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ABSTRACT

In this paper, we propose an iterative scheme for joint
tracking of fading channels and demodulation of multi-
user CDMA signals operating asynchronously over mul-
tipath fading channels. We use the expectation max-
imization algorithm to track the time-varying channel
and as a by-product we also achieve estimates of the
input signals. We show that the maximum a posteri-
ori estimates of the fading channels is iteratively com-
puted by the Kalman smoother. The input signals are
demodulated using a hidden Markov model smoother.
Our scheme has computational complexity and mem-
ory requirement that grow linearly with the data length.
Computer simulations illustrate the performance of our
proposed detection and estimation method.

1 Introduction

Multiuser detection in CDMA communication chan-
nels was studied in great detail by Verdd in [1], where
he devised both the minimum error probability detec-
tor and the maximum likelihood (ML) sequence detec-
tor for CDMA systems over Gaussian noise channels.
Many suboptimal algorithms, that are computation-
ally more practical than the optimal schemes, followed
from the development of these optimal detectors, see
e.g. [2, 3]. Recent work on multiuser detection in Rician
and Rayleigh fading channels using ML and decorrelat-
ing detectors are found in [4, 5]. Joint tracking of fading
channel and demodulation using per-survivor Kalman
filtering can be found in [6, 7]. In [16], ML sequence es-
timation with unknown random phase or fading parame-
ters treated as missing data is derived. In [9], the expec-
tation maximization (EM) algorithm is used to compute
the maximum a posteriori (MAP) sequence estimate of
two-dimensional constellation signals transmitted over
a Rayleigh fading channel. In [14], multiuser receivers
iterate between the EM algorithm for amplitude estima-
tion and multi-stage data detection. [12] uses the EM
algorithm for amplitude estimation of direct sequence
CDMA systems. The approach in [12] differs from the
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one in [14] in that the users’ data are considered prob-
abilistically as missing data.

In this paper, we perform iterative joint tracking of
the fading channel and demodulation of a multi-user
CDMA systems, where the signals are transmitted asyn-
chronously over a multipath fading channel. The trans-
mitted signals are modeled as finite-state Markov chains.
We use the EM algorithm to yield estimates of the fad-
ing channels, that are optimal in a MAP sense, and
as a by-product we also achieve estimates of the trans-
mitted signals. We show that on each iteration of the
EM, a closed-form solution of the tracking of the fad-
ing is achieved and that it is given by the Kalman
smoother. The demodulation is performed by using a
hidden Markov model (HMM) smoother. Our approach
is different from previous work, since we compute soft
decisions on the data symbols using a HMM estimator,
while at the same time we compute MAP estimates of
the time varying fading channel.

2 Problem Description

In this paper, we assume that the multiuser CDMA sys-
tem operates over a multipath channel subject to fad-
ing. The propagation delays are assumed to be known
a priori. Furthermore, it is here assumed that the num-
ber of echo paths S, the number of users K, and the
number of symbols N, are known and fixed. The input
signals are assumed to belong to the finite symbol al-
phabet {0,1,...M — 1}, where M is known. We use a
finite-state Markov chain with known transition prob-
abilities to model the sequence of input signals. The
input data are modulated using PSK. The kth user’s
modulated signal is given by

N
(t) = V2Pl 3 7B 1)
n=1
L-1
X Z rectr, (t — 1T, — nT)dg(l), —00 <t < 00,
1=0

where my, ; is the nth symbol from the kth user, T is
the symbol duration, T, = T'/ L is the chip duration, and



L is the number of chips per symbol. Here, di(l),l =
0,...L — 1, denotes the known code sequence of the
kth user. P, and ¢y, are the transmitted power and the
carrier phase relative to the local oscillator, respectively.
Furthermore, rectr, (-) is a rectangular pulse of duration
T., given by

rectr, (t) = { (1): (2)

The symbol m,, € {0,1,...M — 1} is modeled as a
finite-state Markov chain. The transition probability

if0<t<T,
otherwise

matrix of m, ; is denoted by M*) = [pg-“)}, where

for i,j € {0,1,....,M — 1}, k = 1,...K, pi¥ 2
Pr(mpt1,k = jlmnr = i), is the probability that the
kth user’s transmitted signal at time instant n + 1 is
j given that it was ¢ at time instant n. The following
restrictions on pg-“) must hold: 0 < pgf) <1, Vi, j €
{0,1,...,M — 1}, k = 1,...K, and for each i €
{0,1,...,M =1}, k=1,...K, Yo a1y P4y = 1.
Furthermore, we assume that the messages between the
users are statistically independent.

The modulated signals are subject to propagation de-
lays, time-varying attenuations and phase shifts during
the transmission over the multipath fading channel. The

received signal is given by
K
r(t) = Zrk(t) +w(t), —o0 <t < 00, (3)
k=1

where 7 (t) is the received, attenuated and delayed sig-
nal of the kth user and w(t) is assumed to be white
complex Gaussian noise with zero mean and a two-sided
power spectral density 2. The signal 74 (t) is given by

s
re(t) =) akp(t) skt — Thp), (4)
p=1

where oy ,(t) denotes the attenuation and the phase
shift and 73, is the propagation delay of the kth user
via the pth propagation path.

The received continuous-time signal is converted into
discrete-time by sampling the output matched to the
chip waveform, which is a rectangular pulse for PSK [11].
As in [11], we assume that the time-delays are less than
the symbol period, 4.e. 7, < T'. Using this assumption,
each observation will contain the end of the previous
symbol and the beginning of the current symbol for each
user and path. Furthermore, we assume that ay p(t) is
constant during one symbol period, i.e. agp(t) = an,kp
for t € [nT,(n + 1)T). Extending the results in [11], it
can be shown that the discrete-time vector, y, € C%,
which is the nth vector output from the integrate-and-
dump chip is given by

K S

Yn = Z Z é-n,k,p cn,k,p(mnfl,ka mn,k) + W, (5)

k=1p=1

where

_ i ma j 2% m
Cnkyp(Mp—1,k, Mnk) =€ MLk pp L eI MMk gy (6)

with
prp = [(1=mkp)ag(Wep) + mkpai(Vep +1)] (7)
okp = [(1- nk,p)(ﬁg(”k,p) + nk,pai (Vkp +1)] (8)

and w, € C* where each element is a zero mean white
complex Gaussian noise sequence with variance o2 /T,

and '
gnakyp = anakyp Vv 2Pke]¢k' (9)

The time delay 73, is separated into an integer part
vip € {0,1,...,L—1} and afractional part ny,, € [0,1),

Thp mod(L) = v (10)
T,
and
nk’p = Tkvp - Vkvac' (11)
Finally,

al(v) 2 [dp(L —v) - dp(L —1)0---0], (12)

af(v) 2[0---0dx(0)---dp(L—v—D].  (13)

State-Space Model:

In order to simplify the derivation of the explicit expres-
sion for the MAP solution of the tracking of the fading
characteristics, we choose to rewrite the above described
CDMA system model Eq. (5) in a state-space form. If
z, and C, form the following matrices

!
Tp = [En,l,l; .- 7£n,1,S; é-n,2,1; R gn,K,S] )

Cp= [Cn,l,l(mn—l,lamn,l)a ceey Cn,K,S(mn—l,K: mn,K)] ;

then the observation vector Eq. (5) can be written in
the following matrix notation

Yn = Conn + Wn, (14)

where H is a known matrix (can be computed from the
second order statistics of the channel [7]). We choose to
model the time variation of the attenuation and phase
shift as a linear Gauss Markov process of the form

T, = Az, 1 + By, (15)

where A and B are known matrices (they can be com-
puted from the second order statistics of the channel
[7]), and v, is a vector of iid complex Gaussian pro-
cesses with a known covariance matrix R. Finally, let
xo ~ N (200, Pojo), where zg)o and Ppjo are the initial
channel mean and initial state covariance matrix, re-
spectively.

Egs. (14,15) form a state space model of the fading
CDMA system. Note that the observation matrix, C,, H,



is time-varying and is a function of the current and pre-
vious transmitted user signals m,, y and my_1 x, respec-
tively.

Notation: Let the sequence of measurements
(y1,--.,yn) and channel states (z1,...,zN) be denoted
as Y and X, respectively. Furthermore, let VP denote
(Ygs---,Yp) and Y, denote (y1,...,yn). Let My de-
note the symbol sequence (mi,...,mn,;) of the kth
user. Finally, let m,, = {m, ik = 1,...,K} and
M={My;k=1,...,K}.

2.1 Objectives

In this paper, we aim at performing joint tracking of
the fading channel, i.e., estimating X, and demodulat-
ing the transmitted data sequence of the K users, i.e.,
estimating M. The tracking of the fading characteristics
should be optimal in a MAP sense. Thus, our objectives
are as following. Given the observed data Y:

1. Channel State Estimation: Compute the
MAP estimate of the fading channel, defined in (9),
for each user k£ and each path p as follows

XMAP £ argmax f(X|Y), (16)

where f(-) is the probability density function.

2. Input Sequence Estimation: Estimate the
transmitted input sequence my, , forn =1,..., N
and k=1,..., K, as follows

)

mn = argmaxf(mn,k | Y; XMAP) (17)
Mok

In the following section, we give details for our proposed
iterative scheme for joint tracking of the fading charac-
teristics and demodulation of the transmitted signals.

3 Channel State and Input Sequence Estima-
tion Scheme

The EM algorithm [13] is normally used as an iterative
parameter estimation scheme for extracting the mode
of the likelihood function or computing the mode of the
posterior distribution for incomplete data models. Here,
we use the EM algorithm to yield the MAP channel
state estimates, XMAP . As a by-product of the EM
algorithm, we achieve estimates of the input signals.
The EM algorithm obtains X ™4P by generating a se-
quence of state estimates {X ()}, where the superscript
(1) denotes the lth iterate, from an initial state sequence
estimate X (9. The appealing property of the EM algo-
rithm is that the posterior density increases monotoni-
cally, i.e. f(XED|Y) > f(XW|Y) with equality hold-
ing at the stationary points (local minima, maxima and
saddle points) of the posterior distribution, given mild
regularity conditions [10]. See [17] for details. The con-
vergence of X to a stationary point, whether it is local
maximum, local minimum or a saddle point, depends on

the choice of the starting point X(®). Thus, it is usually
recommended that several EM iterations are tried with
different starting points [10].

We now present the details of the EM algorithm for
computing MAP estimates of the channel states.
Expectation Step: Evaluate

Q (X,X(l)) AR {1nf(Y, X, M)|Y,X<’>} . (18)

The expectation step requires the evaluation of the fol-
lowing probabilities

’77(!,” (i Jm) 2 Pr (mn—l = U, M = jm|Y>X(l)) >

(19)
where i, jm € {0,1,..., M — 1}K. The probabilities in
(19) are efficiently computed via the forward-backward
recursions of an HMM smoother according to [15].
Maximization Steps: Ignoring terms in Eq. (18) irrel-
evant to the maximization with respect to X, expanding
the terms and re-arranging, we compute the updated
channel state estimate X (t1) as follows

XY = argy max Q(X, XV) (20)

= arngini{(a:n — Az, 1) (BRB") Yz, — Azp_1)
n=1
+ (%(z) _ Hwn)H (R(l))_l (%(z) _ H;cn)}

. . ) .
where 7,V is the synthetic measurement and Rn() is
the the synthetic measurement error covariance matrix,
given by

70 = (e @) ' e
rY = ‘;—i(Can(l))l (22)

. . .=
where the synthetic observation matrix Cn() and

—
CH Cn( ) are respectively given by

—( . .
Cn() = Z Cn’)@(f)(lm;]m) (23)
imJm

im 7jm

The minimization in Eq. (20) is efficiently computed
using a fixed-interval Kalman Smoother operating on
the following state-space model

z, = Az, 1+ Bv, (25)
Z') = Hr,+w;") (26)

where W) ~ N <0,}_2(l)). The updated channel states
on the (I 4+ 1)th iteration are given by the following



Forward Pass: forn=1,2,...,N

Tpp—1 = ATp_qp_1 (27)
Pyn—i = AP, 1A + BRBY (28)
Gn = Pyna (Pn\n—l + R_n(l))71 (29)
Tnjn = Zpjn-1+Gn (ZU) - Hmnlnfl) (30)
Pun = Pajn1—Gn (Pn|n_1 +R_n(”) GH(31)

Backward Pass: forn=N—-1,...,1

Jn = PynA"PL (32)
e = g+ Ja@l ) — 2 (33)
Pn\N = Pn\n + Jn(Pn—i-l\N - Pn+1|n)J7ILI (34)

3.1 Numerical Results

1000 Monte Carlo simulations have been carried out to
evaluate the performance of our proposed demodulation
and estimation scheme. The number of users was cho-
sen to be K = 2 and the number of multi-paths for each
user was S = 2. The constellation size was M = 2. As
in [9], we used an AR(1) model to describe the fading
channel. We selected A = 0.9914«4. The number of
chips per symbol was L = 31. The spreading sequences
di(l) and the channel parameters were randomly cho-
sen from one simulation to the next. The algorithm was
iterated until convergence or up to a maximum num-
ber of 5 iterations. In Fig. 1, the RMS and BER are
depicted, respectively. The RMS bounds are computed
using a Kalman smoother and assuming known trans-
mitted data. The BER bounds are computed assuming
known channel fading.
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