥt|t . (4)

Here, Pk(q−1) is constrained to be a diagonal rational
matrix with equal stable and causal transfer functions
along the diagonal,

Pk(q−1) =
Qk (q−1)
Q0 (q−1)

I . (5)

Above, ĥt+k|t is an estimate of ht+k at sample time t,
which may involve prediction (k > 0), filtering (k = 0)
or fixed-lag smoothing (k < 0). The superscript ∗ de-
notes conjugate transpose and q−1 is the backward
shift operator (q−1xt = xt−1). The algorithm can be
regarded as a generalization of LMS that uses orthog-
onalization with respect to the regressors (R−1 in (3),
R = Eϕtϕ

∗
t ) and filtering of the estimate.

The real-valued gain or step-size µ and the “coef-
ficient filter” Pk(q−1) are design variables. They can
be adjusted to minimize the MSE of the tracking error

E |h̃t+k|2 ∆= E |ht+k − ĥt+k|t|2

if a model describing ht is assumed known. The
problem of obtaining an MMSE adjustment of µ and
Pk(q−1) is in [5, 6] converted into a Wiener problem
by a transformation of signals. The Wiener estimator
is obtained by solving a spectral factorization and a
linear Diophantine equation iteratively.

For second order AR (possibly integrated) models
with real-valued coefficients,

ht =
C(q−1)
D(q−1)

I et =
1

1 + d1q−1 + d2q−2 I et (6)

the optimal polynomials Qk (q−1) are given by the
closed form expression

Qk (q−1) = µ(1 q−1)
( −d1 1

−d2 0

)k (
1
p

)
(7)

for k ≥ 0, where the real-valued scalar p is defined as

p =
d1d2(1 − µ)

1 + d2(1 − µ)
. (8)

This Simplified Wiener LMS algorithm, has only three
adjustable parameters, d1 and d2 and µ. The parame-
ters d1 and d2 should be adjusted to match the actual
time variations. In a fading radio environment, one
may use a pre-specified robust tuning or on-line ad-
justment of (6) to the fading statistics (an example of
indirect adaptation).

The step-size parameter µ is more difficult to deter-
mine. Its optimized tuning depends on a parameter-
drift-to-noise ratio which indirectly depends on the
properties of the adaptation law itself. This is why
an off-line adjustment of WLMS algorithms has to be
performed iteratively [5, 6], in general.

It is therefore of interest to adjust µ adaptively
on line. We will investigate this issue for situations
where R = σ2

zI (white regressors), or when ϕ∗
t is a

scalar (with a not necessarily white regressor).

III. Variable Step-size WLMS

For R = σ2
zI, a normalized step-size

µ̄
∆= µ/σ2

z

will enter equation (3) in the same way in which the
step size parameter affects the LMS algorithm. To
adjust µ adaptively we may therefore apply a gain
adjustment algorithm that has been developed for use
in LMS. Assuming scalar yt, we here use the variable
step-size scheme “c-VSLMS-II-M’ considered in [4],
which can be expressed as

µ̄t+1 = µ̄t (1 + ρ�{ψtϕtεt}) (9)
ψt+1 = ψt(I− µ̄tϕtϕ

∗
t ) + ϕ∗

t ε
∗
t . (10)

Above, �{x} denotes the real part of x, µ̄t represents
an estimate of the normalized step-size µ/σ2

z at sam-
ple time t and ρ is a design parameter, typically much
less than one. The elements of the row vector ψt can
initially be set to zero.

By combining the variable step-size scheme (9),(10)
with the simplified WLMS structure, in which
Pk(q−1) is specified by (5),(7), the variable step-size
WLMS (VSWLMS) algorithm for linear regression
models with white or scalar regressors is given by

εt = yt − ϕ∗
t ĥt|t−1

ĥt|t = ĥt|t−1 + µ̄tϕtεt (11)

pt =
d1d2(1 − µ̄tσ

2
z)

1 + d2(1 − µ̄tσ2
z)

(12)

ĥt+1|t = −pt ĥt|t−1 + (pt − d1)ĥt|t − d2ĥt−1|t−1

ĥt+k|t = −pt ĥt+k−1|t−1 +Qk(q−1)ĥt|t , k > 1 .
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The variable step-size scheme (9) is one of several pos-
sible schemes discussed in [4] that can be combined
with the simplified WLMS.

The variable step-size LMS (VSLMS) is a spe-
cial case of the one-step ahead VSWLMS predictor,
obtained by assuming random walk parameters (i.e.
d1 = −1, d2 = 0, giving pt = 0).

Fig. 1 illustrates the convergence of the step-size µ
when tracking a scalar sinusoid

ht = ejωot , (13)

with the VSWLMS scheme. The design parameter ρ
was set to 0.08 to balance convergence speed against
noise sensitivity. The scalar regressor ϕ∗

t is here white
and circular complex Gaussian, with unit variance
(σ2

z = 1). Also displayed is the optimal µ (dashed)
obtained by minimizing the tracking MSE presented
in Theorem 1 of [8]. We note a good agreement be-
tween theory and simulations.
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Figure 1: Tracking of the sinusoid (13), ωo = 0.005, with
the VSWLMS algorithm. The SNR is 15 dB whereas
C(q−1) = 1 and D(q−1) = 1 − 2q−1 + q−2 in the model
(6). The adaptively tuned step size µ (solid) converges to
the optimal µ (dashed) after approximately 1000 steps.

IV. Application to EDGE

The block error rate (BLER) performance of a de-
layed decision-feedback sequence estimator (DDFSE)
[9] in conjunction with the VSWLMS algorithm will
now be evaluated on multipath fading channels asso-
ciated with the EDGE air interface. This radio inter-
face is based on GSM, which implies that the symbol
rate and the slot format (in terms of symbols) are the
same, as illustrated in Fig. 2. In EDGE, the bit rate is
adapted to the channel conditions by selecting one of

nine different modulation coding schemes (MCS). For
MCS five and higher, the modulation is 8PSK with
linearized GMSK pulse shaping.

3 tail 58 data1 26 sync 58 data2 3 tail 8.25 guard

✛ 156.25 symbols (0.577ms) ✲

Figure 2: The Edge slot format.

An adequate single receiver antenna transmission
model for short EDGE/GSM channels, such as Rural
Area (RA) propagations [10], can be expressed as

yt = z∗t ht + vt, (14)

where vt is a measurement disturbance, ht is a scalar
time varying complex-valued gain and z∗t represents a
scalar regressor, determined as

z∗t =
M∑

k=0

gkst−k . (15)

Above, gk and st denote time-invariant channel taps
and transmitted symbols, respectively. For short
EDGE channels, the intersymbol interference mod-
eled by (15) is mainly caused by the pulse shap-
ing (partial response) and the receiver (RX) filtering,
whereas ht models flat fading as well as impacts of
frequency offsets. In the case of a pure frequency off-
set, ωo, originating from a deviation of the carrier fre-
quency from the receiver oscillator frequency, the gain
ht is given by (13). For RA channels, the spectrum of
ht is approximately described by a Rice model [10]

Φh(ω) = Aδ(ω − 0.7ωD) +BΦJ(ω, ωD) , (16)

for some constants A and B, where ΦJ(ω, ωD) repre-
sents the spectrum of Jakes model [11] with a Doppler
frequency ωD.

The taps gk are in this presentation estimated
by Least Squares (LS) over the sync data interval
(Fig. 2), under the assumption that ht = 1, and are
then held constant over the entire slot. The estimated
channel taps relate to the slot synchronization posi-
tion that yield the smallest cumulative squared LS
residuals. The variance σ2

z of z∗t , required in (12), is
also estimated over the sync interval. Tracking of the
time varying tap ht begins in the middle of the sync
interval. Decision-directed mode, where known sync
symbols are replaced by detected symbols s̄t, is used
within the data blocks. The data2 block in Fig. 2
is first detected in the forward direction, while the
data1 block is then detected in the backward direction
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(time-reversal detection). Hence, the equalization will
be performed on two half slots.

The considered detector structure is depicted in
Fig. 3. The tracker has to perform d-step prediction,
since it works on d-step delayed data. The prefilter is
designed, for each slot half, as a feedforward filter of
an MMSE decision-feedback equalizer (DFE).2

yt✲ prefilter ✲ DDFSE+SOVA

✲ q−d ✲ tracker

ĥt|t−d

✛
✻ s̄t−d

✲soft-outputs

Figure 3: Soft-output DDFSE with d-step prediction
tracking of a flat fading channel. The tracker operates
on pre-filtered data and delayed symbol decisions s̄t−d.
Soft sample values for convolutional decoding are here de-
livered by the soft-output Viterbi algorithm (SOVA) [12].

In the simulations below, a square root raised co-
sine RX filter with single-side bandwidth of 150 kHz
and roll-off factor of 0.15 is used.

Fig. 4 shows the block error rate (BLER) when
transmitting over a rather severe fading channel at the
1800MHz band. In this example, the prefilter consist
of 15 taps, the DDFSE consist of two MLSE taps and
two feedback taps,M = 3 in (15), and a decision delay
d of three symbols is used. Ideal frequency hopping is
assumed.

Therefore, a d-step ahead prediction VSWLMS is
used. It is designed for d1 = −2 , d2 = 1 in (6) i.e
an integrated random walk model. Its performance
is compared to that of the variable step size LMS
(VSLMS), obtained with d1 = −1 , d2 = 0 (ran-
dom walk model). For both the VSWLMS and the
VSLMS, the design parameter ρ in (9) is set to 0.08,
and the variable step-size µ̄t is adapted over the slots.

Trackers without adaptive step-size, here denoted
WLMS and NLMS, were also evaluated. The nor-
malized LMS (NLMS) algorithm with fixed gain here
corresponds to a WLMS with d1 = −1 and d2 = 0 (µ
is normalized by σ2

z). The fixed step-sizes were opti-
mized for zero frequency offset and a mobile speed of
100 km/h, which provided good performance on aver-
age over vehicle speeds between zero and 200 km/h.
These values were also used as initial values for µ =
µ̄σ2

z in the algorithms with adaptive step-size.
The VSWLMS algorithm overall provides superior

performance. At 200 km/h and 10% BLER in Fig. 4,
we obtain an improvement of about 4 dB in compar-
ison with the VSLMS algorithm. Note also that the

2This receiver structure is similar to the one used in [13]
(single branch), but where we have included one-tap tracking
and use another soft-output scheme.

WLMS with incorrectly tuned (fixed) step-size will
provide better performance than the VSLMS algo-
rithm.

Fig. 5 shows the BLER performance when trans-
mitting over a static channel [10], without frequency
offset. In this case, tracking is not necessary. It is evi-
dent that the WLMS and the NLMS algorithms, both
with constant step-sizes optimized for 100 km/h, show
a performance loss of about 0.5 dB, or more, compared
to the tracking schemes with variable step-size, which
have the ability to reduce their step size µ in this case.
The performance of the VSLMS and the VSWLMS
algorithms are in this case identical, and marginally
better than for a receiver without tracking.
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VSWLMS
WLMS (µ=0.08)
VSLMS
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Figure 4: Block error rate for MCS-7 and an RA chan-
nel at 1800MHz, at a mobile speed of 200 km/h and a fre-
quency offset of 200 Hz (ωo ≈ 0.005). Comparison between
Variable Step-size Wiener LMS (VSWLSM), WLMS with
fixed step size, Variable Step-size LMS (VSLMS) and (nor-
malized) LMS with fixed step size (NLMS).

Fig. 6 illustrates the convergence speed of the step
size parameter µ at different signal to noise ratios, for
ρ = 0.08 in (9). Convergence occurs over relatively
few slots, which indicates that the adaptation should
be able to track variations in the fading environment,
the noise level and the speed of the mobile. This issue
does however require further investigation.

V. Concluding Remarks

A method for step size adaptation, previously known
for LMS adaptation laws, has here been applied to
more versatile (simplified) Wiener LMS trackers.

The variable step size WLMS algorithm presented
in Section III is limited to tracking parameters in
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Figure 5: Block error rate for MCS-7 (code rate 0.78 and
8PSK) and a static channel.

linear regression models with scalar or white regres-
sors. A generalization to colored regressors which can
also use adaptively updated ARMA fading models of
higher order than two, is under investigation. A gen-
eralization can furthermore be conceived to adaptive
adjustment of the more general constant gain algo-
rithms recently presented in [6]. Convergence proper-
ties are here an interesting topic.

Adaptively adjusted adaptation laws should form a
useful addition to the tools of robust and gain schedul-
ing design. Which tool to use in a particular appli-
cation then becomes a matter of practical tradeoffs
between complexity and performance.
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