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Abstract - Adaptation algorithms with constant
gains are designed for tracking time-varying param-
eters of linear regression models with stationary re-
gressors, in particular channel models in mobile radio
communications. In a companion paper, an applica-
tion to channel tracking in the IS-136 TDMA system
is discussed. We propose algorithms that are based
on two key concepts: First, the design is transformed
into a Wiener filtering problem. Second, the parame-
ters are modeled as correlated ARIMA processes with

known dynamics. This leads to a new framework for

systematic and optimal design of simple adaptation
laws based on a priori information.

The simplest adaptation law, named the Wiener
LMS algorithm, is presented here. In the design, all
parameters are assumed to be governed by the same
dynamics and the covariance matrix of the regressors
is assumed to be known. The computational com-
plexity is of the same order of magnitude as that of
LMS for white regressors. The tracking performance
is however substantially improved.

I. Introduction and Outline
Consider a possibly multivariable time-varying linear

regression
Yt = Prhe + v 1)

describing, for example, a mobile radio channel where
the vector y; represents the received baseband signal
at multiple antennas and v; is noise. The time-varying
regression parameters are represented by the column
vector Ay = [Rot...Hn,~1.]7. In channel modelling,
the regressor matrix {¢;} contains transmitted sym-
bols, with zero means. In such cases, {¢}} is station-
ary with a known non-singular autocorrelation matrix
R = Efp;p;]. The aim is to estimate hyy s based on
measurements y¢, for some k. )

The time-varying Kalman filter constitutes the
MSE-optimal algorithm for estimating time-varying

regression parameters, based on linear models [2]. Un-.

fortunately, its complexity may often preclude its use.

Standard LMS and RLS algorithms in general suf-
fer from having an incorrect structure. These algo-
rithms do not utilize a priori knowledge about the
statistics of h; in an appropriate way. Furthermore,
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for fast time-variations an RLS algorithm with for-
getting factor must use a short data window. Conse-
quently, the estimated covariance matrix, or Hessian,
will be inaccurate. In the problems considered in this
paper, the regressors are assumed stationary. If their
statistics is unknown, it is then better to estimate R
separately, using a long data window rather than dis-
carding information as in the RLS case.

We focus on adaptation laws with time-invariant
gains, where the dynamics of /; are taken into account
in the design. Such designs, have been studied earlier
in e.g. [3]. We then recast the tracking problem into
a Wiener filter design, [6, 7, 9], which can be solved
in a straightforward way by using e.g. a polynomial
approach to Wiener filter design [1].

The present paper outlines the algorithm within
the class that has the lowest computational complex-
ity: The Wiener LMS algorithm (WLMS) algorithm.
If desired, it can be implemented as “LMS/Newton”
updates [13]; complemented by an additional filter-
ing of each parameter. This filter provides param-
eter predictions or, if desired, smoothing estimates.
In the design, all elements of h; are assumed to be
governed by the same dynamics. The computational
complexity becomes a few times higher than that of
LMS for white regressors, while the tracking per-
formance is considerably improved. The traditional '
LMS-algorithm can be regarded as a special case, ob-
tained by assuming Ay to be a random walk process
and R to be diagonal. In {10] and in a companion

‘paper presented at VTC2000 [11], the application to

channel tracking for systems specified by the IS-136
TDMA standard is discussed.

Remarks on the notation. For any polynomial
Pg) =po+pig +...+Pnpqg ™ in the backward
shift operator ¢~ (¢~ 'z; = z;—1), a conjugate poly-
nomial is defined as P.(q) 2 Py +pPig+.. . +p,.q""
where q is the forward shift operator (¢qz; = z:4+1) and
p* denotes the complex conjugate of p.

I1. The Channel Estimator
A WLMS design begins with the selection of a model,

sometimes denoted hypermodel, describing the sec-
ond order statistics of h;. The selection can either
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be based on a priori knowledge, or be regarded as a
user choice, reflecting our belief on the nature of the
time-variations. Parameter vectors can be modeled as
stochastic processes

he =H(g e 2

where H is a stable or marginally stable transfer func-
tion matrix with time-invariant or slowly timevarying
parameters. The noise e; is a white zero mean random
vector sequence with covariance matrix R, = Ee;e}.
This hypermodel should capture the essential behav-
ior of the time variability. In radio channel modelling,
H can be adjusted to the autocorrelation function of
the fading model {10, 11]. In this paper, we shall
consider marginally stable autoregressive integrating
moving average (ARIMA) models of order np, with
equal dynamics for all channel taps

C(g™") 1+eag '+, . +cngg™
hy = —1er = — e ,
D(g™") 1+dig7l +...+dnpqg P
@)
and with real-valued scalar coefficients {¢; d;}.
Define the tracking error vector
. A .
Peyrje = hevr — Pyt 4)

where ht+k|t is an estimate of h;yx at time t repre-
senting filtering (k = 0), prediction (k > 0) or fixed
lag smoothing (k < 0). The tracking performance will
be measured by

Jim tx (Bhyyiiihfy ) (5)
where the expectation is taken with respect to e; in
(2) and v; in (1) after the initial transients (¢t — 00).

The considered class of adaptation algorithms has
the structure

€t Yt — ‘P;ilﬂt—l (6)
ilt]t = ilz|t-—1 + pR ™ ey (7)
herrp = PrlaDhye (8)

where p is a scalar gain and Pg(g™') is a causal
and stable rational matrix, which introduces an ap-
propriate amount of coupling in the estimates and
provides prediction or smoothing estimates for any
horizon k. The appropriate tuning of Py(g~!) will
depend on the dynamics of h; and on the SNR. We
shall refer to Pr(¢g™") as the coefficient smoothing-
prediction_filter. Note that the one-step prediction
estimate hyp1¢ = P (q‘l)h,,t must always be made
available, since fzm_l is required in (6) and (7). We
constrain Py (q1) to a diagonal rational matriz. With
a diagonal P (¢~ "), the required number of computa-
tions grows only linearly with n, when R is diagonal.
With P1(¢™?) = I, (6)-(8) reduces to LMS/Newton
algorithm [13]. If furthermore R is diagonal, it re-
duces to LMS.
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II1. Wiener LMS Design

The optimization of the adaptation law (6)-(8) will
now be solved by an open loop linear Wiener design,
which gives several advantages: It provides a system-
atic design technique, a numerically safe implemen-
tation and an opportunity for using tools and de51gn
intuition from Wiener filtering.

IIT.A An Open-%oop Formulation

Consider the signal prediction error (6) and insert (1)
describing y;, to obtain

et) = ¢rlhe— ilt{t—l) + v
wiEr = Qrpiheji_1 + Qv 9)
By adding and subtracting Rﬁt[t_l and defining
Zy vip; —R (10)
m = Zihyjt-1 + prue “(11)
ft = Rhe+n , (12)
the vector (9) is now reformulated as.
e = Rﬁtlt—l + Ztﬁtlt-l + Qg
= fi—Rhyy (13)

Here, f; can be regarded as a fictitious measurement,
with Rh; and 7 in (12) being the signal and the noise,
respectively. It can be constructed from known sig-
nals via (13). In the sequel, the noise terms 7, and
Zt;lqt_j will be referred to as the gradient noise and
the feedback noise, respectively. The matrix Z;, of di-
mension np|n,, has zero mean by definition and was
referred to as the autocorrelation matriz noise in [4].
Based on the relations (10)-(13), we may design
a time-invariant stable rational matrix Lx(g™?) that
operates on f; and provides an estimate of by

fe

hisrit

(14)
(15)

Riltn—lfi' PLey
Lila™ e -

= Rh +m

The filter L£4(¢™") will be referred to as the learning
filter. As we shall see below the design of a learning
filter is equivalent to the design of (6)-(8).

Three terms influence the tracking performance via
ft in (14): The scaled and rotated parameters Rhy,
representing the useful signal, the noise ¢;v:, and old
tracking errors via the feedback noise Z; Et[t—l'

The estimation error follows from (12) and (15) as

Boprye = (@1 = La(g7 )Ry = Li(g™ M) ,  (16)
where g*h; = hyyr. The first right-hand term is for
k = 0 usually called the lag error.

If n: is uncorrelated with he_ —ijt—i—1,¢ 2> 0, “then an
open-loop Wiener design of £y can be performed. If
the noise 7; is uncorrelated with the signal h;—;, such
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an open-loop design is further simplified. These con-
ditions will not always be fulfilled but they hold ap-
proximately in many important situations, since the
multiplication by Z; in (11) acts as a scrambler.

Uncorrelatedness of 7, with h;_; and ]:Lt-—ilt-i—l
will below be stated as an assumption, under which
Lr(g~") will be optimized by just treating 7; in (16)
as an additive noise, with known properties.

III.B The Design Equations

The diagonality constraint imposed on P (g™") in the
implementation (6)-(8) will correspond to a related
constraint on the structure of the learning filter. The
so constrained learning filter will now be optimized
for parameter variations described by (3).

The design assumptions are formalized below.

Assumption Al: The signal y; is described by (1),
where R = E[p.p;] is known, time-invariant, and
nonsingular. The second order moments of h; are
described by (3) with known polynomials. Zeros of
C(z~') are located in |z| < 1, zeros of D(z7") in
|z| < 1 and e, is white and stationary, with zero mean
and a known R, = Efe:e}].

Assumption A2: The learning filter (15) of dimension
np|ny is constrained to have the structure

Qrlg™h)

T B@™Y

Li(a™) = (17)

with the polynomial 8(z~*) having all zeros in |z| < 1.

Assumption A3: The gradient noise 7 is uncorrelated
with hy—; and with hy_;;_;_1,7 > 0. It is stationary
and white, with zero mean and covariance matrix R.,,.

Assumption A4: The parameter-drift-to-noise ratio,
defined by

v & R /trR™'R, R (18)

is known, nonzero and limited (0 < v < 00).

In A2, the inverse of the regressor covariance ma-
trix is included a priori in (17). This choice is made
for two reasons: First, the formulation (15) becomes
equivalent to the algorithm (7) only if R™! is a
right factor of £;. Second, it assures that the con-
strained algorithm can attain perfect tracking, with
Ly = R, in the noise-free case. Furthermore, as-
suming the gradient noise to be white in A3 simplifies
the design equations.

In practice, the covariance matrix R, of n; will de-
pend on the actual choice of estimator. This means
that the scalar v has to be adjusted iteratively. We
will return to this issue in the next subsection.
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Theorem 1: The Wiener LMS learning filter. Under

-Assumptions A1l to A4, the optimal constrained learn-

ing filter (17) minimizing (5) is unique. The polyno-
mial B(¢7!) is the stable and monic solution to the
polynomial spectral factorization

86« = vCC. + DD, (19)

with r being a real-valued positive scalar. The poly-
nomial Qk(¢™") is together with a polynomial L. (q)
the unique solution to the Diophantine equation

¢*vCC. = rQkpBs + qD L. (20)
where Qr(¢g™") and L.(q) have degrees
nQr = max(n.—k,np—1)
nLy, = max(n.+k,ng)—1 (21)

The tracking error fLHk,t will be stationary with zero
mean 0O
Proof: See [9].

Learning filters Lr(¢~!) determined by the design
equations (19) and (20), all have the same denomi-
nator polynomial 8(g~*) for any lag k. Since 8(g™!) is
a stable spectral factor, L(g~!) is causal and stablel.

The spectral factorization can be solved by comput-
ing the roots of the right-hand side of (19) and forming
B(¢~ ") from the factors with stable roots. There also
exist several iterative Newton algorithms for spectral
factorization, see [5].

For predictors, k > 0, the computational complex-
ity of the estimator (the degree of Q) is independent
of the prediction horizon.

Equation (20) is a polynomial Diophantine equa-
tion. If equated for equal powers of ¢ and ¢, it
constitutes a linear system of equations, with equal
number of unknowns and equations. It can always
be solved? with respect to the coefficients of Qx(¢™")
and Lg.(g) [1]. This operation can be simplified still
further, since a closed-form solution exists [9].

We now return to-the implementation (6)-(8).

Lemma 1: For a learning filter designed according to
Theorem 1, the adaptive filter implementation (6)-
(8) is equivalent to filtering by (15). The optimal
adaptation gain is

1
p=Q8=1-
T

- (22)
where QY constitutes the leading coefficient of the
polynomial Qy(¢~') and r originates from (19). O

Proof: See [9]. :
Remark: Since v, defined in (18), belongs to ]0, oo[,
r €]1, 00, we have p €]0,1].

!By Assumption Al, the right-hand side terms of (19) can-
not have common zeros on |z| = 1.

2Since B(2 ') is stable, it has all zeros in |z| < 1, so B.(z)
has all zeros in |z| > 1. Since D(z™') has zeros in |2] < 1,
B+ (2) and 2D(2~1") will be coprime.
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In order to determine the coefficient smoothing-
prediction filter corresponding to Lr(¢g™!), we note
that, by (8) and (15),

hoviie = Prla Dby and hye = Lolg™ ) fe -

The k-step estimate may thus be expressed in two
ways, by

hesrle & Lela™)fe=Pr@)Lola™ ) fe -
Thus, Pr(g~") will be obtained as

_ Qk(tfl)I
Qolg™)

with Qx(¢™!) and Qy(g™ ') obtained from Theorem 1.
It is shown in [9] that all zeros of z"Qg(z~") are
located in |z} < 1, so Pr(g™") will always be stable.

In the special case of considering first and second
order hypermodels, the spectral factorization (19) has
an analytical solution [6, 9], which provides r, and
B(g™"). For example, it is shown in [9] that when (3)
is given by

Prla™) = Lilg HLF (@) , (23)

ht + dlht—.l + d2ht—2 =€ , (24)

the polynomial Q(¢™') for k > 0 can be explicitely

calculated according to
k
—d; 1 1
25
) (P> (29)

Qela™) =u(l g™ ( —dy 0

where p is defined as

dida(1 ~ p)

P T 0

and where p is obtained from r via (22), or used as
a design variable. Smoothing estimators can be ob-
tained via the backward recursion in k,

Lk~
Qi-1(¢7") = ¢7'Qule™) +D(g™H = (27)
Li-14(¢7") q N (Li(q) — Lo Bu(@),  (28)
with 1/r = 1 —p, Lo« (g) = Q14(g) and LE* being the
leading coefficient of Li.(q). Thus, the filter P(¢™!)

is obtained by simple algebraic expressions. This de-
sign is denoted the Simplified WLMS algorithm.

I

Ezample. Consider a parameter vector h; with first
order low-pass dynamics

hy =ahy_1 + e

where 0 < a < 1. With d; = 0 and d; = —a, (25)
gives Qi1(¢7') = pa, Qol(g™?) = p, so the one-step
predictor becomes hyy1; = ahy,. Thus, the optimal
filter estimate (6),(7) is given by

Yt — prahs_1

&t
ahi—1 + pR™ ;.

hs
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For diagonal R and a < 1, this is LMS with leakage
[13] which for random walk dynamics (a = 1) reduces
to the ordinary LMS algorithm O

The WLMS algorithm can also be generalized to
structures with more degrees of freedom, which may
offer higher performance in some applications, and are
better equipped to handle large spreads in the prop-
erties of the elements of h;. These generalizations,
which remove the structural constraints on learning
filters and allow for colored gradient noise 7;, are pre-
sented in [6] and [7], respectively.

II1.C Iterative Design.

How is the design procedure to be applied in practice,
when the properties of the gradient noise 7; may be
hard to know in advance? An obvious approach is to
iterate the design a few times [7]: A design may first
be based on preliminary assumptions on the gradient
noise level tr R,, e.g. by neglecting the feedback noise
and assuming 7;- = @ vr. A better estimate of the
actual gradient noise level can then be obtained. In
some situations, exact analytical expressions for the
tracking MSE can be used, see the discussion below.
In others, the gradient noise must be investigated by
simulation. We then compute R, from (11) and cal-
culate a modified tracking algorithm.

Since the bandwidth of the learning filter is con-
trolled by one scalar parameter, v, an alternative is
to just use it as a tuning knob, to obtain a desired
tradeoff between noise sensitivity and tracking abil-
ity. B !
The feedback noise Z;h,;—; will often be uncorre-
lated with }Azt_iltgi_l, but when Z; # 0 it will never
be independent, due to the feedback loop in Figure 1.
The loop could become unstable. As discussed in [8§],
the gain of £1(¢g™") cannot be allowed to be arbitrar-
ily large and the small gain theorem [12] will provide
(conservative) sufficient conditions for stability.

In [8], three important scenarios are discussed in
which an exact stability, convergence and perfor-
mance analysis is possible assuming v¢, ¢; and e; to
be mutually independent.

PtUt

LEARNING FILTER
!_—[,—I ilt+1|t
| |

Figure 1: The feedback loop via the feedback noise
Zihyj¢—1 may significantly affect the variance of the ficti-
tious measurement f¢, and causes dependence with hyjs—y.

. 1. “Slowly” varying parameters (vanishing feed-

back noise). We then have a true open-loop situa-
tion. When the power of ¢; becomes small relative
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to the power of y;v¢, then the impact of the feedback
noise Zthy;_, on our obtained tracking MSE vanishes.
This situation occurs either when the parameters hy
vary slowly, or when the noise level is high®.  Then,
Mt = @y, and 1y will be white whenever v, or ¢; is a
white sequence.

2. Independent consecutive regression matrices. If
¢; and @} are independent for ¢t # s, then the feed-
back noise thztlt_l will be white with zero mean and
its covariance can be derived exactly.

3. FIR models of order 2 with white and symmet-
rically distributed regressors with constant modulus.
The performance can then be predicted without:ap-
proximations from theoretical expressions, for arbi-
trarily fast variations of h;. This is the case, for ex-
ample, for channel models in 1S-136 {11].

IV. Simulation Example
In a scalar FIR system y; = ho sus+h1 14— +v; where

v is white noise with variance 0.03, the parameter
evolution is described by

() - o)
hitg /] 7 1~2pcoswoq! +p2¢~2 \ e

: (29)
where R, = 107°I, p = 0.995 and wy = 0.015

(SNR 21dB). The steady-state tracking performance
for £k = 0 has been compared by simulation for the
time-varying Kalman filter, the (simplified) WLMS
algorithm, LMS and RLS with exponential forgetting.
The 4-state Kalman estimator and the WLMS algo-
rithms are both based on the known hypermodel (29)
and a known R. The step-size in LMS and the for-
getting factor in RLS were optimized by simulation.
The regressors u; with variance 1 are either white and
binary (B) or Gaussian (G). For Gaussian signals, we
investigate two cases: white u;, resulting in R = I
and colored regressors, resulting in a covariance ma-
trix with eigenvalue spread x(R) = 10.

x(R) Kalman WLMS LMS RLS

B 1 0.011 0.0115 0.020 0.026

G 1 0.012 0.015 0.032 0.038

G 10 0.026 0.038 0.085 0.075
#mult. 260 36 18 88
R!=1 260 24 18 88

Table 1: Steady state mean square tracking error and
number of real multiplications per time step obtained by
optimized Kalman, WLMS, LMS and RLS adaptation
algorithms, for binary (B) and Gaussian (G) regressors
with different eigenvalue spread x(R). Last line: Com-
plexity for R™! = 1.

The results are summarized in Table 1, where we
also compare the number of real multiplications per

3 Another case when ZbiH[t—l vanishes completely is when
w; is scalar and has constant modulus. Then, Z; = 0. This
will be the case when tracking flat fading channels in mobile
radio systems using e.g. PSK symbol alphabets.
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time step.? It can be noted that the WLMS design
attains almost the same performance as the optimal
time-varying Kalman estimator at a much lower com-
putational complexity, not much above that of the
LMS algorithm.
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