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Abstract - Low-complexity WLMS adaptation algo-
rithms, of use for channel estimation, have been pre-
sented in a companion paper. Their use and design is
here evaluated on the fast fading radio channels en-
countered in TDMA systems based on IS-136. An ex-
act analytical expression for the tracking MSE on two-
tap FIR channels is presented and utilized. With this
tool, the MSE performance and robustness of WLMS
algorithms based on different statistical models can
be investigated. A simulation study compares the un-
coded bit error rate of detectors, where channel track-
ers are used in decision directed mode in conjunction
with Viterbi algorithms.

A Viterbi detector combined with WLMS, based
on second order autoregressive fading models possi-
bly combined with integration, provides good perfor-
mance and robustness at a reasonable complexity.

I. Introduction and Outline

In D-AMPS 900 and 1900 (or IS-136) digital mobile
TDMA systems, a relatively low symbol rate and long
data slots (6.67 ms) cause severe fading. In 1900
MHz systems, one or two fading dips can be expected
within each data slot. Furthermore, large variations
in fading rates and frequency selectivity are encoun-
tered, so well designed channel estimators are crucial
for obtaining acceptable performance in the presence
of intersymbol interference. Channel estimates ob-
tained from training sequences cannot be used over
the whole frames and interpolation of channel es-
timates between training sequences provides inade-
quate performance. The same is true for the decision-
directed LMS and RLS algorithms.

In a related contribution to VITC2000 [1], we have
presented the WLMS algorithm, which can efficiently
utilize the fading statistics. It enables the design of
high-performance adaptation laws with LMS compu-
tational complexity for white regressors. An early de-
sign related to this class of algorithms [6] has been
successfully applied to tracking problems in both the
D-AMPS 900 and 1900MHz systems [2, 4, 11].

We will here investigate opportunities, design
choices and possible problems when applying the
WLMS algorithm in a realistic scenario.
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With a two-tap fading channel and a symbol al-
phabet with constant modulus, an ezact performance
analysis can be performed. Analytical expressions for
the mean square parameter tracking error are pre-
sented. The performance is investigated with this
tool for fading rates for which the adaptation laws are
tuned, as well as for other fading rates. The bit error
rate performance is then evaluated by simulation, for
adaptive Viterbi detectors in decision-directed mode.

II. The Channel Model

A symbol-spaced baseband mobile radio channel is as-
sumed described by the time-varying linear regression

hO,t

ye = (ue. . U p41) +v = prh

har—1,

1)
where y; is the received baseband signal, here assumed
to be a scalar. The possibly multi-variable channel
with M taps is represented by h; and {u:} are trans-
mitted symbols, with zero mean. The noise v; has
zero mean and a variance 2. The autocorrelation
matrix E[p; ;] 2 R of the regressor sequence {pi}is
known and nonsingular. When u; is white, R = o2L.
In D-AMPS systems, M = 1 (flat fading) or M = 2.

The channel coefficients will be subject to fading
characterized by the maximum Doppler frequency wp,
which may not be perfectly known. For the purpose of
our investigation, we shall use Jakes’ fading model [3].
When the vehicle velocity is constant, the channel co-
efficients will then be stationary, circular Gaussian
processes with zero means and covariance function

() = E{hth;_,} = RnJo(2pf) £=0,%1,--- (2)

which yields the classical fading spectrum

2 R, 0<%
= vV
n (@) { 0 0] > Q, . ®)

Here, Ry, = E{hih}}, Jo(-) denotes the Bessel func-
tion of the first kind and zero order and = wT,Qp =
wpT'. The symbol time T is 41.15y in IS-136.
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ITII. The Channel Estimator

A WLMS design begins with the selection of a hyper-
model, describing the second order statistics of h;.
In this case study we consider autoregressive and
possibly integrating models of order np, with equal
dynamics for all channel taps, described by

1 1
t D(qg™") €t 1+dig71+...+dy,q P “
4)
or
he +dihg—1+ ... +dupht-np, =€ (5)

with real-valued scalar coefficients {d;}. Here, ¢~!

denotes the backward shift operator and e; is a white
zero mean random vector sequence with covariance
matrix R.. For example, when np, = 2 the model is
denoted AR5, while for an AR3I model, n, = 3 and
one poleis at z = 1.

When the Doppler speed is known, the model
should be adjusted to the autocorrelation function (2).
Perfect adjustment would require models of infinite
degree, but good performance can be obtained with
simple models. For ARy models, we use

0o A
D(g7'y=1-2pcos —2q "' + p’q?

V2

where Q2 is the nominal maximal (normalized)
Doppler frequency and p = 0.999 — 0.1Q2, which
works well for 22 < 0.1.

For higher order AR models, we adjust D(g™!) by
considering row j of (5). Introduce the set of covari-
ances

A
{re. = Ehj,th;,t—%;}{\;l )

where h;, denotes element (tap) j of h; and where ¢;
are integers such that 0 < £, < ... < {y. Multiplying
row j of (5) by h} .., and taking the expectation gives
the set of equations

re, +dirg—1+ ... +dupTlionp =05 i=1,2,...,N .
(6)
Assuming Jakes model, we replace rs-y by
Jo(p (4; —w)) for a known or estimated Q,, and solve
the possibly over-determined system of equations (6)
by the least squares method [10].
When (4), R., R and o, are given, we can optimize
a WLMS-algorithm for tracking hy in (1):

& = Yt — <P:ilt1t—1 (7)
ilt[t = ilt|t—1 + uR ™ e, (8)
-1
R q -
ht+k]t = gzzq_lilhtlt . (9)

Here, FLH—W is an estimate of hy4 at time t, p is a
scalar gain and Q. (g7 !)/Qo(¢™ I in (9) is the coef-
ficient smoothing-prediction filter. An equivalent im-

plementation can be expressed in terms of the learning
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filter Li.(g7") [1, 9]:

ft = Riltlt—l + pret .
hovke = L@ Hfe= Qk(q_l)R_lft (10)
H Ba™) ’
where
By =D(g ) +q ' Qilg™) . (11)

The polynomials Q(¢™*) depend on the selected hy-
permodel and on the SNR, and are calculated via The-
orem 1 in [1] or [9] to minimize

- - . A
Elht+k|t|2 = trEht+kltht+k‘t: trPk (12)

where ht+k\t = ht+k - ilt+k|t-

IV. Tools for Performance Analysis

For one- or two-tap fading channels and symbol al-
phabets {u;} with constant modulus, there exists an
exact expression for the MSE performance (12), for a
given algorithm in a given fading environment [7, 8].
This expression is valid for arbitrary fast fading rates.

Lemma 1. Consider the channel model (1), with
M < 3. Assume hy, ¢} and v; to be mutually inde-
pendent and stationary. The spectrum ¢(Q2) of h¢
is described by (3), and the zero mean noise v; has
variance o2. Let the zero mean symbols u; be white,
with constant modulus and variance o2 (R = o2I).
Assume (M — 1)X; < 1, where X, is defined in (14)
below. If an estimator for h;, with the structure (10)
or (7)—(9).is used, then the steady-state mean square
estimation error (12) is given by

Ty +M10~ 56" o + (M - 1)Gy

tr Py = M = D), trRp  (13)
where )
L[| Qu(e’™)
W e |
g Iy . LIk I 2
Ry 0 EYR N T
2T - ,B(EJQ) trRh
(15)
Gr =12y -T2, (16)
and
A Uﬁ 2
SNR = 101log EEE [Pt ] (dB) (17)
)

Proof: Given in [7], [8].

Above, (M — 1)E; < 1 is a condition for conver-
gence in MSE. This condition will always be fulfilled
for flat fading channels. Note also that the term Gy
vanishes for k¥ = 1. All preconditions for Lemma 1
are fulfilled in the IS-136 TDMA system: The symbol
sequence is white and circular with constant modu-
lus. The delay spread is not larger than one symbol
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interval 7', so channel models with M < 2 are ap-
propriate. The noise v; represents mainly co-channel
interference and can be assumed independent of both
uz and h;.

Lemma 1 can be generalized to fading statistics
other than the Jakes’ Rayleigh fading model, by mod-
ifying the fading spectrum ¢, () used in (15).

It is of interest to know to what extent improved
linear regression modelling can improve the end re-
sult for which it is intended. Filtering or detection
performance is essentially determined by the ambient
SNR. With Lemma 1, the variance of the “tracking
noise” ini0—1 ih‘.m—kuc—i at the channel model out-
put, caused by non-perfect tracking, can be calculated
and compared to the variance of the noise v;. As a
rough but useful performance indicator, we define the
relative noise level

o2tr Py + o2
2

v & 1010g( ) (dB) (18)

v

where the numerator describes the total tracking plus
noise variance, if A, u and v are mutually uncorrelated.

When V is above 3dB, the tracking noise domi-
nates over the output noise v;. It is then worthwhile
to consider a superior adaptation law based on, for
example, a higher order hypermodel. If V is below
1dB, then the noise v; dominates, so even the total
elimination of any remaining tracking error would re-
sult in marginal improvements of the performance of
a filter or detector based on the estimated model.

V. MSE Performance

The theoretical MSE according to Lemma 1 can be
used, for example, to compare the MSE performance
of WLMS algorithms based on hypermodels (4) of dif-
ferent complexity. This is done in Table 1 and the
lower part of Figure 1 for two-tap Rayleigh fading
channels with Jakes’ statistics. We evaluate the use
of a random walk (RW) model hy = hy;—1 + e; for
which WLMS reduces to an LMS adaptation law. It
is compared to the use of second and fourth order
autoregressive models (AR, and AR4), adjusted to
the fading statistics. The transmitted QPSK symbols
u; are here assumed to be known. Results are given
for maximal normalized Doppler frequencies 2p be-
tween 0.02 and 0.06, corresponding to 45 km/h and
137 km/h, respectively, at 1900 MHz.

It can be seen that the use of a higher model order
improves the performance. At 15dB for example, a
WLMS tracker based on AR, modeling provides a
lower MSE at 137km/h than LMS tracking at 45km/h
(Table 1). In terms of the effect of the noise level on
the tracking MSE, more than 10dB can be gained
at both Q, = 0.02 and Q, = 0.06 by using an AR,
model instead of a random walk model (Figure 1,).

The top diagrams in Figure 1 display the relative

2 _

tracking noise level (18), under the assumption o2 =

1,Elho.?> = Elhis)> = 1 and SNR = 10log(2/02).
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V (dB), at 1508 SNR V (dB). at 25dB SNR

15 20 25 15 20 25
SNR SNR

Figure 1: Optimized tracking error E}| Ayy1)ll3 = tr Py
(lower part) and relative tracking noise level V' (dB) (up-
per part) in Section V for WLMS algorithms based on
RW modelling (dashed-dotted), integrated random walks
(dashed) AR (circle) and AR4 (solid). All AR models are
matched to the true normalized Doppler frequency Qp.

Table 1: The attainable tracking error tr Py for WLMS
algorithms based on different hypermodels.

Qp 0.02 0.06

SNR 15dB  25dB 15dB  25dB
RW (LMS) 0.0271 0.0075 0.0711 0.0269

AR; 0.0117 0.0021 0.0329 0.0067

ARy 0.0082 0.0012 0.0245 0.0042

For LMS tracking (WLMS based on random walks),
the tracking error is in many of the considered cases
so large that it dominates the total noise (V > 3dB).

The performance and robustness of incorrectly
tuned algorithms, computed by Lemma 1, is inves-
tigated in Figure 2. The algorithms were matched to
a maximum Doppler frequency of 140Hz (Q, = 0.035)
and SNR 15 dB. The results indicate that the AR,I
hypermodel provides superior robustness if we under-
estimate the SNR and overestimate the Doppler fre-
quency. _

The use of predicted channel estimates has also
been investigated and was shown to improve the
tracking performance significantly [10].

VI. Simulation Study

We investigate the bit error rate performance of adap-
tive decision-directed Viterbi receivers in combination
with LMS, AR, and ARsI-based trackers. The best
performance is obtained with a decision delay 3 in the
detector. Due to an additional feedback delay, £ = 4
step prediction of the channel is then required. (For
LMS, k = 3 gives the best performance.)
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Figure 2: MSE performance tr P, as a function of fp
for different choices of WLMS algorithms matched to 140
Hz and 15 dB. The algorithms are based on integrated
random walk (dashed), AR, (dotted), AR.I (dash-dotted)
and ARg3 (solid) hypermodels. Compare to a fully matched
ARj design (bulleted). The lower left-hand plot expands
the upper left-hand diagram.

VI.A Specifications

We focus on a set-up suitable for the D-AMPS 1900
standard IS-136 with the following conditions.

o Slot structure: As in the forward link of IS-136
with N = 162 differential QPSK-modulated sym-
bols, including 14 leading training symbols.?

o Channel properties: A two tap Rayleigh fading
symbol-spaced baseband channel model with in-
dependently fading taps? is simulated:

Yy = hosue + higus—1 +v: ; R=1  (19)

with R, diagonal and Elho.|? = Elh1? = 1.
The taps h; ¢ are generated according to [3], using
12 offset oscillators with uniformly distributed
([0,27]) phases. Hence, the level crossing statis-
tics are close to classical Rayleigh fading. All
estimators are initialized from least squares esti-
mates of the channel taps in the form of robus-
tified linear trends, based on the initial training
sequence. We also study the flat fading case.

e Disturbances: The scenario is interference-
limited with burst-synchronized interferers prop-
agating via the same type of fading channel as the
signal. The color of the interference is not esti-
mated. (In a noise-limited scenario with Gaus-
sian noise, the BER performance improves.)

LA known CDVCC sequence of six differential symbols is
placed after 85 symbols of the slot. They are here not used to
improve the tracking performance, since this would complicate
the performance evaluation.

2The more realistic case of correlated taps would result in
higher bit error rates due to partial loss of diversity, but will
otherwise not provide any new fundamental problems for the
tracking.
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o Idealized simulation conditions: We have com-
pared decision directed adaptation to the use of
correct symbols u; as regressors. To quantify
the loss of performance due to imperfect initial-
ization, we also compare to initialization with
known channel taps.

VI.B BER Performance for Two-tap Channels

Channels with two symbol-spaced taps of equal mag-
nitude are simulated. The taps are independently
Rayleigh fading, as described by Jakes’ model, with
normalized Doppler frequency 2p = 0.04 (90 km/h
at 1900 MHz). WLMS tracking algorithms based on
random walk (LMS), AR, and AR,I fading models are
evaluated in combination with a Viterbi algorithm.

TWO TAPS OF EQUAL MAGNITUDE, 160Hz FADING

~ R
EDISN AR2I

SIR, dB

Figure 3: The Bit error rate as a function of the signal-to-
interference ratio for the adaptive Viterbi equalizer with
k = 4 (k = 3 for LMS). The BER with correct chan-
nel (lower solid) is compared to WLMS tracking with
ARl modelling with true u, as regressors (lower dash-
dotted) and estimated regressors (upper dash-dotted) and
to WLMS tracking with AR, modelling with true u; as
regressors (lower dashed) and estimated regressors (upper
dashed). Compare to LMS with optimized step length and
true u¢ as regressors (middle solid) and with estimated re-
gressors (upper solid). Also shown is ARzl tracking using
true u¢ and correct initialization (dotted). 10000 slots are
considered for each simulation case.

Figure 3 presents the uncoded bit error rate when
the correct 2}, and signal-to-interference ratios (SIRs)
are used in the design.

Comparing the dotted to the lower dash-dotted
curve in Figure 3 we see that not much performance is
lost due to imperfect initialization. (If the algorithms
were initialized with levels instead of linear trends,
the performance would deteriorate further by 1-2dB.)

Decision-directed adaptation results in a perfor-
mance loss due to nonlinear feedback effects. It is ap-
proximately 3dB for WLMS based on AR, and AR»I
models in Figure 3.

In Figure 3, WLMS based on AR,I models show
the best performance, but the performance of ARs-
based trackers is rather close. LMS tracking will in
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this case be completely inadequate, partly due to its
inappropriate structure and not least due to its in-
ability to predict the channels; With a random walk
model, fz,+k|t = fzm. This results in a significant lag
error, which will not vanish at low disturbance levels.
Hence, the error floor at 1.7% BER.

WLMS-AR2I, AR2

. . WLMS-AR2l, AR2

10 10
h\"‘\\_‘ i E EEEEE
~ oI
107 N
N
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w R TR [0]
m [os] po——— ]
107
160Hz FADING 15dB CIR
-4 -3
1 10
0 15 20 25 50 100 150
SIR. dB fD. Hz

Figure 4: The BER as function of the SIR at 160Hz (left
figure) and as a function of the Doppler frequency at 15dB
SIR (right figure) for an adaptive Viterbi detector with
k=4 step prediction. Performance of AR.I-based (dash-
dotted) and AR»-based (dashed) WLMS channel estima-
tors, designed for SIR=15dB and fp = 160Hz. Compare
to the performance of ARj-based WLMS designed for the
true SIR and fp (dotted) and to the performance for a
known channel (solid).

To test our conclusions from Section V, we have
designed AR, and ARyI-based WLMS algorithms for
fp = 160Hz and SIR=15dB and evaluated their per-
formance at other operating points. The results, pre-
sented in Figure 4, confirm that one single fixed adap-
tive filter, designed at the high end of the uncertainty
interval of the Doppler frequency and the low end of
the SIR range can indeed be used over the whole pa-
rameter range. If the operating area is bounded by
SIR=(15,25]dB and fp = [0, 160]Hz, then this filter
does in fact constitute a minimax robust design, since
the so-called saddle-point condition [5) is fulfilled:
The resulting performance attains its worst value at
the nominal (worst-case) design point. In the most
critical regions, with low SIR and/or high Doppler
frequency, the performance for an AR,I-based design
is about the same as for an AR,-based design.

VI.C BER Performance for Flat fading

In the flat fading case, with hy; = 0, not much can
be gained by improving the tracking, see Table 2. An
exception is at high SNR, where for true regressors a
significantly lower BER is attained for AR, or AR,I-
based designs as compared to LMS. This can be pre-
dicted by the values of V from (18) in the right-hand
part of Table 2. For flat fading channels, all the al-
gorithms provide about the same performance. The
detector becomes trivially simple, so no channel pre-
diction beyond k = 1 is required.
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Table 2: Flat fading at Qp = 0.04, E|hY|? = 1,E|A}|? =
0. In row 4 to 6, a true symbol is used as regressor. The
relative noise level (V) is obtained with & = 1.

BER (%) pand V
SNR (dB): 15 20 25 15 25
ESTIMATED REGRESSORS: 78
LMS 28 100 .36 | .39 .73
WLMS AR2 27 095 .32 .17 .25
WLMS AR2I 27 096 .33 .14 .19
TRUE REGRESSORS: V (dB):
LMS 31 124 52 (15 32
WLMS AR2 32 112 37107 1.2
WLMS AR2I 25 088 3106 1.0
Known channel 21 069 .23 0 0
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