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Abstract— Prediction of the rapidly fading envelope of a mo-
bile radio channel enables a number of capacity improving tech-
niques like fast resource allocation or fast adaptive modulation.
Some power prediction algorithms are based on linear prediction
of the taps of the complex impulse response and then forming the
power prediction as the sum of the absolute square of the pre-
diction of the taps in the impulse response. This will render a
biased power predictor, that generally underestimates the power.
We propose a bias compensated power predictor and derive the
optimal prediction coefficients for the Rayleigh fading channel.
The importance of efficient noise reduction of channel samples
that are used as inputs to the predictor is also emphasized. A per-
formance evaluation of the prediction algorithm is carried out on
measured broadband mobile radio channels.

I. INTRODUCTION

Prediction of the coefficients of mobile radio channel is
of interest for a range of applications such as power control,
adaptive resource allocation, as well as adaptive coding and
modulation [1], [2]. Power control in e.g. WCDMA requires
short-term prediction over only a small fraction of the dis-
tance between two dips in the short-term fading pattern. Ra-
dio resource allocation and planning would require accurate
and more long-term prediction, the longer the better. Different
methods have been proposed to cope with this problem [3], [4].

Here we will predict the received power of a mobile radio
channel by prediction of the individual complex taps in the
channel impulse response. The power can then be predicted by
adding the squared magnitudes of the predicted taps as in [3].
That will, however, give a biased power predictor, which un-
derestimates the power. We propose a compensation for the
bias that improves the power prediction performance.

Estimated snapshots of the channel impulse response are
used as input to a set of channel tap predictors. The SNR of
these samples is improved by using Wiener smoothers, which
improves the total performance. Our approach to prediction of
the received power will be evaluated on measured broadband
data.
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II. THE MEASURED CHANNELS
A. The Estimation Method

Measurements obtained by Ericsson Research in urban and
suburban areas, at the carrier frequency 1880 MHz and with
a 6.4 MHz baseband sampling rate, have been utilized. The
sampling rate of the channel is 9.14 kHz whereas the highest
Doppler frequency is about 160 Hz. Thus we have a highly
oversampled channel [6].

The channel can be modeled as a time varying FIR-filter,
with taps denoted by hy(¢). Let n denote a discrete time index
at the symbol rate. For each measurement location, the time-
varying complex-valued channel taps h(n) in

nk

s(n) =Y h(n)u(n — k) +w(n) (1)
k=1

were estimated. Here, s(n) is the received baseband signal
sampled at 6.4 MHz, u(n) is a known filtered transmitted se-
quence, obtained from back-to-back measurements of the re-
ceiver connected to the transmitter, and w(n) is noise.

A channel length ny = 120, corresponding to a time span
of 18.75 us, was found to be sufficient at all measurement loc-
ations. The channel was assumed time-invariant over blocks
of 700 samples (channel sampling period 7" = 109.4 us ~
0.01 wavelength), an assumption that introduces negligible er-
rors at these fading rates [5]. Block least squares estimates
of the channel taps were calculated, resulting in 1430 channel
samples, indicated by the time index t,

hi(t) = hi(t) +or(t) ; k=1,...,120; t =1,...,1430

covering 156 ms at each location. Here, h(t) denote the noise-
free tap samples, while the estimation error vy (t) is zero mean
noise that is uncorrelated with Ay ().

B. Noise Reduction

We exploit the oversampling of the channel to reduce the
noise with an FIR Wiener-smoother. The covariances of the
channel taps hy(t) are in the filter design represented by a
zero order Bessel function of the first kind (Jakes model) and



the noise v (t) is assumed to be white. The Jakes model is a
good description of the average short term fading of the chan-
nel taps, although the different realizations will deviate signi-
ficantly from it. For channel taps hy(t) estimated by a least
squares procedure, here based on blocks of 700 samples, the
estimation error vk (t) will be close to white when considering
consecutive snapshots.

For a given smoothing lag and filter order, a FIR Wiener
smoother is parameterized by the SNR and the Doppler fre-
quency. These entities can be estimated from the power delay
profile and the average Doppler spectrum [6].

In the measurements at hand, the Doppler frequency nor-
malized by the channel sampling frequency is on the order of
10 mHz. This corresponds to 100 samples per traveled distance
measured in wavelengths. Smoothing (use of future channel
samples) provides much better noise reduction performance
than filtering only. The performance improves with an increas-
ing smoothing lag. When using a smoother with 128 coeffi-
cients on a Jakes model with 10 mHz maximal Doppler shift,
almost full performance is obtained already at a smoothing lag
of 10 samples and the performance saturates at a smoothing
lag of about 20 samples.'

The use of a smoothing lag in the noise reduction introduces
a corresponding delay in the data used by the predictor. This
will affect the attainable predictor performance. To circumvent
this problem, a bank of noise reduction smoothers are used,
that have smoothing lags from zero up to a lag that is sufficient
to obtain close to optimal noise reduction. Here, five smoothers
with lags 0, 2, 5, 10 and 20 are used. The channel predictor,
described in Section 3.3 below, can then always use regressor
variables with appropriate time lags. These regressors have
been given the best, at that time, available noise reduction.

1) The Wiener smoother: The correlation function for the
channel in the Jakes model is given by the zero order Bessel-
function of the first kind,

ry(1) =Jo(27fDT) , )

where fp is the Doppler frequency.
A FIR Wiener smoother with N coefficients and smoothing
lag ¢ has the coefficient vector

4]

wll = Ry +102) " 'ry

(3)
where R ; is the covariance matrix for a Jakes model channel,
! = [r;(=0)...r;(N = 1 = 0)]7 while 62 is the variance
of the channel estimation error normalized by the channel tap
variance. The FIR-Wiener smoothing estimate with lag ¢ is

thus

hi(t — €]t) = @i (t)w!f | 4)

IThe performance of the FIR-smoother is similar to the TIR-smoother pro-
posed in [4]. This FIR-smoother needs on the order of hundred of coefficients
whereas the IIR-smoother needs only on the order of ten coefficients. Still, the
FIR-smoother is here preferred due to numerical sensitivity of the coefficients
in the I[IR-smoother.
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where g‘okH (t) is a vector with current and delayed samples of
the estimated channel

@) = [he(t) hi(t—1). . h(t—=N+1)]" . &)

III. CHANNEL PREDICTORS

We first discuss prediction of complex channel taps hy(t).
In the considered measurements, different taps are only weakly
correlated, so they will be predicted individually. We then con-
sider tap power predictors that are quadratic functions of the
noise reduced taps.

A. Linear Prediction of Complex Taps

Even though the mobile radio channel changes dramatically
over short traveled distances, the parameterization of the amp-
litude and phase is slowly time varying. We can thus assume
that the optimal linear predictor coefficients change slowly and
without abrupt changes. In this section, we study the perform-
ance of a linear FIR-predictor for prediction of a complex time
series with stationary statistics. This is a valid approximation
for a block based method using channel statistics collected over
a few meters.

Consider a flat Rayleigh fading channel. It can be modeled
as a correlated complex circular Gaussian stochastic variable
with zero mean, that is here denoted x(t) instead of hy(t).
Furthermore, assume the channel estimation error, here de-
noted v(t), to be circular complex Gaussian distributed with
Zero mean.

In a vector formulation of the FIR-predictor, the signal (tap)
can be predicted from past noisy observations as

Bt +Lit) = ™ ()0, (6)
where 0 is a vector with prediction coefficients and the com-
ponents of the regressor ¢(t) consist of smoothed observations
of x(t) + v(t) with different delays. The components of ¢ (t)
will thus also be complex circular Gaussian stochastic vari-
ables. From the Wiener-Hopf equations, the MSE of a pre-
dictor like (6) is minimized by @ = 6. with

_nR-1
0. =R,

(N

Tzp,

where r,, = E{z(t)p(t —L)} is the cross-correlation
between the signal and the regressor, and R,
E{p(t)p(t)} is the correlation matrix for the regressors.
With r,, = E|x(t)|? the minimal prediction MSE is

Elz(t + L) — 2t + LIt)> =7 — 07 R 0.  (8)

B. Quadratic Power Prediction

1) Biased power prediction: From past and present noisy
observations, the power of x(t) attime ¢+ L, that s |z(t+L)|?,
is to be predicted.



We first examine the use of |#(¢ + L|t)|?, with (¢ + L|t)
given by (6), as a power predictor,

Pt + LIt) = |&(t + L|t)|* = 07 ()™ ()0 . (9)

This predictor utilizes quadratic functions of the regressor vari-
ables and is thus a nonlinear predictor. This predictor for the
power is used for channel prediction in e.g. [3] and [4]. For
any 6, the average power prediction error will be

E{ep, (1)} = E{|(t)]*~[2(t|t—L)|*} = r.—6"R,0, (10)

where r, = E{|z(¢)|?} is the variance (power) of the channel.
The absolute square of the complex prediction is thus a biased
power predictor. With @ = 8., this bias becomes equal to the
variance (8) of the optimized complex prediction error. The
power of x(t) is thus underestimated.

2) Unbiased power prediction: To avoid underestimation
of the power, we propose an unbiased power predictor, that
modifies (9) with a compensation for the bias, as

plt+ L|t) = |t + L|t))> +r. —0"R,O.  (11)

The prediction error p(¢t) — p(t|t — L) will then have zero
mean. The modification is especially noticeable when the
complex channel is hard to predict, i.e. when the optimal
6 — 0. The unbiased prediction then becomes the average
power r,,, whereas the biased predictor will predict zero power.
The proposed unbiased power predictor thus offers a graceful
transition from perfectly predicted channel states to situations
where only the average power is known.

C. Unbiased Power Predictors for Frequency Selective Chan-
nels

Tools from the preceding sections can now be combined.
The linear regression

hi(t+ LIt) = @} (1)6) , (12)

represents an L step ahead FIR-prediction of a channel tap
hi(t). Here, 0y, is a vector of predictor coefficients. The re-
gression vector ¢, (t) consists of smoothed samples (4) of tap
k up to time ¢, with a sub-sampling factor of m, where the
largest available smoothing lag is used:

- - - H
0. (t) = [hk(t|t) hult—mlt) . .. hk(t—(M—mmn)}
(13)
Here M denotes the order of the predictor (12). If (M —1)m
is larger than the largest available smoothing lag provided by
the bank of smoothers, then the corresponding smoothed signal
with the largest smoothing lag is used instead.
The unbiased power predictor (11) is then given by
pre(t + LIt) = [h(t + L) + 74, — OF R, 0, (14)

where 7, = E{|hx(t)|?} and hy(t + L|t) is given by (12).
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Each tap of a frequency selective channel can be regarded as
a flat fading channel. For a Rayleigh fading tap, that is h (t) ~
CN(0, rp,, ), an optimal choice of 8}, is then given in Appendix
Aas
15)

where R, is the covariance matrix for the regressor to tap k
and ry, ., = E{hi(t)e,(t)}. Somewhat remarkably, this is
the same adjustment as (7), which optimizes the L-step predic-
tion of the complex tap.?

An unbiased predictor for the total power is finally obtained
by summing contributions from each significant tap

_ -1
Ok =Ry, Thipy s

Nk
Pt+Lit)=> (|ﬁk(t + LIt +rp, — ekHRwek) .

k=1 16)
If all channel taps are unpredictable, then the channel power
will be predicted by its average ) _, 7, . In receivers that use
only a subset of the taps, the available power is the sum over
this subset. The predicted available power is then the sum over
the predictions for this subset, whereas the other taps act as
interference.

IV. RESULTS
A. Simulations

The expected performance for prediction of a flat Rayleigh
fading channel with Jakes spectrum will indicate the perform-
ance on true measured channels. We thus first examine the
Jakes model to obtain reasonable choices for the delay spacing
(the sub-sampling factor m measured in wavelengths) in pre-
dictors for one tap. The channel correlation is then given by,
r5(7) = r4Jo(2mfpT). The delay spacing and the prediction
range are measured in wavelengths, as fading is a spatial phe-
nomenon. The time-frequency product fp7T = vr/A\, where v
is the speed of the mobile, is the traveled distance measured in
wavelengths.

For a channel corrupted by white noise, the theoretically ob-
tainable prediction NMSE can be calculated, given the pre-
diction range, the order of the predictor and the delay spa-
cing. This can also be done for a predictor using smoothed
regressors. Our finding is that when using the smoothed re-
gressors the performance is rather insensitive to the choice of
delay spacing, as long as it is in the range of 10 to 20 samples
per traveled wavelength.

Figure 1 shows how predictable a Jakes channel is with and
without smoothed regressors. The predictor has eight coeffi-
cients and a robust choice of delay spacing, that gives close to
optimal performance over SNRs E|hy(t)|?/Evy(t)? ranging
from 10 to 50 dB.

An increase of the number of coefficients in the predictor
results in only a minor decrease in the NMSE, see Figure 2.
The major gain is attained by the use of noise reduction.

2All 9y, that satisfy 8, = 8., with w € [0 2], are solutions, since the
phase becomes irrelevant when the absolute square is taken.
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Fig. 1. The prediction NMSE of an unbiased quadratic power predictor with 8
coefficients, for a Jakes channel as a function of SNR. Solid lines use smoothed
regressors, while dashed lines use noisy regressors. The uppermost curves
corresponds to a prediction range L of 0.5 wavelengths. The prediction range
decreases to 0.1 for the two consecutive lowest curves.

B. Power Prediction on Measured Channels

As only noisy observations of the channel taps are available,
the true tap is taken as the smoothed tap obtained with smooth-
ing lag 20. This is a good approximation of the true taps for
SNRs above 0 dB. A total of 37 measurement locations are
used in the evaluation. Only measurements where the aver-
age channel-to-estimation-error power ratio is above 10 dB are
used.

The algorithms are designed for channels with stationary
statistics. If abrupt changes are detected new prediction para-
meters would have to be estimated. To avoid such situations
in the evaluation, a few channels where the average power
changed by more than 3 dB from the first quarter of the data to
the last quarter, were ruled out.

1) Quadratic power prediction: For each tap the estimated
sample covariances ka and t,, ., are used to obtain the pre-
diction coefficients (15) of the unbiased power predictor (14).
The prediction of the total power is obtained as in (16). The
same holds for the biased power predictor (9) for comparison.

Independent of the prediction range, 900 samples are used in
the target vector for the training. The validation interval was on
the order of 400 down to 100 samples, depending on prediction
range and Doppler frequency.

The delay spacing was taken as the robust choice, as ob-
tained from simulations using the Jakes model, depending on
the Doppler frequency but not on the SNR. A predictor using
eight coefficients was used, as simulations show that little can
be gained by increasing the number of coefficient above this
value if noise reduction is performed in a separate step, cf Fig-
ure 2.
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Fig. 2. The prediction NMSE at 20dB SNR of an unbiased quadratic power
predictor for a Jakes channel as a function of the prediction range. Solid and
dashed lines are using smoothed and noisy regressors respectively. The upper-
most curve corresponds to a predictor with 8 coefficients, the next to 16 and
the lowest to 32 coefficients.

2) Average and last sample prediction: The two simplest
power predictors, the average power and the last sample pre-
dictor, are also included in the evaluation. The average power
is estimated using the same training interval as for the more
advanced predictors and it is evaluated on the same validation
interval.

3) Performance: The average NMSE of the power predic-
tion algorithms in Figure 3 shows that the unbiased power pre-
dictor provides the best performance for all prediction horizons
measured over the validation set. As the horizon L increases,
its NMSE slowly approaches that of the average predictor from
below. The biased power predictions and the last sample pre-
dictions become slightly worse than using the average power
at large prediction ranges.

V. CONCLUSIONS

Using smoothed noise reduced regressors result in a signi-
ficant increase of the prediction performance on channels de-
scribed by the Jakes model. The combined effect of improved
noise reduction that eliminates the lag in the regressors and
unbiased power estimation has resulted in significant perform-
ance improvements, as compared to our previous results re-
ported in [4]. The proposed unbiased power predictor offers
a graceful transition from perfect channel state information to
just knowledge of the average power. This is demonstrated in
evaluations of the algorithm on measured channels.

APPENDIX

For convenience, the time index is dropped for &(t|t — L),
x(t) and (t). The covariance of x(t) is E{|z|?} = r, and the
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Fig. 3. The average power prediction normalized MSE evaluated at 37 meas-
urement locations.

covariance for the complex prediction is

r: = B{|#]*} = E{0" o0} = 0" R, 0. (17)
The cross-correlation between x and the prediction Z is
ros = B{zi*} = E{0" @z} = 0"r,, . (18)

When using the biased power predictor (9) the MSE for the
power prediction error in (10) becomes

E{lep,|*} E{(l=* — |2]*)*}

E{lz* — 2=z + 2]} . (19)

Examine the three terms of (19) separately. As both x and & are
circular complex Gaussian the first and third terms are 272 (0)
and 2r2(0) respectively. For the same reason we can express
the second term as

E{lz?2[*} = E{j«}E{|2]*} + E{ed"}E{a"1}
= rars + |resl®. (20)
The MSE (19) for the biased power predictor is thus
Eflep*} = 1)

2r2 — 20", r 0 — 2r,0" R0 + 2167 R 6.

This is the criterion that should be minimized to obtain the
coefficient vector @ that provides the best power predictor of
the type (9).

The MSE for the unbiased power predictor is obtained
from (21) by subtracting the square of the bias,

o? = E{lep|*} = E{(=]> - |#*)*} - |r. — 6" R0/
r2 —20"r, v 0+ [0"R 01> (22)
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A. Optimal coefficients

To find the 6 that minimizes U?p in (22), we set the partial
derivative of the MSE with respect to 8 equal to zero
80§p

00
—20%r,,r,, + 0"R,00"R, + 6" R,0"R 0,

(23)

which result in the equation
0" (rpor —R,00"R,) =0. (24)

Here, @& = 0 is the trivial solution. The other solutions are
given by

H _ _
60" =R, 'r, vl R, (25)

with one obvious solution as 8 = 6,,, where
6,=R_'r,, . (26)

These are the same coefficients that are optimal for the com-
plex prediction (6).
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