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ABSTRACT

This paper discussessome optimization algorithmsin-
tendedfor usagein the processof schedulingtransmis-
sionsbetweena basestationand mobile terminalsby al-
locatingtime-slotsto the differentmobiles.

Thepurposeof theschedulings to make useof thefast
fadingcharacteristic®f the radio channel,insteadof al-
leviating the effectswith over-pessimistichannekoding.
By usinginformation aboutthe individual datastreams,
togetherwith information aboutfuture wirelesschannel
characteristic$or the differentmobilehostsiit is possible
to planthetransmissionsothattherequirementsneetthe
limitations.

Thealgorithmsdescribedarecomparedvith respecto
throughput,computationatompleity, and userdemand
satishction.

INTRODUCTION

In future packet basedwirelesscommunicatiorsystems,
thedownlink will be primarily usedfor datatransmission
to mobile terminals. An obstaclein this context is the
time-variability of the channel.To achieve a high system
throughputalso over fading channels,adaptve methods
for theadjustmenbf themodulationalphabetindthecod-
ing compleity, togethemvith time-slotschedulingcanbe
used[6].

In the schedulingapproachpredictionof differentuser
channelsprovide a basisfor detailedschedulingof the
transmissionby combiningtime-slotallocationandadap-
tive modulation.This approacttanalsotake into account
the desirederrorprobability and the priority associated
with differentusersaswell asthecurrenttraffic situation.
Moreover, the frequengy band can be used efficiently,
sincethedifferentusersareallocatedime-slotsvhentheir
transmissiorconditionsare predictedto be favorable,al-
lowing themto usea high modulationlevel. Theresult-
ing constantand low (userspecified)errorrate provides
theerrorcorrectingcodeswith manageabldata,avoiding
bandwidthconsumingre-transmissionsThe main draw-
backof schedulingn general,s the computationatom-
plexity, andthesensitvity to channepredictionerrors[4].

In previous studies,a heuristic methodfor time-slot
schedulingcalled the Robin Hood method,wasused. It
waschoserfor its simplicity. No real analysisof its per
formance nor ary comparisonsvith othermethodshave
beendoneuntil now.

In this paper the schedulingproblemis isolatedfrom
the restof the system,in orderto investigatesuitableal-
gorithmsfor fast,andefficient, allocationsof time-slotsto
differentusers.

In thenext sectionit is statedthatefficientschedulings
animportantissuewhendiscussinguturemobilecommu-
nicationsystemsThefollowing sectiongivessomeaddi-
tional systemaspectsmostly motivating the necessityof
including a buffer in the design. Thereafterthe problem
formulationfor this paperis given, simulationresultsare
presentedandsomeconclusionsaredrawn.

MOTIVATING SCHEDULING

Adaptity is crucialin orderto obtainspectralefficiency
in future mobile communicatiorsystems.Real-timepre-
dictive schedulings a possibleway to achieve adaptvity.

Spectrum Efficiency

To obtain high datathroughputsover wirelesschannels,
we have to actcleverly. The channelquality variessub-
stantiallyover time, dueto radiointerferenceandthe mo-
bility of the radio stations. Differenttypesof fadingre-
sultin a high probability for abadradioconnectiorsome
of thetime. Slowfading canbe counteractedby control-
ling radio transmitterpower, or performinghandwer to
anothembasestation. Theremedyagainsfastfading, how-
ever, is traditionally differenttypesof channekodingand
interleaving. In a simplified explanation thechannekod-
ing addsextra information, or controlledredundang, to
the transmitteddata, whereaghe interleaver spreadghe
informationover time, to make it morerobustagainster
ror burstswhich occurin thefadingdips,wherethesignal-
to-interfernceratio is momentarilylow. The channekod-
ing, whichis oftenover-pessimisticgeneratesnuchover
headto thewirelesssystemwhichin turnwastegprecious
bandwidth. The schedulingapproactis substantiallydif-
ferent.

Channel Prediction Works

A centralcomponenin the schedulingapproacho spec-
tral efficiengy, isthechannepredictor It hasbeendemon-
stratedn [2] thatit is possibleto predictthechanneSINR
variationsquite accuratelyseveral millisecondsinto the
future. Having thesepredictions,oneperradiolink, they

canbeusediogethemwith atargeterrorrateto assignrmod-
ulationrates,for planningof the transmissionso the dif-



ferentmobile hosts,giving accesdo the usersthat have
good predictedchannelquality. Doing this, we increase
our chancesof getting the dataacrossthe wirelesslink
without error andat a high rate, thusincreasingthe sys-
temthroughputandthe spectrunefficiency.

Ononehand,thelongerthe time-framethatthe sched-
uler getsto scheduleover, the moreoptimizedthe alloca-
tion. Ontheotherhand thefurtherinto thefuturewelook,
theharderit is to make a correctpredictionof the channel
quality. The performanceof the predictoris crucial for
the outcomefrom utilizing the scheduler So, in a prac-
tical system,a trade-of betweenpredictorperformance
andschedulingyain, hasto be done.The performancéor
somedifferentlink-layer strateies,with unreliablechan-
nel predictions areevaluatedn [4].

Quality of Sewice

Anotherissuefor future datacommunication®ver wire-
less, is quality of service (QoS). Although thereis no
agreed-upomlefinition of whatQoSreally is, it mostcer
tainly is improvedby increasedhroughputanddecreased
delay Thebandwidthoverthewirelesschanneis limited,
andrelatively narraw, soit hasto be utilized efficiently. A
way of doingsois to associateachdataflow with aneco-
nomical value, andto give priority to the highervalued
flows. This valueassignmenis nottrivial, but onceit ex-
ists, it canbeincorporatednto the schedulingsothatthe
scheduletriesto maximizethe valueof thetransmission,
andhopefully, the QoS.

So,by matchingthe higherprotocollayerrequirements
with the physical constraintsof the radio channel,we
hopeto find a time-slotallocationthat efficiently utilizes
the available spectrum,and maximizesthe value of the
transmission. Higher layer protocol aspectdor Internet
communicationgvererrorpronechannelarefurtherdis-
cussedn [3].

SOME SYSTEM ASPECTS

Apart from the subsystenthat makes surethat we have

channelpredictionsfor all the ongoingsessionswe need
aninputbuffer, the puposeof whichis two-fold: First,we

needsomemechanisnto arrangencomingpacketsfrom

the wired network in the right order, so that this taskis

removedfrom the light-weight mobile host. At the same
time, the buffer works as a shock-absorbebetweenthe
two partsof the network, so that performancevariations
in eithersidearehiddenfrom eachother Secondwe can
usethe buffer to estimatethe amountof datathat hasto

be transmittedo the differentusers.We alsogetthe op-

portunityto analyzethe contentsof the dataflows, sothat
differentvaluescanbe assignedo thedifferentflows.

The Buffering Subsystem

Thebuffer controlleris assumedbleto submitastatuse-
portto theschedulingsubsystemdescribedn thefollow-
ing section sothatthe schedulecanmake anappropriate
decisiononwhich queuego choosdor the next transmis-
sionframe.

The queuesare emptiedin a bit-by-bit manney inde-
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Figurel: Schematiof the buffer andits queuesandhow
they interconnectto the schedulerand link layer The
pacletsarrive atthetop andareinsertednto their respec-
tive queuesrestoringorderamongoccasionallyarriving
out-of-orderpaclets. The buffer regularly submitsa sta-
tusreport(A) to the schedulercontaininginfo aboutthe
priorities, thesizeof thequeuesandtherequiredink ser
vice, someof which is alsopassedo the link layer (B).
The schedulingdecision(C) is updatedby the link layer
ARQ, andis thenusedto drainthequeues.

pendentlyof the individual paclet boundaries.The rea-
sonfor this is to minimize the overheadby filling all the
link-layer frameswith data. The bit-streamis passedo

thelink-layersubsystemalongwith informationaboutthe
servicerequirementsTheincomingbuffer is describedn

Figurel. At thereceving side of the wirelesslink, the
pacletshave to be re-assembledyeforepassinghemup

to the network layer. This canbe donesincethe schedul-
ing decisionis transmitted(broadcastedjo the receving

side,andit totally determinesvhich bytebelonggowhich

flow.

The SchedulingSubsystem

Theschedulecreatessignalingpipe[8] betweerthenet-
work layerbuffer andthelink layerservice,makingthem
mutually awareof one-anotherFor instancethe network

layerdoesnotaskfor alink servicewheneverthereis data
to transmit.Insteadt notifiesthe scheduleof theincom-
ing traffic by passingjueueingnformation(A in Figurel)

abouttheamountof dataandtypeof servicethatwould be
preferredby the paclkets. Theschedulethenasksthelink

layerfor areport(B in Figure 1) abouthow the channel
conditionswould meetthe requiredservice. This canbe
donesincethelink layerhasaccesgo channelprediction
dataof all the establishedonnections.



PROBLEM FORMULATION

The problemdiscussedand hopefully solved in this pa-
perdealswith methoddor (sub)optimallyallocatingtime-
slotsto users. The allocationis basedon the users’re-
guirementsand their predictedwireless channelcondi-
tions. The channelconditionsare translatedyia the tar-
getbit errorrate(BER), to anallowed modulationformat.
Thistranslatiorresultsin anarrayof sizeU x S, whereU
is the numberof active users,and.S the numberof time-
slotsin the schedulingwindow. Eachentryin the matrix
is the allowed modulationformat (R = logs M, where
M = 2 for BPSK, M = 4 for QPSK,i.e. the number
of bits persymbol)to meetthetargeterrorratefor a pre-
dicted channelquality in eachtime-slot. This array will
hereaftebereferredto asthe constaint matrix.

Fromtheothersideof the schedulerthethroughputre-
quirementdor eachuserarereportedin a vectorof size
1x U (alongwith somekind of priority for eachdataflow).
This vectorwill bereferredto asthe requirrmentvector.
Now, the taskfor the scheduleiis to make an allocation
of time-slotsto the users,sothatasmary aspossibleex-
perienceagoodservice.Thethroughputrequirementsre
representelly anumberfor eachuser Thesenumbersare
calculatedrom the amountof datacurrentlyin theinput
buffer, normalizedby the time-slotsize usedin theradio
link layer. So,for instancejf auserhasa throughputre-
quirementof 12, it meansthatit would be satisfiedby 4
time-slotswith uncoded-PSKmodulation(R = 3).

The outputfrom the scheduleiis a vectorwith oneen-
try for eachtime-slot(1 x S), whereeachentryis theuser
numberfor the userthat getsto transmitin a particular
time-slot. This arrayis hereaftereferredto asthe deci-
sionvector. So,theproblemis to generateagood-enough
decisionvector, from the givenconstraintmatrix, andthe
requirementector

Thedecisionvectorcanalsobetranslatednto a binary
matrix of the samedimensionsas the constraintmatrix
(U x S), having one“1” for eachtime-slot. The“1” isin
the locationof the userthat was allocatedthat time-slot,
andthe“0"s arein the otherlocations.This matrix is the
allocationmatrix.

Discrete Optimization

The setof solutionsto, andconstraintson the scheduling
problemare madeup of discretevaluesin a finite space.
This meansthat all solutionscould be found and classi-
fied by an exhaustve searchandthe bestonechosen.A
disadwantage however, is that the optimizationproblem
becomewery complex to solvein anefficientway.

CostFunctions

The cost functions we use in our optimization should
somehav reflectour goalwith the scheduling.The most
importantgoal is usersatishction. (In this study such
guantitiesasrevenuemaximizatiorareonly dealtwith in-
directly, sincethey would requiresomepricing policy, and
guantizatiorof future goodwill, etc.) If all usersaresatis-
fied with the recevedservice we could assumehatthey

happily pay for it. Oneway of quantizingthe momen-
tary usersatishctionis by evaluatingthedifferencevector
betweertherequirementvectorandtheresultingthrough-
put from a schedulingdecisionvector A negative value
would reflectthat the userdid not getenoughbandwidth
to transmitall his data.A positive valuemeanghatsome
of the channelbandwidthwill be wastedby letting time-
slotstravel without data. So,an optimal allocationin this
sensevould resultin adifferenceof zero.

Usersatishctionis not only a questionof throughput,
but alsoof delay Delayrequirementganbeincorporated
into the costfunction by introductionof priorities. Low-
delayapplicationsareassociatedvith a high priority, and
lateng/-insensitve datais givena low priority. Priorities
may alsochangewith time, reflectingtheincreasingurge
of transmittinga pendingreal-timepaclet.

A nicecostfunctionthatincludesall the considerations
mentionedabove, is theweightedsquaredormof thedif-
ferencevector, expresseas

J=lla=rllp =) Pulaw —ru)’ 1)

wherea,, is theallocatedbandwidthto useru, andr,, isits

requiredbandwidth,accordingto the buffer statusreport
(seeFigurel). Theweight P, is amonotonicallyincreas-
ing function of the priorities for the differentusers,that
mightevenbetime-varying.

A differentway of regardingthis is from the point of
view of systemthroughput. We would like to maximize
the systemthroughput,with the (somevhat “soft”) con-
straintsof alsokeepingas mary aspossibleof the users
satisfiedwith their receved service. This viewpoint re-
sultsin amoredifficult problemto solve, suggestindinear
programmingsolutions,sincethroughputs alinearfunc-
tion of theallocationmatrix. Thedifficulty is in theinclu-
sion of the constraints:The constraintsare “soft” in the
sensethat they neednot necessarilybe fully met. How-
ever, a linear programcan only take “hard” constraints
into account)eaving uswith the option of startingwith a
solutionto an unconstrainegnaximizationandintroduce
the constraintssequentiallyin a narronving fashion. This
approachthasbeenavoided,dueto the unattractvenesof
the problemformulation.

SCHEDULING ALGORITHMS

A numberof different methodsfor time-slot allocation
have beenimplementedfor comparisonwith the sug-
gestedRobinHood algorithm. Schedulings supposedo

be kept simple, but still make a substantialcontribution

to improving the over-all performancef thecommunica-
tionssystem.

Optimal Allocation by Exhaustive Search

This is not a viable solutionto the schedulingproblem,
since the optimal allocation performsa searchthrough
all combinationsof time-slotallocations,with no clever
searchalgorithm. This is just intendedfor comparison
with the otheralgorithms,to shav what canactually be
obtainedby a “perfect” optimization.



Whatthis searchalgorithmdoesjs simply to systemati-
cally runthroughall possiblecombination®f thedecision
vector, saving the “best-this-fr” vector

Lagrange Formulation

This solutionto the schedulingproblemis basedn equa-
tion (1), realizingthattheconstrainbntheallocationvec-
tor beingbinary, canbeintroducedusingLagrangiarmul-
tipliers [5]. The problemthenboils down, throughcalcu-
lus of variation[1], to solvingasystemof 2U S non-linear
(Uth order polynomial) equations,U being the number
of active users,and S the numberof time-slotsin the
schedulingvindow. The solutioncould be found numeri-
cally usinge.g. the Newton-Raphsoralgorithm[7], but a
moreclever algorithmis sought sincethe problemhasan
attractie structurethat could be exploited. The problem
might even perhapsbe formulatedso that a closedform
solutioncanbe found. This would however requirea dif-
ferentformulationfrom the oneoutlinedhere,dueto the
high orderof the constraintequations.

Controlled SteepesDescent

This could be regardedasa first attemptat trying to find
the optimal solutionto the Lagrangiarformulationof the
problem. We heremalke useof the costfunction (1), but
insteadof introducingthe binary allocationvector as a
constraintwe consciouslyestrictoursehesto the binary
feasiblesolution spacein our steepest-descepiath. A
goodinitial guesss neededsofirst, eachtime-slotis al-
locatedto the userthat hasthe highestthroughputin that
time-slot,a simplethroughputmaximizationwithout con-
straints.Secondfor eachtime-slotandfor eachuser the
changen over-all usersatistiction(1) is calculatedn the
casehatthetime-slotis givento thatparticularuser After
all the possibletransactiondiave beenevaluated the one
giving thehighestincreasen over-all usersatistiction(or
equivalently, the biggestdecreasén over-all userpain)is
executed.

A drawbackof this approachs the numberof sum-of-
squaregvaluationneededn orderto take theappropriate
next step. Simplificationscould includee.g. taking more
thanonestepat eachiteration,or a simplerupdateof the
costfunction.

Robin Hood

Thisis asimplificationof the ControlledSteepesbescent
algorithmoutlinedin the previoussection but withoutthe

guadraticcostfunction. Again, the scheduleperfomsthe

schedulingin two rounds. In the first round, eachtime-

slotis simply allocatedto the userthatcantransmitatthe

highestrate in that time slot (unconstrainednaximiza-
tion). In the secondround, time-slotsare redistrituted
from usersthat have beenover-supplied(rich), to users
thathave beenundersupplied(poor),with respecto their

requiredthroughput.We call this equalizatiorto usersat-
isfactionthe RobinHood principle: To take from therich,

andgiveto thepoor. This algorithmworksasfollows:

1. Findtherich andpoorusersby comparingheirallo-

cationsto theiramountof datain the queues

2. Loopuntil eitherno morerich or no morepoorusers
exist:

(a) For therichestuser find its worsttime-slot,in
themeaningof lowesttransmissiomate

(b) Amongthepoorusersfind thebestuserin that
time-slot,andgive thetime-slotto him. In case
two poorusershave thesametransmissiomate,
chooseheonewith the higherpriority

(c) Updatetherich andpoorvariables

A crucialrequiremenfor thealgorithmto corvergeis that
nevermustary rich usersoecomepoor, or viceversa.This
is realizedby having a gapbetweertherich andpoordo-
mains,too big to be crossedy onere-distritution step.

BestFirst

This approachwhich is the simplestof themall, simply
goesthroughthetime-slotsin chronologicalorder, giving
themoneby oneto theuserthathasthehighesthroughput
in thattime-slot, provided the useris undersupplied. In
caseheusers satisfiedthetime-slotgoesto theusemwith
the second-beghroughputandsoon.

This approacltanalsoberegardedasannonpredictive
scheduling only takingpresentonditionsinto accounby
not looking at future possibleallocationswhenassigning
atime-slotto auser

SIMULATION RESULTS

In this section, the performanceof three different ap-
proachesare presented. Three measuresare compared,
namely thethroughputtheusersatisfactionandthecom-
puting compleity. The sizeof the schedulingoroblemin
thesesimulationsis 9 users,competingfor 48 time-slots.
Thetraffic loadis adjustedo beallittle morethancanbe
accomodateth the systemto make the schedulingprob-
lem interesting. The numberof possiblesolutionsto this
problemis 9*® ~ 6.4 - 10*5, which clearly excludesthe
possibility for an exhaustie search,especiallysincewe
malke 1000 runs with independenthannelpropertiesto
get somestatistics. In the simulations,the channelonly
affectsthe value of the possiblemodulationformat for a
giventargeterrorrate. Thereareno channekransmission
simulationgnvolved. Thethroughpuperformancen Fig-
ure2, only reflectsthe allocatedbandwidth.

The resultsare presentedn Figures?2 through4 by
meansof histograms,displaying the distribution of the
simulationoutputs.

In Figure2 we seethethroughputesultingfrom (top to
bottom) BestFirst, Robin Hood, and ControlledSteepest
Descentandin Figure 3 the resultingdifferencesin user

satishiction,namedunfairness
U =

dma:c - dmin

argm3x||du||2p —argmganuH?: (2)

whered,, = a,, —r,, Se€(1). Thereis, ascanbeseerfrom
thehistogramsndtheaveragevaluesatrade-of between
fairnessandthroughput.
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Figure 2: Resultingthroughputfor different optimizationap-
proaches.The y-axis shavs the numberof schedulesesulting
in thethroughputon thex-axis. Themoreschedule®n a higher
x-value,thebetter
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Figure 3: Unfairnessamongusersfor different optimization
approachesThey-axisshavs the numberof schedulesesulting
in the unfairnesson the x-axis. The moreschedule®n a lower
x-value,thebetter

The last figure requiressomemore explanation,since
the computationcomplexity is not the samefor a stepof
the ControlledSteepesDescentasfor a stepof the other
two algorithms.For eachstepin the SteepesbDescentl-
gorithm,9 x 48 sumsof 48 squaresrecalculatedywhereas
in theothertwo algorithmsmerelyamaximumvaluein a
9-elementvectoris found for eachiteration. So,in com-
parison,this versionof the Controlled SteepesDescent
is prohibitedlycomple, but it is alsoextremelyfair, and
will nicely includethe priorities of differentdataflows.
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Figure 4: Requirediterationsfor different optimization ap-
proaches. The y-axis shavs the numberof schedulesunning
over the numberof iterationson the x-axis. Themoreschedules
onalower x-value,the better

CONCLUSIONS AND FUTURE WORK

It is interestingto searchfor possibleclosedform solu-
tions to the quadraticproblem,andthis is undercurrent
investigation. Until then, we have someapproximatet-

eratve methodsof varying compleity to take on the the
taskof scheduleoptimization. A trade-of betweenfair-

nessof the allocationand systemthroughputhasto be
made.Moreover, fairnesgrovisionseemdo requiremore
computationthan throughputmaximization, due to the
guadraticnatureof thefairnessoptimization.
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