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Abstract
Apelfröjd, R. 2018. Channel Estimation and Prediction for 5G Applications. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1642. 116 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0263-8.

Accurate channel state information (CSI) is important for many candidate techniques of
future wireless communication systems. However, acquiring CSI can sometimes be difficult,
especially if the user equipment is mobile in which case the future channel realisations must
be estimated/predicted. In realistic settings the predictability of radio channels is limited due to
measurement noise, limited model orders and since the fading statistics must be modelled based
on a set of limited and noisy training data.

In this thesis, the limits of predictability for the radio channel are investigated. Results show
that the predictability is limited primarily due to limitations in the training data, while the model
order provides a second order limitation effect and the measurement noise comes in as a third
order effect.

Then, a Kalman-based linear filter is studied for potential 5G technologies:
Coherent coordinated multipoint joint transmission, where channel predictions and the

covariance matrix of the prediction error are used to design a robust linear precoder, evaluated
in a three base station system. Results show that prediction improves the CSI for the pedestrian
users such that system delays of 10 ms are acceptable. The use of the covariance matrix is
important for difficult user groups, but of less importance with a simple user grouping system
proposed.

Massive multiple-input multiple-output (MIMO) in frequency division duplex (FDD) systems
were a reduced, suboptimal, Kalman filter is suggested to estimate channels based on non-
orthogonal pilots. By introducing a fixed grid of beams, the system generates sparsity in the
channel vectors seen by each user, which then estimates its most relevant channels based on
unique pilot codes for each beam. Results show that there is a 5 dB loss compared to orthogonal
pilots.

Downlink time division duplex (TDD) channels are estimated based on uplink pilots. By using
a predictor antenna, which scouts the channel in advance, the desired downlink channel can
be estimated using pilot-based estimates of the channels before and after it (in space). Results
indicate that, with the help of Kalman smoothing, predictor antennas can enable accurate CSI
for TDD downlinks at vehicular velocities of 80 km/h.
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Sammanfattning

Användningsområdena för trådlös kommunikation ökar ständigt. Applika-
tioner såsom olika streamings-tjänster, arbete mot servrar och så kallade moln-
tjänster gör att fler och fler användare av det trådlösa nätverket önskar ständig
uppkoppling och ofta med höga datatakter, oavsett om de är på kontoret, på
bussen eller till och med ute på promenad. För att kunna tillgodose användar-
nas önskemål kommer framtida 5G-system med stor sannoliket att utgöras av
en verktygslåda där många olika tekniker finns tillgängliga för att användas av
systemet. Två kandidater som har föreslagits för att öka såväl spektraleffek-
tiviteten som täckningen hos ett kommunikationssystem är så kallad massiv
MIMO (eng. Multiple-Input-Multiple-Output) och koordinerad multipunkt-
stransmission.

Massiv MIMO bygger på att en basstation med ett mycket stort antal anten-
ner använder dessa för att rikta signalen som är avsedd för an specifik använ-
dare mot just denna användare. Denna teknik gör det möjligt att serva ett stort
antal användare inom samma resurser, eftersom basstationen har möjlighet att
rikta inte bara en, utan ett mycket stort antal signaler (upp till lika många som
basstationen har antenner), på samma gång. Genom att serva många användare
på samma gång utnyttjas det tillgängliga radiospektrumet bättre, man säger att
spektraleffektiviteten ökar.

En av de faktorer som begränsar hur mycket data man kan sända över
trådlösa radiokanaler är interferens, störsignaler från andra källor. Ett trådlöst
kommunikationssystem är ofta indelat i celler vars gränser bestäms av vilken
basstation som har starkast signal i området. Just vid gränserna till dessa
celler kan störsignaler från andra basstationer vara extra starka, och därmed
försämra täckningen i området kring cellgränsen. Koordinerad multipunkts-
sändning är ett sätt att minska störsignalerna vid cellgränserna och, i bästa
fall, förvandla den energi som orsakar störningarna till nyttoenergi. Grund-
tanken här är att flera basstationer bildar sammarbetskluster. Inom ett kluster
delar basstationer information om t.ex. den data som ska skickas till de använ-
dare som befinner sig i klustret och information om radiokanalerna till de olika
användarna. Genom att koordinera sig kan basstationerna serva alla användare
gemensamt.

För bägge dessa två tekniker är det viktigt med kunskap om den så kallade
radiokanalen, vilket är en modell av hur radiosignalen påverkas från dess att
den lämnat sändaren till dess att den tagits emot av mottagaren.

I denna avhandling används Kalmanfiltrering för att uppskatta radiokanalers
egenskaper under olika omständigheter och utvärdera hur dessa skattningar



kan användas för massiv MIMO koordinerad multipunktssändning, och för
kommunikation med fordon.

Kalmanfilter är en välkänd metod för att uppskatta och följa hur värdet hos
en okänd parameter ändras över tiden utifrån kända mätvärden. I fallet med
radiokanaler skickas kända signaler, så kallade piloter, över kanalerna inom
vissa givna tids- och frekvensluckor. Piloterna kan vara ortogonala, så att
piloter som ska användas för att uppskatta olika radiokanaler skickas på olika
tids- och frekvensluckor, eller de kan vara överlappande i vilket fall piloter
skickas över olika radiokanaler på samma tids- och frekvensluckor. Medan
den tidigare ger möjlighet för mer exakta kanalskattningar gör den senare att
man kan använda färre resurser för piloter och därmed frigöra fler resurser till
att skicka data.

Om massiv MIMO ska kunna användas i ett system där upplänk (från an-
vändare till basstation) och nedlänk (från basstation till användare) separeras
i olika frekvensband, s.k. FDD-system som t.ex. är används i dagens 4G-
system, så behövs överlappande piloter i nedlänken eftersom antalet antenner
hos basstationen är så stort att om alla dessa skulle skicka ortogonala piloter
så skulle det bli väldigt lite resurser kvar för att sända data.

Kanalestimering an nedlänkskanaler från en massiv MIMO-antenn i FDD-
system studeras i ett av bidragen i avhandlingen. Den lösning som föreslås
här bygger på att man, i ett första steg använder s.k. lobformning där olika
lober sänder radioeneringen i olika riktningar, vilket får som följd att hos varje
användare är det bara ett mindre antal av alla radiokanaler (lober) som är rel-
evanta. Genom att dessutom införa pilotkoder så kommer varje användare att
kunna uppskatta just sina egna relevanta radiokanaler. Simuleringsresultaten
visar att man på det här sättet kan få radiokanalskattningar som ger nära de
prestanda som man kan få med ortogonala piloter och som därmed möjliggör
massiv MIMO vinster även i FDD-system.

De största vinsterna hos massiv MIMO bör kunna hämtas om man utnytt-
jar system där upplänken och nedlänken använder samma frekvensband, men
skiljs åt i tid. Sådana system kallas för TDD-system och har fördelen att pi-
loterna som skickas från användarna i upplänken kan användas för att skatta
kanalerna i nedlänken, och eftersom antalet användare ofta är färre än antalet
antenner hos basstationen i ett massiv MIMO-system kan man använda orto-
gonala piloter.

En nackdel med TDD-system är att när användare rör på sig kan kanalskat-
tningarna som erhållits baserat på upplänkspiloterna hinna bli gamla innan det
är dags att sända data i nedlänken. Detta gäller speciellt vid kommunikation
med rörliga fordon. Då kan man behöva prediktera radiokanalen in i framti-
den. Samma sak gäller i ett system med koordinerad multipunktssändning
eftersom tiden det tar att dela data mellan basstationerna ibland kan vara upp
till tiotals millisekunder.

I den här avhandlingen visas, via både uppmätta radiokanaler och teoretiska
kanalmodeller, att det finns en gräns för över hur lång sträcka man kan predik-



tera med Kalmanfilter när användaren rör sig igenom en komplicerad radio-
miljö. En gräns som ligger runt 0.2-0.3 gånger längden av den våglängd som
används för sändning. Hur långt detta motsvarar i tid beror dels på bärvågs-
frekvensen och dels på hur snabbt användaren rör sig. Som ett exempel kan
nämnas att i ett fall med tidsfördröjningar på 20 ms och en bärvågsfrekvens på
2.65 GHz så är det svårt att prediktera radiokanaler för fordonsburna använ-
dare.

Kanalprediktioner via Kalmanfiltrering har utvärderats för långsamma an-
vändare (5 km/h) i ett system med koordinerad multipunktstransmission, base-
rat på tidsserier av uppmätta radiokanaler. För att inte riskera att dåliga predik-
tioner förstör lösningen föreslås en robust förkodningsalgoritm som inte bara
använder sig av prediktionerna utan också av information om hur pålitliga
dessa är. Resultaten visar att med hjälp av bägge dessa element, prediktion
och robust förkodning, kan man säkra sig vinster vid koordinerad multipunkts-
sändning.

En fördel med den föreslagna robusta förkodningsalgoritmen är att den
enkelt kan anpassas för att hantera systembegränsningar i hur mycket data som
kan delas mellan basstationerna. Simuleringsresultat visar att detta framförallt
är viktigt för att bibehålla så stor del av vinsterna som koordinerat multipunkts-
sändning bidrar med som möjligt vid cellgränserna.

Vidare föreslås en enkel metod för att välja ut vilka användare som ska
servas gemensamt på en resurs. Metoden, som bygger på varje basstation
schemalägger användare inom sin egen cell baserat på kanalinformation, ökar
vinsterna med koordinerat multipunktssändning markant.

När användare färdas i högre hastigheter så fungerar inte längre kanal-
prediktion som baseras på att man extrapolerar gamla mätningar framåt i tiden.
Då kan man istället använda sig av den s.k. prediktionsantennsmetoden. Efter-
som höga hastigheter generellt innefattar ett fordon så kan man utnyttja for-
donets tak för att där placera två antenner. Om den ena av dessa placeras
framför den andra i fordonets färdriktning, så kommer den främre, som kallas
prediktionsantennen, att kunna uppskatta radiokanalen innan den bakre anten-
nen, som kallas huvudantennen, upplever samma kanal, och därmed predik-
tera huvudantennens kanal. Med denna metod kan radiokanaler skattas långt i
förväg.

För massiv MIMO i TDD-system innebär prediktionsantenner att huvudan-
tennens nedlänkskanaler kan skattas baserat på såväl tidigare skattningar som
skattningar av kanalen i positioner som huvudantennen först senare kommer
att nå.

Metoden att uppskatta en parameter baserad på både framtida och tidigare
mätningar kallas för glättning. Man strävar efter att uppnå en optimal kom-
bination av brusundertryckning och interpolation och Kalmanalgoritmen är
ett optimalt verktyg för detta syfte. Simuleringsresultaten som presenteras i
denna avhandling visar att glättning med hjälp av Kalmanfiltrering möjlig-
gör utökade tidsintervall för sändning i nedlänk i ett TDD-system som, vid



höga användarhastigheter, motsvarar en sträcka upp till 0.6-0.7 av utbred-
ningsvåglängden.
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Summary of papers

When writing this thesis as a comprehensive summary, the aim has been to
explain the general idea behind different concepts and to highlight those re-
sults that are of importance for further study of the subject and results that
may be of importance as input to standardization of future generations mobile
communication systems. Technical details such as most equations, proofs and
simulation settings are found in the papers.

As a recommendation, the reader should focus on the extensive summary
in Chapters 1-5 and dive into the details of the papers whenever entering a
topic that is of extra interest to the reader. It is then not necessary to read the
introductions of the papers, as this is mainly covered by the comprehensive
summary.

In order to give an overview for those readers who may not be familiar with
the area of wireless communication, Chapter 1 is kept on a very basic level
reviewing some important aspects for the physical layer of wireless communi-
cation systems and the basic idea behind estimation theory. As a consequence,
any reader familiar with these concepts may want to skip straight ahead to Sec-
tion 2.

In terms of the included papers, denoted I-V, there is some overlap when
it comes to the description of the channel models and the Kalman filter equa-
tions. The summary below is provided to guide the reader and to highlight the
main points of the papers.

Comments of the author’s contributions to each paper with multiple authors
are stated below for each of the five included papers.

Paper I: Kalman predictions for multipoint OFDM downlink
channels
This technical report provides a detailed description on how to use the Kalman
filter for predicting small scale fading of channels. It extends the framework of
the Ph.D. thesis [1] by Aronsson to include also channels from multiple base
station sites.

Design choices, such as where to locate the filters, how to estimate the
channel models and which pilot pattern to use, are discussed.

The report also includes results on the predictability of small scale fading
models. It illustrates how the predictability of a channel is fundamentally
limited by the fading statistics, represented by the Doppler spectrum.



The measurement based prediction results of Paper II and of [2] are high-
lighted and studied in detail. Some additional Normalized Mean Squared Er-
ror (NMSE) prediction statistics results that where not included in Paper II
are included in this report to highlight different aspects of the prediction per-
formance. Based on these performance results, system design issues, such as
pilot patterns, intercluster interference and system delays, are discussed in the
conclusion section.

The report also includes an appendix on how to generate block-fading chan-
nel models that have (instantaneous) error statistics that correspond to the one
obtained in a given physical setting when Kalman predictors are applied. This
method has been used in [3].

Paper II: Design and measurement based evaluations of coherent
JT CoMP: A study of precoding, user grouping and resource
allocation using predicted CSI
This paper investigates if Coordinated MultiPoint (CoMP) gains are realis-
tic in real systems. The evaluations are based on measured channels, with
Kalman prediction and a robust linear precoder. The linear precoder is based
on a robust Minimum Mean Squared Error (MMSE) design that takes channel
uncertainties into account when designing beamforming weights and uses an
ad hoc method to maximizing a sumrate criterion iteratively.

The Kalman predictions provide Channel State Information (CSI) that is
sufficiently accurate to achieve significant CoMP gains, even for long temporal
prediction horizons (of 24 ms) at pedestrian mobility and at 2.66 GHz. For
shorter prediction horizons (of 5 ms) and at 500 MHz, they would even provide
good CSI at vehicular velocities.

Results show that the robustness of the proposed precoder, i.e. the fact that
it takes the CSI uncertainty into account in the precoder design, provides an
increase in sumrate, especially when users are randomly grouped.

Based on results of [4], which showed that user grouping is important to
secure CoMP gains (compared with single cell transmission) this paper inves-
tigates different user grouping strategies. In particular, a strategy based on
local scheduling, over the different resources, is suggested. It is compared
both with the optimal user groups, found through a very high dimensional
search of all possible combinations, and with a greedy user grouping scheme
suggested in literature. The here proposed user grouping scheme performs, in
terms of sum-rate, close to the optimal scheme and to the greedy scheme, at a
much lower complexity.

Interestingly, the results also shows that, for a small CoMP cluster (includ-
ing three single antenna base stations) when users are grouped through the
suggested user grouping scheme, then the zero forcing precoder achieves sim-
ilar CoMP gains as the proposed robust linear precoder.



The reader who has read Paper I can skim through Sections 2-3 and 6.3 as
well as Appendix A.

The author has done the majority of the work.

Paper III: Robust linear precoder for coordinated multipoint joint
transmission under limited backhaul with imperfect CSI
In this paper the robust linear precoder that is proposed in Paper II is extended
to handle constraints on backhaul capacity. The aim is to ensure that the losses
in CoMP gains, due to less backhaul capacity, are decreased by avoiding to de-
sign the precoder under the faulty assumptions that all channels can be used.
The suggested solution is to include the backhaul constraints in the minimiza-
tion criterion, via penalty terms.

Results show that if the backhaul constraints are handled as suggested, then
the loss in CoMP gains is lower than if the constraints on backhaul capacity
are not considered in the precoding design. The difference in loss is espe-
cially high for cell edge users, which are the users that need CoMP most and
therefore have the most to loose from backhaul constraints.

The reader who has read Paper II can skim through Sections 2-3.1 and Ap-
pendix A.

The author has done the majority of the work.

Paper IV: Joint reference signal design and Kalman/Wiener
channel estimation for FDD massive MIMO
In this paper, a strategy to use non orthogonal, coded, pilots in order to de-
crease the overhead problem that comes with deploying massive MIMO in an
FDD system is proposed. It is based on a framwork suggested by Zirwas,
Amin and Sternad [5].

The aim is to obtain a large reduction in the pilot overhead, as compared to
orthogonal pilots, in downlinks of systems that may use both massive MIMO
and CoMP. The general principle behind the proposed pilot design is based
on that only a limited number of channel components are strong, as seen for a
perspective from a single user. As channels from antennas located at the same
base station tend to have equal strength, a design elements must be introduced
to ensure this basic property. In Paper IV this is achieved by introducing a fixed
grid of beams which directs the transmitted power into different directions,
hence causing different channel gains at the user.

The proposed pilot code design is such that any user within the system will
be able to estimate up to its K strongest channel components, where K is the
number of available pilots. It has the benefit that it does not need to be re-
optimized whenever a new user enters the system.



The performance in terms of channel estimation NMSE is evaluated based
on Linear Least Mean Squared Error (LLMSE) filtering and Kalman filtering.
A non optimal reduced Kalman filter which only estimates the relevant channel
components (which are the strongest channel components at a specific users)
is proposed in order to limit the computational complexity, and is evaluated.

System simulation results, in a cluster of nine base stations, show that the
channel NMSE with coded non orthogonal pilots becomes around 5 dB worse
than when using orthogonal pilots, at a much reduced pilot overhead. The
resulting performance degradation becomes insignificant if maximum ratio
transmit beamformers are designed based on channel estimates with the at-
tained quality.

The reader who has read Paper I can skim through Sections 3.2 and appen-
dices C.2-D.

The simulation environment, which is based on an open source environ-
ment developed by the Fraunhofer Heinrich Hertz institute [6], was created in
collaboration with Wolfgang Zirwas. The author is responsible for simulating
pilots measurements and implementing the different estimations algorithms,
while Zirwas designed the parts relating to simulations of the radio channels
and designing the fixed grid of beams.

Paper V: Kalman smoothing for irregular pilot patterns; A case
study for predictor antennas in TDD systems
In this paper the Kalman filter is used to obtain smoothed interpolation esti-
mates of the downlink channels of a TDD system, based on uplink channel
estimates.

In order to perform smoothing, future measurements of the channel need to
be available to the filter. This can be achieved for vehicular user equipment
by placing an antenna, a predictor antenna, in front of a second antenna, the
main antenna, on the roof of a vehicle in the direction of travel. The predictor
antenna will then experience the channel before the main antenna and can
hence collect "future" measurements of the channel for the main antenna.

Interpolation of the uplink channel needs to be performed over the duration
of downlink slots, in which no uplink pilots are available. The quality of the
interpolation performance influence the quality of the channel estimates of the
downlink slots on which downlink transmission and beamforming is based.
A good interpolation scheme will allow a longer downlink slot duration to be
used for mobile users.

Evaluations based on measurements show that interpolation through Kalman
smoothing of the downlink channels helps to improve the channel estimate
such that the downlink slots can have durations that correspond to 0.6-0.7 of
the carrier wavelength in space. If channels are only extrapolated, then this is
reduced to 0.2-0.3 of the carrier wavelength.



The work of this paper was carried out in close collaboration with Joachim
Björsell who has been responsible for pre processing of the measurements,
while the author has been responsible for the calculations and simulations re-
garding the smoothing algorithm.



1. Introduction

Since the shift of the millennia wireless communication has moved from
mainly supporting phone calls and occasional data transmission to and from
mobile user devices to support large data rates including tracking data, cloud
services and streaming services. The customers of today’s wireless commu-
nication systems require constant connection and are not satisfied when data
rates drop. Especially not during the commute to work.

The increasing demands require wireless transmission systems that can sup-
port a large number of data hungry users that may be densely located and/or
travelling at high velocities. In addition, it is very likely that future wireless
systems need to support not only the traditional devices that are directly con-
trolled by a user such as a mobile phone or a computer, but also more or less
autonomous devices that communicate amongst each other, the so called In-
ternet-of-Things (IoT), causing the number of user equipment to increase.

In order for future systems to support both user equipments with high data
demands and user equipment with low latency demands, a flexible system
structure that supports a large number of transmission techniques is required.
Strategies for improving spectral efficiency that are currently a part of the in
standard include Multiple-Input Multiple-Output (MIMO) transmission, chan-
nel information based scheduling and adaptive modulation and coding. Can-
didate techniques for future standardization include Coordinated MultiPoint
(CoMP) Joint Transmission (JT) and massive MIMO. All these techniques
have in common that they need accurate Channel State Information (CSI)
available at the transmitter side. The estimation of such CSI is crucial for
high data throughput, however it is important that the quest for accurate CSI
does not come at the cost of not being able to support bursty traffic.

The work presented in this thesis will focus on evaluating methods to obtain
the CSI required for CoMP JT and massive MIMO, and highlighting results
that can be of interest when designing 5:th Generation mobile communication
system (5G) networks.

1.1 The radio channel
A traditional wireless communication system consists of one or more station-
ary base stations that transmit and receive data to and from a large number
of user equipments. Some of the user equipments are mobile, while others
are stationary. The base station (and sometimes the user equipment too) will
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generally have multiple antennas. These can be used to increase the proba-
bility of success (by transmitting or receiving the same message over multiple
antennas) or to direct the transmitted or received signal energy.

When a radio signal is transmitted, whether it is directed or is sent out om-
nidirectional, the energy of the signal will spread. A bit simplified, this can
be described as the information carrying sinusoidal radio signal splitting up
in multiple rays that each propagates into a different direction and interacts
with the environment through reflection, refraction and by loosing energy to
the medium that it travels through. An illustration of this is shown in Fig-
ure 1.1. Here, a radio signal is transmitted to a mobile phone (a piece of user
equipment) on ground level from a base station situated on the roof of a tall
building. Only a very small fraction of the transmitted radio frequency power
will reach the intended destination. Figure 1.1 illustrates some of the paths of
the radio waves that reach the mobile. The signal can be modelled as multiple
rays (which in the example are reduced to four rays to make them easily dis-
tinguished) 1. One of these rays refracts over the roof of the building and then
takes a direct route to the phone, while the other rays travel in different direc-
tions and reflect one or more times on buildings before reaching the phone.
As the figure illustrates, the rays that travel a longer way are weaker once they
reach the mobile phone, and the one ray that is reflected from the rooftop of
one of the low buildings has its strength further weakened due to the radio
signals propagation through vegetation.

Any part of the radio signal that reaches the receiver in a straight path from
the transmitter (without having reflected or refracted on the path) is called a
Line-Of-Sight (LOS) component, whereas any part of the radio signal that
has had its direction changed during the propagation to the receiver is called
a Non-Line-Of-Sight (NLOS) component. Similarly, a channel with a strong
LOS component and only weak NLOS components is called a LOS channel
and a channel with a relatively insignificant LOS component is called a NLOS
channel.

The multiple rays in Figure 1.1 will add up either constructively or destruc-
tively at the mobile user depending on the relative phase shifts of the sinu-
soids. As the phase shifts depend on the lengths of the paths each component
has travelled, the received power will differ for different locations in space.
Figure 1.2 shows an illustration of how the strength of a radio channel may
look in space for a typical NLOS channel when the signal transmitted is nar-
rowband, i.e. when it spans a small frequency interval. The standing wave
pattern that appears is referred to as a small scale fading pattern. In a LOS
scenario, the fading pattern will in general be much smoother. Depending on

1This "ray tracing" way of modelling radio wave propogation is an approximation of the exact
solution, which would be obtained by solving Maxwell’s equations within exactly known and
specified boundary conditions.
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Figure 1.1. An illustration of a multipath channel. The strength of the radio signal at
different points in space is indicated by the intensity of the color and the dashed line
indicates a significantly weaker strength.

Figure 1.2. An illustration of a standing spatial wave pattern of a typical scalar urban
NLOS narrowband channel. The received energy on the horizontal plane of a signal
depends on the spatial location of the user equipment.
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where the user equipment is situated the strength of the received power will
vary.

The scale on which the fading pattern varies is directly related to the wave-
length of the radio signal, which is denoted the carrier wavelength. In general
the large power dips, also known as fading dips, will occur a couple of times
per wavelength in an urban NLOS environment. As an example, at a carrier
frequency of 2.6 GHz (which is a common frequency for the 4:th Generation
mobile communication system (4G) network), the carrier wavelength is ap-
proximately 11.5 cm and fading dips will occur approximately every 4-6 cm.

1.1.1 The quest for channel state information
The description of how the transmitted signal changes as it propagates through
space is referred to as the radio channel and can be represented either by an
impulse response, or by a frequency response2. Narrowband signals are de-
scribed as signals where the frequency response at a given position can be
represented by one single complex number, with the absolute value represent-
ing the damping of the transmitted signal and the angle representing the phase
shift. Knowledge of the channel is referred to as CSI. The CSI may include
anything from a general statistical model of the set of channel properties that
is consistent with a given set of background information and measurements, to
a specific estimate of the channel frequency response along with information
on its accuracy.

CSI is important for a number of reasons. As an example, imagine that
some mobile user equipment is travelling through the standing wave pattern
illustrated in Figure 1.2. Then the received signal strength at that user will
vary. If a base station and a user attempt to communicate while the user is in a
fading dip, then there is a large risk that the data will be lost, if it is transmitted
only over a single pair of antennas, and only at this frequency. However, if the
base station has knowledge of when these dips occur, then it can schedule all
communication between that user equipment and the base station to when the
channel gain is high. Whenever a fading dip occurs at a potential transmission
frequency and time, the base station can instead choose to communicate with
a different user equipment on that frequency resource and in that way increase
the spectral efficiency of the system. The task of selecting which users to serve
on which resources is known as scheduling.

The fading pattern and fading dips can also be modified to some extent
to make transmission more favourable. For example, when a base station is
equipped with several antennas, then the channels between the base stations

2For applications within wireless communication the physical channel can be approximated
by a linear time varying dynamic system with very high accuracy, so a time varying impulse
response is sufficient to describe the radio channel. Transmitter and receiver processing may
add non-linearities to the total model.
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antennas and an antenna at the user equipment will have different (although
in general correlated) fading patterns. If the base station is aware of the phase
shifts of each channel, then it can adjust the phase shifts of the radio signals
from each transmit antenna to ensure that these will add up constructively
at the user equipment, thus lowering the depth and the spatial density of the
fading dips and improve the overall channel gain.

Similarly, when the user equipment transmits a radio signal to the base
station, the receiver can weight and combine measurements from different
antennas to improve the quality of the received signal.

These are only a few examples of MIMO techniques that not only can in-
crease the data throughput, but also can allow a base station to transmit si-
multaneously to many users within the same frequency bands. The latter is
enabled by adjusting the resulting standing wave pattern of the received sig-
nals at each user’s location such that only the part of the transmitted signal
intended for that particular user will be added up constructively and thus have
a high receive power, while the parts of the transmitted signal that are intended
for other users are left non-amplified, or are made to add up destructively.

1.1.2 Orthogonal frequency division multiplexing: A brief
overview

In an Orthogonal Frequency Division Multiplexing (OFDM) system a broad-
band signal is created as several narrowband signals that are superpositioned
into one time limited signal, denoted one OFDM symbol, before being trans-
mitted over the radio channel. Each of these narrowband signals, often referred
to as subcarriers, can then be used to encode separate pieces of information, or
messages. By adjusting the frequency band of the narrowband signals based
on the time duration of the OFDM symbol, modulated narrowband signals
can be made orthogonal over the symbol time such that, under ideal assump-
tions, the messages encoded on different subcarriers will not interfere with
each other. Under realistic assumptions, the system and receiver can be de-
signed to ensure that interference between subcarriers is very small, if the
transmitter and receiver are synchronized in time and frequency with suffi-
cient accuracy. Likewise, the system is often designed to ensure that interfer-
ence between subsequent OFDM symbols in time, Inter-Symbol Interference
(ISI), can be considered negligible.

In an OFDM system, a single subcarrier over the duration of a single OFDM
symbol is referred to as a time-frequency resource or simply resource. Just as
the channel changes over time, it may also change over frequency. A channel
can either be flat fading, with constant channel gain (although different phase)
over all subcarriers, or it can be frequency selective, in which case the gain
varies over different subcarriers. At the base station, a scheduling algorithm
will be used to assign resources to each user equipment within the system.
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Most utilized scheduling algorithms are based on some CSI, which may con-
sist of the complex-valued channel gains or simply a Channel Quality Index
(CQI). The CQI may include information of the Signal to Noise Ratio (SNR)
of the subcarrier, or simply information on which subcarriers have channels
that are above a given SNR threshold. The scheduler will aim to schedule
messages on the resources where the channels of a user are good.

The time and frequency spread of a resource is often designed to ensure that
the channel associated with it can be described by a single complex-valued
scalar h. Likewise, the part of the transmitted and received signals that are
associated with the time-frequency resource can also be described by complex-
valued scalars, here denoted s and y respectively. The received message can
then be described as the product of the transmitted signal and the channel
with some additional additive noise and interference. If multiple users will be
scheduled on the same resource, then multiuser MIMO techniques are used to
ensure that each user equipment receives the messages intended for it. Such
techniques will be further discussed in Chapter 4.

For further reading on the topic of OFDM the interested reader may refer
to e.g. the works of [7], which gives a thorough theoretical background to
the topic, [8], which explains the implementation of OFDM in the current 4G
system, and [9] which describes the implementation of OFDM in the future
5G system.

1.1.3 Uplink and downlink
The radio channel of radio systems that have a fixed infrastructure of base sta-
tions is separated into uplink and downlink. Over the uplink, the user equip-
ment transmits information to the base station and over the downlink the base
station transmits information to the user. By using different resources for up-
link and downlink, strong self-interference, i.e. that the weak received signal
is interfered by its own strong transmitted signal, on the same time/frequency
resources, is eliminated.

The amount of resources that are allocated to uplink and downlink respec-
tively is a design choice that depends on how much information that is an-
ticipated to be transmitted over each link. As surfing and streaming services
become more common, it is likely that the uplink will be allocated less re-
sources than the downlink as illustrated in Figure 1.3.

There are two common ways of separating uplink and downlink, both of
which are illustrated in Figure 1.3. In FDD systems, uplink and downlink
transmit simultaneously but in different frequency bands, whereas in TDD,
the full bandwidth is utilized for both uplink and downlink, however the two
are separated in time.

These designs both have their advantages and disadvantages. For example,
as the frequency response of the channel varies in different bands, separate
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Figure 1.3. Uplink and downlink resource allocation for FDD and TDD systems re-
spectively.

channel estimations are required for uplink and downlink in FDD systems. In
contrast, in TDD systems the uplink and downlink frequency responses will
generally be similar for the same position in space - with some differences due
to using different transmit and receive filters in the two links, which will intro-
duce differences due to hardware imperfections in the equipment. This prop-
erty is called channel reciprocity. On the other hand, low latency requirements
could be easier to handle in an FDD system. If, for example, an automatic
control system needs a small piece of data within a short time frame, but the
system has just switched to an uplink slot, then there is a good chance that the
information will be invalid by the time the system reaches its downlink slot.
A potential remedy is to create flexible uplink downlink slots where users that
have low latency demands may have very short switching times between up-
links and downlink. However this does place higher flexibility demands on the
system and will create increased interference between different nodes.

The current 4G Long Term Evolution (LTE) systems are based on FDD
with exception of the Chinese 4G LTE which is based on TDD. The paired
spectral bands currently used for 4G and earlier systems will likely remain
FDD spectra for a foreseeable future, whereas any new spectra that will be
used for 5G systems will most likely mainly be TDD based, with a flexible
uplink/downlink slot allocation, in order to adjust the resources depending on
application.

1.2 Channel estimation
In order to estimate the channel required for, e.g., resource scheduling and
transmission design, some resources are reserved for the base station and/or
user equipment to transmit pilot signals. These are signals that are known to
both the user and the base station. By measuring the received signal within a
pilot resource, the channel frequency response can be estimated.

As a very simple example, consider a sinusoidal signal where information
bits are coded into the amplitude and phase shift (with respect to some refer-
ence time) which are represented by the absolute value and a phase angle re-
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spectively, of the complex number s, called a symbol. Furthermore, consider
that this signal is transmitted through a time-invariant narrowband channel,
where the complex-valued frequency response of the channel h describes how
the amplitude and the phase of the transmitted signal is altered during propaga-
tion through the channel. Then the amplitude and phase of the received signal
can be represented by the absolute value and the phase angel respectively of a
complex-valued number yd where

yd = hs.

Now assume that prior to transmitting the bits represented by s, a pilot signal
with the same frequency as the sinusoid carrying information bits was trans-
mitted. We let the complex-valued p represent the known phase and amplitude
of the transmitted pilot signal and yp = hp represent the amplitude and phase
of the received pilot signal. As the pilot is known at both transmitter and re-
ceiver, it can be used to find the channel through the relation h = yp/p, and by
extension also the transmitted signal on the receiver side through

s =
yd

yp

p.

The example above gives the basic reasoning behind pilot-based channel
estimation. However it is not an accurate representation of reality. In a more
realistic scenario both the pilot measurements and the received data symbol
yd will be subjected to noise, both from the hardware equipment and from
interfering signals from other transmissions e.g. from neighbouring frequency
bands and/or from neighbouring transmitters. In addition, the channel may not
be static. In particular, if the user equipment is mobile, then the channel that
affects the pilot signal will differ from the channel that the data carrying signal
experiences to some extent depending on the user mobility, the fading pattern
(Figure 1.2) and the time delay between the two signals.

A more general way to approximate the pilot measurement at a single re-
ceive antenna is through

yτ = Φτhτ +nτ . (1.1)

Here yτ and nτ are complex-valued column vectors of dimension K consisting
of measurements and measurement noise respectively during a time window
indexed by an integer τ . Each element in these represent a separate set of
measurement and measurement noise, e.g. from different subcarriers. The
elements of the complex-valued channel column vector hτ of dimension Ntx ·K
represent the channel frequency responses from the Ntx transmit antennas at
the K time-frequency locations of the measurements. The K ×Ntx ·K matrix
Φτ is filled with pilot symbols that represent all the signals transmitted on each
antenna over each of the K resources.

The problem of channel estimation is the problem of finding an estimate
ĥτ+m of the channel vector at a time window indexed by τ +m using as much
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of the available information about the noise nτ , the measurement yτ , the pilot
matrix Φτ and the relationship between the channel vectors hτ and hτ+m as
realistically possible. In addition to the exact values of the pilot matrix and
channel measurements, the available information often consists of first and
second order statistics, i.e. mean values, covariance matrices and autocorrela-
tion functions. Often there are also past channel measurements available.

1.2.1 Pilot design
The expression (1.1) is flexible as it allows us to choose the structure of the
pilots. Three different types of pilot designs will be considered throughout
this thesis.

Resource orthogonal pilots

Resource orthogonal pilots means that each transmit antenna is allocated in-
dividual time-frequency resources to transmit pilots. When a pilot resource
is allocated to one antenna every other antenna must be silent. This pattern
creates no inter-antenna interference.

An example with K = 2 and Ntx = 2 is

[
y1
y2

]
=

[
1 0 0 0
0 0 0 1

]⎡⎢⎢⎣
h11
h12
h21
h22

⎤
⎥⎥⎦+

[
n1
n2

]
, (1.2)

where hi j is the channel at resource i from antenna j. Thus, antenna 1 sends
its pilots only in resource 1 and antenna 2 sends its pilot only in resource 2.
We may here directly obtain the channel estimates

ĥ11 = y1 = h11 +n1,

ĥ22 = y2 = h22 +n2.
(1.3)

We obtain no direct measurement of h12 and h21, but assuming that the channel
from one antenna is equal to all the K transmission resources, we may use the
estimates

ĥ12 = ĥ11 = y1

ĥ21 = ĥ22 = y2.
(1.4)

Code orthogonal pilots

Code orthogonal pilots allow more than one antenna to transmit pilots on the
same pilot resources. However, the structure of the pilots are such that a se-
quence of pilots transmitted from one antenna on the given resources is or-
thogonal to a sequence of pilots transmitted on the resources by a another
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antenna. In order to achieve this, the number of available resources must be
at least equal to the number of antennas. Use of code orthogonal pilots are in
general inferior to resource orthogonal pilots as it creates interference between
the antennas on each resource K that cannot in general be fully cancelled at
the receiver.

An example with K = 2 and Ntx = 2 is

[
y1
y2

]
=

1
2

[
1 1 0 0
0 0 1 −1

]⎡⎢⎢⎣
h11
h12
h21
h22

⎤
⎥⎥⎦+

[
n1
n2

]
, (1.5)

If channels from one antenna are equal in both resources, h11 = h12 = h̄1 and
h21 = h22 = h̄2, then we have a system with two unknowns and two equations,
with unique solution for nk = 0

ˆ̄h1 = y1 + y2,

ˆ̄h2 = y1 − y2.
(1.6)

However, in general, if h11 �= h12 or h21 �= h22, we have an under determined
system of equations, with no unique solution. We can then not estimate all four
channels hi j based on measurements at time τ only. If we in such case use the
(erroneous) hypothesis h11 = h12 and h21 = h22 to produce the estimates (1.6),
then estimation errors will be inevitable even in the noise free scenario.

Non orthogonal pilots

Non orthogonal pilots also allow multiple antennas to transmit on the same
pilot resources but without the restriction that the pilot sequences must be
orthogonal.

In the example above, the pilot matrix may then be

Φτ =

[
p1 p2 0 0
0 0 p3 p4

]
, (1.7)

where pi are arbitrary but known complex numbers. Using non orthogonal
pilots generally decreases the performance but it comes with the benefit of
reducing pilot overhead, which is important in systems with a large number of
antennas, e.g. massive MIMO systems, where it is desirable to use K < Ntx.

More details and comparisons between the different pilot designs are given
in in Sections 3.5.1, 4.1 and 4.2.

1.2.2 Linear estimation
We saw in the examples above that estimating the channel vector hτ for multi-
ple transmit antennas based on pilot measurements yτ at time step τ only will
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in general represent an estimation problem with more unknowns than con-
straints. It is natural to increase the number of constraints by using additional
measurements, in particular measurements that were already obtained at pre-
vious time steps.

In linear estimation the vector hτ+m is estimated through a weighted sum
of all available measurements up to time step τ

ĥτ+m|τ =
τ

∑
i=0

Wiyi =
[
W0 . . .Wτ

]
⎡
⎢⎣

y0
...

yτ

⎤
⎥⎦= Wy. (1.8)

Here τ +m|τ is used to denote the estimate of the channel vector at time τ +m

provided measurements up until time τ . The weighting matrices Wi are based
on some or all of the available statistics of the channel and are chosen to mini-
mize some criterion. An advantage to linear estimation compared to non-linear
estimation is that linear estimation often requires much lower computational
complexity.

The most common criterion to minimize in estimation theory is the Mean
Squared Error (MSE), i.e.,

E[|hτ+m− ĥτ+m|τ|
2], (1.9)

where | · | is used to represent the euclidean norm of a vector and E[·] denotes
the expected value. It is well known that the optimal solution to the Minimum
Mean Squared Error (MMSE) problem of finding a linear estimator W in (1.8)
that minimizes the MSE (1.9) is given by the causal Wiener filter [10].

For calculating a Wiener filter, a statistical correlation model must be avail-
able for the correlation between different elements of the channel vector hτ

in (1.1), and of the noise nτ . By using this correlation information, a unique
minimum MSE estimate is produced, also in cases as the example (1.6) with
h11 �= h12 where a unique exact algebraic solution cannot be obtained.

A disadvantage of the Wiener filter is that finding the weight matrix W in
(1.8) requires inversion of the covariance matrix of the vector [yT

0 , ...,y
T
τ ]

T . As
this covariance matrix grows with every new measurement, the complexity as-
sociated with the matrix inversion will very soon become infeasible, unless we
give up on using all past data, and instead use a limited sliding time window.

To lower the complexity of the estimator, a Kalman filter can instead be
used. A Kalman filter is a recursive version of a Wiener filter that utilizes a
state space model of the temporal correlation of the channel. The Kalman filter
has the advantage that, for a wide sense stationary system, it will converge
such that the more computational demanding processing can be calculated
off-line, and hence the complexity associated with updating the estimate ĥτ+m

given a new measurement can be kept relatively low [1]. For this reason,
the work in this theses is mainly based on the Kalman filter, which will be
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described in further detail in Chapter 3, with Chapter 4 bringing up potential
5G system applications for the filter.

Whether the Kalman or the Wiener filter is used, the statistic of the channel,
in the form of covariance matrices and/or autocorrelation functions must be es-
timated. Such estimations will always introduce some model errors, which to
some extent destroy the optimality of the filter. A disadvantage to the Kalman
filter compared to the Wiener filter is that model errors will be introduced in
two steps. First, by estimating the covariance matrices and/or autocorrelation
functions, and second when using these to estimate a state space model of the
channel. The effect of these model errors on the resulting MSE is discussed
further in Section 3.4.

1.2.3 Filters, predictors and smoothers
Depending on if the integer m in (1.8) is zero, positive or negative, the estimate
is called a filter estimate, a prediction or a smoothed estimate respectively. The
difference between these three is how much measurement data is available, at
time step τ +m.

The filter estimate requires measurement data up until the time of the esti-
mate. This is useful when the channel has not changed much between the time
the latest pilot measurement was received and the time the channel estimate
is used. Let us consider the example presented in Section 1.1 with a carrier
wavelength of 2.6 GHz, with users moving at 5 km/h (pedestrian speed) and
time delays of up to 1 ms. As explained above, the dips of Figure 1.2 will then
be approximately 4-6 cm apart. As a user moves through the standing wave
pattern it will have travelled 1.4 mm in the time between receiving the pilot
measurement and the time of using the channel estimate. Over this short dis-
tance, the channel will only have changed slightly, and the estimation errors
due to this change are generally small, so the filter estimate will suffice for
most pedestrian applications. However, for higher velocities or longer time
delays this will not longer be true.

As pilots take up resources that would otherwise be used for data transmis-
sion it is of interest to transmit them only when required. For example, in
LTE, the CSI reference signals, which are downlink pilots used for estimating
channels from multiple antennas, are transmitted with an interval of at least
5 ms. Delays can also be introduced for other reasons, e.g. in a system with
multiple base stations that are cooperating to transmit messages to the same
users, through so called CoMP JT. Then information needs to be shared over
backhaul links and this could potentially take up to tens of ms. As the system
delays increase, the channel will change to a greater extent and the CSI pro-
vided by the filter estimate will be outdated. A similar effect is obtained at
higher user velocities. In such scenarios predictions are required. Section 4.2
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focuses on channel prediction for scenarios with long delays and slowly mov-
ing users when predictions are used for CoMP JT.

A way of describing the small scale fading of a single narrowband radio
channel hτ , from the perspective from a user that is moving through a stand-
ing wave pattern as the one in Figure 1.2, is by the channel’s autocorrelation
function R(t) = E[hτh∗τ−t ] or by a Doppler spectrum. The Doppler spectrum is
given by the Fourier transform of the autocorrelation function. The width and
shape of the Doppler spectrum affects the predictability of a radio channel.
This will be discussed further in Section 3.4.

In order to obtain a smoothed estimate, measurement data from both past
and future, relative to the time of interest, are required. An example when this
may be available is if the receiver is in no rush to detect its signals and can wait
for the next pilot measurement before using all available pilot measurements
to estimate the channel and hence detect the transmitted symbol. A second
application for channel smoothing is described in Section 4.3 and includes the
use of a predictor antenna, a concept which will be described briefly in the
next subsection and in more detail in Section 4.3.

The challenge with long range channel prediction and how to solve it

It is intuitive that access to more measurement data also should provide better
estimates. Hence, the smoothed estimate outperforms the filtered estimate in
terms of MSE and the filtered estimate in turns outperforms the prediction.
It is likewise intuitive that the quality of the prediction decreases as the pre-
diction horizon m in (1.8) increases. It has been shown in e.g. [1], that a
prediction horizon beyond a few tenths of the carrier wavelength in space is
infeasible using linear predictors. The reasons behind this will be explored
more in Section 3.4.

For a user equipment that moves through a standing wave pattern generated
by a stationary transmit antenna and fixed reflecting or scattering objects, a
required prediction horizon of L seconds is equivalent to a prediction horizon
in space in terms of carrier wavelengths

Lv

λ
=

Lv fc

c
[wavelengths]. (1.10)

where v is the velocity in m/s, λ is the carrier wavelength, c is the speed of light
and fc is the carrier frequency. As an example, at fc = 3.5 GHz predicting 10
ms ahead in time would at a velocity of 30 m/s correspond to prediction over
a distance of 3.5 wavelengths in space.

A way to push the prediction horizon beyond that of a few tenths of the
carrier wavelength for vehicle users is by utilizing a predictor antenna. The
concept is illustrated in Figure 1.4. Here, two antennas are positioned on the
roof of a bus, aligned along the direction of travel. The forward antenna, which
is denoted the predictor antenna, transmits or receives pilots (depending on
the system). From these pilots, the channel is estimated and this filter estimate
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Figure 1.4. Illustration of the predictor antenna concept. In this example, a bus is
equiped with two antennas aligned along the direction of travel. At a time τ the for-
ward antenna, denoted predictor antenna, either transmits or receives a pilot (depend-
ing on the system) allowing for a filter estimate of the channel at the location marked
by the red square. At the time τ +m the rearward antenna, denoted main antenna,
has entered the same location, so the filter estimate based on the prediction antenna at
time τ can be used as a channel prediction for the main antenna.

can then be used to design a transmitter that transmits to the rearward antenna,
denoted main antenna, at a later time when it has reached the same position in
space as where the predictor antenna was at the time of pilot transmission.

The predictor antenna concept can be used to gain access to future mea-
surements of the channel, relative to the position of interest, if the antennas
are sufficiently separated. This also allows for a smoothing estimate, based
on the pilots received or transmitted by the predictor antenna, to be used as
channel predictions for the rearward antenna.
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2. Contributions

For many wireless transmission schemes, accurate CSI at the transmitter of a
downlink is crucial to achieve desirable gains. Such schemes include adap-
tive modulation and coding [11], channel aware scheduling [12] and multiuser
MIMO transmission, e.g. zero forcing, [13].

For this reason, channel estimation has been a topic of interest for wire-
less communication for a long time. Particularly, the use of linear filtering is
useful, as it helps to keep computational complexity at bay.

2.1 The Kalman filter
Kalman estimators and predictors for OFDM MIMO channels, based on Au-
toregressive (AR) models for fading statistics, were proposed by Aronsson
in [1]. In Paper I and Paper II these methods are extended to multi-antenna
and multi-site downlink channels and are evaluated for use in CoMP JT. An
overview of how to obtain the AR model and the noise covariance matrices
that specify a Kalman filter is given in Paper I, along with discussions of de-
sign choices of both the modelling and the Kalman filter.

2.1.1 Factors limiting the predictability of the radio channels
The Kalman filter can be used not only as a tool for estimation, but also as a
theoretical tool for exploring the attainable estimation accuracy under various
assumptions. One such long-standing problem are the basic reasons for the
very limited predictability of fading radio channels that are measured under
realistic conditions. Results based on channel sounding measurements in [14]
and in [1] have consistently found that it is in general hard to predict the small
scale fading of a component (either in the time domain or in the frequency
domain) more than a couple of tenths of wavelengths ahead in space.

On the other hand, the physical time varying channel generated by moving
through a stationary fading environment will be strictly band limited: The
support of the Doppler spectrum is constrained to ± the maximum Doppler
frequency fd = v/λ , where v is the velocity and λ is the carrier wavelength.
It is known [15, 16] that strictly band limited signals can be infinitely well
predictable from past noise free measurements.

If this is the case, then why is it practically impossible to predict fading
channels over multiple wavelengths? Is it because a predictor is forced to
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extrapolate based on noisy past channel estimates, or is the fundamental reason
something else?

The question of what factors limit the predictability is discussed in Sec-
tion 3.4 and in Paper I, using properties of AR modelling and Kalman based
prediction based on AR models.

It turns out that the noise level on past estimates has a relatively small influ-
ence on the error of long range channel predictions. The fundamental reasons
for lack of predictability is instead that finite order models of the fading pro-
cess, that are based either on a finite set of training data or on noisy training
data, cannot be band limited. This lack of band limitation in the model very
efficiently destroys long-range predictability.

Models based on time limited data sets will essentially see the physical
fading channel through a time window, and this window smears the Doppler
spectrum. Models based on noisy training data will have a noise floor in their
Doppler spectrum. In both cases, the models will lack infinite peaks (pure
sinusoids) which would theoretically be perfectly predictable.

A starting point for the present investigation are interesting results obtained
by Baddour and Beaulieu [17] on one step prediction errors of AR models of
fading processes obtained from noisy training data sets.

Here, the method of [17] is used to approximate a band limited theoretical
Doppler spectra for NLOS channels with uniformly distributed scatterers in
two dimensions [18] by a high order AR model that is obtained by adding
a small regularization term to the autocorrelation of the channel at zero time
shift. Based on this, various factors that affects the predictability of the radio
channel are evaluated.

Furthermore, results in Section 3.4 abd Paper I show that the measurement
noise associated with the pilot measurements is of less importance than other
factors when it comes to the range of predictability of a channel. The first
order effect is the quality of the training data, i.e. how much broadening and
smearing it induces into the Doppler spectrum of the estimated fading model.
The second order effect is the model order. When the autocorrelation func-
tion of the channel is perfectly known, with except for some white noise that
slightly alters the term to the autocorrelation of the channel at zero time shift in
the same way as the regularization term described above, then a higher model
order leads to more accurate predictions. However, a too high model order will
result in worse channel estimate whenever the channel statistics changes over
time. Results here supports what was found in [1, 19]; that linear prediction
beyond a couple of tenths of the carrier wavelength has very poor accuracy.

2.2 Kalman filters for potential 5G applications
In Chapter 4, linear estimation, and in particular Kalman filtering is used to
investigate the potential of different MIMO transmission techniques for 5G
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systems in cases where channel estimation is challenging. In particular, solu-
tions are proposed and investigated for the following three problems: Massive
MIMO for FDD systems, coherent CoMP JT with potentially long backhaul
delays and massive MIMO for TDD systems with long downlink slots and
vehicular users.

2.2.1 Estimation of massive MIMO FDD channels
A scheme for downlink channel estimation for massive MIMO in FDD sys-
tems must solve two main problems. First, we have a potentially very large
set of channel components that need to be estimated without introducing an
unreasonably large overhead. Second, the solution must support users at a
large number of potential locations, with very different conditions in terms of
channel gains and fading. The scheme that is presented in Paper IV and sum-
marised in Section 4.1 is one for pilot design and channel estimation for an
FDD implementation. The goal is that the overhead is made to scale with the
number of channels that will be relevant for a terminal, which is typically in
the range 5-30, in systems with hundreds of antenna elements.

The primary key property that is used is that when the channel components
have varying average gain, then each user only has to estimate the strongest
channel components, as seen from that user. If different users will have differ-
ent strongest channel components then estimating only their strongest channel
components will lead to an insignificant decrease in the multiusers scheduling
gain. Signals from antennas located at different sites will in general have large
differences in received power. For antennas located at the same site, the aver-
age channel gains should, on the other hand, be similar. Therefore, it is crucial
to introduce some system design elements to reduce this similarity between
channels for collocated antennas.

The proposed framework has four components:
1. Antennas will be structured into a fixed grid of beams where each beam

is wideband and controlled by an effective or virtual antenna port. At
any given user position, only fractions of the antenna ports will then have
strong signal, so only a fraction of their channels need to be estimated.

2. Downlink pilots will be transmitted as non orthogonal pilots, using coded

pilot sequences. The codes are designed such that they provide unique
pilot patterns for each of a potentially very large number of antenna ports
within a cooperation area. The size of the pilot blocks (the coded se-
quence length) is selected proportional to the number of channel com-
ponents that need to be estimated for a typical user.

3. Correlation over time, space and frequency is utilized by a linear Linear
Least Mean Squared Error (LLMSE) estimator or by a Kalman filter to
improve the CSI quality.
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4. Use of cycling sequences of pilot codes ensures good estimations regard-
less of the user position, by weighted time averaging of estimation errors
that may be caused by the non orthogonality of some of the pilot codes,
as seen from one user.

System simulations using the Matlab based, open source, Quadriga chan-
nel simulator, developed by the Fraunhofer Heinrich Hertz institute [20, 6]
show that by using the fixed grid of beams and coded non orthogonal pilots,
channel estimations with a reduced Kalman filter provided an average channel
estimate Normalized Mean Squared Error (NMSE) of 5 dB worse than what
could be achieved with resource orthogonal pilots. The resource orthogonal
pilots would, however, cause a much higher overhead. The beamforming gains
through Maximum Ratio Combining (MRC) were not noticeably affected by
this NMSE reduction.

2.2.2 Channel prediction to overcome backhaul delays in
coordinated multipoint systems

There are many challenges and hurdles to overcome before downlink CoMP
can be fully deployed, especially for coherent JT. The work presented in Pa-
pers II-III and summarised in Section 4.2 focuses on three of these challenges.

First, data sharing over backhaul links will cause time delays between the
channel estimation and the payload transmission. CoMP decisions will then be
based on outdated CSI. How this affects the potential CoMP gains depends on
the scheme used, i.e. Joint Scheduling (JS), Joint Beamforming (JB) or JT, and
on the network architecture, i.e. centralized, distributed or semi distributed,
see e.g. [21, 22]. It turns out that the CSI quality is especially important for
coherent JT in a centralized architecture, which is also the solution that would
provide the largest potential gains. It is therefore of great importance to find
methods to improve the CSI, under long backhaul delay constraints, in order
to make coherent CoMP JT feasible.

Data sharing over backhaul links places high demands on the backhaul ca-
pacity, especially for JT. In realistic systems, these demands may not always
be met. Then the information available at the Control Unit (CU), which is a
logical entity that makes the CoMP decisions, will be limited. Furthermore,
the possibility to share payload data between the base stations may also be
limited. If the CoMP design does not handle these backhaul constraints, then
potential CoMP gains may be lost.

Second, a nontrivial problem for coherent CoMP is that of which users to
serve jointly on each specific transmission resource. If these are selected care-
fully then there is a potential for large multiuser diversity gains, as was shown
for multiuser MIMO in e.g. [23, 24]. However the complexity of a search
through all possible user groups and all resource allocation possibilities grows
combinatorially with the number of users to choose from. It is desirable to
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have a simple scheme that is low in complexity and that preserves the mul-
tiuser diversity gains of the optimal solution.

Third, the messages that are to be transmitted to the users need to be pre-
coded to mitigate inter user interference within the cooperation cluster. In
a system with perfect CSI this can be achieved by channel matrix inversion,
which provides the zero forcing precoder developed for MIMO, see e.g. [25].
However, there is a risk in using zero forcing for CoMP JT, even in the pres-
ence of perfect CSI as it is only designed to minimize intracluster interference,
but not to weight this against intercluster interference. An option is then to use
an MSE criterion which includes these terms as well as the intracluster inter-
ference [26].

MSE criteria are attractive as they generally have analytical solutions. How-
ever, in practice it is often more useful to maximize over a weighted sumrate
criterion, as this is closer to the desired end performance. Such an optimiza-
tion poses a multidimensional nonconvex optimisation problem.

The work presented in Papers II-III and summarised in Section 4.2 aims to
adress these challenges through three main contributions

1. The problem of the outdated CSI is partly counteracted by channel pre-
dictions through Kalman filtering.

2. A very low complexity method for user grouping and resource allocation
is proposed and evaluated. This method provides very close to optimal
CoMP groups and resource allocation, in the case of the sumrate crite-
rion. It places no extra requirements on backhaul capacity.

3. A low complexity robust linear precoder design is proposed. This is a
robust MMSE design that offers a flexible tool to optimize over a few
parameters with respect to an arbitrary criterion, e.g. the sumrate. The
robust design takes channel uncertainties due to prediction errors and
quantization into account. It can also include backhaul constraints in a
flexible way.

For the evaluations, pilot sounding channel measurements collected by Er-
icsson in Stockholm have been used. The results show that channel predictions
can ensure CoMP JT performance gains for system delays of tens of milisec-
onds at pedestrian speed, or, if the system delays are shorter, then at even
higher speeds.

2.2.3 Channel smoothing for TDD systems with predictor
antennas

For pedestrian users, the required prediction horizon is usually within the 0.1-
0.3 carrier wavelength limitation, whereas for high mobility users, a longer
prediction horizon is often required.

This limit of prediction horizon can be circumvented by the predictor an-
tenna concept, introduced in subsection 1.2.3. It uses an extra antenna, pre-
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dictor antenna, placed in front of the main antenna, e.g. on the roof of the
vehicle, to scout the channel that will later be encountered by the main an-
tenna, as originally proposed in [27], see Figure 1.4.

In an FDD system, the predictor antenna would receive known pilots in the
downlink and based on these estimate the channel. If pilots are transmitted
often and the two antennas are sufficiently spaced, then one of these estimates
can be used as a prediction of the channel for the main antenna. However, at
high user velocities, the frequency with which pilots must be transmitted for
the CSI not to be outdated may cause undesirable overhead.

For a TDD system, the predictor antenna would transmit known pilots in
the uplink subframes, that are used for channel estimation on the network
side. Assuming channel reciprocity, these channel estimates are then used to
calculate predictions of the channel to the main antenna during a subsequent
downlink subframe. The uplink/downlink ratio of the TDD frame might be ad-
justed so that the downlink transmission of the main antenna occurs close to a
position where the predictor antenna already has measured the channel, as pro-
posed in [28]. However, such a scheme would require individually adaptable
uplink/downlink ratios based on the velocity of each user which is problematic
from a system perspective.

Instead of transmitting a large number of pilots in the FDD case and relay-
ing on individually adaptable uplink/downlink ratios in TDD systems, inter-
polation can be used for any given uplink/downlink ratio to generate channel
estimates for the gaps in the pilot sequence.

The results in Paper V, which are summarised in Section 4.3, use the Kalman
smoother to interpolate the channel estimates of the predictor antenna. It fo-
cuses on the TDD scenario as it will be more challenging since the pilots are
irregularly spaced in time and the longest durations without any pilots (due to
downlink frames) are longer than for the FDD case. This motivates us to study
the performance of interpolation schemes in this setting.

The Kalman smoother used is based on a two-filter approach, using two
state space models. The measurement based simulation results provided show
that in the presence of predictor antennas, when CSI is interpolated based on
Kalman smoothing, the CSI quality within the downlink slot can be improved
significantly. As a result the downlink slot duration can be extended signifi-
cantly compared to when only extrapolation of CSI into the downlink slot is
utilized. The results can be used to determine how the flexibility of developing
5G standards in terms of reference signal rates and TDD subframe duration,
can be used for vehicular users, some of which may use predictor antennas.

The concept has been validated based on a small subset of a larger set of
channel sounding measurements collected by TU Dresden in Dresden, Ger-
many. The measurements used were selected to represent three distinct fading
scenarios: LOS, NLOS with a Jakes like Doppler spectrum and NLOS with
a flat Doppler spectrum. Results show that with Kalman smoothing, the fre-
quency with which pilots for channel estimation need to be transmitted, at the
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beginning and at the end of the gap due to a downlink slot, can be pushed to
what corresponds to a spatial resolution of 0.6-0.8 of the carrier wavelength.
This relaxes constraints, so that a relatively long TDD downlink duration can
be used in transmissions to mobile vehicular users that utilize predictor anten-
nas.
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3. The Kalman filter

The Kalman filter was developed by Rudolf Kalman [29]. It takes a Bayesian
approach to estimation, utilizing a priori information of the channel in the
form of a state space model of the channel’s dynamics and a prior estimate
of the state vector. Whenever a measurement of the channel is available then
an a posteriori channel estimate can be computed. In this chapter, the basic
principles of the Kalman filter, along with some design choices and various
sources of errors due to noise and mismodelling are addressed. For details on
these topics, the reader is referred to Paper I, and in the case of pilot designs,
also Paper IV.

3.1 Background and related work
The Kalman filter has been suggested along with the Wiener filter as a good
candidate for channel estimation [1, 30, 31, 32, 33, 34, 35]. Thorough tutorials
on the topic of estimation based on linear filtering in general and Kalman
filtering specifically can be found in e.g. [10, 36, 37].

The Kalman filter is essentially a recursive Wiener filter which uses a state
space model and a state vector (as a prior) to account for all prior knowledge
of the channel statistic and previous states. These are combined with new
measurement information through a Baysian estimation [10, 36]. The Kalman
filter has an advantage to the Wiener filter that, due to the use of the state
space model, the Kalman filter can account for past channel measurements at
lower complexity than that of the Wiener filter. It can also handle known time
varying properties of linear dynamic models and signal statistics.

In [30] a one dimensional Wiener filter was used to estimate channels in the
frequency domain. The 2D Wiener filter was mentioned as a candidate to esti-
mate OFDM channels over both time and frequency by [31], while [1] focuses
on using the Kalman filter for estimation of fading and frequency selective
OFDM channels. The latter provides a tutorial on how to estimate state space
models for OFDM MIMO channels and investigates the potential of these for
channel prediction.

In this thesis Kalman filtering, prediction and smoothing of OFDM chan-
nels are carried out in the frequency domain. An alternative is to filter in the
time domain, which is also described in [1]. Time domain prediction is in-
vestigated in e.g. [38]. In [39], the Kalman predictions presented here was
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compared to the time domain predictions for real measured channels. The
results showed no big difference between the two alternatives.

Channel predictions through linear filtering has been investigated in e.g.
[1, 19]. In these works, the predictability of radio channels seems to be in the
range of a couple of tenths of the carrier wavelength. However, theoretical
results suggest that a band limited signal should be infinitely predictable [15,
16]. There are two large differences between the theoretical results and the
practical results. First, perfect prediction requires perfect knowledge of the
channel statistics, however in reality this must always be estimated. Noise
will be included in the training data, i.e. the data that is used to estimate the
model, and even though the influence of noise can be suppressed by averaging,
some error will always remain. In addition, the training data will always be
time limited. Second, although the physical fading radio channel may be band
limited (to the maximum Doppler frequency), the effective radio channel as
seen from the user is not. As the received signal is always time limited, it
cannot be band limited in the Doppler frequency domain.

In [17] it was shown that, for the theoretical channels described by [18] and
[40], the one step prediction error could be made very small if only Gaussian
noise is included. Section 3.4 will discuss what this means for a longer pre-
diction horizon, and we will see that even when the channel is almost band
limited (only a small part of the spectral energy is outside the band limit) long
range predictability is infeasible.

3.2 Mathematical background
The majority of the work included in this thesis focuses of estimating fad-
ing OFDM radio channels through Kalman filtering, Kalman prediction and
Kalman smoothing. The Kalman filter requires a state space model of the sig-
nal that is to be estimated, which in this case consists of narrow band channels
(subcarriers) represented by complex numbers. The state space model repre-
sents the assumed statistics of the small scale fading of each subcarriers. For
this section we shall assume that these models are known, and then in Sections
3.3 and 3.4 will go into the issues with estimating models.

Let us assume that a vector of N complex-valued zero mean narrow band
channels hτ ∈CN×1 can be described by a discrete time wide sense stationary
AR state space model

xτ+1 = Axτ +Bwτ ,

hτ = Cxτ ,

Q = E[wτw∗
τ ],

Π = E[xτx∗τ ],

(3.1)
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which describes its evolution over time. Here, wτ ∈ CN×1 is a zero mean
vector of white Gaussian noise with time independent autocorrelation Q, de-
noted process noise, and xτ ∈ CNnAR×1 is the state vector which is assumed
to be independent of wτ . The matrices A ∈ CNnAR×NnAR , B ∈ CNnAR×N and
C ∈ C

N×NnAR are time independent state space matrices and nAR is the model
order of an AR model that is used to represent the temporal correlation of a
single channel component, which will be further discussed in Section 3.3. The
integer time index τ represents the OFDM-symbols when pilots may be sent.

In a situation where xτ is perfectly known, the extrapolation of the state
vector one step into the future, xτ+1, would consist of two terms: The term
Axτ , which would be known, and the term Bwτ , for which only the second
order moments, represented by Q, would be known. This last term represents
what is new and unknown at time τ +1 in the state vector xτ+1.

As the process noise is assumed to be zero mean Gaussian, the Maximum
Likelihood (ML) estimate of the second term would be an all zero vector, and
the one step prediction error of hτ+1 would become CBwτ . As was shown in
[15, 16], the one step prediction error for band limited signals can be forced to
be zero. The next state vector must then be perfectly described by a number
of past state vector and so Q = 0 in such a state space model.

Furthermore, let us assume that a yτ ∈ CK×1 represents a vector of pilot
measurements at time τ at K transmission resources where only known pilots
were transmitted. The entries of yτ may represent measurements at different
pilot bearing time-frequency resources and/or at different receive antennas.
The measurement process is modelled by

yτ = Φτhτ +nτ (3.2)

where Φτ ∈CK×N is a pilot matrix and nτ ∈CK×1 represents the sum of noise
and interference, e.g. from base stations not considered in the cluster, which is
assumed zero mean with covariance matrix R = E[nτn∗

τ ] of full rank. It will,
unless otherwise specified, be denoted measurement noise.

It is worth noting that the estimations that are evaluated here are solely
based on pilot measurements of the channel. These estimates could be further
improved upon by using the transmitted data symbols as well. In such a case,
the pilot based channel estimate will first be used to determine which symbol
has been sent, e.g. through ML detection. As only a discrete number of sym-
bols can be sent (the number is determined by the modulation format), the ML
estimated symbol can then be used as a pilot to re-estimate the channel. This
process can be repeated iteratively if desired.

The aim is now to produce an MSE optimal estimate x̂τ of the state vector
xτ (and thereby of hτ = Cxτ ), based on the measurement yτ and on all other
available relevant information.

The state space model (3.1) represents the a priori information, along with
an estimate of the state space vector x̂τ−1 and an error covariance matrix of
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this estimate
Pτ−1 = E[x̃τ−1x̃∗τ−1], (3.3)

where the estimation error x̃τ−1 = xτ−1− x̂τ−1 is uncorrelated to the estimate.
As the state space vector is a sum of weighted independent complex-valued
white Gaussian zero mean vectors, through (3.1), it is in itself a zero mean
complex-valued white Gaussian vector. Therefore, in the case that no other
estimate is available, the best a priori guess of the state space vector would be
its mean value, i.e. an all zero vector and Pτ−1 = Π. In fact, this is a way to
initiate the filter. Other options for initiating the Kalman filter are discussed in
Paper I.

Based on the a priori information and the measurement (3.2), an a posteriori
MSE estimate is given by the recursive set of matrix difference equations,
know as the Kalman equations

x̂τ = Ax̂τ−1+Kτ(yτ −JτAx̂τ−1), (3.4)

Pτ = (I−KτJτ)(APτ−1A∗+BQB∗), (3.5)

Kτ = (APτ−1A∗+BQB∗)J∗τ (R+Jτ(APτ−1A∗+BQB∗)J∗τ)
−1 , (3.6)

ĥτ = Cx̂τ , (3.7)

where Jτ = Φτ C and ∗ denotes the conjugate transpose. The matrix Kτ ∈
NnAR × K is known as the Kalman gain and through (3.4) it adjusts the a
prior estimate, which is given in form of the one step prediction based on
the previous state vector estimate Ax̂τ−1, by weighting the error of the one
step prediction of the measurement, that is produced by using ĥτ = CAx̂τ−1
which is given by yτ −Φτ ĥτ = yτ −JτAx̂τ−1.

The focus here will be on the information that we gain from equations (3.4)-
(3.7) while the details on how to derive (3.4)-(3.7) are given in e.g. [1, 10, 36,
37]. For more information on Bayesian inference, the reader is referred to
[41].

The Kalman filter is optimal in the sense that it weights all available infor-
mation in order to get the best estimate (with respect to the MSE). Therefore,
the conclusions that can be drawn from equations (3.4)-(3.7) are in accordance
with what most people intuitively would expect.

If the previous estimate of the state vector is very inaccurate (compared to
the the power of the measurement noise and the process noise), then Pτ−1 will
be large and, by (3.4) and (3.6), the estimate of the state vector will be based
almost purely on the measurement. If the opposite is true and the state vector
estimate is accurate, then the Kalman gain will depend on the ratio between
the powers of the measurement noise nτ and the process noise wτ .

When the process noise is large compared to the measurement noise, then
the a posteriori estimate will be based on the measurement to a larger extent
and if the measurement noise is large compared to the process noise, the a
posteriori estimate will be primarily based on the a priori information. Both a
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large measurement noise vector and a large process noise vector will increase
the error of the a posterior estimate, through (3.5)-(3.6). Likewise, a large
error in the prior estimate will in general cause a large error in the posterior
estimate.

3.2.1 Predictions and smoothing
In the pilot examples in Section 1.2.1 it was shown that some hypothesis is
needed for how channel components that are not directly related to time-
frequency resources with pilots are related to the measurements yτ . In a
Kalman filter, the dynamic state space model (3.1) fulfills that purpose. Wher-
ever no direct measurements are available, model based extrapolation or inter-
polation is used.

When there is no available pilot measurement at time step τ , e.g. if the
channel that is to be estimated is in the future or if no uplink pilots are trans-
mitted during e.g. a downlink frame in a TDD system, this can be described
by setting the pilot matrix Φτ to an all zero matrix. Then equation (3.2) gives
yτ = nτ and since Jτ = Φτ C = 0, the Kalman gain will by (3.6) be an all zero
matrix. Then the estimated state vector obtained only from an extrapolation of
x̂τ−1 and the corresponding error covariance matrix become

x̂τ |τ−1 = Ax̂τ−1,

Pτ |τ−1 = APτ−1A∗+BQB∗.
(3.8)

Here, the notation τ1|τ2 is introduced to denote an estimate of the state vector
at time τ1 given measurements up until time τ2.

The one step prediction in (3.8) is simple to extend to a multistep prediction
by continuing to assume that the pilot matrix is an all zero matrix. We then
obtain

x̂τ |τ−m = Amx̂τ−m,

Pτ |τ−m = AmPτ−m (A∗)m +
m−1

∑
i=0

AiBQB∗ (A∗)i .
(3.9)

The corresponding channel prediction estimate and prediction error covariance
matrix of the channel estimate are given by

ĥτ |τ−m = Cx̂τ |τ−m, (3.10)

and

Γτ |τ−m = E[
(
hτ − ĥτ |τ−m

)(
hτ − ĥτ |τ−m

)∗
] = CPτ |τ−mC∗, (3.11)

respectively.
A great advantage to the Kalman filter, as compared to other linear filters is

that the error covariance matrix of the state vector is part of the "package deal",
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i.e. it is calculated as part of the Kalman equations (3.4)-(3.7). This informa-
tion can be used for example in a multi-antenna transmit precoding stage to
ensure that poor channel estimates have less impact on the final solution than
accurate channel estimates. This will be discussed further and utilized for
robust precoding for CoMP JT in Section 4.2.

Prediction is required when you need to estimate the channel before you
have access to measurements of it. It will in general result in a prediction that
is worse than the filter estimate (3.7). If one on the other hand has the oppor-
tunity to wait with estimating the channel until some more pilot measurements
are available, then a smoothing estimate ĥτ |τ+m for m > 0 can be obtained.

One use of smoothing is to improve upon the accuracy of a filter estimate.
Another use, that will be the focus of Paper V, is to obtain channel estimates
at time steps τ at which no pilots are available, by using both past and future
measurements.

There are two standard ways to perform channel smoothing. One option is
by extending the state vector and including all future states up until the point
when there are no more measurements available.

A second option is to use two filters. The explicit details on how to do this
are given in Paper V. The basic idea is that the first filter calculates the filter
or prediction estimate of the channel based on all available measurements up
until the time τ of the estimate by (3.4)-(3.7). Then a second filter uses a time
reversed state model and performs a backward recursion to estimate the state
vector of the time reversed system at time τ + 1 based on all future available
pilot measurements. This is then extrapolated through the time inverted state
space model into a one step backwards prediction, similar to the forward pre-
diction (3.8). Through this, we obtain a channel estimate based on the future
measurements up until a given time T which we denote ĥτ |τ+1,...,τ+T . As-
suming that this estimate has a covariance matrix Γτ |τ+1,...,τ+T , the combined
smoothed channel estimate is given by an MSE optimal weighting of the back-
ward and forward estimates

ĥτ |τ+T = Γτ |τ+T (Γ
−1
τ |τĥτ +Γ−1

τ |τ+1,...,τ+T
ĥτ |τ+1,...,τ+T), (3.12)

with

Γτ |τ+T =
(

Γ−1
τ |τ +Γ−1

τ |τ+1,...,τ+T
−Π−1

)−1
. (3.13)

(The term Π−1, which represents prior information of the channel is included
in both Γ−1

τ |τ and Γ−1
τ |τ+1,...,τ+T

, and hence one of these must be removed in
(3.13).) For details, please see Sections 3.4.3 and 10.4 of [10].

3.2.2 Comments on complexity and the use of stationary filters
The complexity of the Kalman filter has been investigated in [1], where Table
4.1 specifies the complexity of the different operation steps in the Kalman
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filter, assuming that the state model (3.1) is set up on diagonal form. From this
work, we see that the highest complexity is related to calculating the Kalman
gain (3.6) and the error covariance matrix (3.5).

Fortunately, an important property of the Kalman filter is that for any sta-
ble time invariant system (3.1), with time invariant Φτ in the measurement
equation (3.2) the Kalman filter converges such that Pτ−1 → Pτ , when τ → ∞.
Moreover, it will converge regardless of whether the initial error covariance
matrix is known or not, i.e. even if P0 is not an accurate representation of the
second order statistics of the estimation error of ĥ0 the filter will converge,
although at a slower rate [10]. Therefore a large part of the on line complex-
ity can be reduced by calculating both the error covariance filter and through
that also the Kalman gain off-line. The error covariance matrix of the station-
ary filter P f can be found by setting P f = Pτ−1 = Pτ in (3.5), which gives a
discrete time algebraic Riccati equation

P f = (I−K f Jτ)(AP f A
∗+BQB∗),

K f = (AP f A
∗+BQB∗)J∗τ

(
R+Jτ(AP f A

∗+BQB∗)J∗τ
)−1

.
(3.14)

Figures 3.1 and 3.2 illustrate the convergence of Kalman filters for two dif-
ferent types of AR models. These depict the difference between the covariance
matrix of the one step prediction error when the filter error covariance matrix
is calculated through the filter recursions (3.4)-(3.6) and when it is found by
the stationary solution to the Riccati equation, where Pp denotes the error co-
variance matrix of the one step prediction of the stationary filter given by

Pp = AP f A
∗+BQB∗. (3.15)

We can see that the filter converges fairly quickly, especially with a Doppler
spectrum that is relatively flat. As the AR model has to be based on training
data, that same training data set can be used to ensure that the filter converges
off-line before it is to be used.

3.3 Model estimation
The model (3.1) must be estimated before the Kalman filter can be used. The
work here is based on AR modeling based on the Yule Walker equations, see
e.g. [42], as this was shown to give the best estimation performance in [1].

In general the accuracy of the model will improve the more information that
is available. If the channel is approximately wide sense stationary then the
more past channel data that is included in the training data, the better the AR
model will be. For stationary (non-moving) users, this assumption is in general
valid over a long time window. Channels to stationary or very slow moving
users are also fairly easy to estimate (and predict) with very good accuracy
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Figure 3.1. The maximum norm of Pτ|τ−1 −Pp normalized by the max norm of Pp,
where Pp is the one step prediction error that obeys the algebraic Riccati equation.
Results are shown for different SNR of the pilot measurements by (3.2). The system
in (3.1) is a fourth order AR model for a single channel tap hτ with the poles in
0.82±0.29i and 0.70± 0.10i, which gives an almost flat Doppler spectrum similar to
that used in [40] (but not band limited). Further details are given in Section 2.3 of
Paper I.
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Figure 3.2. The maximum norm of Pτ|τ−1 −Pp normalized by the max norm of Pp.
Results are shown for different SNR of the pilot measurements by (3.2). The system
in (3.1) is a fourth order AR model for a single channel tap hτ with the poles in 0.91±
0.35i and 0.86± 0.33i, which gives a Doppler spectra similar to the Jakes spectrum
[18] but not band limited. Further details are given in Section 2.3 of Paper I.
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as their channels remain approximately constant, so many past measurements
can be combined to determine their present state.

The need for more advanced estimators arises primarily when users are
mobile. For these users, the small scale fading can only be considered a
wide sense stationary process while the shadow fading statistics (the num-
bers and powers of the contributing multipaths) remains relatively constant.
Through the measurements used in Papers I and II it could be observed that
for pedestrian users and at a carrier frequency of 2.66 GHz, over a time of
approximately on second, the assumption of a wide sense stationary system is
relatively sound.

This section provides a brief overview of how to estimate the parameters
of the state space model in (3.1). For the full details on how to estimate this
model, please see Section 3 of Paper I.

3.3.1 Estimation of the parameters of the state space matrices of
one channel element

The AR model that represents the small scale fading is estimated based on
training data. What is considered training data may vary. When a new user
enters a system, then the channels can be estimated by e.g. a ML estimate.
These can then be used as training data to find the autocorrelation function of
each individual component in the channel vector, hi,τ

Rh(t) = E[hi,τh∗i,τ−t]. (3.16)

Here, hi,τ is an individual element of the channel vector hτ .
Alternatively, all available pilot and data measurements can be demodulated

and used to estimate the channels. The sequence of estimated channels can
then be further smoothed and used as training data to find an AR model that in
turn is used to filter the original data.

The relation between an AR model of one channel tap hi,τ of order nAR

hi,τ =−a1hi,τ−1− ...−anAR
hi,τ−nAR

+ vτ , (3.17)

and the autocorrelation function (3.16) is given by the Yule-Walker equations

−Ya = z, (3.18)

where a is a vector of the AR coefficients aT = [a1, ...,anAR
] and

Y =

⎡
⎢⎢⎢⎣

Rh(0) R∗
h(1) . . . R∗

h(nAR −1)
Rh(1) Rh(0) . . . R∗

h(nAR −2)
...

...
. . . . . .

Rh(nAR −1) Rh(nAR −2) . . . Rh(0)

⎤
⎥⎥⎥⎦

zT =
[
Rh(1) Rh(2)

... Rh(nAR)

]
.

(3.19)
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By inverting the matrix on the left hand side, the problem of estimating a can
be solved, so that the variance of the one step prediction error, which equals
the driving noise term vτ in (3.17), is minimized.

The poles of the AR process (3.17), i.e. the roots of the polynomial

znAR +a1znAR−1 + ...+anAR
,

represent peaks in the Doppler spectrum of the estimated model. A pole close
to the unit circle represents a very narrow-band peak, which could for example
be a strong LOS component, whereas a pole further inside the unit circle will
provide a wider peak. For a strictly band limited signal, all poles will be placed
on the unit circle.

The small scale fading could also be modelled by an Autoregressive Mov-
ing Average (ARMA) process. Then the zeros of such a model could be used
to suppress some parts of the Doppler spectrum. However, while the AR pa-
rameters can be found by a closed form solution of the linear problem (3.18),
estimating the parameters of an ARMA model based on training data of the
past channel realizations pose a non linear estimation problem, which may be
solved by an iterative optimization algorithm. ML estimation is the most com-
monly used framework [42]. Comparisons with ARMA models are outside
the scope of this thesis.

3.3.2 Modelling the correlation between channel components
When the AR coefficients are found, each individual channel element can be
set up on state space form, as described in Section 3 of Paper I. By extenting
the state vector to include the state vectors for all channel elements, the model
(3.1) is obtained if the same AR order nAR is used to describe all channel
components.

The correlations between the different channel components are addressed
by the covariance matrix Q of the process noise. Estimation of the process
noise covariance matrix is a nontrivial problem, for which several solutions
are proposed and compared in this thesis.

When the state space model is on diagonal form and the channel model
is a perfect representation of the temporal correlation and, furthermore, the
covariance matrix of the channel vector Rh = E[hτh∗

τ ] is perfectly known,
then the process noise covariance matrix can be found through [1]

Q = Rh �C(B1B∗� (1−diag(A)diag(A)∗))C∗, (3.20)

where diag(A) is a column vector containing the diagonal elements of A, �
denotes elementwise division, and 1 is a matrix of ones.

The expression (3.20) provides a good choice also when using imperfectly
estimated state space matrices in (3.1) under special circumstances. These
include the case when all channel components can be assumed to be identically
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distributed, e.g. MIMO channels as in [1]. They also include cases when the
channel components are uncorrelated, e.g. for different site antennas as in
Paper I. The details of why these special circumstances provide a positive
definite matrix for Q are provided in Appendix C of Paper I.

However, the channels are in general neither identically distributed nor un-
correlated, e.g. in the case of a fixed grid of beams, which will be further
discussed in Section 4.1 and Paper IV. In addition, we cannot expect our esti-
mates of the state space matrices to perfectly fit the data. Under such general
conditions, the solution to (3.20) may provide an estimate of the process noise
covariance matrix that is non-positive definite. Such an error will destroy the
convergence of a Kalman filter.

In Paper IV, an investigation of different heuristic ways to estimate the co-
variance matrix of the process noise are evaluated and compared to when it is
optimized through a non convex optimisation scheme of high complexity. It
turns out that the optimisation tends to end up at local minima and that none
of these locally optimal solutions performed better than the heuristic solutions
suggested in Paper IV.

3.4 Limitations of predictability
As mentioned previously, although the physical radio channel may be band
limited by the maximum Doppler frequency, the model of the radio channel
is based on time limited and noisy training data. Because of this, infinite pre-
dictability is not possible. This section focuses on the predictability of a single
channel component, i.e. the channel vector will only include a single element,
which will below be denoted hτ . The small scale fading of the channel is
modelled by an estimated AR model.

For band limited signals the solution to the Yule-Walker equations (3.18)
can be numerically difficult to find, as the matrix on the left hand side of the
equation may be poorly conditioned, leading to numerical errors even for a
rather low model order . One straightforward way of eliminating the numerical
errors arising from the use of inverting the matrix in (3.18), which was used in
[17], is by regularization. By adding a small positive number to the diagonal
elements of the matrix Y, i.e. by replacing R(0) by R(0)+ε where ε is a small
positive number we obtain a more well conditioned matrix. Then, equation
(3.18) thus becomes

−(εI+Y)aε = z, (3.21)

where aε represents the regularized solution. This corresponds to the situation
when the past channel realizations are perfectly described by the autocorre-
lation, except for some small white measurement noise. In real systems, the
regularization term will always be present to some extent, because the effec-
tive channel that we see at the receiver side will always include some residual
thermic noise, interference and other unmodelled components.
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Figure 3.3. An illustration of the Doppler spectra of the nAR = 128 order channel
models that has been used to generate the simulated channels (black solid lines). This
is given by solving (3.21) using ε = 10−7 with the Jake’s channel model (3.22). The
figure also illustrate the Doppler spectra of channel models calculated by (3.21) using
ε = 10−5 and AR models of orders nAR = 4 (dotted line), nAR = 16 (dashed-dotted
line) and nAR = 64 (dashed line).

To study the effect of different factors on the feasible channel prediction
horizon, a channel has been simulated using an AR model of order nAR = 128.
The model of the simulated data is given by solving (3.21) with ε = 10−7

and where the autocorrelation function is given by the Jake’s channel model
described in [18] where the autocorrelation function is given by

Rh,J(t) = J0(2π fdTpt). (3.22)

Here, J0 is the zeroth order Bessel function on first kind, fd is the maximum
Doppler frequency and Tp is the pilot sampling interval.

This corresponds to a NLOS scenario where the mobile user is surrounded
by uniform scatters. When the channel is LOS or when it has one or a few
strong and very distinct components, then the poles of the discrete time model
will tend to be placed very close to the unit circle, and the resulting Doppler
spectrum will be very narrow. For such scenarios, the prediction horizon can
be pushed further, see [1].

Note that this means that the simulated channel is not strictly band limited,
but it is close enough to approximate it as band limited in comparison to the
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channel models that will be used in the Kalman filters as comparisons. The
Doppler spectrum of the simulated channel is shown in Figure 3.3. This figure
also shows the Doppler spectra of models that are gained from solving (3.21)
for lower order channel models, nAR = {4,16,64} with ε = 10−5. These three
models all have Doppler spectra that are much less limited compared with
the Doppler spectrum of the simulated channel. As ε = 10−5 corresponds
to a training data NMSE of −50 dB, it is highly unlikely that it would be
possible to provide a better estimated model than these. In fact, training data
noise corresponding to ε = 10−5 is only reasonable for very good pilot SNR
and strong correlation between channels at different OFDM subcarriers such
that the noise can be even further suppressed by utilizing measurements from
adjacent subcarriers.

3.4.1 The effects of noisy training data
Figure 3.4 shows how the prediction NMSE is affected by having noisy train-
ing data. Here, a channel of 1000 samples, spaced by 0.05 of the carrier
wavelength (a total of 50 carrier wavelengths in space) is simulated. Based on
these samples, pilot measurement signals were generated through (3.2) with
a pilot SNR of 100 dB (practically noise free). The channels were then pre-
dicted through a Kalman filter using (3.4)-(3.10), where the model is provided
by a model estimated through a noisy training data sequence of infinite length,
i.e. through (3.21), where the autocorrelation is perfectly known and where
the noise level of the training data is modelled by ε = {10−5,10−3,10−1}.

The results are shown for model orders of nAR = {4,16,64,128}. For a
realistic setting, a model order of nAR = 64 is too high. There are two main
reasons for this. The first is that the on-line complexity of the Kalman filter
grows with the square of the model order, and if many channel elements are to
be estimated jointly, then the complexity with nAR = 64 will be too large.

The second reason is that the model used to estimate a given set of channel
data is based on past channel data. If the models are updated frequently, then
the most dominant features of the Doppler spectrum will be similar, however
on a more detailed level, there will be differences. If a very high model order
is selected, then the statistics of the training data will be modelled. As these
details differ from the channel that is to be estimated, a high model order can
actually lower the prediction performance. An investigation in [1] showed that
for slowly moving users, a fourth to sixth model order was a good choice. A
similar study in [43] suggested that for vehicular users at a speed of 50 km/h,
a second order model order was better. Section 4.2 of Paper I shows some
examples of this model order selection tradoff.

There are two main insights to gain from Figure 3.4. First, even if the au-
tocorrelation function could be perfectly estimated except for some low noise
term (with ε = 10−5), prediction beyond half of the carrier wavelength is in-
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Figure 3.4. Prediction error NMSE for different model orders and training data noise
levels. Here, the channel is simulated based on an nAR = 128 order AR process found
by solving (3.21) using ε = 10−7 and the autocorrelation function of the Jake’s channel
model (3.22). The models used in the Kalman filters are found by solving (3.21)
using ε = 10−5 (triangles), ε = 10−3 (diamonds) and ε = 10−1 (pentagrams), with
the autocorrelation function of the Jake’s channel model (3.22). Results are shown for
model orders of nAR = 128 (solid lines), nAR = 64 (dashed lines), nAR = 16 (dashed-
dotted lines) and nAR = 4 (dotted lines) and with a pilot SNR of 100 dB (practically
noise free). The predictability given when the original process is used as a model in
the Kalman filter is added as an unmarked solid line for comparison. The prediction
horizon is given in terms of the carrier wavelength λ .
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feasible at reasonable model orders in a Jake’s fading like scenario. Second,
the gain of using a higher model order decreases as the training data becomes
noisier.

3.4.2 The effects of model order and measurement noise
From (3.1) it is clear that if xτ is known, then the uncertain part of the one
step prediction of the channel is CBwτ . We can also see from (3.9) that if the
system model is stable then the long range prediction error will depend on the
process noise, but not on the pilot measurement noise, as for a stable discrete
time system Am → 0 as m→∞, and the impact of Pτ−m on Pτ |τ−m will become
negligible as m increases.

It is relevant to ask for which prediction horizons the measurement noise is
influential.

To see how the SNR of the pilots affects the prediction NMSE compared
to the model order, the simulations are repeated for pilot SNRs of {10,20,30}
dB, with ε = 10−5. The results of these are shown in Figure 3.5.

A first observation from Figure 3.5 is that, while the pilot measurement
SNR is important for the short range predictions, the model order, and hence
the limitation of the Doppler spectrum is of higher importance for the long
range predictions. This confirms the intuition behind equation (3.9).

3.4.3 The effect of the amount of available training data
As seen in Figure 3.3 limiting the model order smears the estimated Doppler
spectrum. A similar effect is caused when the autocorrelation function is es-
timated based on a limited amount of training data (which is always the case
for a realistic scenario). The time limitation of the training data corresponds
to multiplying an infinitely long training sequence with a window function in
the time domain, which will cause a convolution of the Doppler spectrum with
a sinc-function, hence smearing the spectrum. We can therefore guess that the
effect of having access to limited training data will cause similar effects as
having a limited model order.

In Figure 3.6 the effect that having limited training data has on the pre-
dictability of a radio channel is studied. For this purpose, an additional T

channel samples were simulated based on the nAR = 128 order AR process
given by solving (3.21) with ε = 10−7 and the autocorrelation function of the
Jake’s channel model (3.22). From these, the autocorrelation function was
estimated, and the models used for the Kalman filters were then calculated
through (3.21) with ε = 10−7, i.e. assuming a training data NMSE of −50 dB.

As the estimation of the autocorrelation varies between the different sets
of training data, especially when the training data window is short, the simu-
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Figure 3.5. Prediction error NMSE for different model orders and pilot measurement
SNR levels. Here, the channel is simulated based on an nAR = 128 order AR process
found by solving (3.21) using ε = 10−7 and the autocorrelation function of the Jake’s
channel model (3.22). The models used in the Kalman filters are found by solving
(3.21) using ε = 10−5, with the autocorrelation function of the Jake’s channel model
(3.22). Results are shown for model orders of nAR = 64 (dashed lines), nAR = 16
(dashed-dotted lines) and nAR = 4 (dotted lines) and for pilot SNR of 10 dB (stars),
20 dB (crosses) and 30 dB (pluses). The prediction horizon is given in terms of ther
carrier wavelength λ .
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Figure 3.6. Prediction error NMSE for different model orders and pilot measurement
SNR levels. Here, the channel is simulated based on an nAR = 128 order AR process
found by solving (3.21) using ε = 10−7 and the autocorrelation function of the Jake’s
channel model (3.22). The models used in the Kalman filters are found by first esti-
mating the autocorrelation function Rh in (3.22) based on a limited amount of noise
free training data and then solving (3.21) using ε = 10−5, with the estimated auto-
correlation function. Results are shown for model orders of nAR = 64 (dashed lines),
nAR = 16 (dashed-dotted lines) and nAR = 4 (dotted lines) and for training data sets
of T = 50 samples, corresponding to 2.5 wavelengths in space, (circles), T = 500
samples, corresponding to 25 wavelengths in space, (squares) and T = 5000 samples,
corresponding to 250 wavelengths in space (triangles). The prediction horizon is given
in terms of ther carrier wavelength λ .
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lations were repeated 150 times and the NMSE provided in Figure 3.6 is the
average over the 150 simulations.

It is clear that a limited amount of training data severely affects the pre-
dictability of the radio channel. Predictions beyond 0.2 of the carrier wave-
length will not possible for a prediction NMSE below −8 dB when the training
data is limited to T = 5000.

An interesting observation is that it is no longer necessarily the highest
model order that provides the lowest prediction NMSE. For example, for a
very limited set of training data (of T = 50 samples), it is better to choose a
low order model (nAR = 4), than to chose a higher order (nAR = 16) 1 . The
reasoning behind this is that the higher order terms of the estimated autocor-
relation function will be less correct if few training data samples are available.
These inaccuracies in the higher order terms of the estimated autocorrelation
function will cause large errors in a high order model. It is only for a very long
training data set (T = 5000) that it is actually beneficial to use a model order
of nAR = 16 rather than nAR = 4.

For many vehicular applications, it is likely that the set of useful training
data is very limited, as the radio channel, in these cases, can only be consid-
ered wide sense stationary over a short time window. For example, consider a
vehicle moving at 50 km/h, a pilot sampling time of 5 ms and a environment
that can be considered quasi static in intervals of 10 meters (which would cor-
respond to 87 times the carrier wavelength in a system with carrier frequency
fc = 2.6 GHz), then we have access to 72 pilot samples to use as training data.
On the other hand if the user moves at pedestrian speed, e.g. 5 km/h, we have
access to a tenfold increase of training data (500 samples).

To summarize the findings of Figure 3.4-3.6, the first order effect that lim-
its the predictability of linear channel predictions is the quality and available
amount of reliable training data. This is a fundamental limitation to the pre-
dictability of a radio channel of a vehicular users, because the channel can
only be assumed wide sense stationary over a limited area (which depends on
the fading environment) and the training data will only be useful as long as the
model based on this training data is used to predict channels within this area.

A the second order effect that limits the predictability of a radio channel is
the model order. However, here it is important to know that a larger model
order does not necessary mean better prediction performance. In fact, if the
available amount of training data is low, then the a low model order is to prefer
to a high order model.

The measurement noise of the pilot measurements comes in as a third or-
der effect for longer prediction horizon, but is important for short prediction
horizons.

1Note that there is no model of order nAR = 64 for T = 50, as the time lag of the estimated
autocorrealtion function is limited by the amount of available training data.

61



3.5 Design choices
This section will include a brief summary of some of the design aspects that
are addressed in Section 4 of Paper I.

3.5.1 Pilot signal design and the use of coded non orthogonal
pilots

Similar to e.g. [44], results of Paper I suggest that resource orthogonal pi-
lots are to be preferred over code orthogonal pilots. However for the massive
MIMO FDD downlink scenario considered in Paper IV, both of these alter-
natives give rise to a large overhead, if the number of pilot resources used
within an approximately flat fading time frequency region equals the number
of downlink channels. The non orthogonal pilot scheme that is used in Pa-
per IV instead permits that pilots over K pilot bearing resources are linearly
independent for up to K selected channels out of all the channels included in
hτ .

As an example, consider a downlink channel vector hτ ,flat with N = 9 el-
ements representing flat fading channels from nine antenna ports, to a single
antenna receiver. Each antenna port either controls one antenna or one beam
in a fixed grid of beams, at the transmitter side. Each channel is here assumed
constant (flat fading) over a total of K = 6 pilot bearing subcarriers. As the
channels are assumed flat fading, the measurement equation (3.2) is adjusted
to

yτ = Φτ ,flathτ ,flat+nτ . (3.23)

where the pilot matrix Φτ ,flat is of dimension K ×N. Let this pilot matrix be
given by

Φτ ,flat =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 1 1 −1 0 −1 −1 1
0 0 −1 0 −1 0 −1 0 −1
−1 0 −1 0 0 0 1 0 0
−1 0 −1 0 −1 0 1 −1 −1
0 −1 0 0 −1 0 0 −1 0
0 1 0 −1 0 0 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.24)

Furthermore, assume that a number of ≤ 6 channels, have a larger gain than
the remaining channels, and are collected into a vector hτ ,flat,rel of relevant
channel components. The remaining weak (non relevant) channel components
are collected in the vector h

τ ,flat, ¯rel. The use of the notations relevant and non
relevant implies that the weak channels are not relevant for the application,
and therefore do not need to be estimated.

The measurement (3.23) can then be rewritten as

yτ = Φτ ,flat,relhτ ,flat,rel+Φ
τ , ¯relhτ ,flat, ¯rel+nτ , (3.25)
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where Φτ ,flat,rel and Φ
τ ,flat, ¯rel are matrices including the column vectors of

Φτ ,flat that are associated with the relevant and non relevant channel compo-
nents respectively.

The second term of (3.25) can now be viewed as a second noise term. Under
the assumption that the non relevant channel components are weak as com-
pared to the strong channel components, a reasonable channel estimate can
be constructed using the pseudo inverse (denoted by †) of the pilot submatrix
associated with the relevant channel components

ĥτ ,rel = Φ†
τ ,flat,relyτ . (3.26)

The pseudo inverse can be calculated, as the matrix Φτ ,flat in (3.24) has been
designed so that the column vector of any submatrix Φτ ,flat,rel with ≤ 6
columns has full rank.

In the example above, no correlations are taken into account. However, the
Kalman filter application in Paper IV takes correlation in time, frequency and
space into account through the use of the state space model (3.1). When the
temporal correlation is considered it can to some extent compensate for the
lack of pilots in order to estimate more than K channel components. However,
an investigation of the quality of such estimations is outside the scope of this
thesis.

If the channel on the different pilot bearing resources are not flat fading,
then the channel vector hτ will include one element per pilot bearing resource
and antenna port, as in the examples in Section 1.2.1.

The matrix in (3.24) provides an example of how a pilot matrix may be
designed using the modulation alphabet {−1,0,1} such that any number of
up to K different channel components can be selected while ensuring that the
pilot matrix Φτ ,flat,rel has full rank. As the number of channel components N

increases, the task of finding such a matrix may become increasingly difficult
unless the pilots are allowed to take on more values. In Paper IV, the pilots
sent over the n’th channel on the k’th resource takes on complex values e jθk,n

where the phase values θn,k are found off-line to ensure that most submatrices
Φτ ,flat,rel that consists of a number of ≤ K of the column vectors in Φτ have
a low condition number. That in turn means that regardless of which channel
components are the strongest for a user - and by extension regardless of where
in the system a user is positioned - it will be able to estimate its own relevant
channel components.

To further ensure that the pilots support as many of the potential users as
possible, cycling pilots are used. This means that a set of different pilot ma-
trices Φτ ,flat are defined, and applied in a cyclic (repetetive) pattern. It is a
concept that was suggested for channel estimation based on uplink pilots in
[45] in order to increase orthogonality between user pilots. In Paper IV the
concept of cycling pilots is used to make sure that as many potential users as
possible will be able to estimate their relevant channel components.
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Figure 3.7. CDFs of the condition number of the pilot submatrix Φτ,rel for different
sets of 18 relevant channel components (i.e. different user positions) for three different
pilot matrices Φτ,flat defined by a parameter φ . Here, K = 18 and N = 72. The line
"Best choice" shows the CDF of the condition number that will be given if, for any
submatrix, all three choices can be considered and the best can be chosen. Further
details are given in Paper IV.

Figure 3.7 shows the distribution of condition numbers among the submatri-
ces of three different pilot matrices Φτ ,flat when K = 18, N = 72 and the phase

angles θk,n of the pilot signals e jθk,n are defined by a parameter φ through

θk,n = (kφ)n. (3.27)

All these three pilot matrices provide low condition numbers for most of the
submatrices Φτ ,flat,rel, hence most of the potential users will be able to es-
timate up until 18 relevant channel components, by using (3.26). However,
there are some submatrices that have poorer condition numbers.

If instead of selecting only one of these pilot matrices, all three are used in
a cycle, such that Φτ+3,flat = Φτ ,flat then at least one out of every three times
will give a well conditioned submatrix. If temporal correlation is used, e.g.
through a Kalman filter, then these well conditioned matrices can be used to
improve the estimates also for the other times. If temporal correlation cannot
be used, e.g. if there has not been any time to gain knowledge of the channels
temporal behaviour, then at least every third set of pilot measurements can be
used.

Including cycling pilots, means that the Kalman filter will become cyclo
stationary with Pτ+c = Pτ as τ → ∞ where c is the lenght of one cycle. The
error covarianc matrices and Kalman gains of the cyclostationary Kalman filter
can be found by solving an extented Riccati equation, see [1] for details. This
will increase the off-line complexity of the Kalman filter, but does not affect
the on-line complexity.
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3.5.2 Joint estimation of channels at adjacent subcarriers
The accuracy of the estimates obtained by a Kalman filer can be improved
by including channels for many correlated adjacent subcarriers in the chan-
nel vector hτ . The more subcarriers that are included, the more accurate the
estimate will be, if the noise components in (3.2) on different subcarriers are
uncorrelated. The Kalman filter can then reduce the noise influence by aver-
aging over subcarriers. However, estimating several subcarriers jointly comes
at the price of added complexity. The benefit of including more subcarriers
decreases with the number of subcarriers added and is depending on the finite
coherence bandwidth of the channel. If the coherence bandwidth is small, then
the added bonus of including many subcarriers will be small.

A way to avoid some of the extra complexity associated with including
many subcarriers is to use a post processing step that performs averaging of
channel estimates over subcarriers, for example by using a one dimensional
Wiener filter that utilize the frequency correlation. The input to this post pro-
cessing can be estimates that have been produced by a set of low complexity
parallel Kalman filters each of which only includes a few subcarriers.

In the case of downlinks of FDD massive MIMO that use the coded pilots
introduced in Section 3.5.1, it is important that the Kalman filters span the
number of subcarriers that are included within one pilot code block. Then
other measures may be needed to keep the complexity down. In Paper IV this
is handled by regarding the second term in (3.25) as a noise term. The noise
is then no longer white or Gaussian, which does affect the optimality of the
Kalman filter.

3.5.3 Where to position the filters and the feedback overhead in
FDD systems

Channel estimators for FDD downlinks may be physically located at the ter-
minals (users) or on the network side. In the former case, the estimates or pre-
dictions are fed back to the network over uplink control channels. In the latter
case, measurements need to be fed back, and the predictors operate based on
these measurements. The feedback load per predicted resource block per user
depends on the detailed system design used in these two alternatives. There
are different advantages to each of these alternatives. These are discussed in
Section 4.6 of Paper I.

An investigation of where to place the estimator in a CoMP JT setting was
performed in [46]. The authors found that in a centralized setup, with a cen-
tral unit calculating the joint beamformers, the placement did not affect the
gains. However, in a distributed scenario, it was found in [46] that gains were
increased if predictions were performed on the network side.

A benefit of locating the Kalman filters at the network side is that this often
allows for more sophisticated equipment, so a higher computational complex-
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ity might be allowed and so the number of jointly predicted subchannels can
be set high. In addition, the prediction quality of the users will vary less as the
difference in the different user equipments will affect the predictions less. If
would also allow the network side to easily adapt the prediction horizon.

On the other hand, if the channel estimators are located at the user side,
adaptive quantization schemes based on filtering or prediction performance
may be used. Then, if a user feeds back e.g. two predicted channels where
one of them is very accurate and the other is very inaccurate, the more accurate
channel may be quantized with higher granularity than the inaccurate channel.
Methods for compressing feedback data can be studied in e.g. [47, 48, 49].
If the channel is sparse in the time domain, then the reporting of only the
significant time domain taps of the channel, as suggested in [48], will be more
advantageous than source coding the frequency selective frequency domain
channels. In [49], the explicit feedback is evaluated in a similar manner using
compressed sensing, demonstrating its potential for sparse channel impulse
responses. In [47] early methods for compressing feedback were compared.

Moreover, scheduling and link adaptation decisions are today based on
quite coarse CQI. As the number of users considered for scheduling is of-
ten much larger than the number of users that is actually scheduled, it would
cause a large feedback overhead to feed back pilot measurements for all of the
potential users. If the channel estimators are located at the user side, and if
a small extra reporting delay is acceptable between scheduling and transmis-
sion, then the users may report complex channel gains only for the users/data
streams that have actually been scheduled. A similar concept has been pro-
posed in [50].

To keep the feedback overhead low is especially important in a massive
MIMO FDD system, as reporting back a large number of channels will add
to the already large overhead requirement. The grid of beams concept is im-
portant here as it will ensure that many channel components (the non relevant
channels) do not need to be fed back.
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4. Applications

MIMO downlink transmission techniques that serve multiple users are a part
of LTE 4G [8] and are becoming increasingly important in the study of future
systems. As MIMO transmit schemes rely on CSI at the transmitter [13, 51],
channel estimates of sufficient accuracy become crucial. This chapter will
focus on different MIMO downlink transmission scenarios that are candidate
techniques for 5G systems.

MIMO transmission to one user improves the link throughput, with a gain in
spectral efficiency that depends on the number of receiver antennas at the user
equipment and on the effective rank of the channel matrix. A large additional
part of the system gain of MIMO is associated with serving multiple users
simultaneously on the same resources. This is because the beamforming gain
that can be achieved from MIMO in an ideal case for one receiver with fixed
number of receiver antennas, with perfect CSI and perfect hardware, increases
the capacity logarithmically with the number of added transmit antennas. With
imperfect CSI and/or hardware the gain will saturate. By adding more users
when extra transmit antennas are added, each user may not receive increased
capacity but the sum-capacity can be increased linearly with the number of
antennas added. Multiuser diversity was first introduced in [52]. Since then,
the potential for multiuser scheduling gain has been thoroughly investigated
for single cell Single-Input Single-Output (SISO) transmission and for single
cell MIMO transmission, see e.g. [23, 24].

For the past decade, evolution of multiuser MIMO has moved in two main
directions: massive MIMO [23, 53, 54, 55, 56] and CoMP JT (also known as
network MIMO) and coordinated beamforming [57, 58, 59]. Each of these,
and combinations of them, have been identified as key enablers for the fifth
generation mobile system [39, 60, 61, 62]. The channel estimation challenges
of downlinks in such scenarios, with a very large number of antennas and radio
channels, have motivated the work presented below.

4.1 Channel estimates with non orthogonal pilots for
massive MIMO FDD systems

In massive MIMO downlinks the number of transmit antennas at the base sta-
tion is very large, which allows for very narrow beamforming during trans-
mission. This allows the system to potentially serve a very large number of
terminals (user equipments) within the same resources. Serving multiple users

67



will increase spectral efficiency, as long as the added data rate to a new user
is larger than the reduction in rates to other users caused by allowing an addi-
tional user to share the transmission resources.

It has been shown that, provided that an adequate CSI quality can be main-
tained, in an ideal scenario massive MIMO can provide a linear increase in
beamforming gain with the number of transmit antennas [54]. That is, the sig-
nal power in the Signal to Interference and Noise Ratio (SINR) increases lin-
early with each added antenna. However, the power of the interference caused
by the simultaneous transmission to other users depends on the cross correla-
tion between channels to the users that are scheduled to be jointly served.

If the users are few compared to the number of serving antennas at the base
station, then the channel vectors to each user (which consists of the channels
between that user and each transmit antenna) will be almost orthogonal with
high probability to the channel vectors of the other served users. In such a
scenario the user can be served without the need of interference mitigation.
Then, MRC can with high probability be used to increase the SINR linearly
with the number of added transmit antennas.

Although serving a small number of users compared to the number of trans-
mit antennas at the base station may be beneficial to avoid interference, it is
not necessarily the best in terms of maximizing the sum throughput. In fact,
due to the logarithmic relationship between SINR and capacity, it may be beni-
ficial to allow more interference (and hence lower SINR) in order to be able to
serve more users. An investigation of how many users to serve can be found
in e.g. [63].

An issue with massive MIMO in FDD systems, which has been pointed
out by [54] among others, is that it may come at the cost of a very large pilot
overhead. In order to secure accurate CSI, pilots are required to be sent regu-
lar intervals, and the most accurate channel estimates are provided by resource
orthogonal pilots, as shown in e.g. [64, 44]. However, in an FDD system pilots
must be transmitted in the downlink over each channel that is to be used for
the data transmission. The large number of antenna elements at the base sta-
tion would then cause a large overhead. As an example, assume that resource
orthogonal pilots should be transmitted every 5 ms and every 180 kHz, corre-
sponding to every 70’th OFDM symbol and every twelfth subcarrier in a 4G
system [8], from a massive MIMO base station. Then if the base station had
e.g 256 antenna elements, the overhead would be 30%, and it would increase
linearly with each added antenna at the base station.

This problem has led to a focus on TDD systems when it comes to mas-
sive MIMO. In a TDD system, the scheduled users can transmit pilots in the
uplink, and channel reciprocity can be used to gain estimates of the downlink
channels based on the uplink pilot measurements. Although TDD systems are
also limited, due to e.g. imperfections in channel reciprocity, limited transmit
power at the user, hardware impairments and lack of downlink interference
estimates [55, 62, 63, 65], they are a sound choice for implementation of mas-
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sive MIMO. For example, a recent measurement based investigation in Lund,
Sweden provided results in favour of TDD [66].

So the question arises: Why should we investigate massive MIMO in FDD
systems? The most important argument is that a large part of the spectrum
is presently allocated to FDD and will probably remain so for many years to
come. It would be unfortunate not to be able to take advantage of the potential
massive MIMO gains in these spectral resources. In [56], the authors identified
enabling massive MIMO for FDD systems as the "critical question" for future
research on the topic of massive MIMO. Solving the joint problem of pilot
design and channel estimation for massive MIMO in FDD systems would also
allow backward compatibility, which is a desirable feature for next generation
systems [67].

To be able to use massive MIMO in an FDD system, it is important that
the channels needed for adjusting the transmission scheme can be estimated
without introducing a large overhead, meaning that the use of non orthogonal
pilots becomes necessary. The solution should also be such that it supports a
large set of users with very different channel vectors, such that any user in the
system can be able to use pilot based measurements to estimate its relevant
channels.

As an additional more ambitious requirement, the work described in Paper
IV has added that the pilot and channel estimation scheme should also enable
joint estimation of channels from multiple base stations within a cooperation
cluster to support CoMP JT. In such a scenario, the total number of trans-
mit antennas becomes even larger, further complicating the use of orthogonal
pilots for each antenna within the cluster. In Paper IV, such a scenario is as-
sumed, with a set of FDD base stations, each with a massive MIMO antenna.
Such a problem becomes so challenging that it is hard to find a single design
principle, or algorithm, for solving it. Paper IV instead proposes to use a set
of tools and designs that work in synergy, and together provide a solution to
the problem.

As a first step, in Paper IV, a fixed grid of beams which has been proposed
in e.g. [68, 5, 69], is formed at each base station. The main reason for this
is that channels to a user from different antennas that are co-located will have
similar statistics. This will make it hard to separate them at the user when
non orthogonal pilots are used. By introducing a fixed grid of beams, where
each beam is controlled by an antenna port, the signal energy from each an-
tenna port is directed in different directions. Therefore they will experience
different shadow fading. From the perspective of a single user, some beams
will be strong and some will be weak [70]. The user then only has to esti-
mates its strongest channels, which will be referred to as its relevant channel
components.

The second step is to introduce coded (and non orthogonal) reference sig-
nals. The N beams within the cluster of coordinated base stations then send
different sets of pilots symbols in a set (pilot word) of K resources elements.
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The sets of N K-symbol words are the coded reference signals, which are
known to all users. In order to ensure that all users will be able to estimate
their relevant channel components, a vector containing the pilots transmitted
over K pilot bearing resources from one antenna port should be linearly in-
dependent to any set of vectors that contains the pilots transmitted by up to
K − 1 of the other antenna ports. Then, any user will be able to estimate up
to K relevant channel components by simple matrix inversion. An example of
such a pilot code was given in Section 3.5.1.

Although the above ensures that a matrix consisting of the pilot vectors of
up to K relevant channel components, denoted relevant pilot matrix, has full
rank, and is hence invertible, it does not ensure that all potential relevant pilot
matrices are well conditioned. Inversion of a poorly conditioned matrix may
cause small errors to have large significance. Pilot codes should therefore
be chosen off-line to ensure that as many potential sets of relevant channel
components as possible provide well-conditioned matrices.

For this reason, as a third step, the scheme investigated here utilizes cyclic
pilots, ensuring that the users that have relevant channel matrices with high
condition number will change over time and therefore all users should be able
to estimate their relevant channel components, by using some of the cyclically
changing pilot patterns.

As the fourth step, correlation in space, time and frequency among the chan-
nel components is used to improve channel estimates, compared to a simple
matrix inverse solution. The most advanced of the channel estimation schemes
investigated in Paper IV is the Kalman filter which utilizes all of these corre-
lations. However, such a Kalman filter for multiple massive MIMO downlinks
will have high complexity if all channel components are to be estimated, and
therefore a reduced Kalman filter, which estimates only the relevant channel
components for each user, is investigated as an alternative.

4.1.1 Relations to previous results
Other works that have looked into channel estimation for massive MIMO in
FDD include [71, 72, 73, 74, 75, 76, 77, 78]. Similar to the design of Paper IV,
these works assume non orthogonal pilots and utilize some type of correlation
to improve the estimates.

In the earliest of the works above, namely [71, 72], user specific pilot design
was suggested. Based on downlink transmission of these pilots, the terminal
generated an uplink feedback to the base station which then utilized Kalman
filters to estimate CSI. Another single user scheme, partially based on the use
of compressed sensing, is proposed in [73]. These concepts would demand
user specific pilot resources, so the overhead increases with the number of
users and the benefit achieved by using non orthogonal pilots decreases rapidly
as the number of users increase.
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Authors of [74, 75, 76, 77] instead optimize the pilots off-line to improve
the average channel estimation for the scheduled users. The required pilot
overhead would in [74, 75], increase with the number of active users. The
work of [76] assumes sparsity in the Channel Impulse Response (CIR) and
correlation between the channels from different antennas. This estimation
scheme does not provide gains when CIR are not sparse, which often occurs
in real channels [14].

These multiuser methods, though they are an improvement compared to the
single user case, still require the pilot pattern to be optimized each time new
users are scheduled. The solution presented here is based on the fixed grid of
beams and cycling sets of pilots, which do not have to be optimized for the
set of scheduled users and their channels. The combination of a fixed grid
of beams and cycling between fixed sets of coded pilot vectors will ensure
that most potential users can estimate their channels. Then, optimized pilots
need not be fed back and even users not yet scheduled for service can prepare
for transmission by estimating their channels based on the available downlink
pilots.

A somewhat related idea is proposed in [78] where pilots are transmitted
over a number of beams, lower than the number of transmit antennas at the
base station. This work focuses on estimating the strongest one or two beams,
claiming that this is sufficient to get close to full sumrate capacity gain. While
this may be reasonable for MRC transmission with high SNR and few users
(so that inter user interference can be ignored) it will not be adequate when
interference mitigation is necessary.

A fixed grid of beams, similar to that in [68, 5, 69] was investigated in
[66]. The authors found that for clusters of closely spaced users, or a hot
spot scenario, the performance with the grid of beam concept is reduced. This
problem is caused by using a fixed allocation of a low to moderate number
of beams that are designed to span the full cell area. The number of beams
serving a hot spot area might then become small and inadequate. A potential
remedy for that is to rearrange the fixed grid of beam on a slower time scale
as suggested in [69].

4.1.2 System design
The general proposed design is illustrated in Figure 4.2. Here, an OFDM
FDD system has a total of NPRC physical downlink radio channels between
the serving antennas and each single antenna user. The serving antennas may
all be set at the same location or, as in the simulations in Paper IV, distributed
among the base stations included within a CoMP cluster.

Many pilot symbol sets are possible. In the design investigated in Paper IV
the antennas are controlled by NCC antenna ports, each controlling a separate
beam in the fixed grid of beams.
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Here, the word fixed referers to fixed over a long time period, e.g. several
seconds. However, the fixed grid of beams can change whenever the distribu-
tion of users changes significantly, e.g. if an office building is empty during
night then the grid of beams can be adjusted such that it transmits little or no
energy into that building.

During the pilot transmission phase, each beam transmits a set of pilots over
K available downlink pilot bearing resources. This transmission is repeated in
time, with a frequency that in appropriate with respect to the mobilty of the
intended users. The pilot symbol that is transmitted by the n’th antenna port
on the k’th resource a time τ is given by

ϕτ(k,n) = exp( jθτ(k,n)), (4.1)

where (θτ(k,n) is a phase angle. Thus, all complex valued pilots are designed
to have the same power.

Based on pilot measurements (3.25) the relevant channels are estimated,
either directly at each of the M users, or at the base station based on fed back
measurements. If the users estimate the channel, then the CSI of the relevant
channel components is fed back, as depicted in Figure 4.1. In a second step,
the data transmission phase, the CSI is used to design a precoding matrix for
the antenna ports, e.g. through MRC.

The phase angles θτ of (4.1) need to be adjusted such that the pilots trans-
mitted over any set of up to K relevant channel components will form a rele-
vant pilot matrix Φτ ,rel with full rank, as explained in Section 3.5.1. For some
parameters φτ this can be achieved by setting the phase angles according to
(3.27). The real-valued scalar φτ is a design parameter that should be chosen
off-line to ensure that the requirement of full rank is obtained.

For the coding by (4.1) and (3.27), cyclic pilots, as described in Section 3.5.1
are implemented. These are then cycled with a period μ over time such that
φτ = φτ+μ . It is then likely that any subset of relevant channels will receive
a well conditioned relevant pilot matrix for at least one of the cycling pilot
codes. Over a time period of μ , the user will have at least one good estimate,
and a number of reasonably good estimates. If temporal correlation is ac-
counted for, then this good estimate can also be used to improve all estimates.

Note that introducing cycling pilots does not introduce any additional over-
head, nor does it require that all users are equipped with estimators that can
utilize temporal correlation. Channel estimators that utilize the temporal chan-
nel correlation will be able to improve their estimate by combining estimates
obtained with different subsequent pilots code vectors, thereby reducing the
influence of badly conditioned cases. In particular, the Kalman filter (3.4)will
downweight the influence of measurements yτ for which the pilot matrix Φτ

is badly conditioned. Other estimators can still use the pilots at each time.
In addition to the non orthogonal superposed pilots that are transmitted fre-

quently, the work in Paper IV also suggests that resource orthogonal pilots
are transmitted over all beams sparsely, e.g. every 0.5 s, see Figure 4.2. As
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Figure 4.1. Pilots are transmitted in the downlink over a fixed grid of NCC beams
controlled by NCC antenna ports. Users estimate subsets of the channel components
and feed back these estimates over the uplink. During the data transmission phase the
NCC beams are precoded, e.g. by MRC or interference mitigation precoding, to direct
the signal energy to each user, and to potentially remove interference from the other
users.

shadow fading only changes on a long time scale, of at least several of hun-
dreds of ms for pedestrian users, these sets of resource orthogonal pilots can
be used to estimate the channel correlation over space and frequency. It is
also used to find the set of relevant channels for new users that enter the sys-
tem and to detect changes in the sets of relevant channel components for an
existing user due to shadow fading.

As these orthogonal pilots are repeated infrequently, they do not introduce
a large extra overhead cost.

Based on the measurements (3.25), the relevant channels are estimated ei-
ther through LLMSE estimation or by a reduced Kalman filter. The LLMSE
solution is given by

ĥrel,τ = R
h,rel,yR−1

y yτ , (4.2)
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Figure 4.2. Exempel of pilot structure in the downlink. Resources are divided into
blocks of 12 subcarriers and 14 OFDM-symbols (as in LTE). Every fifth block con-
tains K pilot bearing resources that can be used for channel estimation. On a slow time
scale (every 500:th block), two subsequent blocks include 50% of the time-frequency
resource slots for fully orthogonal pilots. The total pilot overhead in this example is
approximately 4.5%.

where Rh,rel,y =E[hrely
∗
τ ] is the cross covariance matrix between the vector of

relevant channel components and the measurement signal and Ry = E[yτy∗τ ]
is the covariance matrix of the measurement signal. The details on how to
estimate these are given in Paper IV.

The LLMSE solution is attractive for user equipment that require bursty
data. The user would then be able to listen to the orthogonal, sparse pilots and
then, whenever it needs data, be able to quickly estimate its strongest channel
components, without needing to wait to gather information about the channel’s
temporal correlation.

For the reduced Kalman filter estimate, the covariance matrix of the mea-
surement noise is adjusted to model both the interference term Φ

τ , ¯relhτ , ¯rel and
the noise term nτ of (3.25) as measurement noise. Then, the filter equations
are solved as described in Chapter 3. For details, please see Paper IV.

4.1.3 Results and conclusions
To validate our concept we set up a system level simulation using the Matlab
based, open source, Quadriga channel simulator, developed by the Fraunhofer
Heinrich Hertz institute [20, 6]. A NLOS scenario was considered with nine
base stations, each equipped with 32 transmit antennas. In total 288 antennas
transmit non orthogonal pilots over K = 18 pilot bearing resource by NCC = 72
beams over fading channels to 100 pedestrian users. The performances evalu-
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Figure 4.3. CDF of the number of relevant channel components at different user po-
sitions when using different thresholds in dB, relative to the power of the strongest
channel.

ation was thus performed for a case where the pilot overhead was reduced by
a fraction of 18/72 = 0.28 as compared to a case with orthogonal pilots on all
72 beams. Compared to a case with individual orthogonal pilots per antenna,
the overhead reduction is 18/288 = 0.063. For more details on simulation
parameters, please see Paper IV.

Relevant channel components

How many relevant channel components that are necessary to estimate de-
pends on how the data is to be transmitted. For example, in [2], it was shown
that to provide good CoMP performance through joint coherent interference
mitigation, channel components that were in the range of 20 to 25 dB below
the strongest channel components should be included and be used by the linear
precoding algorithm.

It is therefore important to know how many beams will be in this range.
Figure 4.3 shows the CDF of the number of channel components that would
be relevant if a transmit scheme utilizes only channel components with power
above a threshold relative to the the strongest channel component in the inves-
tigated simulation environment.

Assuming a threshold of 20 dB, results in Figure 4.3 indicate that no more
than 15-20 channel components (out of a total of 72) would then typically need
to be estimated by a user.

Estimations Performance

Figure 4.4 shows the filter estimate NMSE as a function of the channel com-
ponent number in terms of power, averaged over subcarriers and users when
sixteen relevant channel components are estimated through an LLMSE filter
and a reduced Kalman filter. As a comparison, it is also investigated what
happens when no correlations are accounted for, i.e. when the channels are
estimated by simple inversion as in (3.26).
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In addition, results are shown where Kalman filters have been used assum-
ing resources orthogonal pilots. In this set-up each channel component is then
assigned resource orthogonal pilots for all available subcarriers and for one out
of 72 subsequent OFDM symbols. The total pilot power budget is the same
for the cases with resource orthogonal pilots as for the non-orthogonal pilots.
Channel estimation by inversion by (3.26) is also performed for the orthogo-
nal pilot case. In all case, the SNR per channel component is the inverse of
the NMSE achieved by inversion with orthogonal pilots (the thin solid line in
Figure 4.4).

While channel estimation by (3.26) may be sufficient for the strongest chan-
nel components, it quickly degrades for weaker ones. Comparing channel
estimation by (3.26) to the LLMSE filter, we see that by utilizing the space
and frequency correlations, estimates are greatly improved, especially for the
weaker channel components.

A further improvement of approximately 5 dB can be achieved by utilizing
temporal correlation by introducing the reduced Kalman filter.

The most effective approaches previously suggested for channel estima-
tion for FDD massive MIMO is to optimize pilots for a specific set of users
[74, 75, 76, 77]. To relate the presents results to those obtainable with pilot
optimization, we can compare the channel estimates based on non orthogonal
pilots to those based on the orthogonal pilots when the reduced Kalman filter
is used. In an extreme situation where the union of the sets of relevant chan-
nel components of all the scheduled users includes no more than K (here 18)
channel components, an optimization of pilots would result in the estimation
performance close to the one here obtained with orthogonal pilots 1. In a more
realistic situation, where the union of the sets of relevant channel components
increases with an increasing number of scheduled users, the estimation per-
formance would move towards that of reduced Kalman estimation with non
orthogonal superposed pilots.

This reasoning indicates that the here proposed flexible solution, which
does not require pilots to be re-optimized every time a new user is scheduled,
should in the worst case scenario result in a 5 dB reduction of the estimation
NMSE performance, as compared to a case with optimized pilots for multiple
users. However, it should be stressed that a direct comparison with the pilot
optimization and channel estimation schemes of [74, 75, 76, 77] has not yet
been performed.

There is potential to reduce the estimation error further, by estimating also
additional channel components that are below the threshold of relevance. This
is illustrated by Figure 6 of Paper IV. It compares the estimation performance

1For a scenario of one of very few users, then it is likely that performance can be made much
better with optimized pilots as a result of optimizied power reallocation. With multiple users
and multiple base stations, it is unlikely that this will provide large gain. Reallocation can then
mainly remove power from beams that are of little value to any of the users. However, a similar
effect can be achieved by using the beam deactivation scheme suggested in [69].
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of the reduced Kalman filter to that of a Kalman filter which estimates all 72
channel components. These results indicate that a full order Kalman estima-
tion performance with non orthogonal pilots becomes almost as good as that
gained by reduced-order Kalman filters with orthogonal pilots. However, as
the Kalman filter complexity grows with the square of the number of channel
components, the estimation of all channel components becomes highly com-
putational complex. Therefore these results have only been evaluated for one
of the potential user positions, i.e. for only one potential set of relevant chan-
nel components, and should hence be interpreted with care.

Paper IV also discusses potential methods of improving the reduced Kalman
filter to attain a performance closer to that of the full-order filter without in-
creasing complexity to unrealistic levels, e.g. by tracking the correlation prop-
erties over time of the interference term Φ

τ , ¯relhτ , ¯rel in (3.25) through first or
second order AR models. Such investigations are left for future work.

Capacity of MRC beamforming using estimated channels

The impact of the estimation errors in terms of MRC beamforming gain is
here illustrated in Figure 4.5. Maximum ratio beamforming to one user is
performed jointly by the nine base stations, by using a joint precoder, see Fig-
ure 4.1. For each investigated user position, the precoder utilizes the estimated
channels of the K strongest fixed beams for a particular user. Figure 4.5 shows
how the resulting spectral efficiency increases with the number of K beams
that are allowed to be utilized, on average over 100 user positions. The re-
sults in this figure are assuming that the estimation performance is given by
the Kalman estimates presented in Figure 4.4. The Shannon capacity shown
in the figure is for the single user case.

From Figure 4.4 we see that there is next to no beamforming gain from
having orthogonal pilots in this particular scenario. The reasons for this are
as follows: First, the estimation quality is already very good for the strongest
channel components and an extra gain in accuracy will only translate into a
very small capacity gain. Second, MRC beamforming gains are robust to es-
timation errors. Third, as capacity grows logarithmically with SNR, adding
extra channel component, that have low SNR as compared to the strongest
channel component, to the beam provides very little extra gain; note the satu-
ration of the curves in Figure 4.5.

A separate study of interference supression by regularized zero forcing pre-
coding in a CoMP cluster with massive MIMO antennas under a similar sim-
ulation set-up as here, but with 288 beams, is presented in [69]. This study
also includes a beam deactivation algorithm to ensure that no power would be
wasted on beams that are weak to all users within the system. The results pre-
sented there, with 10 % pilot overhead, show that performance loss, in terms of
payload spectral efficiency, was approximately 12% compared to when perfect
CSI was used.
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4.2 Channel prediction for coordinated multipoint joint
transmission

In a traditional cellular network, each base station serves the users that are lo-
cated within its own cell, see Figure 4.6. When a user moves from one cell to
another, the base stations cooperate in the hand-over procedure, but otherwise
they serve their users independently of each other. The base stations can use
different resources and/or different beams to avoid intracell interference, i.e.
that the energy leaks between the different users’ messages. However, as base
stations generally do not cooperate, except for in the hand-over procedure, en-
ergy might leak between cells, causing intercell interference. This interference
decreases the data throughput for the users and is especially severe for users
close to the cell edges.

One option to decrease the intercell interference from nearby base stations
is to partition the available frequency spectra such that each base station only
uses a fraction of the available spectrum. This method is called frequency
reuse. However, frequency reuse lowers the capacity of the system, as the base
stations will only be able to serve it’s users with a fraction of the spectrum.

To increase spectral efficiency, present 4G systems allow all base stations
to utilize the whole available spectrum (this is called frequency reuse 1). The
disadvantage of doing so is that the signals from several base stations will in
general be quite strong at the cell edges, thus causing intercell interference to
be the main limitation for users located at the edges.

A further way of increasing user throughput is to increase the spatial den-
sity of base station and thus decrease the size of cells. If this is combined
with frequency reuse 1, then intercell interference can become an even bigger
problem.

The intercell intereference can be limited by allowing a cluster of base sta-
tions to cooperate to serve some or all of the users within their cluster of cells,
using so called CoMP techniques. These were introduced in the beginning of
the millennium as a way to increase the spectral efficiency of downlink trans-
mission [57, 58, 79].

In a CoMP system, base stations share information over links that intercon-
nect the base stations. These might e.g. be radio channels or fiberoptic cables.
The base stations may be interconnected in different ways. The direct links
between two base stations are referred to as cross links. Links may connect
base stations to a CU which may be responsible for the joint transmission de-
cisions. For future wireless networks, it is likely that many more base station
nodes will be deployed. With more nodes, operators may want these to be less
advanced (and thereby less expensive), perhaps simply consisting of remote
radioheads. In such scenarios, a large part of the data and signal process-
ing may be moved from the base stations into Radio Access Network (RAN)
clouds that may include centralized baseband units. The links between radio
access point and a centralized processing unit is in the literature often called
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fronthaul link, if some or all of the RAN functionality is centralized [80]. In
this section and in Paper II and Paper III, the name backhaul links will be used
for all the connections in the fixed network side that are used to enable the
CoMP processing.

Downlink CoMP is often divided into two categories, 1) JT and 2) JS and/or
JB [81, 82, 83, 84]. In the first category, multiple base stations attempt to
transmit to one, or more, users simultaneously, see Figure 4.7, while in the
second category, base stations coordinate their transmission, e.g. such that
they avoid serving closely located users within the same resources and thereby
lower the intercell interference. In JT we try to utilize the potentially strongly
interfering links from neighbouring base stations, turning a potantial problem
into an advantage. With JS and JB, we mainly strive to avoid interference. For
this reason, JS and JB provide lower gains in spectral efficiency than JT, but
are more robust to errors in CSI [3, 85].

In CoMP JT, base stations share both payload data and CSI over the back-
haul links. Based on the CSI, some or all of the base stations may then be
selected to transmit payload to one user, without any pre-compensation of the
message symbol intended for that user. As the message is transmitted with ra-
dio waves these may sometimes add up constructively at the users, providing a
stronger receive signal than if only one of the base stations transmitted. How-
ever, when no pre-compensation of the message is used, then the signals may
also add up destructively, lowering the total received power2. This is called
non coherent CoMP JT.

An alternative is that the base stations precode the message symbol, based
on the CSI, before transmission, to ensure that the signals from the different
base stations add up constructively. This scheme, which is called coherent
CoMP JT or network MIMO, allows base stations to serve multiple users on
the same time-and-frequency slot, or resource. The messages are then pre-
coded such that, at each user, only the message intended for that user is con-
structively added, while the messages intended for the other users are added
destructively.

The results in this section are extracted from Papers II and III. They aim to
investigate

1. How well channels can be predicted. A challenge with downlink CoMP
are the long system delays. These include the processing time for chan-
nel estimation, the feedback of measurement or CSI feedback from the
users to the base stations in FDD systems, the CSI sharing between the
base stations over backhaul, the process time for the precoder design
and the sharing of the precoder weights between base stations or be-
tween a centralized unit and radio access points over fronthaul links in a
cloud RAN architecture. The sum of these system delays can be in the
order of of tens of milliseconds, which for mobile users will cause the

2On average the received power will be stronger.
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Figure 4.6. A set-up of a cellular network where each base station (BS) serves the
users in its own cell only. Different colors indicate messages intended for different
users. In the absence of base station cooperation, some of the energy intended for a
user in one cell might leak to a user in another cell, causing interference.
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Figure 4.7. A set-up of a CoMP JT scenario where three base stations (BS) transmit
jointly to three users. The base stations share information over backhaul links via a
control unit (CU).
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CSI to be outdated at the time of transmission [86, 87, 88]. The outdat-
ing of CSI can to some extent be counteracted by channel predictions
[33, 1, 89, 38]. Here, Kalman predictions are investigated for different
prediction horizons based on channel measurements.

2. How the performance of coherent CoMP JT is affected if knowledge
of the prediction performance (in terms of second order statistics of the
prediction errors) is accounted for in the precoding step as compared
to when this is not the case. The investigated precoder, which aims to
maximize the sumrate, uses not only the Kalman predictions for pedes-
trian users, but also the knowledge (through error covariance matrices)
of their accuracy. It is compared to a precoder that only utilizes the
channel predictions.

3. How to deal with different backhaul constraints. Such limitations must
be handled by the precoder.

4. How to improve performance by a simple user grouping and resource
allocation scheme. Some of the large gains from MIMO techniques are
related to serving multiple users simultaneously. However not all users
are spatially compatible and a technique for grouping users is required.
The proposed scheme assumes that each base station schedules the users
within its own cell independently using channel aware scheduling. The
users scheduled on a specific resource are then served by CoMP JT.

4.2.1 Background and related work
Coherent CoMP JT has the potential to provide very large gains in spectral
efficiency (see e.g. [59, 82, 90, 91, 92, 87]), gains that are especially important
for cell edge users [93, 81, 2, 94].

CoMP can also be applied for uplink transmission, either through JS or
through joint detection, see e.g. [94, 95]. Joint detection in the uplink is
similar to JT in the downlink. However, it is an easier problem in the sense
that the processing can be based on fully updated CSI.

The cooperation cluster

There is a trade-off in the number of base stations included in the cooperation
cluster. In a cluster with a low number of base stations, the remaining uncom-
pensated intercluster interference will be large, lowering the potential CoMP
gains. In a cluster with a large number of base stations, there might be large
system delays, causing severe outdating of the CSI. This, in turn lowers poten-
tial CoMP gains. Moreover, in very large clusters, base stations will be so far
away from each other that this may cause severe synchronization problems.

The problem of clustering has been studied for intracluster interference lim-
ited scenarios in e.g. [92, 96, 97, 98]. According to these works, for single
antenna base stations, clusters of about three base stations are sufficient in or-
der to achieve most of the CoMP gains. After this point, CoMP gains grow
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Figure 4.8. Centralized coordination of downlinks in an FDD system. A schematic fig-
ure of data transmission of feedback over wireless uplinks (gray arrows) and backhaul
links (black arrows). Dashed arrows indicates coherent joint downlink transmission
of the payload data.

slowly. For MIMO systems with 2-4 transmit antennas per base station, clus-
ters of 7-9 base stations are required.

Such cluster sizes are fairly small, so intercluster interference levels will
still be significant. Therefore external schemes to manage intercluster inter-
ference can improve the CoMP gains further. An interesting method to limit
the intercluster interference is proposed in [96] and further evaluated in [99].
It uses cluster-specific antenna tilting and power control for this purpose.

Network architecture

A CoMP network may be centralized, distributed or semi-distributed. In a
distributed network, each base station forwards CSI to other base stations and
then designs a precoder separately. Then, base stations will in general have
access to different information, and hence the set of precoders differs from
that of a centralized design3. In centralized CoMP, all CSI is transmitted to
a CU, where the precoder is designed, and all base stations are provided with
their relevant scheduling decisions, beamforming weights and payload data.

The CoMP JT system considered in this thesis assumes a centralized archi-
tecture as illustrated in Figure 4.7, unless otherwise specified.

For downlink coherent JT in a centralized CoMP architecture, CSI needs to
be obtained for all users at their master base stations, i.e. the base station that is
the strongest, seen from the user’s perspective. These then need to share both
the CSI, and the payload data amongst each other over a backhaul network. A
CU, which is a logical entity that may be located at one or more of the base
stations within the cooperation cluster, then calculates the precoder. Finally,
the elements of the precoder matrix are, if necessary, transmitted to the base
stations, see Figure 4.8.

A disadvantage of a centralized scheme is that the system delays will be
longer as information needs to be transmitted over backhaul/fronthaul links
twice. Delays in the fixed network causes outdated CSI, which can severely

3For example, if the users feed back CSI to their main base station at frequent intervals, then
each base station may have access to less outdated CSI from the users within its own cell than
it has to the users within its neighbouring cells.
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reduce gains [86, 100, 21]. In order to compensate for the system delays,
channel prediction is necessary.

For more information on the different architectures, see [21, 22].

Precoding

The highest gains for coherent CoMP JT are achieved with Dirty Paper Coding
(DPC), see e.g. [101]. However, as this non-linear precoding scheme is high
in complexity, linear precoding is an important topic of investigations. The
primary objective of the precoder is often to limit the intracluster interference.
In a system with perfect CSI this can be achieved by channel matrix inversion,
which is provided by the zero forcing precoder developed for MIMO, see e.g.
[25].

However, there is a risk in using zero forcing for CoMP JT , even in the pres-
ence of perfect CSI; Channel gains may from different base stations be very
different in amplitude, which is generally not the case for MIMO downlink
where all transmit antennas are co-located. The balancing of transmission sig-
nal gains that is necessary for channel inversion might then cause the strongest
base station’s transmit power to become very low as compared with the weak-
est base station. Although the solution is then still optimal with respect to
limiting intracluster interference, the noise and intercluster interference might
become large compared to the received signal power, resulting in a poor data
rate. An option is then to use an MSE criterion which takes these effects into
account as well as the intracluster interference [26].

MSE criteria are attractive as they generally have analytical solutions. How-
ever, in practice it is often more useful to optimize over a weighted sumrate
criterion, as this is closer to the desired end performance. Such an optimiza-
tion poses a multidimensional nonconvex optimisation problem.

In the precoder design proposed in Paper II, which is an extension of the
desing introduced in [4], a heuristic solution is used, which strives to maxi-
mize an approximation of the sumrate by iteratively adjusting a set of parame-
ters, that are criterion weights in a (robust) MSE criterion. The MSE problem
stated is derived from a robust linear-quadratic optimal feedforward control
framework developed by Öhrn, Ahlen and Sternad in [102]. This general so-
lution is also used for e.g. audio processing, see e.g. [103].

A problem with CoMP JT in a centralized network is, as previously men-
tioned, that the long delays cause inaccuracies in the CSI. If these inaccuracies
are not addressed in the precoder design, then the potential CoMP gains may
be lost. Robust precoder design techniques have been suggested for Mul-
tiple-Input Single-Output (MISO) systems by [104, 105], and for multi-user
MIMO downlinks in [106, 107]. A robust linear precoder for CoMP JT, which
is based on an MSE criterion, is suggested in [108].

In comparative studies in [2] and [109], the design discussed here was com-
pared to designs suggested in [108] and to an optimization approach proposed
in [110]. It was shown that the here suggested design performed better than
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the robust precoder suggested by [108] and close to that of [110], at a much
lower computational complexity than the latter.

How to handle limited backhaul

The requirements on backhaul might not always be manageable by the system.
Structural constraints, delay constraints, capacity constraints or a combination
of these might limit the information that can be transmitted over backhaul.
These limitations must be handled by the precoder. In the formulation sug-
gested here, this is achieved by setting some elements in the precoder matrix
to zero. These elements represent the input-output connections that are un-
available. Such zeros can be forced into the precoder matrix in different ways.

One option to force zeros into the precoder when backhaul constraints are
present is to simply calculate the precoder, based on some criterion, and then
set the required elements to zero, see e.g. [111]. However, the resulting pre-
coder is then no longer optimal with respect to the criterion it was optimized
for. Another option is to only feed back the channels that are going to be uti-
lized in the transmission and then group users such that the channel matrix
becoms block diagonal. Then, through channel inversion, the resulting pre-
coder will automatically have zeros in the required elements [112]. However,
such a solution requires JS and may therefore potentially add large demands
on backhaul capacity in the user grouping step. Furthermore, the suggested
methods in [111, 112] do not consider the inaccuracy of the CSI in the precod-
ing design.

A strength of the here proposed precoder is that the MSE criterion (with
tuning of criterion weights to approximate a weighted sumrate solution) can
be used also under backhaul constraints. This can be done by introducing large
penalty terms in the robust MSE criterion. This modification only requires a
low number of extra calculations and is therefore of much lower complex-
ity than methods that use multidimensional searches to optimize the nonzero
elements of the precoder, see e.g. [110, 113, 114].

In [115] a different method for forming sparse precoders matrices to fulfil
backhaul constraints is suggested. This precoder, which is based on an MSE
criterion that includes intracluster interference only, is also low in complexity.
However, as the matrix dimensions do not add up in the published design equa-
tions of this paper and its simulations are based on very few user positions, it
is hard to draw any conclusions from the paper. Moreover, this method does
not have the flexibility to optimize over arbitrary criteria, nor does it consider
CSI errors in the design.

User grouping and scheduling

A way of determining which users should be jointly served by a CoMP cluster
is to form groups based on spatial compatibility, without considering the inde-
pendent small scale fading of the channels to the users, as in e.g. [111, 116]. In
a second step the user groups are then allocated resources. There is a large risk
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Figure 4.9. System model used for precoder design.

with this type of scheme; the users generally have uncorrelated fading, so one
or more of the users in the group may have a poor channel for the particular
resource allocated to the group.

The problem with the small scale fading of different users can be solved by
jointly performing user grouping and scheduling. However, the combinatorial
growth of the complexity associated with finding the best set of users to be
grouped into each time-frequency transmission resource makes it infeasible, if
the number of transmission resources and users is large. In order to decrease
the number of combinations, a greedy user grouping and scheduling algorithm
can be used. This has been suggested for downlink single cell MIMO trans-
mission in e.g. [117, 118] and for uplink CoMP in [119].

A user grouping and scheduling algorithm similar to that which will be pre-
sented and investigated here can be found in [120], where instead of focusing
on increasing rate it is focused on increasing rate dependent utility functions,
for the different types of packet streams.

4.2.2 Robust linear precoding design and user grouping
The robust precoder that was introduced in [4] and further developed in Paper
II is designed based on the system model shown in Figure 4.9. Here, a vector
of complex valued symbols s ∈ C

M×1 to M single antenna users is projected,
through a precoding matrix R ∈ C

N×M, onto N signals, collected in the vector
u ∈ C

N×1, that are to be transmitted from N different antennas. The transmit
signals are scaled to ensure that power constraints are met through a real val-
ued scalar 1/c. This describes the downlink transmission over one narrowband
subcarrier in an OFDM system.

The transmit signals are thus assumed to propagate over linear narrowband
channels. Furthermore, Gaussian noise is assumed to be added at the receiver.
This can be mathematically modelled by

y = Hu+n, (4.3)
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where y ∈ CM×1 is the vector of received message symbols at the users and
n∈C

M×1 is the noise and intercluster interference added at each users’ receive
antenna. The matrix H ∈ C

M×N is the channel matrix containing the complex
valued channel elements between each user and the transmit antennas at the
base stations. It consists of a sum of a known prediction Ĥ and prediction
errors ΔH.

A second system is considered. In this a target vector z ∈ C
M×1 of the

desired interference free scaled received symbols is defined by

z =
1
c

Ds, (4.4)

where D ∈ RM×M is a diagonal weighting matrix, that ensures that we do not
ask more of the system than it is able to carry out. For examples, if all base
stations have weak signals to a user, then the diagonal element of that user
should be set small, e.g. scaled to the channel gain from nearest base station.

The precoding matrix R is designed to minimize a scalar weighted robust
MSE criterion

J = Ē
[
E ‖Vε‖ 2 +E ‖Su‖2] . (4.5)

Here Ē denotes the expected value with respect to the prediction errors (the
elements of ΔH) while E denotes the expected value over the involved signals.
The weighting matrices V and S are design parameters that can be adjusted
so that the solution R that minimizes (4.5) will approximate the solution that
optimizes a different objective function, see Paper II for details. In the evalua-
tions presented below, V = I and S is chosen diagonal, with diagonal elements
adjusted to maximize an approximation of the sumrate.

Assuming that all message symbols are mutually uncorrelated and also un-
correlated over time, with unit power, the linear precoder that minimizes (4.5)
is given by

R =
(
Ĥ∗V∗VĤ+S∗S+E[ΔH∗V∗VΔH]

)−1
Ĥ∗V∗VD. (4.6)

The accuracy of the channel predictions are accounted for in the third term
of the inverse. For details on how to calculate this term or how to derive the
expression (4.6) the reader is referred to Paper II and Paper III.

In the experimental evaluation of Paper II, the sumrate performance when
using (4.6) is compared to that obtained when using a zero forcing precoder

R = ĤT
(
ĤĤT

)−1
D. (4.7)

It is important to include the diagonal target scaling matrix D as a right factor
also of the zero forcing precoder (4.7). The sumrate performance is impaired
otherwise, due to power scaling issues, in particular in fully loaded cases when
M = N.
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Before a precoder can be designed, the system needs to determine which
users to serve on the individual transmission resources. On each resource,
M ≤ N users can be grouped for JT.

From results in [4], it was clear that the performance of coherent CoMP
JT in a fully loaded system M = N (i.e. when the number of served users
within a resource, matched that of the number of serving antennas at all base
stations) was worst when all users had weak channels to the same base station.
The conclusions that such users are spatially incompatible is intuitive, as the
weak base station cannot offer much support in the transmission and hence the
system is in practice overloaded. Based on this, the user grouping method pro-
posed in Paper II, which is denoted cellular user grouping, focuses on making
sure the that different users who share a resource will have different strongest
base stations. This will make the channel matrix H diagonal dominant for
single-antenna base station, if users are numbered appropriately. It will thus
be made more easily invertible.

This aim could be attained in various ways. The here proposed method
utilize an assumption that the system has cellular structure and that separate
scheduling is performed for users that are assigned to each cell, performing
channel aware scheduling. As a pleasant suprise, it turns out that by utilizing
the results of these separate scheduling decisions, good user groups are formed
spontaneously for the cluster of cells.

In this scheme, each base station schedules all users within its own cell
only. The scheduling may be based on some coarse CQI of these users, e.g.
a roughly quantized, resource specific, estimate of the of the channel power
gain. The scheduler is assumed not to allocate a user to transmission resources
in which it has an unusual weak channel. As a consequence, the scheduled
users will have a reasonably strong channel to its own base station within each
of the time-frequency resources it is assigned to use. Then, groups are formed
for each time-frequency resource as the users that have been assigned to that
resource by all the separate cellular schedulers within the cooperation cluster.
As a result, users that will be jointly served on a resource will then likely have
different strongest base stations, namely their own base stations 4. The scheme
has the advantage that it only needs a CQI to allocate resources and thereby
forming the user groups. This lowers the feedback overhead that is needed as
compared to e.g. a user grouping scheme that uses the complex valued channel
gains to all users in all cells to find the optimal user groups.

4When one user has equally or almost equally strong channels (on average) to more than one
base station, it will still have to be assigned to one of these. That base station will then be in
charge of scheduling the users without any knowledge of the small scale fading of the channels
between the user and the other base stations. It may therefore occur that the user has equally
strong or stronger channel to a different base station for the resources that it will have been
assigned. This should however not pose a problem, as the user then has two strong channel
components.
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The cellular user grouping may, but does not have to, utilize already exist-
ing scheduling algorithms. For example, if the objective is to maximize the
sumrate, then the base station might schedule the user that has the best CQI
for any given resource. If fairness amongst users is considered, then a pro-
portional fair scheduler, which allocates the resource to the user that has the
highest ratio of its CQI for the given resource relative to its average CQI for
all resources, see [121], can be chosen. Another option, which will be used in
the results below, is to use the score based scheduler introduced in [122].

In the evaluation in Paper II, each cell has one base station antenna and
schedules at most one user in a resource. This can be generalized to multiuser
MIMO transmission within cells. It need then be assumed that the mutual
spatial compatibility of users that are scheduled on the same resource within a
cell is taken care of by each cellular (multiuser MIMO) scheduler. These user
groups are then merge into user groups for the whole cooperation cluster.

Simulation results

The proposed channel predictions, precoding design and user grouping scheme
has been evaluated based on channel sounding measurements that were col-
lected in Kista, in Sweden, by Ericsson Research in December 2008. In these,
channel sounding pilots were transmitted in a 20 MHz band, at a carrier fre-
quency of 2.66 GHz from three omnidirectional single antenna base stations
located in an urban environment, see Figure 4.10.

The pilots were measured by a vehicle which was driving through the area
between the base stations. The powers of the signals received from the dif-
ferent base stations are presented as a function of the measurement location
in Figure 4.11 and as a function of time in Figure 4.12. The time series were
resampled so that the true maximal vehicle velocity corresponded to a veloc-
ity of 5 km/h in the resampled time series. The quality of the measurements
are very high and in the simulations included in the papers, the corresponding
estimates of the OFDM channels are regarded to be the exact channels. More
details on the set-up for this measurement campaign can be found in Paper II
and in [123].

Based on these channel measurements, pilot measurements with different
pilot SNRs were simulated for each user position plotted in Figure 4.12. These
measurements were simulated through (3.2) using resource orthogonal pilots
and Gaussian noise. Then, the channels were predicted for prediction horizons
that correspond to distances of {0,0.6,0.13,0.19,0.28} of the carrier wave-
length in space, corresponding to system delays of {0,5,10,15,23} ms at a
user velocity of 5 km/h. The resulting NMSE was averaged over a time of 0.5
s for each user position and a total of 144 subcarriers5.

5Further simulation assumptions are described in Paper II.
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Figure 4.10. The urban environment of Kista, Stockholm, seen from above. The
locations of the base stations (BS) are marked by triangles.
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Figure 4.11. The signal powers in dBm from base station 1 (left), base station 2
(middle) and base station 3 (right). The base station locations are marked by triangles.
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Figure 4.12. The variations of the power of the received signals that were transmitted
from base station 1 (blue), base station 2 (green) and base station 3 (red). For details,
see Paper II.
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Figure 4.13 shows the prediction performance, in terms of average NMSE.
The results are compared to the NMSE that would result from using outdated
CSI, i.e. using the channel estimate ĥτ as a prediction for the channel hτ+m.

We see that while the outdated CSI very quickly decrease in accuracy, with
an increasing prediction horizon, predictions through the Kalman filter provide
an average NMSE ≤ −7.9 dB for prediction horizons of up to 0.28 of the
carrier wavelength. As these predictions are based on real measurements and
estimated channel models, that is very encouraging. It is worth noting that,
as stated in Section 3.4, the measurement noise has lower impact for longer
prediction horizons.

As promising the results in Figure 4.13 are, they do not show the full statis-
tics. In Figure 4.14 the CDFs of the prediction NMSE are shown. Although
most of the channels are predicted with good accuracy, there are some poor
predictions among the weaker channels. For example, with the highest noise
floor at −110 dB more than 30% of the channels have an NMSE of −8 dB
or higher if a prediction horizon of 0.13 of the carrier wavelength is required.
For the longest prediction horizon (0.28 of the carrier wavelength) this fraction
increases to approximately 50%.

From Figure 4.12 it is evident that it is often the case that the signals from
one or two of the base stations are much weaker that the strongest base station.
Inaccurate predictions for weak channels may not be a big problem if these are
very weak compared to the strong channels, as they would not contribute much
to the beamforming gain.

However, it is important that these weak channels with inaccurate chan-
nel estimates do not deteriorate the quality of the total precoding solutions.
This can potentially be avoided if information of the prediction accuracy is
accounted for when designing the precoder.

Figure 4.15 shows the performance in terms of sumrate when the three sin-
gle antenna base stations serve a group of up to three users on each of the 144
subcarriers, using joint coherent precoding. These are the sumrates that were
achieved when nine users were randomly picked from the possible positions
along the driving route shown in Figure 4.11 and were served jointly by the
three base stations within the 144 subcarriers. The investigated scenario is a
(small) fully loaded case, where the three single antenna base stations serve
three users in each transmission resource, so M = N = 3.

First, we will focus on the solid curves of Figure 4.15. Here, the nine users
were randomly assigned into group of three users, that were then randomly as-
signed to each subcarrier. The users were then served through coherent CoMP
JT either by zero forcing precoding (circles) or though the robust linear pre-
coder (4.6) (squares) when the precoding matrix is based on the predicted
channels with a prediction horizon of 0.13 of the carrier wavelength. The
criterion weight S in (4.5) is diagonal, and is adjusted to maximize an approx-
imation of the sumrate. As a comparison, the sumrate that would be achieved
by using zero forcing with perfect CSI is also added (diamonds).
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Figure 4.13. The solid lines show the prediction performance in terms of average
NMSE for all base stations, user positions and subcarriers as a function of the predic-
tion horizon scaled by the carrier wavelenght λ . Results are shown for noise levels
of −110 dBm (crosses) −120 dBm (pluses) and −130 dBm (stars), see Figure 4.12.
Dashed lines show the NMSE of the outdated CSI. Further details can be found in
Paper II.
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Figure 4.14. CDF of the prediction NMSE for different measurement noise levels
−110 dBm (crosses) −120 dBm (pluses) and −130 dBm (stars). Prediction horizons
of 0 carrier wavelengths (black dotted lines), 0.13 carrier wavelengths (purple solid
lines) and 0.28 carrier wavelengths (blue dashed lines). For further details, see Paper
II.
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We can see, by comparing zero forcing with robust linear precoding, that
knowledge about the prediction accuracy is important in this situation, espe-
cially when we compare the low percentiles in the CDFs at high noise floor
(-110 dBm). Here, the sumrate is increased significantly. The gap is low-
ered as the noise level decreases. However at no point does the robust linear
precoder provide a worse sumrate than zero forcing.

Now consider instead the dotted curves, representing results for the nine
users that are grouped by cellular scheduling with score based schedulers.
That is, for each simulation, the users that have the same strongest base station
are assumed to belong to the same cell and are therefore scheduled on differ-

ent subcarriers using the score based scheduler introduced in [122]. Users
scheduled on the same resource are then served jointly by the base stations.

This simple user grouping scheme has the effect that the problem with
bad user grouping becomes insignificant. Comparing the dotted and the solid
curves, the large impact of using a reasonable user grouping scheme becomes
evident. First, and most striking, there is a large improvement in sumrate per-
formance. Second, the impact of different precoding schemes is altered. At
the lowest noise floor (−130 dBm), zero forcing now even outperforms robust
linear precoding. At first, this may seem suspicious, however it is a case of be-
ing overly confident in the information we have. Recall from Section 3.4 that
the channel model is estimated from imperfect training data. That means that
the information we have in regards to the accuracy of the channel prediction is
slightly off. For most theoretical scenarios, this is not an issue as the estimated
accuracy is not far from that of the actual accuracy, see e.g. Chapter 8 of [1]
where this was investigated for the channel data set used here. However, as the
system is pushed to the bounds, as in this case with very low noise floor and
very good user groups, the errors made in estimating the prediction accuracy
will cause the robust linear precoder to actually perform somewhat worse than
zero forcing.

In addition to the results presented here, Paper II provides simulation results
where the proposed cellular user grouping method presented here is compared
to a high complexity, greedy user grouping scheme, which iteratively adds a
users to the group within each resource. The simulations, which are based
on block fading channels, show very little performance loss with cellular user
grouping as compared to the greedy user grouping scheme.

4.2.3 Handling backhaul limitations
Depending on the infrastructure, the requirements on the backhaul might not
always be manageable, and hence we need a method for handling constraints
on how much information that can be sent over the backhaul links.

Limitations in how much CSI can be fed to the CU can be handled by setting
the unavailable channel estimates to zero and adjusting the covariance matrices
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Figure 4.15. CDFs of the sumrate for all user groups when nine users are randomly
dropped along the route shown in Figure 4.11 and grouped over 144 subcarrier with
up three users to be jointly served per subcarrier. Results are shown when the precod-
ing matrix is obtained through zero forcing precoding (circles) or through the robust
linear precoder (4.6) (squares). Users are either grouped randomly and then allocated
resources randomly, by so called round robin scheduling, (solid lines), or by cellular
user grouping, when each of three cells allocates its users using a score based sched-
uler (dotted lines). Results for noise floors of −110 dBm (top), −120 dBm (middle)
and −130 dBm (bottom). Results with perfect interference suppression by zero forc-
ing with perfect CSI (diamonds) is added for comparison. For further details, see
Paper II.
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of the error accordingly, see Paper III for details. As the error covariance
matrices only need to be sent on a slow time scale, e.g. every half second,
these place very low demands on the backhaul capacity.

However, we may also need to limit the number of non-zero elements in the
precoding matrices that are distributed to the base stations.

Furthermore, assume that the sharing of payload data between sites is lim-
ited so that only some of the payload can be shared. Then, some base stations
will not have access to all the symbols of the data vector s. This can be math-
ematically modelled the same way as when a limited number of precoding
weights can be fed back to the base stations from the CU, i.e. by setting the
appropriate elements of the precoding matrix R to zero. That is, if no data
is available at base station antenna n for user m, then element {n,m} of the
precoding matrix, rn,m, should be set to zero.

In Paper III, this is done by extending the criterion (4.5) to

J = Ē

[
E ‖V ε‖ 2 +E ‖Su‖2 +E

N

∑
n=1

M

∑
m=1

1
c2 |wnmrnmsm|

2

]
, (4.8)

where sm is the message symbol for the m’th user and the scalar wnm is a
penalty weight that is set high if the element rnm of the precoder matrix R

needs to be zero and is set to zero otherwise.
The solution which minimizes this criterion is found by first calculating the

precoder that minimizes the original criterion, which is given by

R0 = (β ∗β )−1
Ĥ∗

CU V∗VD, (4.9)

where ĤCU is the available estimate of the channel matrix at the CU and

β ∗β = Ĥ∗
CU V∗VĤCU +S∗S+E[ΔH∗

CU V∗VΔHCU ]. (4.10)

Then the precoder with (approximately) enforced zeros is given by solving a
linear matrix equation

R = R0 − (β ∗β )−1 (W	W	R) . (4.11)

Here W is the matrix given by the weights wnm and 	 denotes elementwise
multiplication.

Results in Paper III are based on a simple simulation environment with three
sites, each with three sectored base stations with two antennas each and nine
randomly distributed single antenna users with at most one allocated user per
cell and transmission resource. A large number of sets of user positions is
simulated. The channels are modelled as block fading and channel errors are
modelled as complexed-valued zero mean Gaussian variables with a variance
which is 20 dB below the channel variance. No shadow fading is considered.
The results in Paper III show that there is a gain in the average user rate of up
to 13% when using the proposed precoder with the extended MSE criterion,
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Figure 4.16. The user positions that benefit by more than 50% in terms of sumrate
from using the precoder design proposed in Paper III, are shown as blue stars. The
precoder constraint imposed here is that each user should only be served by its four
strongest base stations. The base station antenna directions are provided by the red
ellipses and all other user positions are marked as yellow circles. For more details, see
Paper III.

as compared with inserting zeros as a last step, i.e. by simply changing the
appropriate elements of the precoding weights to zero after having calculated
the precoder.

However, as CoMP is especially important for cell edge users, it is of great
interest to limit the effect of backhaul constraint for them. The proposed pre-
coder does exactly that. For example, in a scenario where each user is served
only by its four strongest base stations, in a cluster with nine base stations,
then 13% of the users obtained a capacity gain of more than 50% when using
the proposed precoder with the extended MSE criterion, as compared with in-
serting zeros as a last step, i.e. by simply changing the appropriate elements
of the precoding weights to zero after having calculated the precoder. These
users, which are plotted in Figure 4.16, are mainly cell edge users.

4.3 Channel smoothing for TDD systems with predictor
antennas

In a TDD system, channel reciprocity can be used to estimate the downlink
channel based on resource orthogonal uplink pilots from the scheduled users.
As the number of user may be considerably less than the number of transmit
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antennas for massive MIMO systems, the pilot overhead may be considerably
smaller than in an FDD system even if resource orthogonal pilots are used.

With wireless access playing a more and more important role in peoples
daily life, problems may occur when many users are a gathered in the same
small location, creating so called hot-spots. A typical hot spot scenario occurs
within the sector of public transportation such as trams or buses where people
use their mobile wireless communication equipment both for work and for
entertainment purposes [124].

While linear prediction works well for pedestrian users, it may not be suffi-
cient for high mobility users when the delays between the pilots and the data
transmission are of significant duration. An example is a TDD system where
the user equipment would transmit known pilots during an uplink frame, that
are used for channel estimation on the network side. Assuming channel reci-
procity, these channel estimates are then used to calculate predictions of the
channels to the user equipment antennas during a subsequent downlink sub-
frame. The required prediction horizon for the downlink channels could then
be on the order of the magnitude of the carrier wavelength in space, for vehic-
ular users.

An approach to increase the prediction horizon might be to have a database
of pre-recorded coordinate specific CSI, e.g. located at the base stations [125].
The users can then feed back an estimate of their locations, e.g. based on
Global Positioning System (GPS) information, to the base stations. As this
method would not really be predicting the fading in the conventional sense,
it is not bound by the limitations discussed in Section 3.4. However, such a
model would require collection of a vast amount of data on centimetre scale
in space. This data might in turn need to be updated continuously, due to e.g.
seasonal changes in the environment. It is also unclear how such a scheme
might be affected by e.g. bypassing vehicles that alter the standing wave pat-
tern. It is therefore of interest to investigate more easily realizable long-range
channel prediction methods for vehicular users.

4.3.1 History of the predictor antenna concept
The limit of prediction horizon can be circumvented by the predictor antenna
concept which is illustrated in Figure 1.4. It uses an extra antenna, predictor
antenna, placed in front of one or several main antennas, e.g. on the roof of
the vehicle, to scout the channel that will later be encountered by the main
antennas. This concept was originally proposed by Sternad et al. in [27],
where the potential of predictor antennas were illustrated based on a small
measurement campaign with one LOS and one NLOS scenario, using two
dipole antennas on the roof of the vehicle.

A second measurement campaign with monopole antennas and a large metal
sheet under the antennas showed improved results [43, 126, 127]. Further ex-
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perimental studies, conducted by Björsell, Sternad and Grieger have shown
a prediction NMSE of about -10 dB for vehicular velocities for all measured
predictions horizons up to three times the carrier wavelenght in space, ten
times longer than the limit for channel extrapolation [128, 129]. The method
has recently been applied to 64-antenna massive MIMO downlinks, and was
shown to provide close to ideal maximum ratio transmit beamforming gains
to vehicles over NLOS channels [130].

To produce accurate predictions, the concept requires channel estimates for
the predictor antenna from positions close to where the main antenna will
transmit or receive signals. For a FDD system, this requires dense enough
downlink channel estimates, which was the case in [128, 129, 130], where
OFDM pilots, evenly distributed in time and frequency, were used.

Similar antenna systems as in [27] with two in-line antennas on a vehi-
cle roof, were investigated in the 90’s by Vaughan and coworkers [131, 132].
The aim was there not prediction, but to model the radio environment. These
experimental results showed that the maximal cross correlation between the
signal envelope at the rearward antenna and the delayed signal envelope at the
forward antenna was reduced when the antennas were separated by 0.2-0.4
times the carrier wavelength, due to antenna coupling. In [132], the effects
of the antenna coupling were compensated for a to a large extent. Similar re-
sults were found in [43, 126, 127] and the antenna coupling was sucessfully
compensated for in [127].

4.3.2 Kalman smoothing for TDD downlink estimates
Even when using predictor antennas, the distance between the antennas may
not be perfectly aligned with the required prediction horizon (as this will de-
pend on the users speed). For a TDD system, the uplink/downlink ratio to the
TDD frame might be adjusted so that the downlink transmission of the main
antenna occurs close to a position where the predictor antenna already has
measured the channel, as proposed in [28] and evaluated in [133]. However,
such a scheme would require individually adaptable uplink/downlink ratios
based on the velocity of each user which is problematic from a system per-
spective. Instead, as suggested in [133], interpolation can be used for any
given uplink/downlink ratio to generate channel estimates for the gaps in the
uplink pilot sequence.

The results of Paper V, which are highlighted in this section utilize Kalman
smoothing to interpolate the channels during TDD downlink frames, by using
received uplink pilot signals from the predictor antenna in uplink frames. The
interpolations use a two-filter approach, using two state space models.

The Kalman smoother is the MMSE-optimal linear interpolator of noisy
data, for known second order statistics of signal and noise [10]. It has been
studied in applications such as the compensation for packet loss in wireless
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sensor network system [134] and for channel equalization on the receiver side
[135], in both cases where partial observation losses occur.

To gain understanding of the concept, let us consider a predictor antenna
system with two antennas, spaced by a fixed distance and placed in a straight
line in the direction of travel on a vehicle, as was illustrated in Figure 1.4. We
define a time interval indexed by τ , which shall here be denoted time slot and
which represents the time between potentially pilot bearing OFDM symbols.
(Between these OFDM symbols separated by τ , data bearing OFDM symbols
are in general be transmitted.)

Assume that required prediction horizon is m time slots and assume that
the vehicle is travelling with a velocity such that it takes m+ μ time slots for
the main antenna to reach the position of the predictor antenna. As the main
antenna will experience approximately the same channel as the predictor an-
tenna, with a time lag of m+μ time slots, the prediction of the main antenna’s
channel at time τ +m can be given as a smoothed estimate of the predictor
antenna’s channel at time τ − μ . We can therefore use up to μ later channel
estimates to improve the estimate of the channels from the predictor antenna
at time τ , if measurements are available at these later time slots.

An example of this is illustrated in Figure 4.17, where a channel from one
base station antenna in a TDD system is to be estimated. Here, pilots are trans-
mitted in the uplink for three consecutive pilot slots, indexed by τ , followed by
a downlink with three consecutive slots of equal length to the uplink slots but
without pilots. In this example it is assumed that m= μ = 5 time slots and that
the vehicle is travelling at a speed where five time slots in time corresponds to
one carrier wavelength in space. Let us focus on time index τ = 9, when the
aim is to predict the channel for the main antenna at time index τ = 14, which
is given by position four, as shown in Figure 4.17. At this point in time, the
system has access to CSI based on the predictor antenna pilots at positions 1-3
and 7-9, but not for position four. There is no measurement for that position,
so interpolation will be needed.

The relationship between the NMSE of the smoothed estimate of the pre-
dictor antenna channel NMSEp and the NMSE of the prediction for the main
antenna channel NMSEm is given by equation (14) in [128]:

NMSEm = 1−
|b|2

1+NMSEp

, (4.12)

where b is the maximum normalized cross-correlation between the channel of
the main antenna and the delayed channel of the predictor antenna. This pa-
rameter is = 1 in the ideal case, and it determines the ultimate performance
for error free measurements of the channel of the predictor antenna. The esti-
mation error to channel power ratio NMSEp also influences the performance,
by (4.12). It is therefore of importance to obtain good smoothed estimates of
the channel for the prediction antenna.
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Figure 4.17. A TDD system where pilots are transmitted in the uplink for three consec-
utive pilot slots followed by a downlink subframe with three consecutive slots without
pilots. The figure shows the positions of the predictor antenna and of the main antenna
at different slot times τ . Crosses mark positions for which the predictor antenna has
transmitted pilots and thus made channel estimates availible.

In the following, the focus will be on the NMSE of the smoothed estimates
of the channel from the predictor antenna, when using the two filter solution
described in Paper V and in Section 3.2.1.

4.3.3 Important results and conclusions
To evaluate the scheme we use measurements collected while driving at a
speed of 25-39 km/h in downtown Dresden. Channel sounding pilots were
transmitted every 0.5 ms from four antennas mounted on the roof of the mea-
surement van at a carrier frequency of 2.53 GHz (λ = 119 mm) and were
received at a base station. The set-up is shown in Figures 4.18 and 4.19.

For the results presented here, three measurement sets obtained at high SNR
were used. These represent three different scenarios; A LOS scenario, a NLOS
scenario with a Doppler spectrum similar to that of Rayleigh fading and a
NLOS scenario with a relatively flat Doppler spectrum, see Figure 4.20. The
measurements are selected from a larger set, which is described in greater
detail in [128].

The original channel measurements were filtered for noise and were sub-
sampled such that they would correspond to the channels collected when pi-
lots are transmitted every 1 ms at a vehicle velocity of 75-83 km/h, see Paper
V for details.

As stated above, the focus here is on the estimation of the predictor antenna
channel, so for the purpose of these investigations, all four antennas in the
measurement campaign will be considered predictor antennas. An extension
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Figure 4.18. Antenna set-up for the measurements collected in downtown Dresden.
Four monopole antennas, spaced by two times the carrier wavelength were mounted
over a metal sheet to ensure that they experience similar fading.

Figure 4.19. Measurement set-up for the measurements collected in downtown Dres-
den. The metal sheet with the four antennas was placed on top of a measurement
van.
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Figure 4.20. Doppler spectra of the three measurements used in the evaluations are
provided as a solid lines, while the Doppler spectra of the estimated AR models are
represented by the dashed line. The Doppler spectra shown here are those found from
the measurements of the first antenna.
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of these investigations, where the three first antennas are used as predictor an-
tennas, each for the antenna that is placed behind it, and the cross-correlations
between each pair of main/predictor antennas are used to translate the predic-
tor antennas’ smoothed channel estimates into a channel predictions for the
main antennas are left as future work.

To relate the results presented here to what could be achieved by the full sys-
tem, if |b| is close to |b|= 1, then by (4.12) NMSEm ≈ NMSEp for NMSEp ≤
−8dB.

Based on these processed measurements, which in the simulations are con-
sidered accurate representations of the radio channels, measurement signals
were simulated by (3.2) with added white noise simulating pilot SNRs of −5,
5 and 15 dB. To model a TDD system with frame structure as in Figure 4.17,
the pilot matrix Φτ of (3.2) was set to a unit matrix for τ = {1,2,3}+3m and
an all zero matrix for τ = {4,5,6}+3m with m being an integer.

The small scale fading of each channel was modelled by fourth order AR
models. Figure 4.20 shows how well the models fit the Doppler spectra. These
where then used in the Kalman smoothers to find the channel estimate ĥτ |τ+5,
assuming a required prediction horizon of one carrier wavelength, an antenna
spacing of twice the carrier wavelength and a pilot sampling interval of 1 ms.

In the scenario described in Figure 4.17 above, the channel estimate of in-
terest (used as predictor for the main antenna channels) is at the position where
the predictor antenna was 5 time steps before it reached its current position.
We therefore evaluate the Kalman smoothing estimate ĥτ |τ+5 for the predictor
antenna. The NMSE will depend on the pilot SNR and on the location of τ
inside or outside of the downlink subframes. For τ = {1,2,3} it is within an
uplink subframe, where pilots are available. For τ = {4,5,6} we target a point
that was passed during a downlink subframe.

Results are shown in Figure 4.21. Here, the smoothed estimate is compared
to a Kalman filter estimate ĥ f (τ |τ). Note that the filter estimate will constitute
a predictor from past estimates for τ = {4,5,6}. Furthermore, results are in-
cluded for a scenario where estimates are obtained by using the measurements
at τ = {1,2,3}+ 3m and performing smoothing cubic interpolation through
the matlab function �����, see Paper V for further details.

The NMSE shown in Figure 4.21 is averaged over 88 subcarriers and four
transmit antennas. As a benchmark for estimation performance, we can use
an NMSE of ≤ −8 dB, which will result in good prediction performance for
a prediction horizon of one wavelength assuming that |b| is close to |b|= 1 in
(4.12).

For this particular scenario, our findings can be summarised as follows
• Smoothing cubic interpolation is insufficient for estimating all downlink

channels in any of the scenarios, whereas Kalman smoothing ensures
good estimation performance for both the LOS scenario and the NLOS
with Rayleigh fading at an SNR of 5 dB and above.
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Figure 4.21. The average NMSE for τ = 1, . . . ,6+ 6m where m is an integer, corre-
sponding to 1 ms. Results are shown for Kalman filtering (squares), Kalman smooth-
ing (crosses) and interpolation through smoothing cubic interpolation (circles). Re-
sults are for the different types of channels of Figure 4.20 (figure columns) and for
different SNR levels (figure rows).

• An added bonus from Kalman smoothing is the noise reduction at low
SNR. For the LOS scenario this ensures an NMSE below -8 dB for time
slots τ = {1,2,3} at an SNR of −5 dB, which the filter/predictor does
not achieve.

• When the temporal correlation is lower, as in the case of the flat Doppler
spectrum, it is harder to achieve the here targeted NMSE, even with
smoothing.

• The performance difference between smoothing and filtering is largest
for τ within downlink subframes τ ∈ {4,5,6}. Here, the filter/predictor
ĥτ |τ is forced to perform a prediction based on previous pilot bearing
symbols, while the smoother ĥτ |τ+5 also utilizes measurements from the
next uplink subframe.

To summarize, the results indicate that downlink subframes should be of a
duration that corresponds to no longer than 0.6-0.7 of the carrier wavelength
in space at the highest user velocity that the system is required to support.
These results are in line with those of Section 3.4 and Section 4.2, where
predictions were shown to provide NMSE of -8 dB or lower for horizons up to
0.3 of the carrier wavelength. Since the smooting of the downlink channels in
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essence predicts from two directions in time and weighs these two predictions
together, it is reasonable that this should apply for a distance which is close to
or slightly better than twice of the prediction limit, when predicting only from
one direction.

The results here focus on when Kalman smoothing is used to estimate the
downlink channels based on uplink pilots in a TDD system. However, the
smoother could also be used for other applications. Such an example could be
to estimate the channels in between pilot samples in a system where pilots are
sparse in space (either because the user is travelling very fast or because the
pilots are transmitted very sparsely in time).
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5. Conclusions

The Kalman filter has been the foundation of the channel estimations in this
thesis. By modelling the small scale fading of radio channels by low order
AR models, Kalman filters can be used to obtain filter estimates, predictions
and/or smoothed estimates of these radio channels at a reasonable complexity,
while taking into account correlations in time, frequency and across different
physical radio channels.

The pilot structure affects the estimation performance. While the best per-
formance is achieved from resource orthogonal pilots, non orthogonal pilots
may sometimes be necessary to keep pilot overhead within reasonable levels,
e.g. when estimating channel downlinks in a massive MIMO FDD system.
In such a case, it is useful to design the system so that the limited amount of
pilots will be sufficient to get acceptable estimation performance.

One such way is by introducing a fixed grid of beams. By directing the
pilot energy into different directions, the number of channel components that
need to be estimated, as seen from the point of a specific user, will then be
reduced. By using pilot codes, over the available pilot resources, that are
linearly independent for any set of beams lower than or equal to the number
of available pilot resources, any users can then estimate at least that many
channels, provided that the channels that are not to be estimated are weak in
comparison.

To improve estimates further, Pilot codes can be cycled over time, which
enhances the estimates when users are able to utilize temporal correlation
through Kalman filtering.

Simulation results showed that when using a fixed grid of beams in com-
bination with the proposed cycling pilot codes, a reduced order Kalman filter
(which only tracks the strongest channels) provided an estimation NMSE for
the channels to the beams in a CoMP cluster with massive MIMO antennas
that was 5 dB above (worse) than if orthogonal pilots were used. The gain
from using the temporal correlation through Kalman filtering (compared to an
LLMSE estimate based on the current measurement only) was 5 dB in terms
of NMSE, in the investigated example. This gain will in any particular case be
dependent on the user mobility and the pilot rate.

Previouse results [1, 14] suggest that the prediction horizon that can be
achieved by the Kalman filter is limited to a few tenths of the carrier wave-
length in space. Depending on the carrier frequency and the user mobility, this
translates to different delays in time. For long time delays (of tens of ms) and
carrier frequencies in the GHz range, this limit means that channel predictions
for vehicular users mobilities would be very difficult to achieve.
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Generally channels with a peaky Doppler spectrum (such as a LOS channel,
a Rayleigh fading channel or a channel with a few strong NLOS components)
are easier to predict than one with more flat Doppler spectra. The main lim-
itations to the predictability arise from the quality of the training data that is
available. Both noisy training data and a time windowing of the training data
greatly limit the prediction performance of an estimated channel model. As
these two impairments cannot be avoided - noise will always be a factor even
with very advanced receiver filters and the amount of available training data
is limited to the time that the channel remains semi static, which in turn de-
pends on the user mobility - it is impossible to predict channels infinitely into
the future. In fact, both results based on simulated channels in Section 3.4
and those based on channel measurements in Section 4.2 support the limited
prediction horizon reported in the works of [1, 14].

The second factor that limits the predictability of a radio channel is the
model order with which the small scale fading is modelled. If the autocorrela-
tion function is perfectly known, then a higher model order provides a better
estimate. However with limited training data, even a lower model order will
often be a better choice, suggesting that for high mobility users, a low model
order is a more suitable choice, not only from the perspective of keeping com-
putational complexity low.

The measurement noise of the pilot signals generate a third order effect for
long term predictability. Noise on the received pilots is most important for the
filter estimate and the short range prediction horizons.

Kalman based channel predictions for slow users (of approximately 10
km/h) were used in Section 4.2 to evaluate performance in CoMP systems
with long system delays. Here, not only the channel prediction, but also in-
formation regarding the accuracy of these were included in a proposed robust
linear precoder design. Measurement based simulations showed that if users
were randomly grouped and then served by a CoMP cluster of three single
antenna base stations by coherent JT, then it is of great importance that the
information about the prediction accuracy is included in the precoder.

However, when the much superior cellular user grouping scheme, proposed
in Section 4.2, is assumed, similar CoMP gains, in terms of sumrate, can be
achieved also with a zero forcing precoder.

The proposed robust linear precoder has a second advantage. It is easy
to adjust the the minimization criterion of the precoder to handle backhaul
constraint. Simulation results suggests that this is especially important so that
cell edge users do not suffer unnecessarily from backhaul constraints.

When the prediction horizons required in downlink transmission to vehicles
are longer than what can be achieved with Kalman filters, a predictor antenna
can be useful. This is an antenna that if placed on the roof of the vehicle in
front of the main antenna. The predictor antenna can then scout the channel,
efficiently predicting the channel that the main antenna will receive later.
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Depending of the distance between the antennas, the predictor antenna may
be able to provide measurements to enable a smoothed channel estimate of
the main antenna’s future channel. This is especially important is for some
reason no pilots are transmitted during a longer time period. An example of
such a scenario is in a TDD system where downlink channels are based on
uplink pilot measurements. Then the channels within the downlink frames
much either be extrapolated based on the uplink pilots or, if "future" estimates
are made available as a result of a predictor antenna, interpolated.

Using Kalman smoothing to interpolate these, provides good channel es-
timates for downlink frames of a duration that corresponds to approximately
0.6 of the carrier wavelength in space.
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