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The allocation decisions are complicated by a lack of information concerning the future
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sort to using probability theory and the maximum entropy principle as a means for making
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of auctions, scheduling users in communications with uncertain channel qualities and un-
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trol. Moreover, a new method for making optimum approximate Bayesian inference is
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We further discuss reasonable optimization criteria for the mentioned applications, and
provide an introduction to the topic of probability theory as an extension to two-valued
logic. It is argued that this view unifies a wide range of resource-allocation problems, and
we discuss various directions for further research.

Keywords: resource allocation, uncertainty, probability theory as logic, scheduling, mul-
tiuser diversity, Jaynes, maximum entropy, Bayesian probability theory.

Mathias Johansson, Signals and Systems, Uppsala University, PO Box 528,
SE-751 20 Uppsala, Sweden. E-mail: mathias.johansson@signal.uu.se.

c© Mathias Johansson 2004

This thesis has been prepared using LATEX.

ISBN 91-506-1770-2

Printed in Sweden by Elanders Infologistics Väst AB, Göteborg, September 2004.
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Preface

Mät aldrig bergets höjd
förrän du nått toppen.

Då ska du se
hur lågt det var.

Dag Hammarskjöld

As a basketball player, I was taught that everything was about mastering the fun-
damentals – how to move with and without the ball, how to position yourself in
offense and defense, and how to handle the ball. Bill Walton, one of the all-time
great basketball players, stressed that the difference between the professional play-
ers and the rest of us were how they practiced and focused on the fundamentals.
There are players who can match the artistic moves of the top athletes in the game,
but unless they command the fundamentals equally well, they would not stand a
chance in a real competition. From solid fundamental skills, all aspects of the
game follow. That is why the top players continue to practice the basic skills, these
simple movements and techniques that constitute the foundation of the game. The
difference between the best player and the second best lies in their fundamental
skills.

As a student, I was not taught any similar fundamentals of science. In science,
there seemed to exist only a vague picture of what the fundamentals were. In the
beginning of my Ph.D. student days, all I could see was a vast number of different
tools for various purposes, but no underlying unifying principle. Any new problem
seemed to call for a new approach. The tools were seemingly picked at random.
How would I ever be able to understand all these completely different ideas? I felt
that the journey to a Ph.D. thesis was endless and perhaps simply too difficult for
me.

By coincidence, while taking a course in information theory and browsing the
Internet for some material, I came across an unfinished manuscript for a book en-
titled ’Probability Theory – The Logic of Science’. It was written by an American
physicist, Edwin T. Jaynes. His style of writing was quite different from all other
textbooks I had read. Writing in a friendly tone, he focused on the fundamentals of
science, and showed that a few very simple rules were really all that was needed for
conducting scientific inference. Starting from three simple ’desiderata’ describing
an ideal objective reasoner he constructed a theory for optimal reasoning under un-
certainty. Although the theory used the same basic building blocks as conventional
probability theory, the underpinnings were completely different and resulted in a

vii
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completely general method for inference. Gradually becoming more adept at the
fundamentals that Jaynes stresses – much like a Bill Walton of science – has made
it easier for me to understand the various tools that I had been confronted with as
separate topics earlier. Nowadays, I find that these results are typically easily de-
rived from the basic rules in just a few lines of maths. From then on, I have stuck
to this view of science, and it has shaped my way of thinking about the world, not
just in a scientific context.

Although his view unifies and simplifies science, most scientists have no ac-
quaintance with Jaynes’ approach. Compared to conventional probability theory,
Jaynes’ theory is a different paradigm altogether and many times I have found it
difficult to communicate my work to others, as the word ’probability’ has a very
different meaning for them. In conventional probability theory, the technical term
’probability’ does not correspond at all to what we mean colloquially by a proba-
bility as describing a reasonable degree of confidence in something. It is much like
speaking different languages but using the same words. Therefore, in this thesis I
take the opportunity to give a comprehensive introduction to probability theory as
’the logic of science’. I hope that this will at least reduce the number of misinter-
pretations concerning the later chapters.

Today, to my great pleasure, we are an increasing group who adopts the view
of probability theory as logic at the Signals and Systems group. I hope that the
group will continue its meetings and I am excited about the possibilities that the
group have in forming a strong team in this emerging research area.

I have had the great luxury of having intellectually curious and adept supervi-
sors in Professor Mikael Sternad and Professor Anders Ahlén, who have managed
to give me constructive advice and criticisms even in an area where they had little
prior experience. I thank you especially for allowing me to go on into these unchar-
tered waters. Your emphasis on making relevant research and your high standards
have served as a strong inspiration for me.

In addition to my two supervisors, a number of people has meant much for
me during my time as a Ph.D. student at Magistern. The unofficial ’Thursday
club’ meetings spent at student nations include many memorable moments. My
strongest memories from these evenings concern train movies, strict altruism, and
the Cliff Barnes-versus-ice cream episode. A further special thanks goes to Mattias
Wennström who has provided guidance during my Ph.D. endeavors and who is a
good friend with a great sense of humor. More than eight years ago, I met Jonas
Ruström. Since then, we have written a joint Master’s thesis and have been fellow
Ph.D. students for quite some years. Jonas deserves a warm acknowledgement for
these years. It is a tribute to his positive attitude and easy-going nature that we
have remained good friends over such a long joint venture which includes being
part of founding a company. Thanks also to Erik Björnemo and Daniel Aronsson
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who have contributed greatly to filling the gap left by Mattias Wennström when
he left Magistern for industry. All the Ph.D. students at Magistern are greatly
acknowledged for providing such a nice atmosphere.

This thesis work has been partly financed by PCC++ and Vinnova (The Swedish
Agency for Innovation Systems), which is greatly appreciated.

Finally, and most importantly, my family – my mom and dad, my brother and
my sister – has always supported me in everything. I owe a lot to you. Thankyou!

Mathias Johansson
Uppsala, August 2004.
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Chapter 1
Introduction

IN this thesis we consider a number of problems with the common feature that
they all require decisions on how to allocate resources among different tasks un-

der uncertainty concerning the demand and potentially also the supply of resources.
We first study a model problem from the manufacturing industry in which a

plant manager has a number of production units which are used to produce differ-
ent sorts of widgets. The manager’s aim is to meet the order intake, but the task is
complicated by uncertainty concerning the future order intakes as well as possibly
uncertain production capacities. We then consider the customer perspective in an
auctioning situation. With only limited information concerning other customers’
bids, what amount should an individual customer bid? The answer obviously de-
pends on what the expected benefit of the customer will be from winning, and we
therefore investigate a few different scenarios.

Based on the general ideas that we formulate in connection to these two prob-
lems, we then consider a number of specific problems which are of current interest
in digital mobile cellular communications. The objective is to increase the resource
efficiency, or to maximize the useful work performed by the resources, over a given
time horizon and thereby achieve a more cost-efficient cellular network.

1.1 Probability Theory and Plausible Reasoning

A common problem in deciding on a satisfactory allocation of the available re-
sources is that the actual future outcomes of our decisions are hard to predict in
advance. At the time of the decision, the information at hand is too vague to
uniquely determine a guaranteed best decision. Therefore, the fundamental tool
that we will rely on throughout this thesis is probability calculus in its most gen-
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2 1.1. Probability Theory and Plausible Reasoning

eral formulation as a theory for optimal plausible reasoning. Our use of probability
theory is quite different from the collection of methods taught at most schools and
universities known as the frequentist interpretation and associated with the names
of Venn, Fisher, Neyman, E. Pearson, and Feller, and instead follows in the steps of
such names as Laplace, Jeffreys, Cox, and Jaynes. Our approach, championed by
Jaynes (2003), is based on the interpretation that probabilities are the fundamen-
tal carriers of incomplete information, and describe a reasonable degree of belief
that is, or should be, in the mind of an idealized objective and completely rational
reasoner. It may come as a surprise to many that the ordinary rules of probability
theory are uniquely determined as the only consistent rules for optimal information
processing under uncertainty (deductive reasoning being a special case thereof), a
result essentially due to Cox (1946) and further refined by Jaynes.

The frequency interpretation of probabilities maintains that a probability is a
property of an idealized imagined ’random experiment’, and is only a special case
of the more general definition as a reasonable degree of belief. The interpreta-
tion of probability theory as an extension to logic dramatically affects the scientific
method, and it can rightly be described as a new scientific paradigm in the sense
of Kuhn (1970) (see also Chalmers, 1999). It must however be emphasized that
under the Bayesian umbrella of interpretations, some maintain a quite different po-
sition than ours, claiming that probabilities are (1) still interpreted as frequencies
in imagined random experiments, or (2) entirely subjective in the sense of arbi-
trariness. In the framework derived by Jaynes, probabilities are subjective in the
sense that they depend on the information at hand and are not objectively verifi-
able in nature, as they are not properties of nature but of our actual information,
and lack thereof, about nature. On the other hand, they are completely objective in
the sense that for a given state of information, there is in principle only one cor-
rect probability assignment that corresponds to that information state. Failure from
seeing this has resulted in a significant amount of misdirected criticisms towards
all ’Bayesian’ ideas (this is for instance manifest in the aforementioned work by
Chalmers, 1999), and we therefore use the term ’probability theory as logic’ rather
than ’Bayesian probability theory’ in this thesis in order to emphasize this distinc-
tion. In Chapter 2 we provide a comprehensive introduction to the subject intended
for a reader with no previous acquaintance with Jaynes’ ideas. Some of the length-
ier mathematical derivations are left out but all major results and principles behind
them are provided.
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1.2 Some Basic Terminology in Cellular Communications

Here we present a minimum of terminology that may assist a reader unacquainted
with mobile communications. Some additional more detailed techniques will be
briefly explained in the next section, but the interested reader is referred to text-
books for more information.

Current large-area mobile radio networks are typically geographically split in
a number of smaller areas called cells, each cell being served by one base station
which all mobile terminals are directly connected to. Each mobile terminal thus
transmits to and receives from a base station only, and the base station relays the
message to destinations outside the cell via a core network. A cell, which often
is depicted as a hexagon with the base station in the middle, can also be further
divided into typically three or six sectors by the use of directional antennas. That
way, more users can be supported in the cell area.

We distinguish between the transmission from base station to the mobile ter-
minal and the transmission in the opposite direction, and denote the former by the
downlink channel and the latter by the uplink channel.

Before connecting to the network, the base station performs admission control,
deciding whether the user may connect or not based on the load of the network
and on the propagation conditions as measured by the mobile terminal. When a
mobile terminal moves from one cell to another, the network must further make
a hand-over which means that a new base station takes over communication with
that user.

1.3 Resource Allocation in Mobile Communications – To-
wards More Efficient Networks

Mobile radio networks, such as GSM and the third generation cellular system
UMTS, are designed to provide coverage over large areas and for mobile termi-
nals that may move at very high speeds. These two tasks are challenging engi-
neering problems. Due to movements, reflections and multipath propagation, the
received signal is a distorted and attenuated version of the transmitted signal. Sev-
eral techniques are therefore required in order to decode the sent message. Already
in the early history of wireless communications it was realized (Nyquist, 1928)
that the signalling speed could be increased at the expense of increasing also the
bandwidth of the channel, i.e. the width of the spectral contents of the transmitted
signal. Shannon (1948) then established limits on the information rate for noise-
free as well as noisy channels. He showed that even in the case of noisy channels,
error-free reception is possible as long as the data rate does not surpass a certain
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number, the capacity of the channel. The channel capacity of a channel limited
in bandwidth and disturbed by additive thermal noise was seen to be proportional
to the bandwidth of the channel and approximately proportional to the logarithm
of the signal-to-noise ratio (SNR) at the receiver. Thus, two ways of increasing
the performance of a communication link is to increase the power leveraged to the
receiver and to increase the bandwidth of the channel. The latter is perhaps the
simpler way, as bandwidth is in some sense an unlimited natural resource. In prac-
tice, however, increasing the bandwidth makes linear amplifier design a challenge,
and moreover bandwidth usage is regulated by government agencies limiting the
allowed spectrum usage. Similarly, increasing transmitter power or using more
advanced antenna concepts such as beamforming to increase the amount of power
delivered to the receiver increases the costs of the network. In addition to this,
there are concerns that the power radiated in the microwave frequency bands used
for mobile communications may have adverse effects on human health. For these
reasons, increasing the transmitter power is not an attractive option.

Instead, it becomes important to increase the spectral efficiency and the power
efficiency, i.e. transmitting more data per Hertz and Watt, and coming closer to
Shannon’s limit. Network design has become a problem of optimal resource al-
location. For instance, how should the bandwidth be partitioned between users
and areas to best utilize the limited spectrum available for the network? And how
should we distribute power among users to maximize the system throughput?

It is not until recently that it has been realized that in order to maximize the
system throughput it is not sufficient to simply use techniques which improve the
performance of individual links between the transmitter and a receiver. A strategy
which improves the single-user capacity of a link may actually decrease the capac-
ity of the whole network. This makes the design task even more challenging. The
designer must now consider the problem of jointly maximizing the throughput of
all users. For instance, in a single-user scenario, the channel capacity increases
when the number of transmit antennas increases when open-loop spatial diversity
is employed, but in a multiuser scenario this strategy decreases the capacity (Jiang
et al., 2004)!

In order not to over-generalize results such as these it is important to understand
the assumptions imposed on the considered communications system in obtaining
these results. The recent interest in multiuser optimizations was sparked by a re-
sult due to Knopp and Humblet (1995). They considered the Shannon capacity of
a fading Gaussian multiple-access channel, a channel where several sources are
sending independent information to one common receiver and where the transmit-
ted message from each source may be attenuated by an individual factor which the
receiver can measure perfectly. The received messages are also distorted by a com-
mon additive white Gaussian noise term. The received signal can thus be modelled
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by

y =
U
∑

u=1

αuxu + n (1.1)

where U is the number of sources (or users), xu is the transmitted message from
user u and n is the additive disturbance. Note that this model does not include
multipath propagation where messages at different transmission times from each
source would arrive simultaneously at the receiver. When the αu are non-zero con-
stants the capacity of the Gaussian multiple-access channel is (Cover and Thomas,
1991)

C =
1

2
log2

(

1 +

∑U
u=1 µu(P )Pu

N

)

, (1.2)

where µu(P ) is the normalized (0 ≤ µu(P ) ≤ 1) allocated transmitter power for
user u and N is the noise power at the receiver. Pu is the set of signal powers
Pu for each user’s message at the receiver would u transmit with full power. This
capacity is often denoted the sum-of-rates capacity since it denotes the maximum
achievable sum of rates from all users. Under the assumption that the channel
attenuations αu vary randomly over time according to some frequency distribution,
the sum-of-rates capacity is obtained by averaging (1.2) over that distribution. This
intends to model a mobile radio channel, where the received signal strength varies
due to the changing environment. Knopp and Humblet showed that the sum-of-
rates capacity averaged over any probability distribution for Pu is maximized by
transmitting at any time only to the user with maximum instantaneous SNR when
there is a constraint on each user’s average transmit power. They further showed
that the optimal power control law under the same average power constraint is to
use a form of water-filling over time, i.e. increasing the transmit power when the
SNR is high and decreasing when it is low. We should however keep in mind that
the capacity-optimal strategy is highly dependent on the type of power constraint
that is employed.

Following Knopp and Humblet (1995), Tse (1997) considered capacity-optimal
power control over a set of parallel Gaussian broadcast channels under an average
power constraint. A broadcast channel describes a situation where one transmitter
wants to send independent information to several receivers. For instance, the con-
sidered scenario can model a downlink in a cellular system. The received signal at
user u is given by

yu = x+ nu (1.3)

where x is the transmitted message and nu is Gaussian receiver noise. Notice that
the disturbances may have different power among users, and that if there is any
attenuation of the transmitted signal each user is assumed to measure it perfectly.
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Again the optimal power allocation turns out to consist of transmitting in each par-
allel channel only to the user experiencing the most favorable channel conditions
using water-filling across the different channels.

As Knopp and Humblet pointed out, since the capacity-optimal strategy (under
the average power constraint) is to transmit only to the user with the highest SNR
at any time and that the capacity increases with that maximum instantaneous SNR,
the capacity increases with the number of users experiencing channel variability.
The stronger the variations (around some given mean) and the more the users, the
higher the possible gain from scheduling. Therefore, since this effect is inherent
in a multiuser environment, they coined the name multiuser diversity. They also
noted in a numerical example where each user experienced Rayleigh fading inde-
pendently of other users that utilizing multiuser diversity is equivalent in terms of
average error probability to a system employing selection diversity1 with equally
many branches as there are users in the system. Thus, multiuser diversity can be
considered as selection diversity on the transmitting end.

In order to actually realize the potential gains promised by these information-
theoretic results, some technique for actually changing the rate according to chan-
nel quality must be employed in the network. The use of scheduling and adap-
tive modulation is one such method that has been shown to facilitate considerable
throughput gains in the downlinks of cellular systems (see e.g. Chuang and Sollen-
berger, 2000, Li et al., 2002, Wang et al., 2003a). Adaptive modulation is carried
out by predicting the channel conditions (typically the SNR) of the receiving user
for the coming time slot, and choosing a modulation level2 based on this which
matches the bit-error rate (BER) requirements of the user. In many cases, a rea-
sonable model for the rate-SNR-BER relation useful for most modulation formats
is

r ∝ log2

(

1 +
γ

Γ(BER)

)

, (1.4)

where r is the rate in bits per symbol, γ denotes the SNR at the receiver, and
Γ(BER) is the ’gap’ – as a function of the BER – between the modulation (and any
additional coding) technique and the Shannon capacity for a bandlimited Gaussian
channel.

1Selection diversity is the technique where there are, say L, parallel channels to one user, each
channel conveying the same message, and the receiver selects only the best channel in decoding the
message.

2A modulation level [bits/transmitted symbol] determines the signalling speed of the communi-
cation. A higher modulation level implies a higher data rate.
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1.4 Outline and Contributions of this Thesis

One of the aims of this thesis is to provide a comprehensive introduction to the
subject of resource allocation under uncertainty using probability theory as logic.
Consequently, we first give a concise but self-contained treatment of probability
theory as logic in Chapter 2. This chapter should not be skipped if the reader
is unfamiliar with the book by Jaynes (2003). In the following two chapters we
then study two model problems in resource allocation, applying the framework in
Chapter 2 and providing a methodology for resource allocation problems. Chapter
3 considers a manufacturing plant producing different types of widgets and investi-
gates the problem of allocating production resources so as to meet future customer
demands for the different widget types. In this chapter the basic reasoning format
and many technical results are derived that form the basis for the remaining chap-
ters. Chapter 4 discusses the customer perspective in a certain type of auctions and
addresses the problem of optimal bidding under uncertainty.

Based on the results and ideas in Chapters 2-4 we then devote the remaining
chapters to more specific resource allocation problems in mobile communications.
We now give a short overview of the contributions of each chapter in the thesis.

Chapter 2

This chapter provides an introduction to probability theory as an extension to logic.
We recapitulate the three underlying desiderata which yield the ordinary sum and
product rules of probability theory as a uniquely determined consistent framework
for plausible reasoning under uncertainty. We further emphasize two basic tools
of probability theory, Bayes’ rule and marginalization of nuisance parameters. We
provide a thorough treatment of the maximum entropy principle as an essential rule
for assigning probabilities and discuss its most important properties. In addition
to this, we briefly discuss the Shannon capacity and the related concept of infor-
mation. Before concluding the chapter with some comments on the history of the
subject, we give an outline of decision theory from a Bayesian standpoint. The
chapter is intended as an introduction rather than an overview and presents no new
technical results but explains the most important conceptual and technical sides of
the subject in some depth.

Chapter 3

Here, a problem facing a manager of a manufacturing plant is considered. The
task is to assign different jobs to different production units so as to minimize the
expected number of missed orders. Solutions are given for a number of scenar-
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ios, differing in the information available to the manager. The chapter extends an
early contribution by Jaynes (1963b) which was the first application of probability
theory as logic to resource allocation problems. The chapter is based on presently
unpublished material, but some derivations are found in the following works.

• M. Johansson and M. Sternad, “Resource allocation under uncertainty using
the maximum entropy principle”, submitted to IEEE Transactions on Infor-
mation Theory, April 2002, revised December 2003.

• M. Johansson, “Benefits of multiuser diversity with limited feedback”,
SPAWC 2003 (IEEE Signal Processing Advances for Wireless Communica-
tions), Rome, June 2003.

Chapter 4

Chapter 4 considers the problem of determining the amount to bid in a certain type
of auctions in which customers submit one sealed bid. Each customer has a car-
rying capacity (not necessarily equal among customers) denoting the amount of
goods that the customer can currently receive. Only the bid with winning price-
capacity product obtains any goods, and then obtains an amount equal to the car-
rying capacity of the customer. The auction is repeated many times, with only
limited information concerning winning price-capacity products being announced
to the customers. This situation is motivated in for example communication net-
works in which a possible way of obtaining a desired quality-of-service level is to
use dynamic pricing in combination with competitive bidding. We derive optimum
bidding rules for a few typical service requirements and show in simulations that
the derived bidding strategies are successful. The material presented in this chapter
has not yet been published.

Chapter 5

Here, we consider the problem of allocating bandwidth among different users in a
downlink over a set of parallel channels. The objective is to maximize the expected
system throughput over a given time interval while accounting for uncertain arrival
rates and possibly uncertain channel predictions. Based on the framework devel-
oped in Chapter 3, we introduce the maximum entropy principle as a robust and
powerful method to solve the notorious problem of modelling individual Internet
data sources. This work generalizes the results of Knopp and Humblet (1995) and
Tse (1997) concerning optimum scheduling policies for the case of infinitely much
data to send and perfect channel knowledge with one time slot scheduling. Our
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solutions provide maximum expected throughput for multiple parallel channels, fi-
nite queue lengths with uncertain arrival rates, arbitrary scheduling horizons, and
include a general model for accounting for channel prediction inaccuracies.

We also comment on the notion of queue stability which has been taken as the
primary criterion in some works on scheduling, and note some of its more serious
deficiencies. Moreover, we discuss the use of logarithmic throughput criteria and
argue that they may be more appropriate than previously thought.

The work presented in Chapter 5 is based on the following contributions, but
includes new and previously unpublished material, mainly on queue-stabilizing
schedulers, logarithmic criteria and competitive bidding as a mechanism for ob-
taining a desired level of service.

• M. Johansson and M. Sternad, “Resource allocation under uncertainty using
the maximum entropy principle”, submitted to IEEE Transactions on Infor-
mation Theory, April 2002, revised December 2003.

• M. Johansson, “Benefits of multiuser diversity with limited feedback”,
SPAWC 2003 (IEEE Signal Processing Advances for Wireless Communica-
tions), Rome, June 2003.

Chapter 6

In Chapter 6 we discuss the implications of limited channel feedback for multiuser
diversity. We study quantization of the channel information in a setting where
adaptive modulation is used in combination with a pure multiuser-diversity strategy
and propose to use common rate thresholds for all users. We derive an expression
for determining such a quantization achieving maximum expected system through-
put and also find an expression for the optimum amount of feedback taking both
downlink throughput and feedback overhead into account. From this we find that
the expected throughput does in theory not reduce at all as much as in traditional
systems with fixed access schedules. It however turns out that unfairness increases
with reduced channel feedback and that the promised theoretical throughput may
reduce drastically in practice due to an inherent sensitivity to correctly chosen rate
thresholds.

We propose two methods for achieving a high degree of multiuser-diversity
gain with only 1-bit channel feedback. The first method adaptively changes a rate
threshold based on usage statistics in a recent time interval. The second method
combines individual rate thresholds – decreasing the sensitivity to correctly chosen
levels – with a simple new scheduling strategy guaranteeing a fixed inter-access
delay while still achieving a high multiuser-diversity gain.

The chapter is based on the work presented in
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• M. Johansson, “On scheduling and adaptive modulation with limited channel
feedback”, submitted to IEEE Transactions on Communications, April 2004.

• M. Johansson, “Benefits of multiuser diversity with limited feedback”,
SPAWC 2003 (IEEE Signal Processing Advances for Wireless Communica-
tions), Rome, June 2003.

• M. Johansson, “Diversity-Enhanced Equal Access – Considerable through-
put gains with 1-bit feedback”, SPAWC 2004 (IEEE Signal Processing Ad-
vances for Wireless Communications), Lisbon, July 2004.

Chapter 7

As a related issue to that of scheduling users within a cell, we here investigate
inter-cell scheduling, or reuse partitioning, i.e. partitioning bandwidth between
interfering and non-interfering sub-sectors in a cellular network. The objective
is to dynamically reallocate bandwidth to areas where it will be best utilized in a
coming time period. The criteria which we develop, to maximize the total expected
throughput in an area, extend the ideas presented in Chapters 3 and 5 and we show
that the consequent framework can be used also for analyzing and making hand-
overs and access control decisions.

The material covered in this chapter is based on the following contribution.

• M. Johansson, “Dynamic inter-cell scheduling based on local supply-demand
fluctuations”, submitted to IEEE Transactions on Vehicular Technology,
April 2004.

Chapter 8

In many problems of resource allocation, the prior information and the computa-
tional power are limited, thus requiring some solution for adapting to unforeseen
events at low complexity. In the final chapter of this thesis, we therefore introduce
a method for conducting approximate Bayesian inference. The method is based
on approximating a full Bayesian inference by adapting a simpler quantized distri-
bution according to incoming data. We establish that the optimum approximation
in the sense of maximizing the mutual information of the quantized and the un-
quantized distributions yields a quantized distribution with maximum entropy. The
approximate pdf is then represented by a self-organizing histogram, where each
bin is adjusted to attain equal probability mass. We show how this is accomplished
in practice by using basic probability theory from Chapter 2.



Chapter 1. Introduction 11

The resulting algorithm provides a general-purpose approximation of Bayesian
inference for arbitrary non-stationary distributions. It does however not take ad-
vantage of time dependencies. The resulting posterior distribution increases its
resolution at regions where observations are frequent and decreases resolution in
regions of low activity. It moreover provides easy assessment of expectations of
arbitrary integrable (or summable, in the discrete case) functions of the uncertain
quantity. The material in this chapter has not yet been submitted for publication.

1.5 Summary and Further Work

In this thesis we hope to show how using Jaynes’ interpretation of probability the-
ory as an extension to logic unifies a number of resource allocation problems. The
applications discussed in the thesis range from manufacturing and bidding in auc-
tions to diverse topics in mobile communications such as user scheduling, quan-
tization of channel information, inter-cell scheduling, hand-overs and access con-
trol. Although the problems differ widely, the criteria, the models of uncertainty
concerning the future outcomes, and the solutions will often be delusively similar.
One reason is that the actual performance criteria of all these resource allocation
problems are very similar; maximizing the resource efficiency, or the revenues of
the manufacturer, customer, or network operator. Another even stronger reason
is that we often find ourselves in situations where the only information we may
have concerning future demand for widgets or data rates or whatever the goods
we distribute, is quite the same irrespective of the actual application at hand. The
similarity in information entails similar probability models when we regard prob-
abilities as the fundamental carriers of information, and thus we often use similar
probability distributions for very different entities. It is a subtle but essential in-
sight that this is not equivalent to assuming that the different entities will behave
in the same way. Using maximum-entropy distributions will lead us to always take
precautious decisions that avoid assumptions (Roberts, 1971) concerning the ac-
tual long-run behavior of the entities. Instead, all actual information that we have
is thoroughly distilled and utilized while the full extent of our uncertainty is frankly
admitted. The resulting inferences, due to the property that the class of maximum
entropy distributions is exactly the class of distributions with sufficient statistics
(see Chapter 2), will only use those properties of the data that we actually used in
assigning the probability and will not rely on any other properties of the data.

A main intention of this work has been to provide a readable introduction to
probability theory as logic with an emphasis on examples in the fields of scheduling
and resource allocation. Many problems are naturally posed as ones of improving
the utility of some limited resource. Apart from the previously cited paper by
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Jaynes (1963b), very little has yet been published on resource allocation under
uncertainty from our present perspective on probability theory. Further work on
bidding under uncertainty is an interesting topic; in Chapter 4 we only consider one
specific type of auction, and there is clearly many other situations which call for
other solutions. The format of the auction, the bidders’ objectives, and especially
the information announced to the bidders will have a strong impact on the resulting
strategies.

In mobile communications, which is the main application area studied here,
a number of outstanding issues require more research. For a number of years, the
use of multiple antennas at the transmitting and receiving ends (known as multiple-
input multiple-output (MIMO) channels) have been investigated in different sce-
narios. These techniques promise substantial performance gains in single-link sce-
narios, but as we noted earlier, some techniques may have adverse effects when
employed in a multiuser setting. Multiple antennas are beginning to be used in
some cellular systems, and are believed to emerge as a standard component in
future base stations. If these extra investments are to be put to best use, it is im-
perative that a careful analysis of the joint scheduling-MIMO strategy is carried
out. Although isolated results are beginning to appear, there is still a lack of prac-
tical high-performing strategies. Very recently, the capacity region and a capacity-
optimal scheme for the Gaussian MIMO-broadcast channel has been found (Caire
and Shamai Shitz, 2003, Jindal et al., 2004, Viswanath and Tse, 2003), but the
results require full channel information at the transmitter. Moreover, the capacity-
optimal scheme is extremely computationally demanding.

A key issue in realizing practical schemes is the balance between channel feed-
back and downlink system throughput. We see in Chapter 6 that some types of
channel feedback can be substantially quantized without compromising the down-
link throughput when multiuser diversity is taken into account. But the type of
channel information that is required for many MIMO techniques, such as beam-
forming, does not have this desired property. The complex interplay between chan-
nel feedback, scheduling gain, and the choice of MIMO technique combines into
one of the most important research topics for near-future cellular systems.



Chapter 2
Probability Theory As Logic

IN any area of science, or indeed daily life, we have to draw conclusions from
limited knowledge. Only very rarely do we have enough information so as to

draw conclusions with absolute certainty about any matter. For instance, will it
rain today? Should I invest in the stock market or in bonds? Every day, decisions
must be made in the face of uncertainty.

One should expect that in the evolution of animals, competition would favor
those with a highly developed skill for making plausible inferences, i.e. making
generalizations and logical decisions that turn out to serve the purpose of the de-
cision maker1 well and give that animal easier access to food, etc. In the most
highly developed animals, therefore, we expect that some form of optimal reason-
ing under uncertainty should have evolved over time. We put forward this example
as an objection to the opinion that has occasionally been advanced that a theory
for induction is fundamentally impossible. The very fact that people and animals
are making successful inferences based on limited knowledge should be sufficient
reason to infer the possibility of such a theory.

In this chapter, we study the theory of plausible reasoning developed into its
present form by Edwin T. Jaynes (2003). Although Jaynes should certainly be cred-
ited as the father of this scientific paradigm, his work is an extension to Jeffrey’s
(Jeffreys, 1939) and the seminal derivation due to Cox (1946) of the ordinary rules
of probability theory as an extension to logic.

1Perhaps we should clarify for whom the decision should serve a purpose. Richard Dawkins
(1976) makes it plausible that it is not the individual animal, or the species, that is the main bene-
ficiary in evolution. Evolution is a process that critically affects which genes are transmitted to the
next generation. An animal in itself is a collection of competing and cooperating genes, and is not
the entity which evolution fundamentally involves.

13
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The presentation here is of an introductory character, and requires no previ-
ous knowledge of probability theory. The chapter is intended as a comprehensive
introduction with emphasis on the fundamental principles and rules. Since most
readers probably have been exposed to some form of conventional probability the-
ory, we will often point out differences between these two subjects, so as to better
facilitate the understanding of the present theory. We hope that such a reader will
be pleasantly surprised by the simplicity and generality of this theory.

2.1 Consistency and Common Sense – The Basic Desider-
ata

Our topic is optimal information processing, i.e. deductive reasoning whenever
possible, and inductive reasoning when the information at hand is insufficient to
render a conclusion with the status of absolute certainty. In order to derive a theory
for this purpose, we will first state three desiderata (desired properties) that such
a theory should reasonably satisfy. Having stated them explicitly, Jaynes (2003)
shows that it is indeed possible to derive from these desiderata a unique set of
rules for conducting inferences. We will simply state the resulting rules without
derivation, as some of the mathematics is quite cumbersome. The interested reader
is referred to (Jaynes, 2003) for the full derivation.

Our desiderata are:

(I) Degrees of plausibility, or probabilities, are represented by real numbers.

(II) Qualitative correspondence with common sense.

(III) Consistency requirements:

(IIIa) If a probability can be reasoned out in more than one way, then every pos-
sible way must lead to the same result.

(IIIb) All evidence relevant to a question is always taken into account. No infor-
mation is ever arbitrarily ignored.

(IIIc) Equivalent states of knowledge are always represented by equivalent proba-
bility assignments. That is, if in two problems, the reasoner’s state of knowl-
edge is the same (except perhaps for the labelling of propositions), then he
or she must assign the same probabilities for both.

As Jaynes remarks, desiderata (I), (II), and (IIIa) are the basic structural re-
quirements on how plausibilities are processed internally, and (IIIb) and (IIIc) are
’interface’ conditions which shows how probabilities relate to the outside world.
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Recall now that our aim is to generalize deductive two-valued logic into induc-
tive logic, thereby allowing us to reason consistently also under uncertainty. The
basic building blocks are the same in both theories. The only difference is that
we are no longer necessarily certain about the truth value (true or false) of some
proposition of interest. Typically, a proposition is a combination of other more ele-
mentary propositions, and its truth value depends on whether other propositions are
true or false. Consequently, in order to determine the plausibility for some event
we first need to establish how it relates to other propositions and their truth values.

It is a fact from deductive logic (or boolean algebra) that an adequate set of
operations for constructing any logical proposition2 of statements is contained in
the logic product (=conjunction, AND) and the negation (=NOT)

Logical product = conjunction, AND: AB = both propositions A and B are
true.

Negation = NOT: Ā = A is false.

By repeatedly applying these two operations it is possible to construct any arbi-
trary logical proposition. Apart from the logical product AB and the negation Ā,
two other operations are typically defined in deductive logic, with the following
meanings:

Logical sum = disjunction, OR: A + B = at least one of the propositions A
and B are true.

Implication: A ⇒ B = A implies B, i.e. if A is true, then B is also true, or
equivalently, if B is false, then A is also false.

Note that the disjunction of A and B is equivalent to denying that both are
false,

A+B = (A B) ,

and that the implication A⇒ B is the same as denying that A and B̄ are both true,

A⇒ B = AB .

These two last operations are thus redundant in the sense that they are just combi-
nations of AND and NOT.

It is important to emphasize the difference between logical implication and its
meaning in colloquial usage. Logical implication makes no reference to time or

2A proposition here refers to any combination of statements that can, at least in principle, be
deemed either true or false.
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physical causation. This is brought out most clearly by an example. Let

A = Rain tonight

B = Clouds tonight.

Then the correct logical relation is A ⇒ B, since if there is rain tonight, there is
certainly clouds as well, and if there are no clouds, there can be no rain. Since we
are accustomed to thinking in terms of physical causation rather than logical impli-
cation in everyday life, we sometimes tend to confuse these two distinct concepts
and equate logical implication with physical causation. Then one is tempted to
think, erroneously, that clouds implies rain, and not the other way around. There-
fore, we stress this; Logical implication refers only to truth values and does not
require or point to any causal effects. For instance, there is nothing illogical in
a proposition implying a different proposition which makes statements about past
events. This, seemingly trivial, remark becomes especially important in our ex-
tension of two-valued logic to a probability scale. If a probability for some event
depends on some other event, it does not mean that the events are physically related
in any way. For instance, the pear crop does not affect the apple crop, but knowing
that this was a good year for apples, we probably have reason to believe that the
pear crop will be good too. Or, if a probability for observing an electron in some
state depends on the state of another electron (possibly separated from the former
by a large distance), that does not imply that its state changes when measuring the
state of the latter.

Returning now to our desiderata, some readers will note with dismay the seem-
ing inexactness of our desideratum (II), common-sense correspondence. But note
then from our preceding discussion on logical propositions that any arbitrary propo-
sition can be constructed by only two operations, the logical product and the logical
negation. So in order to determine the probability for any logical proposition fully,
we only have to define rules for how the probability for the logical product of two
propositions depend on the probabilities for the individual propositions, and how
the probability for the logical negation of a proposition is written as a function of
the probability for the proposition. Hence, it is in the formulation of these two
basic rules that we require qualitative correspondence to common sense. Any re-
formulation of desideratum (II) would in the end need to have this correspondence
to common sense or else it would be useless for our purposes.

Furthermore, desideratum (II) gives a ’sense of direction’ for how probabilities
change with information (not how much they change, but only in which direction).
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This can be described in the form of three weak syllogisms,

if A is true, then B is true

B is true

therefore, A becomes more plausible

if A is true, then B is true

A is false

therefore, B becomes less plausible

if A is true, then B becomes more plausible

B is true

therefore, A becomes more plausible

These syllogisms may seem questionable at first sight, and the reader is urged
to examine whether they are reasonable in some simple example. Try for instance
the rain example above on the two first syllogisms,

A = Rain tonight

B = Clouds tonight.

Neither of these syllogisms would be required in a theory that does not cor-
respond qualitatively to common sense. Therefore, although desideratum (II) is
necessarily reduced to a set of mathematical requirements on the probability rules
in the derivations, we keep it in its current formulation because we think that ex-
actness in the narrow mathematical sense may obscure understanding the over-all
goal of the theory.

2.2 The Fundamental Rules

Jaynes shows the remarkable result that using only the three desiderata from Sec-
tion 2.1, it is possible to construct a unique3 theory for plausible reasoning. The
resulting rules are the following:

3The rules are unique, but any one-to-one transformation of the rules is of course equivalent in
content. As is the typical convention, we denote 0 for impossibility and 1 for certainty. It would
also be possible to use an inverse scale where 1 denotes certainty and ∞ impossibility. The resulting
theory would however look less familiar to us.



18 2.2. The Fundamental Rules

The product rule:

P (AB | C) = P (A | BC)P (B | C) = P (B | AC)P (A | C) (2.3)

The sum rule:
P (A | B) + P (Ā | B) = 1 (2.4)

We have here introduced the notation P (A | B) meaning the probability that
A is true subject to knowledge that B is true, often abbreviated as A conditional
on B, or simply A given B.

Note here an important difference to the random variable approach to probabil-
ity theory: all probabilities in our theory are conditional on some other proposition.
Since a probability is simply a statement about our degree of belief in a proposition,
it cannot be determined without explicit statement of what information we base it
on. It is therefore meaningless to speak of a true probability, as were it a physical
property in nature, since a probability is only an artefact of our ignorance as to the
true logical status of the proposition in consideration. A probability conditional on
nothing is ill-defined; it has no ’logical context’ from which it can be numerically
determined.

As a convention, we will use the short-hand notation I to denote the prior
information that is common to all probabilities in any particular case of inference.

From the product rule and the sum rule, we can derive a very useful rule de-
termining the probability that at least one of propositions A and B are true, the
extended sum rule:

P (A+B | I) = P (A | I) + P (B | I) − P (AB | I) . (2.5)

Proof:

P (A+B | I) = P (A B | I) = 1 − P (A B | I)
= 1 − P (A | BI)P (B | I)
= 1 −

[

1 − P (A | BI)
]

P (B | I)
= 1 − P (B | I) + P (AB | I)
= P (B | I) + P (B | AI)P (A | I)
= P (B | I) + [1 − P (B | AI)]P (A | I)
= P (B | I) + P (A | I) − P (AB | I) . (2.6)

If only one of A and B can be true, then the probability that both be true
is P (AB | I) = 0, and the probability for A OR B reduces to the sum of the
probabilities for the individual propositions.
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2.3 Useful results: Bayes’ Rule and Marginalization

By rearranging the factors in the product rule (2.3) we have (with I = C) that

P (A | BI) = P (A | I)P (B | AI)
P (B | I) . (2.7)

This relation is often denoted Bayes’ rule in memory of the British reverend and
amateur mathematician Thomas Bayes who showed this relation in a specific case4.
Its importance becomes clearer if instead of A and B we use the propositions

• H = A hypothesis of interest

• D = Observations of some data.

Then we obtain

P (H | DI) = P (H | I)P (D | HI)
P (D | I) , (2.8)

which shows how our belief in a hypothesisH changes with the acquisition of new
data D. Written in this form P (H | DI) is often denoted the posterior probability
for the hypothesis, P (H | I) the prior probability, and P (D | HI) the likelihood.
Given the uniqueness of our rules subject to the constraints of desiderata (I)-(III),
Bayes’ rule can be seen to be a fundamental equation of optimal learning under
uncertainty. We shall presently see by example how the rule corresponds to an
ideal common sense. To prepare for this, we first derive another useful result from
the two basic rules.

As mentioned in the ending notes of the preceding section, the extended sum
rule (2.5) takes a particularly simple form when the individual propositions are
mutually exclusive, i.e. when only one of the propositions can be true. If the
propositions are also exhaustive, i.e. one of them must surely be true, then we
obtain the simple sum rule. This can easily be extended by mathematical induction
to an arbitrary number of propositions, resulting in

P (A1 + · · · +AN | I) =
N
∑

i=1

P (Ai | I) = 1 . (2.9)

Now, note that the truth value (i.e. true or false) of a proposition A is the same as
that of A(B1 + B2 + · · ·BN ) if the propositions Bi are mutually exclusive and
exhaustive (since the truth value of A is always the same as the truth value of A

4Laplace generalized the results of Bayes and should perhaps be attributed the discoverer of the
rule rather than Bayes.
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AND any proposition known to be true, i.e A = A1 always). This means that a
probability for a proposition A can be resolved into

P (A | I) = P

(

A
N
∑

i=1

Bi | I
)

= P

(

N
∑

i=1

Bi | AI
)

P (A | I)

=

N
∑

i=1

P (Bi | AI)P (A | I)

=
N
∑

i=1

P (BiA | I)

=
N
∑

i=1

P (A | BiI)P (Bi | I) , (2.10)

given that the Bi, i = 1 . . . N are mutually exclusive and exhaustive. This, on first
sight somewhat strange-looking, technique can be used to determine the probability
that A is true regardless of which one of the possible Bi hypotheses is true. Called
marginalization, this technique is a very useful way of making inferences about a
particular hypothesis which depends on the value of some hypothesis or parameter,
Bi, whose exact value is uncertain. Such a parameter, which enters the problem
but is not the main object of interest, is often called a nuisance parameter. In the
case of a continuous parameter θ, the sum is substituted into an integral

P (A | I) =

∫

P (A | θI)P (θ | I)dθ , (2.11)

and we say that we integrate out the nuisance parameter.

2.3.1 Common-Sense Correspondence

When asked about whether an observation that was predicted by a certain theory
H1 confirms the theory, most people would answer a positive yes. Now, let us see
what our rules say. Look at the individual factors in Bayes’ rule on the form (2.8).

The observation D was predicted by the theory, so clearly P (D | H1I) is
large. But there are two factors left; the prior probability for the theory P (H1 | I)
which could have been anything, and the normalizing factor P (D | I). How do we
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determine this last factor? We use marginalization,

P (D | I) =

N
∑

i=1

P (D | HiI)P (Hi | I) , (2.12)

where the set of Hi contains all conceivable5, mutually exclusive, hypotheses that
may explain the observation D.

So we see that the ratio

P (D | H1I)
∑N

i=1 P (D | HiI)P (Hi | I)
(2.13)

determines whether the probability forH1 increases, decreases or remains the same
upon the observation. In order to give an answer to the question, we must there-
fore explicitly state all other alternative hypotheses and compare whether any of
these alternatives may be more plausible on the observation. We can state this in a
slightly different manner: the posterior probability for a hypothesis equals the ratio
of the joint probability for the observation and the hypothesis to the sum of all joint
probabilities of the observation and all possible hypotheses

P (H | DI) =
P (DH | I)

∑N
i=1 P (DHi | I)

. (2.14)

This is obtained by inserting P (DH | I) = P (D | HI)P (H | I) and (2.12) into
(2.8). Perhaps, a better question is then: which of the hypotheses H1 . . .HN is
more likely? That takes us into the area of hypothesis testing, where we simply
compare the posterior probabilities for the individual hypotheses, and if prompted
to bet only on one of them6, select the one with the highest probability.

The main lesson to learn from this example is that we cannot say anything about
the probability for a theory unless we clearly state alternative theories. We can only
say how plausible a certain theory is in relation to other clearly stated theories. This
brings out a useful feature of the present theory: the rules themselves tell us how to
pose our questions. When confronted with the rules of probability theory, ill-posed
questions are brutally exposed of their nature. The rules help us in determining
what parts are missing to make a well-posed question.

5When we say ’all conceivable’ hypotheses, we really mean ’all considered’ hypotheses. We
cannot hope to come up with all possible causes for some event, but we can always infer which
one out of a set of considered alternatives that is best supported by the observations and our prior
information.

6Note that according to probability theory, marginalization should always be used when there is
uncertainty concerning which out of a number of alternatives is the true one. Thus, we should not
select just the most likely theory and believe it blindly, but keep all the others in mind weighted by
their posterior probabilities.
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2.4 The Notion of Randomness

We have now derived the basic rules for manipulating probabilities. Given prob-
abilities for individual statements, we can find probabilities for arbitrary proposi-
tions concerning these statements. We have so far not addressed the equally im-
portant question of how to determine the initial numerical values for probabilities.
Before doing that, we must emphasize an essential feature of the present theory.

Nowhere in our desiderata, the consequent derivations, or the rules of proba-
bility theory, have we made any reference to randomness. This may be startling
to some, as this is the starting point of the conventionally taught frequentist prob-
ability theory. There, a probability of an event7 is typically defined as the limiting
frequency with which a certain event occurs in a random experiment repeated under
the same circumstances infinitely many times. It is taken as an axiom that probabil-
ities can only refer to ’random variables’, or ’stochastic processes’, i.e. quantities
that are fundamentally impossible to determine before the outcome is observed.
The probability does not say anything about an individual outcome, but refers to
an ensemble of all possible outcomes were the random experiment to be repeated
an infinite number of times.

Now, if we are to apply the frequency definition of probability theory to real-
istic problems, then we must find or estimate the true probability of the event we
are interested in. Let us for instance discuss the problem of estimating the impulse
response of a mobile communications channel. The first question to ask is then:
is the impulse response random? If we believe that it is determined by Maxwell’s
equations concerning electromagnetic waves or some more refined theory, i.e. if
we believe that with knowledge of all initial conditions and some physical theory
it is in principle possible to determine the impulse response, then, according to the
frequentist definition, we must reject the use of probability theory. Still, we see
probability theory used in the mobile communications literature. For instance, dis-
tributions such as Rayleigh, Nakagami-m, or Rice, are used for the envelope of the
received signal. The reason must be that we still resort to a more relaxed defini-
tion of random variables: a random variable is taken to be a quantity that we have
so little information about that we can hardly expect to determine it fully without
actually knowing the outcome. But if that is the definition we adhere to, then we
must frankly admit that the only reason for deciding that something is random is
our own lack of information concerning the actual outcome. Then, how can we
ask for a true probability distribution of the impulse response? The distribution
we seek depends on how much we know about the impulse response, and to try to

7Note that in the frequentist definition, a probability is a property of the event, whereas in our
theory a probability is determined for the event. It is a function not of the event, but of the information
the inference is based on.
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determine a true probability distribution by measuring frequencies would be like,
as Jaynes aptly remarks, trying to assess a boy’s love for his dog by performing
measurements on the dog.

A main problem with the frequentist definition is that it does not even recognize
such concepts as uncertainty or information which are central in conducting infer-
ences. Indeed, in the standard reference of frequentist probability theory Feller
(1968) remarks: ’There is no place in our system for speculations concerning the
probability that the sun will rise tomorrow’. This seems to be precisely the type of
problem that is of concern to an engineer. In constructing a bridge, he wants to be
able to say with confidence something about the strain that this particular bridge
will stand. Of course, his conclusion cannot take the status of absolute certainty,
but he wants his statements made with a reasonable degree of belief attached to
them. Since he has carefully chosen his materials and made his construction based
on knowledge of the physics of elastic and rigid bodies, there is no random process
involved and he must conclude that the frequentist theory cannot help in inferring
properties of his bridge.

But still we think that probability theory could, and should, be used in both
examples. There is no need to appeal to randomness, and if we instead of esti-
mating ’true’ probability distributions, as were they an actual physical property,
shift our focus to making statements about our own uncertainty towards the object
in question, we will realize that we can always find a probability distribution that
adequately describes that uncertainty. Then, our theory is completely general, and
can be applied to any problem of inference regardless of whether there is such a
thing as true randomness involved.

In light of this, if we would still accept that there is a possibility that some
things in nature are completely random, i.e. that even if we could fix all initial
conditions of an experiment, the experiment would persist in giving different re-
sults on repeated trials, then we should at least have some objective procedure for
choosing between the hypotheses H1 = the outcome is fundamentally impossible
to determine, i.e. the process is random, or stochastic, and H2 = the outcome is
in principle possible to determine, but in order to do so information that we do not
possess may be required.

But how could we ever hope to determine that something is truly random? That
would require complete knowledge of every aspect of nature’s workings, since the
determination of randomness requires rejecting all possible physical reasons that
might explain the outcome. But that makes randomness impossible to prove, since
it requires absolute evidence that all physical mechanisms are known.

Now, it seems that true randomness is in itself fundamentally unreasonable,
because it requires that an outcome is impossible to determine, but the mere fact
that something occurs should convince us of the opposite! However we twist the
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explanations of randomness, we end up having to use it as if it is only an artefact
of our own ignorance. Why, then, not take the simpler and more constructive route
of admitting that uncertainty is the only ’cause’ of apparent randomness?

We therefore stress that whatever one’s outlook on the rationale of using prob-
abilities is, in the end, when having to determine a probability distribution nu-
merically, everyone actually uses our definition, although perhaps unwittingly, of
probability as a description of uncertainty. Then, it should be clear that it would be
a contradiction to ask for a true probability of an event.

2.5 Assigning Probabilities I – The Principle of Indiffer-
ence

We now turn to the problem of assigning numerical values to probabilities. We
will start with the perhaps most basic situation, in which we know very little about
different outcomes. The situation can be formulated as a symmetric information
condition, or a state of indifference. Consider two problems. In Problem 1, we
have a set of mutually exclusive and exhaustive propositions, {A1 . . . An}, and we
wish to find the probabilities P (Ai | I)1. In Problem 2, we face the same problem
but here the set of propositions {A′

1 . . . A
′
n} is a permutation of the propositions in

Problem 1. For instance, it might be thatA′
1 = A3, etc. We are thus in effect facing

two identical problems, but the labels of the propositions have been changed. Sup-
pose now that information I is indifferent between all propositions, i.e. if it says
something about A1 it says the same thing about A2, A3, and so on. Then, desider-
atum (IIIc), which says that equivalent states of knowledge must be represented by
the same probability assignments, requires that

P (Ai | I)1 = P (A′
j | I)2 i, j = 1 . . . n . (2.15)

Note that this holds whatever the exact information I is. The only requirement is
that it says the same thing about all propositions Ai.

The symmetry equations (2.15) have only one solution. Since the n proposi-
tions are exhaustive and mutually exclusive,

P (Ai | I) =
1

n
i = 1 . . . n . (2.16)

This rule, which says that probability assignments can be performed by breaking
down propositions into more elementary propositions for which our background
information I is indifferent and assign equal probability for these sub-propositions,
is usually called the principle of indifference.
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We can immediately see an extension to this rule in the following standard
example from probability theory. There are n different balls, labelled A1 . . . An,
spread out in an urn which we are to make a blindfolded draw from. Out of the n
balls, m of them, {A1 . . . Am}, are black. What is then the probability for drawing
a black ball? Our background information is indifferent between different balls,
and the probability for drawing ball Ai is thus P (Ai | I) = 1/n. Then, since the
outcomes are mutually exclusive and exhaustive, the probability for black is

P (A1 +A2 + · · · +Am | I) =

m
∑

i=1

P (Ai | I) =
m

n
. (2.17)

This rule, which we here derived from our basic consistency requirement, desidera-
tum IIIc, is a very common definition for probabilities, and was used by for instance
Laplace. In this case, we find that the probability is equal to a frequency, not as
an axiom, but as a consequence of the information indifference between different
propositions. In other problems, this frequency correspondence does not occur.
We shall come back to an example of this later in connection with the maximum
entropy principle, and show that the usefulness of some probability assignments lie
in making such frequencies irrelevant.

2.6 Assigning Probabilities II – Laplace’s Rule of Succes-
sion

Let us now turn to another common scenario, in which our information concerning
future outcomes consists of a record of the number of past occurrences for each
possible outcome. Suppose that there are K distinct possible outcomes, and that
outcome k has occurred mk times out of the total record of M outcomes, i.e.

M =

K
∑

k=1

mk . (2.18)

From these numbers, what can we say about the plausibility of recording rk oc-
currences of k in a future period? If we solve this problem, the probability for each
outcome k is then obtained by taking the expectation of the relative frequencies
with which they occur. Assuming that the underlying causal mechanisms which
determine the outcomes do not change significantly with time, it follows that the
relative frequencies should remain constant as well. The problem of translating
relative frequencies observed in a finite interval into predictive probabilities is not
new, indeed it is one of the oldest in probability theory. The solution is found from
a generalized form of Laplace’s rule of succession (Jaynes (2003), ch. 18).
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We seek to evaluate

P (f1...fK |m1...mKI) =

=
P (m1...mK |f1...fKI)P (f1...fK |I)

P (m1...mK |I)
(2.19)

where
fk =

rk
∑K

j=1 rj
(2.20)

is the relative frequency with which outcome k will occur, and I contains only
information about the past number of outcomes mk.

We perform the derivations of (2.19) and 〈fk〉 in Appendix 2.A but note the
essential elements here.

The prior probability distribution for the relative frequencies fk is defined by
a distribution which is uniform over all combinations of K non-negative numbers
that sum to unity (by the principle of indifference):

P (f1...fK |I) = Cδ(f1 + ...+ fK − 1) , fk ≥ 0 , (2.21)

where δ(·) is the Dirac delta (δ(x) = 1 if x = 0 and δ(x) = 0 elsewhere). The
likelihood term in (2.19), the probability for obtaining m1 . . .mK samples of each
outcome k = 1 . . .K given that the frequencies f1 . . . fK are known, is a bit more
complicated. We here interpret the frequencies as probabilities, in effect claiming
that the causal mechanisms which determine the actual outcomes are so haphaz-
ard or complex that we cannot model them any better than simply assuming that
the relative frequencies with which they occur will persist to be representative. The
probability for obtaining a certain sequence of occurrences is according to the prod-
uct rule given by the product of the individual probabilities for each outcome in the
sequence, in this case fm1

1 · · · fmK

K . But since the given sample numbers can occur
in several ways, depending on the order with which they occur in the sequence,
the sum rule dictates that we must sum the probabilities for all possible sequences
to obtain the probability for the given sample numbers regardless of their order.
Since a sequence of length M with given sample numbers m1 . . .mK can arise
in M !

m1!···mK ! ways, the likelihood term in (2.19) is thus the following multinomial
distribution,

P (m1...mK |f1...fKI) =

=
M !

m1! · · ·mK !
fm1

1 · · · fmK

K .
(2.22)

Finally, the prior distribution P (m1...mK |I) is obtained by averaging the joint
distribution for mk and fk over all possible fk.
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As shown in Appendix 2.A, the probability for obtaining a certain outcome
k is given by the expectation of the relative frequency with which that particular
outcome occurs:

pk
4
= P (k|m1...mKI) = 〈fk〉 =

mk + 1

M +K
. (2.23)

Note that when the number of observations, M , is very small compared to
the number of possible outcomes, K, the distribution tends to a uniform distribu-
tion. This agrees with common sense; in order to obtain any sharp predictions, the
number of observations must be relatively large in comparison to the number of
hypotheses. If M � K, then the probability assigned to any outcome is practi-
cally independent of the number of possible outcomes, and depends only on the
observed data. Note further that the probability assigned to any outcome will never
be zero unless either K or M is infinite, which is never the case in reality. This can
be understood from observing that (2.23) can be interpreted as using the observed
frequencies as estimates of the predictive probabilities, but in addition using the
fact that each of the outcomes actually can occur, corresponding to K additional
observations, one for each outcome.

2.7 Assigning Probabilities III – The Maximum Entropy
Principle

Suppose now that our information is of another, more informative, kind, con-
sisting of mean values of functions of some variables. For example, suppose
that a sales manager of an apple garden has information I that the average or-
der size is 420.8 apples. How do we translate this into a probability statement,
P (size of the next order | I)? Such a probability statement could then be used to
guide decisions regarding whether more trees should be planted or not, or if the
number of trees could be reduced.

The principle of indifference is not directly applicable, as it seems hard to par-
tition order sizes in a way that make our information indifferent between different
partitions. It is clear that, given I , some order sizes are more likely than others. We
would certainly regard an order of size 400 more likely than one of size 100000.
In some sense, we wish to assign a probability distribution which is as uniform
as possible, so as to assume no more than necessary, but the uniformness will be
constrained by the required mean value.

Is it possible to derive a measure of ’uniformness’, or something that corre-
sponds to the notion of uncertainty? Claude Shannon (1948) published his theory
of communication in 1948. In that theory he derives a measure of uncertainty,
which he denotes as entropy.
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Shannon starts by considering a set of n possible events with the respective
probabilities p1, p2, . . . , pn (here, we use the shorthand notation pi = P (i | I)).
Then he asks, can we find a measure H(p1, . . . , pn) of how uncertain we are con-
cerning which event will occur? As in the derivation of probability theory, a few
desiderata are set up:

1. H(p1, . . . , pn) should be continuous in the pi. Otherwise an arbitrarily small
change in pi would yield a large change in our uncertainty.

2. Qualitative correspondence to common sense, in the sense that when there
are many equally likely events, we are more uncertain of the outcome than
when there are few. This means that if all the pi are equal, pi = 1/n,
H(p1, . . . , pn) is a monotonic increasing function of n.

3. Additivity. If a choice be broken down in two successive choices, the original
H should be the sum of the individual values ofH weighted by the probabil-
ity for each choice. For example, if we start with p1 = 1/2, p2 = 1/3, and
p3 = 1/6, and group events 2 and 3, then we can first determine the uncer-
tainty in the choice between 1 and the disjunction 2+3, H(1/2, 1/2). Then,
with probability 1/2, there will be a remaining uncertainty H(2/3, 1/3) to
resolve concerning events 2 and 3. That is,H(1/2, 1/3, 1/6) = H(1/2, 1/2)
+1/2H(2/3, 1/3).

4. Consistency, in the sense that when there are several ways of calculating
H(p1, . . . , pn) we must get the same answer for every possible way.

Shannon shows that there is only one function H that satisfies these require-
ments,

H(p1, p2, . . . , pn) = −K
n
∑

i=1

pi log pi , (2.24)

whereK is an arbitrary positive constant, and the logarithm is taken to any base. A
similar proof is given by Jaynes (2003), Chapter 11. Typically, K is taken as unity,
and the logarithm either in base 2 or the Napierian8 (natural) base. Shannon gaveH
the name entropy because of the mathematical similarity with the thermodynamical
definition of entropy.

The entropy H has a number of interesting properties. Shannon notes for ex-
ample the following.

8John Napier (1550-1617) was a Scottish amateur mathematician who ’invented’ the logarithmic
function. His main work on logarithms appears in Mirifici logarithmorum canonis descriptio from
1614.
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• H = 0 only when one pi = 1, all others being zero. That means that we are
certain of the outcome and thus there is no uncertainty. In all other cases, H
is greater than zero.

• The maximum of H is Hmax = log n, which is reached when all the pi =
1/n.

• The joint entropy for two variables x, y with the possible outcomes denoted
by xi and yj respectively is

H(x, y) = −
∑

i,j

P (xiyj | I) log(P (xiyj | I)) ≤ H(x) +H(y) (2.25)

with equality only if x and y are logically independent, i.e. if knowledge of
one gives no information about the other.

Shannon goes on to define the conditional entropy for x given y as

H(x | y) = −
∑

i,j

P (xiyj | I) log(P (xi | yjI)) , (2.26)

but here we shall part with Shannon’s nomenclature. The problem with (2.26) is
that it is not a measure of the uncertainty concerning x given knowledge of y.
Because if we actually know y then our uncertainty concerning x is surely not
dependent on other possible values of y that could, but in fact did not, occur. The
true uncertainty concerning x given that y took the value y = yj is just the original
entropy definition,

H(x | y = yj) = −
∑

i

P (xi | yjI) log(P (xi | yjI)) , (2.27)

and we see that a better name for (2.26) is the average conditional entropy, since it
is equal to (2.27) averaged over y, as is easily seen:

−
∑

i,j

P (xiyj | I) log(P (xi | yjI))

= −
∑

i,j

P (xi | yjI)P (yj | I) log(P (xi | yjI))

= −
∑

j

P (yj | I)
∑

i

P (xi | yjI) log(P (xi | yjI)) . (2.28)

We will use the notation H(x | y) for the average conditional entropy (2.26),
and H(x | y = yj) for the conditional entropy (2.27) (which is consistent with
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Kullback’s definitions for mean conditional information and conditional informa-
tion (Kullback, 1968)).

From their definitions (2.25) and (2.26) and the product rule (2.3), we find
that the joint entropy and the average conditional entropy are related through the
following formula,

H(x, y) = H(x) +H(y | x) = H(y) +H(x | y) , (2.29)

similarly to the product rule (2.3). By the use of (2.25) we have

H(x) +H(y) ≥ H(x, y) = H(x) +H(y | x) , (2.30)

which leads to
H(y) ≥ H(y | x) . (2.31)

The uncertainty is thus on average reduced upon new knowledge. Only if x and y
are logically independent is H(y) = H(y | x).

Now, if we accept the interpretation of H as a measure of ’amount of uncer-
tainty’, then it follows that the most honest description of a state of knowledge
should be represented by probabilities with maximum entropy subject to whatever
knowledge is at hand. Then we have only accounted for information that we ac-
tually have and assume nothing further than that. This rule, the maximum entropy
principle, was introduced by Jaynes (1957a,b) in two seminal papers in which he
showed that all of conventional thermodynamics followed from interpreting prob-
ability theory as logic and using the maximum entropy principle in assigning prob-
abilities. Thus he showed that the predictions from thermodynamics were not to be
interpreted as physical laws, but rather as the best inferences that could be made
given a particular state of knowledge.

Although the requirements that led to the entropy expression all seem rea-
sonable, one would expect that the basic desiderata (I)-(III) of probability theory
should be all that is required. Indeed, there are other derivations of the maximum
entropy principle that suggest that the introduction of a measure of uncertainty is
not really required. We show here an alternative derivation, referred to by Jaynes as
the Wallis derivation after its inventor Graham Wallis, which may provide a more
direct motivation for using the maximum entropy principle.

Consider a scenario where we are to distribute N little ’quanta’ of probability
among n alternatives. The quanta are scattered randomly among the alternatives,
for instance by a proverbial team of monkeys tossing quanta into urns representing
the different alternatives, so that each outcome is equally likely in any toss. If the
resulting distribution conforms to our information (i.e. the expectations match the
given mean values), then we will keep it. Otherwise, we reject it and restart the
procedure. What distribution is most likely to result from this game?
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Let each probability quantum have magnitude 1/N . In an outcome where al-
ternative i gets mi quanta, we have constructed a discrete probability distribution

pi =
mi

N
, i = 1, 2, . . . n. (2.32)

The question is now in how many ways a particular such distribution can be ob-
tained. The probability for obtaining the distribution (2.32) is

1

nN
× N !

m1! · · ·mn!
, (2.33)

where the first factor is the probability for obtaining any of the nN possible se-
quences, and the second factor is the number of ways in which a particular se-
quence can arise.

The most likely distribution is thus the one which maximizes (2.33), or equiv-
alently, since n and N are fixed, maximizes

W =
N !

m1! · · ·mn!
(2.34)

subject to the constraints that our information imposes.
Noting that we can equally well maximize the logarithm of the multiplicity

factorW , we rewrite log(W ) assumingN large. We use the Stirling approximation

log(N !) = N log(N) −N +
√

2πN +
1

12N
+O(1/N2) . (2.35)

Thus,

logW = N logN −m1 logm1 − . . .−mn logmn

+
√

2πN −
n
∑

i=1

√
2πmi +

1

12N
−

n
∑

i=1

1

12mi
(2.36)

+ O(1/N2) −
n
∑

i=1

O(1/m2
i )

= −
n
∑

i=1

mi log
mi

N
+
√

2πN −
n
∑

i=1

√
2πmi

+
1

12N
−

n
∑

i=1

1

12mi
+O(1/N2) −

n
∑

i=1

O(1/m2
i ) (2.37)

and as N and mi go to infinity in such a way that mi

N → pi most of the terms in
(2.37) tend to zero and we obtain

1

N
log(W ) → −

n
∑

i=1

pi log pi . (2.38)
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So, the distribution which is most likely to arise, or the one which can arise in
the greatest number of ways W , is also the one which maximizes the entropy as
defined in (2.24).

2.7.1 The general maximum entropy problem and its solution

Consider a problem where we have knowledge of mean values Fk of certain func-
tions, fk(·), of data. We are now to determine a probability distribution with ex-
pectations matching the measured mean values:

n
∑

i=1

pifk(xi) = Fk , 1 ≤ k ≤ m (2.39)

where pi denotes the probability for each possible ’state of nature’, xi, indexed by
i ∈ {1..n}.

We wish to find the probabilities pi, for all possible i, which maximize the
entropy

H = −
n
∑

i=1

pi log pi (2.40)

subject to the constraints (2.39). This is a standard variational problem solvable by
using Lagrange multipliers when m < n. In Appendix 2.B it is shown that using
the partition function (Jaynes, 1957a)

Z(λ1, . . . , λm) ≡
n
∑

i=1

exp
[

−λ1f1(xi) − . . .− λmfm(xi)
]

(2.41)

we have the formal solution

pi =
1

Z(λ1, . . . , λm)
exp
[

−λ1f1(xi) − . . .− λmfm(xi)
]

, (2.42)

where {λk} are the Lagrange multipliers which are chosen so as to satisfy the
constraints (2.39). This is the case when

Fk = − ∂

∂λk
logZ, 1 ≤ k ≤ m . (2.43)

In (2.39) - (2.43) we have the general maximum entropy problem and its solu-
tion. It should be noted that the solution presented here automatically includes the
constraint

∑n
i=1 pi = 1 without need for an additional Lagrange multiplier.
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The maximum entropy distribution (2.42) has the entropy

Hmax = λ0 +
m
∑

j=1

λjFj , (2.44)

where λ0 = log(Z(λ1, . . . , λm)). Generally speaking, large values of the λi thus
indicates large uncertainty.

It can further be shown (Jaynes, 2003) that the covariances between the differ-
ent functions fj , fk obey the following relations,

〈fjfk〉 − 〈fj〉〈fk〉 =
∂2logZ

∂λj∂λk
= −∂〈fj〉

∂λk
= −∂〈fk〉

∂λj
. (2.45)

Here we give three common maximum entropy distributions obtained from
different constraints (2.39).

EXAMPLE 2.1 No constraints

With no constraints except that the probability distribution should sum to unity,
there are no Lagrange multipliers and the maximum entropy distribution is uni-
form over the space of all possible outcomes.

EXAMPLE 2.2 Mean and variance constraints

Using the following constraints

µ =

∫ ∞

−∞
p(x | I)xdx (2.46)

σ2 =

∫ ∞

−∞
p(x | I)(x− µ)2dx , (2.47)

i.e. fixing the mean and the variance of a continuous distribution, the maximum
entropy distribution is Gaussian

p(x | I) =
1√
2πσ

exp

{

1

2σ2
(x− µ)2

}

. (2.48)

In Figure 2.1 we plot this distribution for different standard deviations σ.
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Figure 2.1: The maximum entropy probability distribution for a continuous vari-
able x with known mean (here µ = 50) and known standard deviation σ is Gaus-
sian.

EXAMPLE 2.3 Mean and mean logarithm constraints

With knowledge of the mean and the mean of the logarithm of a non-negative
variable,

F1 =

∫ ∞

0
p(x | I)xdx (2.49)

F2 =

∫ ∞

0
p(x | I) lnxdx , (2.50)

the maximum entropy distribution becomes

p(x | I) =
1

Z(λ1, λ2)
exp (−λ1x− λ2 lnx)

∝ x−λ2 exp (λ1x) . (2.51)
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This is on the same form as the Gamma distribution, and if we write γ = 1/λ1

and α = 1 − λ2 we obtain the Gamma distribution in the conventional form

p(x | I) =
xα−1

Γ(α)γα
exp

(−x
γ

)

, (2.52)

where Γ(a) =
∫∞
0 ta−1e−tdt is the Gamma function. Special cases of the

Gamma distribution include the exponential distribution and the chi-square dis-
tribution.

2.7.2 The entropy concentration theorem

For those who adhere to the frequency interpretation of probabilities, the rationale
above hardly makes any sense. A valid motivation must refer to actual frequen-
cies in random experiments. We here show that when the notion of a repeated
experiment is valid, there is such a correspondence between maximum entropy
distributions and frequencies. Then, having established such a correspondence, we
will show a remarkable property of maximum entropy distributions which make
such frequency correspondences irrelevant for the subsequent inference.

Consider an experiment that has been performedN times, each with n possible
outcomes x1 . . . xn. Suppose that the only information we receive about the exper-
imental outcomes are the sample mean values Fk of m (m < n − 1) functions of
the observations,

Fk =
n
∑

i=1

ni

N
fk(xi), k = 1 . . .m , (2.53)

where ni denotes the number of trials that yielded the outcome xi.
The mean values Fk (2.53) are insufficient to determine the actual frequencies

gi = ni/N with which each outcome xi occurred. But out of the nN conceivable
outcomes, how many would lead to any particular numbers ni? The answer is
again given by the multinomial coefficient

W =
N !

n1! · · ·nn!
=

N !

(Ng1)! · · · (Ngn)!
. (2.54)

The frequencies which can arise in the greatest number of ways maximizes W , or
equivalently maximizes 1

N log(W ), which when ni and N tend to infinity in such
a way that gi = ni/N → pi becomes

1

N
log(W ) → −

m
∑

i=1

pi log(pi) . (2.55)
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This result if obtained by using the same approximation as in the Wallis derivation.
If we compare the number of ways W that the frequency distribution max-

imizing (2.55) can arise in, with another distribution p′ having entropy H ′ and
multiplicity W ′, we see directly from (2.55) that the maximum at W becomes
enormously sharp as N grows,

W

W ′ → exp
{

N(H −H ′)
}

. (2.56)

We can now check how large the entropy deviation ∆H must be from the maxi-
mum to cover a certain percentage of the class of all possible outcomes constrained
to satisfy (2.39). A certain fraction F of the classC of possible outcomes will yield
an entropy in the range

Hmax − ∆H ≤ H(p1 . . . pn) ≤ Hmax . (2.57)

Just how large must ∆H be to cover a certain fraction F ? The following theorem
gives the answer.

Theorem 2.1 (Jaynes (1982)) Asymptotically, as N → ∞, 2N∆H is chi-square
distributed with k = n−m− 1 degrees of freedom according to

2N∆H = χ2
k(1 − F ) , (2.58)

where χ2
k(1 − F ) denotes the critical chi-square value for k degrees of freedom at

the 100(1 − F ) percent significance level.

EXAMPLE 2.4 Entropy concentration for throwing dice

Suppose that we toss a die 1000 times, i.e. n = 6, N = 1000. If we have
no information concerning the outcomes, then the maximum entropy distribution
(2.42) is uniform (see Example 2.1) with Hmax = ln 6 = 1.792. From Theorem
2.1 we find that out of all distributions with k = 6−1 = 5, 100F = 99.5 percent
of them have an entropy in the range 2N∆H = 11.07, or 1.783 ≤ H ≤ 1.792.

Thus, if we would assign any distribution with entropy less than 1.783 we
would reside in a tiny subset of all possible outcomes. In order to do so with a
reason, we would certainly need strong evidence to support our choice.

Note that the entropy concentration theorem is only a combinatorial statement,
expressing only a counting of the possibilities. It does not become a statement of
probabilities unless we assign (by the principle of indifference) equal probability
to each outcome in class C.
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2.7.3 Frequency irrelevance and sufficiency

We noted that there are instances where there is a clear demonstrable frequency
correspondence between frequencies in repeated experiments and probabilities as-
signed by the maximum entropy principle. We will now turn our attention to the
question whether such frequency correspondence is required or even useful.

We first state a formal property of maximum entropy distributions that says that
the class of distributions with sufficient statistics is exactly the class of maximum
entropy distributions. The sufficient statistics of the resulting maximum entropy
distribution are the same functions of data, whose mean values (2.39) we know
and, thus, which constrain the entropy. Hence, the values of these functions are the
only properties of the data that our inferences will depend on.

Definition 2.1 (Jaynes (2003), Kullback (1968)) If the likelihood P (D | θI) for
the parameter θ factors in the form

P (D | θI) = f(T (D) | θI)g(D) (2.59)

where T (D) is some function of the data, then T (D) is called a sufficient statistic
for the parameter θ.

Note that this means that any posterior inference about a parameter θ involving
a sufficient statistic T (D) depends only on the data through the function T (D)
since the posterior probability P (θ | DI) is a function of the data D only through
the likelihood (the factor P (D | I) being only a normalization constant). No
other properties of the data will affect the inference. The definition generalizes
immediately to the case where there are m jointly sufficient statistics Tk(D) for
some multi-dimensional parameter vector θ,

P (D | θI) = f(T1(D), . . . , Tm(D) | θI)g(D) . (2.60)

Likewise, if there are two parameters θ1, θ2 and we can write the likelihood as

P (D | θ1θ2I) = f(T1(D), | θ1I)h(T2(D), | θ2I)g(D) , (2.61)

T1(D) is a sufficient statistic for θ1 and T2(D) is a sufficient statistic for θ2.

Theorem 2.2 (Kullback (1968)) The class of all maximum entropy distributions
(2.42) is exactly the class of all distributions with sufficient statistics. The sufficient
statistics are given by the constraint functions (2.39),

Tk(D) = fk(D), k = 1 . . .m (2.62)
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The implication of this result may not be immediately obvious. Interpreted in
the framework of probability theory as logic it means that if we assign a probability
distribution with maximum entropy subject to constraints on the expectations of
some functions fk, we are in effect demanding that our inferences shall depend
only on these functions of the data. We can thus choose to base our inferences
on any particular feature of the data that we can measure, and then make the least
biased inference possible based on knowledge only of this. Of course, honesty
requires that if the measured mean values are based only on a few data points, we
must marginalize the resulting distribution with respect to the unknown true value.

This further implies that any long-run frequency correspondence is uncritical.
Indeed, it is a subtle but important insight that the actual long-run frequencies are
made irrelevant by using maximum entropy distributions. Since no other aspects
(including frequencies with which different outcomes occur) in our data than the
sufficient statistics will affect our inference, the actual frequencies will have no
impact whatsoever on our resulting conclusions. This again shows that asking for
a true probability distribution, or trying to ’estimate’ it as were it a real property
of nature, simply misses the point of what we are aiming for; to make the best, i.e.
least biased, inferences from incomplete data.

If the reasoning above was not entirely clear, the following example given by
Jaynes (2003) may help in understanding the role of sufficient statistics.

EXAMPLE 2.5 The success of Gaussian distributions – making frequencies irrele-
vant

Consider a problem where our observations yi are modelled as

yi = µ0 + ei , i = 1 . . . n (2.63)

where µ0 is an unknown location parameter and there is some unknown additive
disturbance ei which may vary from observation to observation. Our problem is
to estimate µ0 from the observations. Let us suppose that we assign an indepen-
dent Gaussian distribution with mean zero and variance σ2 for each of the distur-
bance terms ei. Note that we are not assuming that the actual ei are distributed
in frequency according to our assignment. Rather, we will now investigate the
consequences of our assignment, irrespective of how the frequencies of different
values of ei are actually distributed. Recall from Example 2.2 that the Gaussian
distribution is the maximum entropy distribution subject to fixing the mean and
the variance, and that according to Theorem 2.2 this means that the mean and the
variance become sufficient statistics.

First, note that the actual estimation error ∆ = µ̂0 − µ can only depend
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on properties of the actually obtained data set y1 . . . yn. Frequencies, or other
properties, in other data sets that could have, but in fact were not, observed can
have no influence on the accuracy of our estimate. Thus, the long-run frequencies
in an imagined ensemble of trials have no effect on our estimation accuracy.

We will use as our estimate the value µ̂0 that maximizes the likelihood
P (y1 . . . yn | µI). If we assign a uniform prior for µ0 this is identical to the
maximum a posteriori estimate and thus seems to make sense (we shall however
come back to the problem of choosing a reasonable course of action in a later
section). The probability for obtaining a certain yi given knowledge of µ0 (i.e.
the likelihood) is equal to the probability for obtaining a certain disturbance ei =
yi − µ0, i.e.,

P (y1 . . . yn | µ0I) =
1

(2πσ2)n/2
exp

{

− 1

2σ2

n
∑

i=1

(yi − µ0)
2

}

, (2.64)

and since we have that

n
∑

i=1

(yi − µ0)
2 = n

[

(µ0 − ȳ)2 − s2
]

(2.65)

where

ȳ =
1

n

n
∑

i=1

yi = µ0 + ē , (2.66)

s2 = y2 − ȳ2 = e2 − ē2 (2.67)

and

ē =
1

n

n
∑

i=1

ei , e2 =
1

n

n
∑

i=1

e2i , (2.68)

the only properties of the data that can matter for our inference about µ0, i.e. the
sufficient statistics, are the first and second moments of the data.

The estimate that maximizes the likelihood is the arithmetic mean ȳ of the
observations. Using that estimate, the estimation error is

∆ = ȳ − µ0 = ē, (2.69)

the arithmetic mean of the actual disturbances in our data set. The total squared
error is

∆2 = (ȳ − µ0)
2 =

1

n2

(

n
∑

i=1

e

)2

, (2.70)
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the expectation of which is identical to σ2/n if we adopt our Gaussian assign-
ment. The interesting result here is that the estimation error ∆ is independent of
the frequency distribution. Whether the actual errors are distributed accorded to
a Gaussian histogram or not does not matter. The actual estimation error that we
make is always exactly the arithmetic mean of the actual disturbances. Therefore,
the true importance of the Gaussian probability assignment lies in the fact that
it renders the actual frequencies irrelevant to the inference. Only the sufficient
statistics have any effect on the estimate or its accuracy.

This example should make it clear that statements such as ’A Gaussian error
distribution should not be used because we know that the actual errors are not Gaus-
sian’ are flawed in that they fail to realize which criteria are important in assigning
a probability distribution. It is not frequency correspondence, but demonstrable
information content, that is the valid criterion. Therefore, one should be careful in
dismissing a probability distribution because the shape of the curve seems strange.
One should instead assess the effects on the inference that the curve has.

2.7.4 A caveat – continuous variables

The above treatment of the maximum entropy principle was based on discrete vari-
ables. Shannon’s derivation does not go through for continuous variables. Instead,
Jaynes (1963a) derived the correct entropy expression for continuous variables by
starting from the discrete expression for entropy and letting the points become more
numerous. As the number of points increase, the density of points approaches a
definite function m(x) according to

lim
n→∞

1

n
(number of points in a < x < b ) =

∫ b

a
m(x)dx . (2.71)

The discrete probability distribution pi tends to a continuous probability density
p(x | I) according to

pi = p(xi | I)(xi+1 − xi) , (2.72)

and supposing that the difference between any adjacent points will tend to zero in
the manner

lim
n→∞

(n(xi+1 − xi)) = (m(xi))
−1, (2.73)

the discrete probability distribution will tend into

pi →
p(xi | I)
nm(xi)

. (2.74)
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Hence, the discrete entropy (2.24) tends to the limiting expression

H → Hc = −
∫

p(x | I) log

(

p(x | I)
nm(x)

)

dx . (2.75)

The log(n) term is a constant and can be subtracted. We then take the following
expression as our continuous measure of uncertainty:

Hc = −
∫

p(x | I) log

(

p(x | I)
m(x)

)

dx . (2.76)

The continuous maximum entropy problem now becomes to find a probability
density p(x | I) that maximizes (2.76), constrained by information regarding the
mean values

Fk =

∫

fk(x)p(x | I)dx , k = 1 . . .m (2.77)

where the Fk are known numerical values. The solution obtained by maximizing
(2.76) is

p(x | I) =
m(x)

Z(λ1, . . . , λm)
exp
[

−λ1f1(xi) − . . .− λmfm(xi)
]

, (2.78)

where the partition function becomes

Z(λ1, . . . , λm) =

∫

m(x) exp
[

−λ1f1(xi) − . . .− λmfm(xi)
]

dx (2.79)

and the Lagrange multipliers λk are given by the m equations

Fk = −∂ logZ(λ1, . . . , λm)

∂λk
, 1 ≤ k ≤ m . (2.80)

Apparently, if we have no constraints on the probability density there are no λk

in (2.78), and the maximum entropy distribution is equal to

p(x | I) =

(∫

m(x)dx

)−1

m(x) . (2.81)

We are now left with the question of how to determine the density m(x). Since it
is the most uninformative density that we can obtain, the role of m(x) is to define
a completely ignorant distribution. We must therefore seek to answer the question:
What is meant by complete ignorance concerning the variable x?

Jaynes offers the following solution. Complete ignorance concerning a certain
parameter can very often be stated in terms of an invariance under some specific
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parameter transformation. For example, consider the Gaussian density, containing
two parameters: the expectation µ and the standard deviation σ. Suppose that we
are to determine a probability assignment for µ expressing complete ignorance. It
seems appropriate to express ignorance of µ by stating that the probability density
function (pdf) for µ should be equal to that for a transformed variable µ′ according
to

µ′ = µ+ a , (2.82)

i.e. we are saying that a shift of location does not change our state of knowledge.
This is to say that shifting the origin does not change our pdf assignment. We are
equally ignorant of µ. If that were not true, then we must have had some cogent
information concerning the location, and thus we are not completely ignorant in
this sense. If our ignorance concerning µ is thus expressed as translation invariance
then we have that

p(µ | I)dµ = p(µ+ a | I)d(µ+ a) (2.83)

and since a is constant d(µ+ a) = dµ. Thus, the only pdf that satisfies (2.83) is

p(µ | I) = constant. (2.84)

A parameter for which this translation invariance property can be used to express
ignorance about is appropriately described as a location parameter. In general, if
we can write a pdf as

p(x | µσI) =
1

σ
f

(

x− µ

σ

)

(2.85)

then we call µ a location parameter and σ a scale parameter.
The standard deviation σ in our current problem is a scale parameter. A scale

parameter refers to a size or a magnitude, something which describes the scale
of something; for instance, the gain of a mobile radio channel, or the length of a
molecule. Complete ignorance of a scale parameter, as Sivia (1996) vividly points
out, must mean that in a plot our pdf should be invariant to any shrinking or stretch-
ing of the horizontal axis. The scale of the problem is unknown, it could equally
well be centimeters as meters. Thus, this invariance can be expressed as

p(σ | I)dσ = p(bσ | I)d(bσ) , (2.86)

where b is an arbitrary positive number. Since d(bσ) = bdσ, the only pdf which
satisfies (2.86) is

p(σ | I) ∝ 1

σ
. (2.87)



Chapter 2. Probability Theory As Logic 43

This strange-looking pdf is known as Jeffreys’ prior9, and was used extensively by
him (see for example Jeffreys, 1939). It may look less peculiar when we realize that
(2.87) is equivalent to a uniform pdf on log(σ). In principle, in order to normalize
this pdf, one should always confine σ to lie between a non-zero lower bound and
finite upper bound.

2.8 Information Measures and the Shannon Capacity

In judging the merits of a communications system, it would be useful to be able to
measure the amount of information sent over the link. Moreover, we would benefit
from knowing whether there is a limit on how much information can be sent over
a link, and in that case what the actual value of that limit is.

Claude Shannon (1948) considered these issues in his classic work on commu-
nications. We here derive the basic blocks of his theory from our present perspec-
tive that probabilities are the fundamental carriers of incomplete information.

Suppose that we are interested in knowing the value of some quantityX having
N possible distinct outcomes, x1 . . . xN . Now, if we instead of X are given the
value of some other (hopefully related) quantity Y with M mutually exclusive
possible outcomes y1 . . . yM , how much information does that provide us about
any specific outcome xi? If the value of Y is yj then an intuitive measure of the
information in yj about xi for someone with prior information I is the change in
probability upon receiving information yj :

Ki
4
=
p(xi | yjI)

p(xi | I)
. (2.88)

Notice that using Bayes’ rule gives that Ki is symmetric,

Ki =
p(xi | yjI)

p(xi | I)
=
p(yj | xiI)

p(yj | I)
= Kj (2.89)

so we can suppress the index, and simply denote the information byK. The ratio of
the posterior probability and the prior probability can take any non-negative value,
so we can equally well work with the more convenient choice of logarithms:

logK = log p(xi | yjI) − log p(xi | I) . (2.90)

Suppose now that we wish to evaluate logK without knowing the actual out-
come ofX . We then take the expectation of logK as a reasonable guess and denote

9Although Jeffreys was its main advocate and first suggested its use, Haldane has been attributed
(Howie, 2002) as providing an early motivation which reinforced Jeffreys’ belief in it.
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this as the prior information in Y = yj about an unknown outcome of X ,

N
∑

i=1

p(xi | I) logK =
N
∑

i=1

p(xi | I) log p(xi | yjI) −
N
∑

i=1

p(xi | I) log p(xi | I) .

(2.91)
Similarly, knowing the outcome X = xi but not the value of Y we take the

posterior expectation of logK,

M
∑

j=1

p(yj | xiI) logK =
M
∑

j=1

p(yj | xiI) log p(xi | yjI)

−
M
∑

j=1

p(yj | xiI) log p(xi | I)

=
M
∑

j=1

p(yj | xiI) log p(xi | yjI) − log p(xi | I) . (2.92)

This can be taken as the average information in an observation from Y about a
particular xi.

We shall finally take the average information I in an observation of Y about
an observation of X as the joint average of logK,

I 4
=

N
∑

i=1

M
∑

j=1

p(xiyj | I) log p(xi | yjI) −
N
∑

i=1

M
∑

j=1

p(xiyj | I) log p(xi | I)

=
N
∑

i=1

M
∑

j=1

p(xiyj | I) log p(xi | yjI) −
N
∑

i=1

p(xi | I) log p(xi | I) . (2.93)

Another common name for the average information (2.93) is the mutual informa-
tion.

Notice that the average information is thus the entropy for X (2.24) less the
mean conditional entropy for X given Y (2.26),

I(X,Y ) = H(X) −H(X | Y ) . (2.94)

We can thus interpret the average information as the prior uncertainty minus the
average posterior uncertainty.

The entropy expressions were here obtained from a more intuitive departure
point given by our basic probability rules, while the original entropy derivation
based on the desiderata in the previous section is perhaps more elegant and has a
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more explicit motivation. Side by side, both derivations add to the understanding
of the expressions.

If we agree to use (2.93) as a measure of information, then a natural communi-
cation-theoretic interpretation is that on receiving data Y the recipient is on average
obtaining information corresponding to an amount I(X,Y ) concerning the trans-
mitted message X . On receiving a particular datum yj however, the information
(2.91) about the transmitted message can be larger or smaller than the average in-
formation.

A natural goal for a communication link is to maximize the average informa-
tion transmitted10. That is carried out by making H(X) as large as possible, i.e.
coding messages so that they are as uniform as possible, while keeping H(X | Y )
as small as possible, i.e. making messages as easy to decode as possible given
the received data. Clearly, minimizing H(X | Y ) can be carried out by simply
repeating the message forever, but that does not constitute a good system design.
We should instead maximize the obtained information per utilized resource, such
as the information rate, i.e. the information received per second.

Shannon showed that if the entropy H(X) for the transmitted message is less
than a number C, the capacity of the channel, then reception at an arbitrarily small
error rate is possible. The capacity of the channel defined by p(X | Y, I) is defined
as

C
4
= max

p(X|I)
I(X,Y ) . (2.95)

If H(X | Y ) > C then error-free reception is not possible. (Shannon further gives
explicit bounds on the mean conditional entropy H(X | Y ) for this case.) Shan-
non’s theorem does however not tell us how to construct a system which achieves
the channel capacity, and it does not guarantee that such a system does not impose
infinite coding and decoding delays.

Thus, our questions in the beginning of this section were all answered by Shan-
non. It turned out that there is a strict upper limit on information transfer, which
can be stated in an abstract mathematical language valid for arbitrary communi-
cation channels. As we have indicated here in our derivation of the information
measures used by Shannon, the connection to probability theory is very strong. In-
deed, we expected this based on Jaynes’ derivation of probabilities as carriers of
incomplete information. We think that this approach helps to understand the gener-
ality of Shannon’s theorem above. It is applicable not only to man-made telephony
systems; it is a fundamental constraint on any information exchange between any
entities, and constrains interactions in biological and physical systems as well.

10It should be emphasized that it is the information averaged over Y and X that should be maxi-
mized, as we are typically designing communications systems which should be used to send not just
a specific message, but any conceivable message.
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Having said all this, we must finally point out a problem in the reasoning above.
Maximizing average information is surely a good system-wide approach in com-
munications, but for any individual receiver, the entropy H(X) for the transmitted
message simply is what it is! It cannot be adjusted by anything else than receiv-
ing information. So, for a receiver, the critical property is again only the posterior
probability p(X | Y = yjI) as in all problems of inference. The average informa-
tion is useless in inferring the actual message. The basic desiderata of this chapter
ensure us that all information relevant to the question being asked is always taken
into account fully and in the only consistent way possible if we use probability the-
ory as logic. There is no need for any additional ad hoc rules in decoding received
messages. Although Shannon’s communication theory is an essential tool for anal-
ysis of all man-made and naturally occurring communications systems, it does not
provide a rationale for making the optimal individual inferences and should not
be construed as such. It provides important performance measures and shows cer-
tain critical limits of communications systems stated in terms of these performance
measures. The importance lies in its analytical tools, rather than in providing con-
structive rules.

2.9 Decision Making in the Face of Uncertainty

In the sections preceding the previous one we have considered how our knowl-
edge about an arbitrary uncertain event is updated with new information. When
all is said and done, however, we typically have to take some definite decision
based on all relevant information at hand. Nothing in our rules tells us how to
do this. Probability theory is only concerned with describing a state of knowl-
edge; it does not give any rules for which decision to make in a given situation.
A moment’s reflection shows that in order to make a rational decision we must
consider what the effects of our decision will be given different possible outcomes.
There is thus a certain amount of subjectivity involved in decision making, since it
includes making value judgements. For example, what is more worth to me, choos-
ing a more expensive apartment at a better location, or saving money but having
to spend more time commuting? Of course, probability theory cannot determine
that. But this line of thought implies a reasonable course of action: Determine a
loss function L(di, θk) (or equivalently a utility function) describing the ’loss’ in-
curred from making decision di should θk turn out to be the true ’state of nature’.
Having determined numerically how large the loss for different decision-outcome
combinations will be, the only remaining uncertainty resides in the outcomes θk.
Thus, we must work out the probabilities for the respective states θk given the data
D and any other relevant information I . A reasonable decision di then minimizes
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the expected loss,
〈L〉 =

∑

k

L(di, θk)p(θk | DI) , (2.96)

which is a function of the decisions di. Of course, this generalizes in the obvious
way to an integral over a pdf in the continuous case,

〈L〉 =

∫

L(di, θ)p(θ | DI)dθ . (2.97)

2.9.1 Parameter estimation

We now consider the problem of estimating a parameter, i.e. to guess the actual
value of some parameter given whatever data and information that we might have.
We can view this as a decision problem; we wish to make a decision as to the
true parameter value which in some sense minimizes the bad effects (for instance
the estimation error) of that choice. Estimating an unknown continuous-valued
parameter α, the expected loss can be minimized by setting the derivative of (2.97)
with respect to the estimate α̂ equal to zero,

∂〈L(α̂, α)〉
∂α̂

=
∂

∂α̂

∫

L(α̂, α)p(α | DI)dα

=

∫

∂L(α̂, α)

∂α̂
p(α | DI)dα = 0 , (2.98)

where the order of differentiation and integration could be changed since the bound-
aries of the integral are independent of α (eq. 12.211 in Gradshteyn and Ryzhik,
2000).

According to (2.98), the expectation of

• a quadratic loss L = (α̂− α)2 is minimized if
∫

(α̂− α)p(α | DI)dα = 0

⇔ α̂ =

∫

αp(α | DI)dα (2.99)

which corresponds to using α̂ = 〈α〉, the expectation of the parameter over
the posterior pdf.

• the absolute error L = |α̂−α| corresponds to using α̂ = αmed where αmed
is the median over the posterior pdf for α since the median αmed is defined
by
∫ αmed

−∞ p(α | DI)dα =
∫∞
αmed

p(α | DI)dα = 0.5. The median has
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the interesting property that it is invariant under any monotonic transforma-
tion f(α). It is thus insensitive to the exact form of the posterior pdf, and
consequently also to outliers.

• a loss function which only cares about being exactly right, represented by
L(α̂, α) = 0 if α̂ = α and L(α̂, α) = 1 otherwise, results in using the
maximum of the posterior density for α as an estimate. Note that this com-
mon choice considers any error, regardless of size, to be equally bad. It can
further be observed that this is equivalent to using a loss function which is
L = |α̂− α|k, k → 0.

2.9.2 Other approaches

Another criterion for decision making, and parameter estimation in particular, which
is common in the random-variable approach to probability theory is to minimize a
quantity R called the risk

R =

∫

. . .

∫

L(α̂, α)p(x1 . . . xn | αI)dx1 . . . dxn (2.100)

where x1 . . . xn denotes the observed data consisting of n samples. The loss is
thus not averaged over the posterior pdf with respect to the parameter, but rather
over the likelihood with respect to the data. This means that in general, the best
estimate α̂ according to this criterion may depend on the actual unknown parameter
value. Another severe problem with this approach is that the minimum of (2.100)
cannot be found by variational methods (see e.g. Jaynes, 2003, Chapter 13), and
thus we cannot in general find a truly best estimator by this criterion. Why then,
would anyone still wish to use (2.100) as a criterion? Van Trees (1968) (p. 63)
motivates it since ’in many cases it is unrealistic to treat the unknown parameter
as a random variable’. Again, it is the fallacy to project ones own uncertainty onto
nature, assuming that a probability for a parameter implies that the parameter must
in fact be random by nature, that forbids the use of the expected posterior loss
(2.97) as a valid criterion.

Since we cannot find a useful estimator based on (2.100), the conventional ap-
proach to estimating a ’non-random’ parameter is to come up with a few candidate
estimators and then compare them in terms of risk (and most often this last step
is not even carried out). A common approach is to use the value of the parameter
which maximizes the likelihood, i.e. the probability for the observed data, as the
estimator. With a uniform prior for the parameter and a loss which does not care
about the size of the error, this coincides with the Bayesian approach given above.

Nevertheless, from the definition of the risk (2.100) one can insert some com-
monly used loss function and then see what the risk becomes. With a quadratic
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loss L = (α̂− α)2, we obtain

R =

∫

. . .

∫

(α̂− α)2p(x1 . . . xn | αI)dx1 . . . dxn

= 〈α̂2〉 + α2 − 2α〈α̂〉 = (α− 〈α̂〉)2 + var(α̂) , (2.101)

where var(α̂) = 〈α̂2〉 − 〈α̂〉2 is the variance of the likelihood for the estimator
(remember that the estimator is just a function of the data, and we can therefore
speak of an expectation of the estimator in this sense over the probability for the
data given the parameter). A good estimator in the sense of low risk should thus
have two properties:

1. 〈α̂〉 = α

2. minimum var(α̂).

An estimator satisfying the first condition is called unbiased in the random-variable
literature, and an estimator with both properties (1) and (2) is called efficient or an
unbiased minimum variance estimator. Of course, to tell whether an estimator is
unbiased or not, we need to know the true parameter value, which seems like a
rather bizarre condition. It is also important to remember that both the bias term
and the variance term are equally important but hardly ever independent. An es-
timator which is made unbiased typically increases the variance at the same time
and may lead to an overall larger mean squared error. The term ’unbiased’ is thus
misleading in that it may lead us into thinking that an unbiased estimate is more
objectively valid in some sense; on the contrary, an unbiased estimate may perform
worse than a biased one in the sense of increasing the risk.

Another approach would be to consider some other function of the loss, rather
than its expectation. For instance, why not make the decision which minimizes
the maximum loss? If some intelligent opponent foresees our decision and makes
sure that the consequences of that decision will always be the least favorable possi-
ble, then this would be a reasonable criterion. This mini-max criterion is therefore
not uncommon in game theory, but note that this criterion assumes that we face
a player with perfect skills who always makes the best possible decisions. In re-
ality this is over-pessimistic. Even if we have information that tells us the loss is
always maximized subject to our decisions, then a probability distribution for the
unknown outcome of our decision would reflect that; consequently the expected
loss would equal the maximum loss. Thus, the expected loss criterion contains the
mini-max criterion as a very special case. In most situations, however, they dif-
fer since it would be overly pessimistic to assume that whatever our decisions are,
their consequences will invariably be the worst possible.
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Similarly, an incurable optimist would make decisions that minimize the min-
imum loss; and again we see that this is a special case of the minimum expected
loss criterion when our information gives us reason to believe that Nature is in its
most helpful mood. It seems that whenever a criterion different from expected loss
is suggested, it either reflects that the person who made the suggestion actually
means that another loss function should be used, or, that that person does not allow
probabilities to reflect information.

In contrast to the random-variable approach, the Bayesian approach to decision
making under uncertainty is always the same, and, to summarize, consists of the
following five steps:

1. Enumerate the possible states of nature and the possible decisions.

2. Determine the loss function for all combinations of decisions and outcomes.

3. Assign prior probabilities for the uncertain variables using the maximum
entropy principle.

4. Digest any additional information or data by the use of Bayes’ theorem.

5. Make the decision which minimizes the expected loss.

2.10 Comments

This chapter has given a brief introduction to probability theory from a perspective
quite distinct from that conventionally taught at schools and universities. Histor-
ically, however, the early workers in probability theory seem to have held a view
in line with that expounded here. Laplace, for instance, who made many of the
most important early contributions remarked that ’probability theory is nothing but
common sense reduced to calculation’. The great physicist Maxwell wrote the
following in a letter in 1850.

The actual science of logic is conversant at present only with things
either certain, impossible, or entirely doubtful, none of which (fortu-
nately) we have to reason on. Therefore the true logic for this world is
the calculus of Probabilities, which takes account of the magnitude of
the probability which is, or ought to be, in a reasonable man’s mind.

It was first in the latter part of the 19th century that the frequentist interpretation be-
came common, at a time when pure mathematicians started to dominate the subject.
Their goal was quite different from that of physicists such as Laplace or Maxwell,
and at this time focus started to shift from making inferences based on incomplete
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data to proving limiting theorems of idealized ’random experiments’. But the sub-
jective view, as it was called, still had its followers, and it was not until around
the 1920s and 1930s that the frequentist theory monopolized the subject of prob-
ability theory. In hindsight this is not surprising; with most practitioners coming
from fields such as agriculture or population ecology where the amount of data was
massive and where background information was not easily assessed numerically,
the Laplacean view did not offer much improvement over frequentist methods. At
that time, there were very few followers of Laplace. Two notable exceptions were
the famous economist Lord John Maynard Keynes and the geophysicist Sir Harold
Jeffreys. Jeffreys and Sir Ronald A. Fisher, one of the main proponents on the
frequentist, or ’objective’, side debated these issues in publications and in private
correspondence. Although they held very different views on the subject, both had
the goal of finding practical tools for inference and they regarded each other highly.
An interesting and impartial account of this important part of scientific history is
given by Howie (2002) who also provides more details on the general history of
probability theory. Howie also points out that the frequentist school is not really
one common school, but a disparate collection of ideas. Fisher, for instance, prob-
ably had more in common with Jeffreys than with such mathematical statisticians
as Neyman or Egon Pearson (not to be confused with his father Karl Pearson who
invented the chi-squared test).

In the 1950s, however, the Bayesian movement experienced a revival and since
then a slowly increasing attention has been paid to Bayesian ideas. Presently, the
interest in the Bayesian paradigm is accelerating and although most workers still
adopt a somewhat inconsistent interpretation of probabilities as frequencies while
still using the Bayesian framework, we believe that with the publication of Jaynes’
book probability theory as logic will become the standard theory in the future.

Jeffrey’s book (Jeffreys, 1939) was the main inspiration for Jaynes and is the
critical link between Laplace’s work and today’s understanding of the subject. Sev-
eral other works also deserve mentioning; Zellner’s book (Zellner, 1971) contains
many technical results that cover basic problems in econometrics, signal process-
ing, and control theory. Not as strong on emphasizing fundamentals as Jaynes’
book, it however provides an invaluable technical reference; Sivia (1996) is an in-
troductory text drawing strong inspiration from Jaynes’ works and can serve as a
clearly written complement to Jaynes’s book. Although we have here stressed the
contributions by Jaynes, it should be emphasized that Cox (1946) made the essen-
tial derivation of the product and the sum rules from elementary assumptions of
consistency and common-sense correspondence.

In this chapter we have not given many examples, and for full understanding
of the subject the reader is referred to Jaynes (2003). In the following chapters,
however, we will use the results obtained here in solving a number of problems
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related to allocating resources under uncertainty. Hopefully, these examples will
stimulate understanding and inspire to new and improved solutions.
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Appendix 2.A Derivation of Laplace’s Rule of Succession

We here evaluate

P (f1...fK |m1...mKI) =

=
P (m1...mK |f1...fKI)P (f1...fK |I)

P (m1...mK |I)
(2.102)

where
fk =

rk
∑K

j=1 rj
(2.103)

is the relative frequency with which outcome k will occur, mk is the number of
occurrences of outcome k = 1 . . .K, and I is all our background information that
is relevant to the problem.

The prior probability distribution for the relative frequencies fk is uniform over
all combinations of K non-negative numbers that sum to unity (by the principle of
indifference):

P (f1...fK |I) = Cδ(f1 + ...+ fK − 1) , fk ≥ 0, (2.104)

where δ(·) is the Dirac delta (δ(x) = 1 if x = 0 and δ(x) = 0 elsewhere). The
normalization constant C is obtained from

∫ ∞

0
...

∫ ∞

0
P (f1...fK |I)df1...dfK = 1 (2.105)

and defining

I(q)
4
=

∫ ∞

0
...

∫ ∞

0
δ(f1 + ...+ fK − q)df1...dfK (2.106)

we can write (2.105) as
CI(1) = 1 . (2.107)

In order to avoid difficulties in carrying out this integration due to the inter-
dependency of the integration limits, we note that the Laplace transform of I(q)
is

∫ ∞

0
e−sqI(q)dq =

=

∫ ∞

0
...

∫ ∞

0
e−s(f1+...+fK)df1...dfK =

=
1

sK
.

(2.108)
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But this is a standard formula and the inverse Laplace transform of (2.108) is

I(q) =
qK−1

(K − 1)!
(2.109)

yielding the normalization constant11

C =
1

I(1)
= (K − 1)! . (2.110)

The likelihood term in (2.102) is the multinomial distribution

P (m1...mK |f1...fKI) =

=
M !

m1! · · ·mK !
fm1

1 · · · fmK

K ,
(2.111)

where we define M =
∑K

k=1mk.
The prior distribution P (m1...mK |I) is obtained by averaging the joint distri-

bution for mk and fk over all possible fk. Since

P (m1...mK |I) =

∫

· · ·
∫

P (m1...mK , f1...fK |I)df1...dfK

=

∫

· · ·
∫

P (m1...mK |f1...fKI)P (f1...fK |I)df1...dfK (2.112)

the prior can be written as

P (m1...mK |I) =
M !

m1! · · ·mK !

∫

...

...

∫

fm1

1 · · · fmK

K P (f1...fK |I)df1...dfK =

=
M !

m1! · · ·mK !
· C · J(1)

(2.113)

where C was obtained in (2.110) and

J(q) =

∫ ∞

0
...

∫ ∞

0
fm1

1 · · · fmK

K ×

×δ(f1 + ...+ fK − q)df1...dfK . (2.114)

11One might casually expect that the normalization constant becomes K, not (K − 1)!, since the
different frequencies are equally likely . However, the constraint that the probabilities must sum to
one in effect means that the normalization constant is obtained by counting the possible combinations
that can arise while satisfying the sum constraint.
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The Laplace transform of J(q) is

∫ ∞

0
e−sqJ(q)dq

=

∫ ∞

0
...

∫ ∞

0
e−s(f1+...+fK)fm1

1 · · · fmK

K df1...dfK

=
m1! · · ·mK !

sM+K
, (2.115)

and taking the inverse Laplace transform yields

J(q) =
m1! · · ·mK !

(M +K − 1)!
qM+K−1 . (2.116)

Inserting this (with q = 1) into (2.113), we obtain

P (m1...mK |I) =
M !(K − 1)!

(M +K − 1)!
. (2.117)

Combining (2.104), (2.111), and (2.117) into (2.102), we have

P (f1...fK |m1...mKI) =
(M +K − 1)!

m1! · · ·mK !
×

×fm1

1 · · · fmK

K δ(f1 + ...+ fK − 1) . (2.118)

We set out to find the probability for obtaining a certain outcome k, which, due
to the assumption of a fixed causal mechanism, would equal the future relative fre-
quency fk if it were known. Instead we take the probability for k as the expectation
of the relative frequency with which that particular outcome occurs:

pk
4
= P (k|m1...mKI) = 〈fk〉

=

∫ ∞

0
...

∫ ∞

0
fkP (f1...fK |m1...mKI)df1...dfK

=
m1 · · ·mK

(M +K)!
· (M +K − 1)!

m1! · · ·mk−1!(mk + 1)!mk+1! · · ·mK !

=
mk + 1

M +K
(2.119)

where we again use the Laplace transformation technique in exactly the same way
as in deriving (2.117) to solve the integrals. As before, M =

∑K
k=1mk.
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Appendix 2.B Derivation of the Discrete Maximum En-
tropy Distribution

The maximum entropy distribution is found using the Lagrange method. Using the
constraints (2.39) we form the functional

H(p) = −
n
∑

i=1

pi log pi +

m
∑

k=1

λk

(

Fk −
n
∑

i=1

pifk(xi)

)

(2.120)

and differentiate with respect to pi:

∂H(p)

∂pi
= − log pi − 1 −

m
∑

k=1

λkfk(xi) . (2.121)

Setting this equal to zero we have the general form of the entropy-maximizing
probability mass:

pi = exp
[

−1 −
m
∑

k=1

λkfk(xi)
]

. (2.122)

However we have not yet included the constraint that
∑n

i=1 pi = 1. This is just
a normalization, and we obtain:

pi =
1

∑n
i=1 exp

[

−∑m
k=1 λkfk(xi)

] exp
[

−
m
∑

k=1

λkfk(xi)
]

. (2.123)

The Lagrange multipliers λi are chosen so that the constraints (2.39) are satisfied.
This procedure is formulated in a compact form by introducing the partition

function (2.41) and rewriting (2.123) as

pi =
1

Z(λ1, . . . , λm)
exp
[

−
m
∑

k=1

λkfk(xi)
]

. (2.124)

In order to find the Lagrange multipliers satisfying the constraints (2.39) we
notice that differentiating logZ with respect to each λk gives:

∂

∂λk
logZ =

1

Z(λ1, . . . , λm)

n
∑

i=1

(

−fk(xi) ×

× exp
[

−λ1f1(xi) − . . .− λmfm(xi)
])

= −
n
∑

i=1

pifk(xi) , (2.125)
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which is the formulation of the constraints (2.39).
Thus the constraints (2.39) are satisfied by choosing the Lagrange multipliers

so that
Fk = − ∂

∂λk
logZ . (2.126)
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Chapter 3
Controlling Production Resources
to Meet Customer Demands

IN the manufacturing industry a common class of resource allocation problems
can be described as allocation of the production resources so as to meet future

uncertain order intakes while minimizing production expenses, conditioned on sat-
isfying a number of constraints on how the resources can be assigned.

In this chapter we formulate and solve a class of general resource allocation
problems which can be stated in an abstract way as follows.

Consider the problem faced by the manager of a production plant. The plant
manufactures a variety of widgets, and a number of production units (PU:s) are
available for producing the widgets. The PU:s vary in quality; consequently each
PU has a certain capacity, varying according to the type of widget to be produced.
The capacity of a PU may also be time varying. If the PU is a machine, it may
be time varying because at times it needs maintenance; if instead the PU consists
of a team of workers the time variability is explained by simple facts as absence
from work due to sickness or that the work force is decreased during nights and
weekends. Evidently, the production capacities may be uncertain as well.

The manager of the plant makes manufacturing decisions (allocating PU 1 to
produce x A-widgets, y B-widgets, and so on) so as to meet as many future order
intakes for the different types of widgets as possible. The job is then to decide how
many widgets of each type each PU is to produce over a specified time horizon.
Depending on the type of widgets produced, the time horizon may vary from days,
or even hours, to several years. The job is complicated by the fact that the managing
unit does not know exactly how many orders will be be placed for each type of
widget over the specified time horizon. There may also be certain constraints on
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how the PU:s may be utilized. Some PU:s may only be able to produce a certain
type of widgets, while some other PU:s only make parts of widgets, etc.

A further complication may be that some customers are considered more im-
portant than others, there may be different expenses associated with changing the
production patterns, and there may be different costs related to manufacturing dif-
ferent widgets.

Clearly, the problem faced by the manager can be treated to some extent by ap-
plying existing works in the field of operations research. In the operations research
literature, methods for scheduling and resource allocation are studied mainly with
the objective of minimizing the make-span, i.e. the greatest completion time for
a number of pre-specified tasks, or similar delay-related criteria (see e.g. Brucker
et al., 1999, Hillier and Lieberman, 1990, Negenman, 2001). Typical constraints
are formulated as precedence requirements, i.e. certain tasks must be completed
before certain other tasks can begin. The majority of operations research publica-
tions concern different instances of this type of problem with deterministic param-
eters. The most common ways of handling uncertainty, according to Penz et al.
(2001), are sensitivity analysis, robust design or the use of a stabilization process.
Stochastic problems are studied to a lesser extent, and in general by assuming cer-
tain fault frequency distributions, etc. (Sox et al., 1999).

Instead of incurring assumptions concerning the true order sizes, the manager
needs a way to make decisions that use whatever knowledge he may have without
introducing unwarranted assumptions. He needs a mathematical description of his
state of uncertainty which takes into account all the possibilities not ruled out by his
knowledge. We have already seen in Chapter 2 how this objective can be achieved
by using the maximum entropy principle and probability theory. The first use of
probability theory as extended logic in problems of resource allocation was given
by Jaynes (1963b). In that work, Jaynes considered a similar problem as ours.
Our treatment generalizes that model to a more flexible manufacturing plant, and
extends the framework in several directions as will be explained later. The main
extensions are the following:

• The model of the manufacturing plant includes an arbitrary number of wid-
gets and production units, and an arbitrary scheduling horizon.

• The optimization criterion accounts for widget-type specific pricing and ar-
bitrary costs for resource utilization, which for instance may include in-
creased production costs when the work assignments for production units
are changed.

• Solutions are presented which take into account uncertain production capac-
ities, either based on a Gaussian prediction or based on previously recorded
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capacity fluctuations.

• Whereas Jaynes only presented maximum entropy solutions for accounting
for uncertain order sizes, we further introduce a Bayesian solution which
is able to extract information regarding patterns observed in previous order
intakes.

• We show how the given problem formulation translates into a flow-control
problem which forms the basis for an application in mobile communications
presented in Chapter 5.

Our work is a continuation of Jaynes’, and to facilitate reading both works simul-
taneously we are using the same notation as in his work.

In Section 3.1 we formulate the problem. In Section 3.2 solutions are derived
for a number of basic cases. Numerical examples are given in Section 3.3, whereas
Section 3.4 gives some extensions and modifications to the problem before we
conclude the chapter in Section 3.5.

3.1 Minimizing the Expected Number of Missed Orders

Consider the problem outlined in the introduction. We are to schedule the use of
our production resources over a time horizon divided into T time slots. The plant
produces U different types of widgets and there are R production units, where the
rth production unit has the capacity to produce curt widgets of type u during time
slot t. Suppose that the resource allocation decisions ρurt, t = 1 . . . T , are all made
at t = 0.

During the period t = 1 . . . T the plant receives orders for nu =
∑T

t=1 nut

type u widgets, and if we fail to meet an order for such a widget our cost, or lost
income, (measured in some appropriate unit/currency) is denoted by vu.

The object is now to assign a fraction ρurt of production unit r to produce type
u widgets during time slot t, so that the future order intakes are met while the
manufacturing costs are minimized.

Before stating the complete problem in which future order intakes are uncer-
tain, we here assume knowledge of all incoming order sizes during the time horizon
t = 1 . . . T . The problem is then to minimize the loss function L:

L =
U
∑

u=1

(

vu · g(nu − Su −
R
∑

r=1

T
∑

t=1

ρurtcurt) + h(ρu)

)

(3.1)

where Su is the number of type u widgets already in stock, g(x) = x if x >
0, g(x) = 0 otherwise, and h(·) is a function describing the cost (in the same
unit/currency as vu) for the utilization of the production units.
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The first term in (3.1), vu · g(nu − Su − ∑R
r=1

∑T
t=1 ρurtcurt), represents

failed incomes due to orders that can not be met by the stock Su or the production
∑R

r=1

∑T
t=1 ρurtcurt under the coming interval t = 1 . . . T . In the second term

of (3.1), h(ρu), we define ρu as the vector of all assignments to produce type u
widgets, i.e.

ρu ≡ {ρu11, ρu12, . . . , ρu1T , ρu21, . . . , ρu2T , . . . , ρuRT , } (3.2)

which can be further generalized to depend on previous resource allocations (i.e.
for t < 1). The function h(·) should be defined according to actual production
costs and varies from problem to problem. The use of h(·) is a simple way to
include costs for transferring production of one widget to another PU, etc.

There may also be various constraints on resource utilization. The basic con-
straints on ρurt are

∑

u ρurt ≤ 1 ∀r, t (3.3)

0 ≤ ρurt ≤ 1 ∀u, r, t , (3.4)

but in general we may have an additional number of matrix equalities and inequal-
ities representing constraints on different resources. For instance, we may require
a certain minimum number, ϕu, of widgets produced, i.e.

T
∑

t=1

R
∑

r=1

curtρurt ≥ ϕu . (3.5)

Another common restriction may be that production units are constrained to have
only one assignment in each time slot, i.e. ρurt must belong to the set {0, 1}. In
Section 3.4 other types of modifications are described which transform the problem
to a variety of common problem scenarios.

The problem of minimizing (3.1) presents no conceptual difficulties, but is in
fact of little use for the manager of the plant. The main problem facing him is
that the incoming orders are highly uncertain. Typically, there is some limited
information available. For instance, he may have at his disposal records from the
previous period in which he can gather the average order sizes for different widgets.

What is needed is thus a probability distribution describing his uncertainty as to
the true order sizes. Having such a distribution, we can determine the expectation
〈L〉 of (3.1) as

〈L〉 =
U
∑

u=1

∞
∑

nu=1

P (nu|I)
(

vu · g(nu − Su −
R
∑

r=1

T
∑

t=1

ρurtcurt) + h(ρu)

)

(3.6)
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Table 3.1: Definitions of the main variables in this chapter.

L The loss function, representing the total cost for production and unfilled orders
U The number of widget types
R The number of production units
T The number of time slots a resource allocation is optimized over
Su The number of widgets of type u in stock
nu The total order size for widgets of type u over the T time slots
curt The production capacity [number of widgets] at production unit r, time slot t for type-u widgets
ρurt The fraction (0 ≤ ρurt ≤ 1) of production unit r that is used for producing type-u widgets at

time t. Adjusted so that 〈L〉 is minimized
xu The total production of type-u widgets over the T time slots (xu =

∑T
t=1

∑R
r=1

curtρurt)
vu The per-widget cost for failing to meet orders for type-u widgets
ρu A vector of all past and present allocations ρurt used to determine production costs for

type-u widgets
h(ρu) The production cost for type-u widgets given past and present allocations

where P (nu|I) denotes the probability distribution for the order sizes nu condi-
tioned on whatever information I the manager may have.

The most reasonable course of action is now to make the decisions ρurt which
minimize the expected loss (3.6), while agreeing with the constraints (3.3), (3.4)
and other relevant constraints as mentioned above.

Furthermore, the production capacities curt may be uncertain due to the possi-
bility of machine failures, etc. In that case, we should also determine a probability
distribution for the capacities and average (3.6) over that distribution too. That
way, our resource allocation decisions take into account the possibility of lower or
higher capacities than expected.

In the next section we derive the expected loss expressions for different states of
information concerning the order intakes and production capacities. For reference
throughout the chapter, Table 3.1 lists the definitions of the main variables in this
chapter.

3.2 Solutions for Uncertain Order Intakes and Uncertain
Production Capacities

In any problem of inference, we use whatever information we have in order to
narrow our list of possible outcomes. We assign different degrees of plausibility to
different outcomes corresponding to that information. As the process of inference
turns into a decision problem, we find that a rational decision should take into
account all possibilities that have not been ruled out by our information.

Here, we attempt to accomplish this objective by using probability assignments
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in (3.6) which have maximal entropy subject to constraints given by our informa-
tion I . As we stressed in Chapter 2, it corresponds to the aim of avoiding gratuitous
assumptions (Roberts, 1971). In one specific formulation, given in Section 3.2.2,
we will further use Bayes rule to take advantage of unforeseen patterns in the order
intakes.

The final expression for the expected loss depends critically on the information
we use to assign probabilities. We here investigate four basic cases, each repre-
senting a typical scenario that may arise in practice.

3.2.1 Knowledge of expected order intakes

A common type of information available for this type of problem consists of ex-
pected order intakes for the coming period. This may be based on sales records
from the previous period.

Here we derive the maximum-entropy probability distribution for future order
sizes under the condition of knowing the expected order sizes for each widget type,
and then proceed to give the expected loss for this scenario.

The distribution for future order sizes

We are to assign a prior probability distribution for non-negative integer quantities,
nu, u = 1 . . . U , having known means 〈nu〉. Denoting this information by I , we
now turn to find the P (nu|I) which maximizes the entropy, c.f. (2.24),

H = −
∑

nu

P (nu|I) logP (nu|I) (3.7)

under the constraints

〈nu〉 =

∞
∑

nu=0

nuP (nu|I) , u = 1 . . . U . (3.8)

Notice that the summation index reflects that the integer nu is non-negative. In
order to find the P (nu|I) with maximum entropy we follow the steps in Section
2.7.1. The partition function (2.41) becomes
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Z(λ1, . . . , λU ) =

∞
∑

n1=0

. . .

∞
∑

nU=0

exp(−λ1n1 − . . .− λUnU )

=
∞
∑

n1=0

(

. . .

(

∞
∑

nU=0

exp(−λUnU )

)

. . .

)

exp(−λ1n1)

=

U
∏

u=1

1

1 − e−λu
, (3.9)

where we first rewrote the expression according to xa+b = xaxb and then used the
closed form expression for the geometric series. The Lagrange multipliers are now
determined from (2.43):

〈nu〉 = − ∂

∂λu
logZ =

1

eλu − 1
. (3.10)

Independence between different probabilities yields higher entropy than depen-
dencies, and consequently the maximum-entropy probability assignments P (nu|I)
factor:

P (n1, . . . , nU |I) = P (n1|I) . . . P (nU |I) . (3.11)

Inserting (3.9) into the expression for the general maximum-entropy distribution
(2.42) and using (3.11) we obtain

P (nu|I) =
1

Z(λu)
e−λunu nu = 0 . . .∞

= (1 − e−λu)e−λunu . (3.12)

From (3.10) we see that

e−λu =
〈nu〉

〈nu〉 + 1
, (3.13)

and consequently

P (nu|I) = (1 − e−λu)e−λunu

=
1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(3.14)

is the distribution of highest entropy subject to the constraints (3.8) and
∑

P (nu|I) = 1.
The maximum-entropy derivation of the exponential distribution above can

also be found in (Jaynes, 1963b). In Figure 3.1 the distribution is plotted for dif-
ferent mean values. The skewness of the curve arises because nu is only defined
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Figure 3.1: The maximum entropy probability distribution for a non-negative in-
teger quantity n with known mean 〈n〉.

for non-negative values. Hence, for a larger mean value the curve tends more and
more towards a uniform distribution. The distribution would be different if nu had
a known upper bound. For instance, if the nu represent the number of dots on
the face of a die, we must include that 1 ≤ nu ≤ 6 in our probability derivation.
This yields a distribution which is skewed differently depending on the given mean
values.

The expected loss

For brevity, we introduce

xu =
T
∑

t=1

R
∑

r=1

curtρurt , (3.15)
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describing the total number of type u widgets produced during the scheduled time
horizon t = 1 . . . T . With P (nu|I) given by (3.14) the expected loss (3.6) be-
comes:

〈L〉 =
U
∑

u=1

∞
∑

nu=0

P (nu|I) (vu · g(nu − Su − xu) + hu(ρu)) (3.16)

=
U
∑

u=1

(vu〈Lu〉 + hu(ρu)) . (3.17)

It is shown in Appendix 3.A that 〈Lu〉 =
∑∞

nu=0 P (nu|I)g(nu−Su−xu) is equal
to

〈Lu〉 =

{

〈nu〉
(

〈nu〉
〈nu〉+1

)xu+Su

, xu + Su > 0

〈nu〉 − Su − xu , xu + Su ≤ 0 .
. (3.18)

The situation that xu+Su ≤ 0 in (3.18) may seem like an impossible circumstance,
but although xu is certainly positive, Su may be negative if we have a number of
outstanding orders left from previous scheduling rounds or if there is a number of
known orders in the coming period. The case xu + Su > 0 is however more likely
in the type of application we consider in this chapter. The expression (3.17) is to
be minimized by adjusting ρurt under the system utilization constraints (3.3) and
(3.4). This is a constrained nonlinear optimization problem which can be solved
using nonlinear programming methods.

A practical complication – unknown expectations

In practice, the probability assignment P (nu | I) has a substantial shortcoming;
it requires exact knowledge of the expected order sizes. This information may in
reality be highly uncertain, or even non-existing in cases where for instance a new
type of widget is to be released. Here, we will briefly describe how to integrate
out the uncertain parameter 〈nu〉 based on knowledge of a finite record of previous
order sizes. In Section 3.2.2 we then treat this problem more fully, and update the
entire probability distribution according to Bayes’ rule based on past records of
order sizes. Although the latter approach takes better advantage of the patterns of
past order sizes, the former may be used in situations where we believe that the
only operative constraint on the entropy is actually the mean value constraint. In
effect, we then assume less structure consistent over time in the order patterns than
in the latter approach.

Denoting the probability assignment (3.14) by P (nu | µ, I) (where µ = 〈nu〉
for compact notation) to make explicit the dependence on the expectation, we now
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wish to find the marginal probability for nu conditioned on a short number of
previous order sizes.

Let {y} = {y1 . . . yN} be known order sizes for widgets of type u over N
(possibly non-consecutive) previous periods of length T (the same length as the
scheduling horizon). We then wish to derive the probability P (nu | {y}, I) for
obtaining orders for nu widgets over the next T periods given past order sizes {y}.
According to the sum rule we find this distribution by integrating over all possible
values of µ,

P (nu | {y}, I) =

∫ ∞

0
P (nu | µ, {y}, I)P (µ | {y}, I)dµ . (3.19)

If we have no information of correlations between order sizes at different time
periods we are better off leaving them out (due to the higher entropy), and thus
P (nu | µ, {y}, I) = P (nu | µ, I). In order to determine P (µ | {y}, I) we use
Bayes’ theorem (2.8) to obtain

P (µ | {y}, I) ∝ P ({y} | µ, I)P (µ | I) . (3.20)

Thus, in order to fully specify the marginal distribution P (nu | {y}, I) given past
data, the only new element consists of the prior P (µ | I).

Letting Y = y1 + . . . + yN be the sum of all past order sizes for a particular
widget type u and using a Jeffrey’s prior, we show in Appendix 3.B that

P (nu | {y}, I) = N
(nu + Y − 1)!(N + Y − 1)!

(Y − 1)!(N + nu + Y )!
= N

∏N−1
i=0 (Y + i)

∏N
i=0(Y + nu + i)

,

(3.21)
and that an excellent approximation to (3.21) is given by the exponential distribu-
tion (3.14) with 〈nu〉 = Y

N−1 .
Consequently, when we have only a very short data record for the determination

of 〈nu〉 we can use the expected loss in (3.18) using 〈nu〉 = Y
N−1 .

3.2.2 A predictive distribution based on logarithmic histograms

In the previous section we only used the record of past order sizes to marginalize
the expectation µ. A disadvantage of that approach is that even if there are very
obvious patterns in the past data (for instance, suppose that in a record of 1000
orders, half of them were of size 1 and the other half of size 10) they will be dog-
matically ignored. In effect we would not follow our Chapter 2 desiderata in doing
so, as we would arbitrarily throw away possibly relevant information. No matter
what the individual order sizes could tell us, we would flat out reject using this
information and stick to our exponential probability assignment and only average
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over the uncertainty pertaining to µ. This would be reasonable if all information we
obtained from the records were the number of orders and the sum size. However,
if we are actually given the entire sales record, we should, as always on receiving
new information, invoke Bayes’ rule.

We would like to calculate the posterior probability for nu given the past order
sizes {y}

P (nu | DI) =
P (D | nuI)P (nu | I)

P (D | I) , (3.22)

where D = {y} is the past sales record of size N . If we would only have a small
set of possible order sizes, a natural procedure would be to use Laplace’s rule of
succession (see Section 2.6) to determine the probability for future orders of the
different sizes. Such a probability assignment would not assume any temporal
correlations, but would express an expectation that the underlying market mecha-
nisms do not change appreciably. We have however not restricted the order sizes to
a small set, but should rather be prepared for any positive integer size. Based only
on a finite order record, the resulting distribution would be very close to uniform.
Calculation of the expected loss would also require a numerical summation over
an infinite number of terms, which clearly precludes this approach from further
consideration.

Nonetheless, it is possible to resort to a similar approach where we first parti-
tion the order sizes in a discrete set covering a closed interval on the non-negative
real line, and then use the rule of succession on the ’bins’ that constitute this inter-
val. We can thus find a reasonably informative posterior probability for receiving
future orders within a certain size interval given by the number of bins to use and
the minimum and maximum order sizes. An important question is then the issue of
partitioning the order sizes. We could use a linear partitioning consisting of using
equal sizes for all bins and spreading them uniformly from 0 to some upper limit.
There are a number of problems with this idea however; first of all, the upper limit
must be very large, and that means that the bins become too numerous; secondly,
order sizes are perhaps not naturally partitioned in a linear fashion. A quick look
in the product catalogue of any large vendor of, say, electronic chips reveals that
packages are typically priced in ranges of 1 − 10, 10 − 100, 100 − 1000, 1000−,
etc. This is typical of industrial products, where the order of the order sizes is a
more natural partitioning rule than the absolute order sizes. For instance, a com-
pany would first buy a few samples of the widgets to try them in their products, and
then the company might decide to pursue the use of the widgets in their products.
The number of companies that buy individual sample widgets may be quite large.
The companies that continue using the widgets may be small-scale, mid-scale, or
large-scale companies, and might for instance require an amount on the order of
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100, 1000, or 10000 widgets depending on their customer base. For each such log-
arithmic interval, we might expect an approximately equal number of orders with
no further information from previous sales. Thus, a logarithmic partitioning of the
order sizes may be appropriate, indicating a Jeffrey’s prior (which is uniform over
the logarithm) for the order sizes.

Based on the reasoning above, we propose to partition the non-negative nu-line
in K bins, or sub-intervals, spread uniformly over the logarithm of nu and use the
rule of succession to update the probability for the number of orders in the size
interval corresponding to a given bin. We will define a lower limit and an upper
limit for the uniformly distributed log nu bins, and use one bin for all sizes below
the lower limit and one bin for the sizes above the upper limit.

We partition the logarithm of the order sizes for widget u inK−2 bins of equal
width

w =
log nmax − log nmin

K − 2
(3.23)

between two numbers log nmin and lognmax. The additional two bins refer to
log-order sizes below log nmin and above log nmax. We then count the number
muk of orders for widget u of log-size corresponding to each bin k. The posterior
probability for the number of orders in each bin k for widget u is then obtained by
Laplace’s rule of succession

P (nuk|mu1...muKI) =
muk + 1

Mu +K
(3.24)

where Mu =
∑K

k=1muk. Note that this reflects a prior which is uniform over the
bins, but that two of these bins are not of equal log-size as the others. We thus
assume that the chance for receiving an order in any bin is equal.

Now, having determined the probability for obtaining orders for nu type-uwid-
gets, we still need the probability for receiving a particular order size within the bin
interval. Otherwise we cannot determine the expected loss. There are two possible
choices, either a uniform distribution or a Jeffrey’s distribution over the bin inter-
val. We have already employed Jeffrey’s distribution in motivating the rule of suc-
cession for the logarithmic intervals, but here we are concerned with distributing
probability over a closed (non-logarithmic) interval and the uniform distribution is
then more appropriate according to the principle of indifference. We shall thus take

P (nu | nu ∈ k) =
1

bk − ak
(3.25)

where bk denotes the lower limit of the closest bin to the right and ak is the lower
limit of the current bin k. Letting

αk
4
= max(Su + xu, ak) (3.26)
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and
βk

4
= max(Su + xu + 1, bk) (3.27)

we thereupon obtain the expected loss contribution given that the order size is
within bin k

〈Lu | nu ∈ k〉 =

bk−1
∑

nu=ak

1

bk − ak
g(nu − Su − xu) , k = 1 . . .K − 1

=
1

2

β2
k − βk − (α2

k − αk)

bk − ak
− βk − αk

bk − ak
(Su + xu) . (3.28)

The derivation is given in Appendix 3.C. Note that if we allow order sizes of
infinite size, the Kth bin would range over an interval which is open to the right
giving an infinite β and consequently an infinite expected loss. The solution is to
use Jeffrey’s distribution over a bounded interval for the probability for obtaining
a particular order size given that the order size lies in bin K. For k = K we thus
have

〈Lu | nu ∈ K〉 ≈
bK−1
∑

aK

1

log (bK/aK)nu
g(nu − Su − xu)

≈ βK − αK − log (βK/αK) (Su + xu)

log (bK/aK)
, (3.29)

where we approximated the normalization of the discrete Jeffrey’s distribution with
the normalization for a continuous Jeffrey’s distribution and the sum with the cor-
responding integral. The continuous and the discrete results are however almost
perfectly identical and in practice we can use them interchangeably.

Accordingly, we obtain the following expression for the expected loss contri-
bution:

〈Lu〉 =
K
∑

k=1

muk + 1

Mu +K
〈Lu | nu ∈ k〉 . (3.30)

Minimization of this expression inserted in (3.17) typically improves on the per-
formance obtained from using only the average values 〈nu〉, given that K is not
too small. The reason is that we here take advantage of patterns in the sales records
that are not accounted for by only using the expected order sizes regardless of what
our data actually tell us.

We should further observe that if we would let the bin widths adapt according
to the incoming order sizes instead of using fixed logarithmic widths, we would be
able to obtain even better performance. In Chapter 8 we investigate this problem
of optimal approximate Bayesian inference.
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3.2.3 Uncertain production capacities

Here, we investigate the expected loss for the case when the production capacities
curt are uncertain. We build on the case developed in Section 3.2.1 presupposing
knowledge of expected order sizes 〈nu〉.

Consider a problem where we have predicted the capacity curt of every pro-
duction unit r for producing type u widgets for each time slot t, with some known
accuracy.

Our task is now to calculate the expected loss (3.6) with respect to the joint
distribution P (nucurt | I). In Appendix 3.D we show that since nu and curt are
logically independent, the expected loss contribution from type-uwidgets becomes

〈Lu〉 =

∫ ∞

−Su

P (xu | I)〈L1u,P (n|I)〉dxu

+

∫ −Su

−∞
P (xu | I)〈L2u,P (n|I)〉dxu , (3.31)

where 〈L1u,P (n|I)〉 and 〈L2u,P (n|I)〉 denotes the expected per-widget-type loss from
Section 3.2.1 for xu + Su > 0 and xu + Su ≤ 0 respectively (recall that xu =
∑T

t=1

∑R
r=1 curtρurt). This new notation is used to make a distinction between

the expected loss with respect to P (nu | I) in (3.17) and the one currently under
investigation. 〈L1u〉 and 〈L2u〉 will now be used to describe the latter. The total
loss is obtained by inserting (3.31) into

U
∑

u=1

(vu〈Lu〉 + hu(ρu)) . (3.32)

The determination of P (curt | I) (which in turn gives P (xu | I) since xu =
∑T

t=1

∑R
r=1 curtρurt) depends on what information we have concerning the pro-

duction capacities. We will study two cases which are useful in different situations.
The first is based on having a prediction of each production capacity along with a
measure of the prediction accuracy. This may be reasonable in certain flow control
applications where the capacity may turn out to be higher or lower than the pre-
dicted value. This is similar to the wireless communication set-up considered in
Chapter 5, but there the capacity can never increase beyond the transmission rate
chosen by the transmitter. We will not study that situation here, but using the re-
sults in Chapter 5 the corresponding solution can easily be worked out also in this
application.

In the second scenario, we consider a problem where the production capacity
can only take a small set of values, and we have a record of how many times each
of the different possible capacities have been used in a previous time interval of
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some known length. This case is appropriate when the production units are of a
static nature, but may have different quality at different times. For instance, this
may be the case if the production units are some form of transport vehicles, some
of which have a certain size, others having other sizes, and it is unknown which
vehicle will actually be used.

Prediction with known accuracy

Let us assume that the accuracy of the prediction of a particular curt is repre-
sented by a known variance, σ2

urt, and the prediction itself is the expected value of
the capacity, 〈curt〉. In the case of a nonnegative integer quantity such as the ef-
fective capacity, finding the maximum-entropy distribution for known expectation
and variance is analytically intractable. However, it is well-known (Shannon, 1948)
that the Gaussian distribution has the highest entropy for a given mean and variance
if the quantity of interest is defined over the entire real axis. Negative capacities are
not possible and we should therefore calculate the expected loss using a Gaussian
distribution truncated at 0. As that solution turns out to be somewhat analytically
inelegant we instead derive the expected loss using a Gaussian distribution defined
over the entire real axis as a simpler solution, valid when the expectation 〈curt〉 is
large in comparison to the standard deviation σurt (so that the probability mass for
negative values are negligible). We thus make the probability assignment

P (curt | I) =
1

√

2πσ2
urt

exp

{

− 1

2σ2
urt

(curt − 〈curt〉)2
}

. (3.33)

In order to determine

〈L1u〉 =

∫ ∞

−Su

P (xu | I)〈L1u,P (n|I)〉dxu (3.34)

we first need to find the probability for xu =
∑T

t=1

∑R
r=1 curtρurt conditioned on

I . Since xu is a sum of scaled independent Gaussian variables, xu is also Gaussian
according to

xu ∼ N (
R
∑

r=1

T
∑

t=1

ρurt〈curt〉,
R
∑

r=1

T
∑

t=1

ρ2
urtσ

2
urt) . (3.35)

Inserting (3.35) and 〈L1u,P (n|I)〉 from (3.18) into (3.34) we have (the integral
is equivalent to (A.4) in Appendix A with the solution (A.9)) the resulting expected
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loss contribution for xu + Su > 0,

〈L1u〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)

∑T
t

∑R
r ρurtγurt+Su

×





1

2
+

1

2
erf





Su + 〈xu〉 + δ2u log
(

〈nu〉
〈nu〉+1

)

√

2δ2u







 , (3.36)

where erf(x) = 2√
π

∫ x
0 e

−t2dt is the error function, and

γurt =
1

2
ρurtσ

2
urt log

( 〈nu〉
〈nu〉 + 1

)

+ 〈curt〉 , (3.37)

〈xu〉 =

R
∑

r=1

T
∑

t=1

ρurt〈curt〉 , (3.38)

δ2u =
R
∑

r=1

T
∑

t=1

σ2
urtρ

2
urt . (3.39)

Observe that as the variance σ2
urt goes to zero the erf(·) expression tends to 1

and we obtain the familiar solution (3.17) with known capacities. Note also that
the average loss (3.36) for uncertain production capacities modelled by a Gaussian
distribution is equal to that of an exactly known value c̃urt = γurt ≤ 〈curt〉 when
the argument to the erf(·) expression is large. Hence, our uncertainty concerning
curt has the effect that it decreases the value of the predicted capacity by an amount
which is proportional to σ2

urt. Peculiarly, the proportionality constant depends on
how much we utilize the resource and also to a lesser extent on the expected order
size for the widgets produced by production unit u.

We may expect that as the variance increases, approximating (3.36) by (3.17)
will gradually lead to worse performance. But just how high variance is needed for
it to be worthwhile using the more complex model (3.36)?

In the expression for γurt it is readily seen that the term 1
2ρurtσ

2
urt log( 〈nu〉

〈nu〉+1)

will be negligible compared to 〈curt〉 unless σ2
urt > 〈curt〉 or 〈nu〉 is very small,

say in the range 1 − 5. Thus, when the variance σ2
urt is small compared to the

expected value 〈curt〉 and 〈nu〉 is not too small we can safely ignore the effects of
the term 1

2ρurtσ
2
urt log( 〈nu〉

〈nu〉+1) and use the simpler scheduler minimizing (3.17).
The intuition for this is quite simple. When the variance is small compared to
the expectation, the Gaussian distribution will be approximately a Dirac delta in
comparison to the wider pdf:s P (nu | I) for the inflows (remember from Figure 3.1
that P (nu | I) grows wider with larger 〈nu〉 explaining the fact that the Gaussian
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pdf will be more Dirac-like in comparison to P (nu | I) when 〈nu〉 is large), and
the simpler solution from (3.17) will give equally valid scheduling decisions.

As for the calculation of 〈L2u〉, the part of the loss when Su + xu ≤ 0, we
obtain (following the procedure in Appendix A)

〈L2u〉 =

∫ −Su

−∞
P (xu | I)〈L2u,P (n|I)〉dxu

=
1

2

[

(〈nu〉 − Su − 〈xu〉)
(

1 − erf

(

Su + 〈xu〉
√

2δ2u

))]

+

√

δ2u
2π

exp

(

− 1

2δ2u
(Su + 〈xu〉)2

)

. (3.40)

Notice that when the uncertainties δu concerning xu becomes large, then de-
pending on the sign of Su + xu, 〈L2u〉 either vanishes (when Su + xu ≤ 0) or
becomes equal to 〈nu〉 −Su −〈xu〉, as the erf(·) expression becomes equal to 1 or
−1. This corresponds beautifully to the behavior we wish for, and even though the
desiderata of Chapter 2 should guarantee this type of results, the fact that simple
mathematical rules can yield such complex and at the same time intuitive behavior
is nevertheless remarkable.

In summary, the expected loss with predicted production capacities 〈curt〉 ,
known prediction accuracies σurt and known expected demands 〈nu〉 is

〈L〉 =
U
∑

u=1

(h(ρu) + vu〈L1u〉 + vu〈L2u〉) , (3.41)

with 〈L1u〉, 〈L2u〉 given by (3.36), (3.40), respectively. Note that when Su ≥ 0
(implying that xu + Su > 0 for sure) the expected loss simplifies to

〈L〉 =
U
∑

u=1

(h(ρu) + vu〈L1u〉) Su ≥ 0 . (3.42)

Small set of capacities with known number of past occurrences

Let us now turn to the problem of finding the probability distribution for the pro-
duction capacities curt of each production unit when the capacity in each time slot
can assume only a limited set of values, curt = cur,1...cur,Kur

.
The production manager monitors and keeps a record of the relative frequencies

with which the different cur,k are used. Assume that in its past history, the r:th
production unit could produce cur,k type-u widgets in mur,k time slots out of the
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total number of monitored time slots this unit was in production. The total number
Mur of monitored slots that unit r produced widgets of type u is

Mur =

Kur
∑

k=1

mur,k .

From these numbers, what can we say about the plausibility for achieving ca-
pacity cur,k in each of the time slots that constitute the coming period t = 1 . . . T ?
We shall assume that the frequencies with which different cur,k occur are stationary
over time, and take the expectation of the relative frequencies with which they oc-
cur as the probability for each cur,k in all time slots. Assuming that the underlying
physical mechanisms which determine the capacities do not change significantly
with time, it follows that the relative frequencies should remain constant as well.
The problem of translating relative frequencies observed in a finite interval into
predictive probabilities is given by Laplace’s rule of succession, derived and com-
mented on in Section 2.6.

We seek to evaluate
P (fur,1...fur,Kur

|mur,1...mur,Kur
I) =

=
P (mur,1...mur,Kur

|fur,1...fur,Kur
I)P (fur,1...fur,Kur

|I)
P (mur,1...mur,Kur

|I)
(3.43)

where fur,k is the relative frequency with which cur,k will be used, and I is all our
background information that is relevant to the problem.

In the following, we will require that the production capacities for all widget
types are known for the monitored Mur time slots. In some cases however, it may
be that the production capacities can only be recorded for the widget type that
was actually produced in a given time slot. The other u − 1 capacities for that
time slot would then be unknown. This is an instance of a missing data problem
(also known as censored, or gapped data in the vast literature on this matter). It
presents no new conceptual problems to us; we just apply our Chapter 2 rules and
average the result we obtain below over the pdf for the unknown records. In the
random-variable approach to probability theory, however, this is a problem which
causes major concerns. The most usual ad hoc approach is to use estimates of the
unknown data and treat them as if they were real. Obviously, the accuracy of the
resulting inferences are then overestimated. Although an interesting topic in itself,
we leave the missing data problem and treat only the case where we know the mur

for all widget types u.
The probability for having production capacity cur,k in an arbitrary time slot

during the next scheduled T slots is then given by

pcur,k

4
= P (cur,k|mur,1...mur,Kur

I) = 〈fur,k〉 =
mur,k + 1

Mur +Kur
. (3.44)
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As in the case with predicted capacities and known prediction accuracy (3.41),
the expected loss with a small set of possible capacity levels and known past fre-
quencies is made up of the known cost h(ρu) and the contributions vu〈L1u〉 and
vu〈L2u〉 for the cases xu + Su > 0 and xu + Su ≤ 0 respectively,

〈L〉 =
U
∑

u=1

(h(ρu) + vu〈L1u〉 + vu〈L2u〉) , (3.45)

but now with

〈L1u〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)Su
T
∏

t=1

R
∏

r=1

∑

k s.t. xu>−Su

pcur,k

( 〈nu〉
〈nu〉 + 1

)cur,kρurt

,

(3.46)
(where we rewrote the expected loss for known curt (3.18) according to the alge-
braic relation xa+b = xaxb and then averaged over pcur,k

) with pcur,k
given by

(3.44). Similarly,

〈L2u〉 =
T
∑

t=1

R
∑

r=1

∑

k s.t. xu≤−Su

pcur,k
(〈nu〉 − Su − ρurtcurt) . (3.47)

Computing the exact expected loss becomes difficult due to the summation over
k s.t. xu ≤ −Su and k s.t. xu > −Su. In cases where Su ≥ 0, which typically
would be the case, then of course xu + Su ≥ 0 and the expected loss reduces to

〈L〉 =
U
∑

u=1

(h(ρu) + vu〈L1u〉) (3.48)

where the summation is considerably simplified,

〈L1u〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)Su
T
∏

t=1

R
∏

r=1

Kur
∑

k=1

pcur,k

( 〈nu〉
〈nu〉 + 1

)cur,kρurt

Su > 0 .

(3.49)

3.3 Numerical Examples

In the following examples, we will concentrate on how uncertainty affects the re-
source allocation decisions. We assume (c.f. the loss expression (3.1)) that the
known cost is equal to zero, h(ρu) = 0, and vu = 1 for all widget types u. This
means that we concentrate only on the cost associated with unfulfilled orders and
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set the cost per unit equal to one for all types of widgets. We will also assume
in these examples that if an order is not met within the scheduled time horizon,
that order does not expire, but simply reduces the number of widgets in stock to a
negative number. In effect, there is no deadline for meeting the orders. In many
cases, orders may expire unless met within a given time frame. In these cases, that
deadline sets the natural scheduling horizon T . Note that the average loss expres-
sions are exactly the same in both cases, but we choose to focus on the case without
deadlines in the following simulations.

3.3.1 Comparison with a simple ad hoc approach

Assuming that we know exactly all production capacities but only the expected
order sizes, as in Section 3.2.1, what could we do without using probability theory
as extended logic?

Most people would presumably make an estimate of the loss

L̂ =
U
∑

u=1

(

vu · g(〈nu〉 − Su −
R
∑

r=1

T
∑

t=1

ρurtcurt) + h(ρu)

)

, (3.50)

using the expected demand 〈nu〉 in lieu of the true future demand. Now, this is a
violation of the sum rule which behooves us to take into account all possible future
demands by summing together all such loss contributions weighed by their respec-
tive probabilities. Using (3.50) is the same thing as dogmatically denying that any
other value can occur. We will now look at what the effects of not admitting the
full extent of our uncertainty may lead to in a specific scenario.

In the considered situation there are three widget types, U = 3, the average
order sizes are

〈n1〉 = 120 , 〈n2〉 = 130 , 〈n3〉 = 90 , (3.51)

and the optimization horizon is T = 3 weeks (we here drop the generic expression
’time slots’ which seems inappropriate). There are R = 2 production units, having
independently varying manufacturing capacities but the same average capacities.
The capacities are produced by a random-number generator mimicking a Rayleigh
frequency distribution1 with the average capacities

c1r = 150 , c2r = 138 , c3r = 81 , r = 1, 2.

Over a total time of 60 weeks, two factories are simulated; one (A) relying
on the expected loss expression (3.17), and another one (B) using instead the loss

1This choice is arbitrary and only amounts to simulating manufacturing capacities with some
variation. The Rayleigh frequency distribution does not reflect any typical real situation.
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estimator (3.50). Identical orders and manufacturing capacities are generated for
the two factories, and at the end of the 60-week period the number of widgets that
have been ordered but not yet produced (i.e. the number of outstanding orders
given that one order is always for exactly one widget) are reported. The order sizes
are generated from a Poisson2 random-number generator with the average sizes
given by (3.51).

Running the simulation and averaging the result over 50 simulations, the num-
ber of widgets left (or if negative, the number of remaining unfilled orders) in stock
after the 60 weeks are:

Factory A: S1 = 1 , S2 = −61 , S3 = −255

Factory B: S1 = −7 , S2 = −19 , S3 = −762 .

At the end of the 60-week period factory A has 255 + 61 = 316 unfilled orders
(and an extra widget of type 1 in stock), whereas factoryB has 788 unfilled orders,
approximately two and a half times as many as does factory A. The difference in
absolute numbers is large as well. Whatever the value of each widget, multiply that
number by 472 and you obtain the resulting loss that factory B makes because it
uses an uncertain estimate 〈nu〉 as were it indeed the true value instead of assigning
probabilities for different possible outcomes of nu.

3.3.2 The behavior of the expected loss as a function of widgets in
stock

In Figure 3.2 the expected loss (3.18) with known mean order size 〈n1〉 = 20 and
exactly known capacity is plotted for one widget, one production unit and T = 1 as
a function of x1 +S1 (negative and positive values, the former indicating outstand-
ing known orders). It is seen that the expected loss is equal to 〈n1〉 at x1 +S1 = 0,
and it then decays very slowly towards zero as the stock size increases. This re-
flects that even very large order sizes cannot be ruled out on the information at
hand. Only with more definitive knowledge or order sizes, for instance in the form
on known upper bounds, can we hope to achieve a faster decay to zero expected
loss.

3.3.3 The effects of increasing capacity uncertainty

When the production capacity cannot be predicted with absolute certainty, but we
instead can use a Gaussian probability distribution for the curt we would expect

2Again, this is an arbitrary choice. A better test would rely on real data from some manufacturing
plant. Regrettably, we do not have access to such records.
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Figure 3.2: The expected loss (3.18) with known average demand 〈n1〉 = 20 as a
function of the production capacity plus the widgets in stock x1 + S1.

that the resource allocation policy will be less inclined to use exclusive allocations
as the risk of obtaining zero capacity ought to be larger than when distributing the
workload over several production units. We should however note that when we
have a very large number of unfilled orders, so that xu + Su < 0 almost surely,
then the expected loss for widget u with prediction uncertainty becomes 〈Lu〉 =
〈nu〉 − 〈xu〉 − Su, which is independent of the prediction uncertainty σurt in the
Gaussian model. This may be somewhat surprising, as in this situation we might
think that a rational decision in the choice between two production units is to use
one with slightly lower expected capacity if that unit has much lower uncertainty
than the other, or at least that we should spread the risk and split the work between
both units.

To see why our resource allocation algorithm always picks only the production
unit with the largest expected capacity, irrespective of the prediction uncertainty,
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we have to understand our choice of criterion and our uncertainty model. First,
the loss criterion in the case when we know xu + Su < 0 says that everything we
produce will be sold. There is no risk of producing widgets that will not be sold.
Second, the Gaussian distribution is perfectly symmetrical, meaning that even if
there is a risk for lower capacity than expected, there is an equal chance of larger
capacity.

Let us think about a simpler, but similar, situation in which there is only one
widget type. Suppose that there are three possible capacities, c = 1, c = 3 or c = 5
with probability 0.25, 0.5 and 0.25, respectively for production unit 1, while unit
2 has capacity c = 3 with certainty. With our current loss function and S � 0 any
allocation will amount to the same expected loss.

How would you decide? If your choice disagrees with that of our algorithm,
the reason must be that you use a different loss criterion. One who prefers to use
unit 2 exclusively would in effect have a mental loss function which does not grow
as fast as our function L = c. The symmetry would be broken. For instance a
logarithmic function L = log(c) would give that use of unit 2 is slightly better than
using unit 1. Indeed, a logarithmic loss is often a very adequate description of a
’rational’ decision metric, since it does place equal weight to an increase of a factor
x as to a decrease of a factor x. Many times, a doubling has the same positive effect
as a halving of some quantity has a negative effect. Further, for someone with a
yearly income of 30000 Euros a salary increase of 30000 Euros would presumably
mean much more to him than to someone with a yearly income of 30000000 Euros.
With a linear loss function both persons would benefit just as much from the 30000
Euro increase. A more sensible loss function would be the logarithm of the new
salary relative to the old salary, giving a clear preference for the less well-situated
fellow. Daniel Bernoulli (1738) described in a very clear and well-written memoir
– which is still, almost 300 years later, well worth reading – how the logarithmic
loss function, or equivalently utility, mostly correspond to how people tend to rea-
son in practice. We will return to discussing logarithmic loss functions in Chapter
5 in connection with scheduling users in cellular communications systems. In the
current application, however, we think that the linear loss (for positive values) is
suitable in that factories typically are expected to maximize absolute incomes3.

But how does prediction uncertainty affect decisions for the case when xu +Su

is or may be larger than zero? In such situations, there is a risk that overproduction
occurs if the capacity becomes larger than expected. Thus, we should expect a
tendency to spread the production over several widget types when capacity uncer-
tainty increases. Figure 3.3 shows the expected loss (3.41) for different prediction

3But the ideas of Daniel Bernoulli might still make better sense also in companies. We leave this
as an issue for further contemplation.
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uncertainties in a scenario with one production unit, R = 1, two widget types
U = 2 and T = 1, as a function of ρ1 (note that ρ2 = 1 − ρ1). The expected
demand, the number of widgets in stock of each type, and the predicted capacities
are respectively

〈n1〉 = 20 , 〈n2〉 = 10 ,

S1 = 10 , S2 = 10 ,

〈c1〉 = 10 , 〈c2〉 = 10.

As expected, when uncertainty increases the optimum resource allocation becomes
less inclined to concentrate all resources on producing only one type of widget.

3.4 Extensions and Modifications

We have used a problem formulation (3.1) where the demand adds to the loss func-
tion, and the known supply Su and the production capacity subtracts from the loss.
A mathematically very similar problem is to instead consider an additive demand
consisting of an unknown component nu, and a known component Su where there
is no previous ’supply’ which subtracts from the loss, but only a subtractive future
component curt. This would be the case in flow control problems, where the allo-
cation decisions consist of turning on or off (partly or fully) ’knobs’ which control
the magnitude curt of a flow. The demand nu is then to be thought of as the num-
ber of ’packets’ that are to be sent to some destination u. These packets, if left in
the outgoing buffers, add to the loss just as unfilled orders do in the manufacturing
plant. The only difference is that there is no ’stock’ of capacity to build up in ad-
vance. The capacities cannot be saved for later, but must be used or wasted. The
formulation is then

L =
U
∑

u=1

vug(nu + Su −
R
∑

r=1

T
∑

t=1

ρurtcurt) + h(ρu) , (3.53)

where nu is the number of incoming packets, Su is the number of packets already
in stock, and curt is the capacity in terms of the number of packets that a ’chan-
nel’ between the allocation central and the destination u can send at time t. This
formulation is clearly analogous to the cases we have covered in this chapter, but
applies in partly different problems where capacities cannot be stored for later use.
This formulation will be our starting point in scheduling users in mobile commu-
nications, Chapter 5.

In the loss formulation (3.1), there are two components that we have not com-
mented much on. The role of vu is simply to associate a cost with different widget
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Figure 3.3: The expected loss 〈L〉 in (3.41) for different production uncertainties
σu as a function of the allocation ρ1 = 1−ρ2. When the uncertainty increases, the
optimum allocation is to spread out production due to the risk of overproduction.
Note however that there is an additional effect which comes into play when the un-
certainty σu becomes large; the Gaussian distribution’s tail is then non-negligible
for curt < 0 which means that our approximation of the truncated distribution by
the entire distribution in (3.33) looses accuracy.

types. A further refinement would be to have a cost factor vur for each production
unit, thus setting

xu =
∑

r

∑

t

vurρurtcurt . (3.54)

This would reflect that some production units are more costly to use than others.
The additive known cost h(ρu) can be used to express costs for transferring

production from one unit to another or to put other costs on the detailed structure
of the allocation matrix ρu. Typically, changes in production patterns may induce
certain costs, and thus any ρu that differs from that of the previous scheduling
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period may be penalized.
None of these two parameters however allow us to separate customers and

make priorities among them. In order to do that we could try to generalize the
model further, but that does not seem to be a straightforward route to take. Instead,
we could set hard constraints on the resource allocation matrix if we know in ad-
vance how many orders are placed for different widgets by different customers. We
can also prioritize some customers by our choice of how we distribute the produced
widgets.

3.5 Conclusions

In this chapter we extended the ’widget problem’ described by Jaynes (1963b)
to encompass a slightly more general problem scenario and discussed how uncer-
tainty regarding supply and demand affects optimum resource allocation decisions.
We saw that acknowledging uncertainty generally results in ’hedging the bets’ and
spreading production over several production units if the loss function or the prob-
ability distribution is asymmetric. If we neglect uncertainty and treat estimates as
if they were true values substantial economic loss can result.

The problem we treated in this chapter is a basic building block for the remain-
ing problems that we consider in this thesis. The three probability distributions
that we found useful in solving this problem – the exponential distribution, the
Gaussian, and the general form of Laplace’s rule of succession – will come to play
a central part in the chapters to come. We stress that their importance and their
frequent occurrence in many practical problems lie not in any imagined frequency
correspondences with real phenomena but rather that they represent certain basic
states of knowledge. They are uniquely determined as the valid models for exactly
those states of knowledge. To use any other distribution in such a situation would
require additional information. In many cases, such extra information must be
rather precise and limit the entropy of the reasoner significantly for it to be worth-
while to use that more complex model. This should be emphasized and is a topic
that requires more research – how large must the entropy difference between two
probability distributions be for it to have a significant impact on the resulting infer-
ences? A general answer may be difficult to give, as there is a clear dependence on
the specific loss function. We however suspect that for some rather general class
of loss functions, say differentiable symmetric functions, a precise answer may be
within reach. With such a result, we could determine what type of information to
look for in order to get the highest performance improvement, and how to make a
proper balance between computational costs and the quality of the corresponding
decision making. We leave these questions for future research.
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Appendix 3.A Derivation of Expected Loss given Expected
Order Sizes

In Section 3.2.1, in the derivation of the expected loss assuming knowledge of ex-
pected order sizes, we need to evaluate the summation over nu in (3.16). Depend-
ing on the sign of xu + Su we obtain different solutions4. First assume xu + Su

is positive. Then, using the probability assignment (3.14) for the order sizes and
neglecting the additive term hu(ρu) (which is known and independent of the prob-
ability assignments), we obtain:

4Notice that in the case of known capacities the term xu + Su is always known.
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U
∑

u=1

∞
∑

nu=0

P (nu | I)g(nu − Su − xu) =

U
∑

u=1

(

∞
∑

nu=0

P (nu | I)(nu − Su − xu)

−
xu+Su
∑

nu=0

P (nu | I)(nu − Su − xu)
)

=

U
∑

u=1

(

∞
∑

nu=0

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(nu − Su − xu)

−
xu+Su
∑

nu=0

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(nu − Su − xu)
)

=
U
∑

u=1

(

∞
∑

nu=0

1

〈nu〉 + 1

[( 〈nu〉
〈nu〉 + 1

)nu

nu (3.55)

−
( 〈nu〉
〈nu〉 + 1

)nu

(Su + xu)
]

(3.56)

−
xu+Su
∑

nu=0

1

〈nu〉 + 1

[( 〈nu〉
〈nu〉 + 1

)nu

nu (3.57)

−
( 〈nu〉
〈nu〉 + 1

)nu

(Su + xu)
]

(3.58)

=

U
∑

u=1

[

〈nu〉 − Su − xu (3.59)

+(Su + xu)
( 〈nu〉
〈nu〉 + 1

)xu+Su+1

(3.60)

−〈nu〉
(

1 −
( 〈nu〉
〈nu〉 + 1

)xu+Su
)

(3.61)

+(Su + xu)
(

1 −
( 〈nu〉
〈nu〉 + 1

)xu+Su+1)]

(3.62)

=

U
∑

u=1

〈nu〉
( 〈nu〉
〈nu〉 + 1

)xu+Su

. (3.63)

The infinite progression in lines (3.55) and (3.56) are standard sums which can be
found in (Gradshteyn and Ryzhik, 2000) (eqns. 0.231.2 and 0.231.1). They corre-
spond to the solution (3.59). The finite sum in lines (3.57) and (3.58) can also be
found in (Gradshteyn and Ryzhik, 2000) (eqns. 0.113 and 0.112). The arithmetico-
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geometric progression (3.57) corresponds to the solution spanning lines (3.60) and
(3.61), while the geometric series (3.58) corresponds to the solution (3.62).

Now, if xu + Su is zero or negative5 the sum on line (3.55) vanishes. We then
obtain:

U
∑

u=1

∞
∑

nu=0

P (nu | I)g(nu − Su − xu) =

U
∑

u=1

〈nu〉 − Su − xu . (3.64)

In summary, the solution is to minimize (3.63) if xu + Su > 0, and (3.64)
otherwise.

Appendix 3.B Derivation of Expected Loss given Past Or-
ders

We here determine the expected loss when marginalizing the maximum-entropy
distribution (3.14) over its expectation µ = 〈nu〉 based on a short data record
{y} = {y1 . . . yN} of past order sizes.

Since all that is known about the expected order size is that it is non-negative,
a reasonable prior P (µ | I) for the expected order size is Jeffrey’s prior:

P (µ | I) ∝ 1

µ
. (3.65)

Note that a uniform prior would be inappropriate since for any given point on
the µ axis, the ratio of the probability for obtaining a larger value and the probabil-
ity for obtaining a smaller value would always be infinite. A motivation for using
Jeffrey’s prior lies in the observation that it gives equal probability to the parameter
being larger than any given value, as to it being smaller. Note that this is a different
motivation than the one we used in determining that Jeffrey’s prior is uninformative
for the case of scale parameters, c.f. Section 2.7.4.

Let Y = y1 + . . .+yN be the sum of all past order sizes for a particular widget.

5xu is of course non-negative, but Su may be negative, corresponding to a number of outstanding
orders remaining from previous periods or new known orders.
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Using Jeffrey’s prior (3.65) and then inserting (3.20) into (3.19) we obtain:

P (n | {y}, I) =

∫ ∞

0
P (n | µ, I)P ({y} | µ, I)P (µ | I)dµ

∝
∫ ∞

0

(

1

µ+ 1

)(

µ

µ+ 1

)n( 1

µ+ 1

)(

µ

µ+ 1

)y1

. . .

. . .

(

1

µ+ 1

)(

µ

µ+ 1

)yN

µ−1dµ

=

∫ ∞

0

(

1

µ+ 1

)N+1+n+Y

µn+Y −1dµ (3.66)

=
N !(n+ Y − 1)!

(N + n+ Y )!
, (3.67)

where the solution to the last integral is given by equation 3.194.3 in Gradshteyn
and Ryzhik (2000). The normalizing constant (to make the probability sum to
unity) is found by summing (3.67) over all n. In summary, we obtain

P (n | {y}, I) = N
(n+ Y − 1)!(N + Y − 1)!

(Y − 1)!(N + n+ Y )!
= N

∏N−1
i=0 (Y + i)

∏N
i=0(Y + n+ i)

. (3.68)

Interestingly, the expected value turns out not to be the arithmetic mean, but

〈n〉 =
∞
∑

n=0

nP (n | {y}, I) =
Y

N − 1
, (3.69)

which reflects the fact that the interval is open to the right side while bounded
from the left. This means that the best estimate as to the next value of an inde-
pendent non-negative sequence is slightly larger than the arithmetic mean. This
is an estimate that unguided intuition would not conjecture. After giving it some
thought however, we find that it is a very reasonable estimate, indeed more plau-
sible than the arithmetic mean. The reason, as mentioned, being that there are
always infinitely many more larger values than there are smaller ones compared to
any single number. It can be noted that the use of a uniform prior would make the
estimate even larger6 as it gives much higher initial probability to a large value. Of
course, in the limit as N → ∞, both estimates converge to the arithmetic mean.

Now, turning to our actual problem, we use our probability distribution (3.21)
conditioned only on knowledge of past order sizes (and I of course) and determine
the expected loss (3.6). Writing the expected loss 〈L〉 as in (3.17):

U
∑

u=1

h(ρu) + vu〈Lu〉 , (3.70)

6A straightforward calculation gives the result 〈n〉 = Y

N−2
for a uniform prior.
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we have for xu + Su > 0

〈Lu〉 =
∞
∑

nu=0

N
(nu + Y − 1)!(N + Y − 1)!

(Y − 1)!(N + nu + Y )!
(nu − Su − xu)

=
Y

N − 1
− Su − xu . (3.71)

For xu + Su ≤ 0 we have

〈Lu〉 =

xu+Su
∑

nu=0

N
(nu + Y − 1)!(N + Y − 1)!

(Y − 1)!(N + nu + Y )!
(nu − Su − xu)

=
Y

N − 1
− xu − Su +

[

(Y + xu + Su + 1 +N)(Y + xu + Su)!

× (Y +N − 1)!((N + 1)Su − Y − (Su + xu + 1)N)

]

/ [

(N − 1)(Y − 1)!(Y + xu + Su +N + 1)!

]

=
Y

N − 1
− Su − xu − (Y + xu + Su)!(Y +N − 1)!(xu + Su + Y +N)

(N − 1)(Y − 1)!(Y + xu + Su +N)!

=
Y

N − 1
− Su − xu − (Y + xu + Su)!(Y +N − 1)!

(N − 1)(Y − 1)!(Y + xu + Su +N − 1)!
. (3.72)

Taking the difference between (3.71) and (3.72) we obtain

(Y + xu + Su)!(Y +N − 1)!

(N − 1)(Y − 1)!(Y + xu + Su +N − 1)!

=
1

N − 1

∏N−1
i=0 (Y + i)

∏N−1
i=1 (Y + xu + Su + i)

=
Y

N − 1

N−1
∏

i=1

Y + i

xu + Su + Y + i

=
Y

N − 1

N−1
∏

i=1

1

1 + xu+Su

Y +i

, (3.73)

which yields the sum solution

〈Lu〉 =
∞
∑

nu=0

P (nu | {yu}, I) (g(nu − Su − xu))

=

{

Y
N−1

∏N−1
i=1

1
1+ xu+Su

Y +i

, xu + Su > 0

Y
N−1 − Su − xu , xu + Su ≤ 0 .

(3.74)
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The result (3.74) for xu +Su > 0 is an elegant but non-trivial weighting of the
expected order size µ = Y

N−1 , the widgets in stock, Su, and the number of widgets
to be produced, xu. The actual calculation of (3.74) for xu + Su > 0 is however a
bit cumbersome when Nu becomes large. The following result establishes that an
excellent approximation of (3.74) is obtained by using (3.18) with 〈nu〉 = Y

N−1 .

Result 3.1 Let Y and xu + Su be positive real numbers, and N > 2 a positive
integer. Then,

Y

N − 1

N−1
∏

i=1

1

1 + xu+Su

Y +i

≥ µ

(

µ

µ+ 1

)xu+Su

. (3.75)

where µ = Y
N−1 . The inequality tends to equality as N → ∞.

Proof: Recognizing that the right-hand side of (3.75) can be rewritten as

µ

(

µ

µ+ 1

)xu+Su

=
Y

N − 1

(

1

1 + N−1
Y

)xu+Su

(3.76)

the inequality (3.75) is simplified, and we rewrite the relation in a more compact
form,

M
∏

i=1

(

1 +
α

y + i

)

≤
(

1 +
M

y

)α

, (3.77)

with α > 0, y > 0 and M > 0.
Taking the logarithm of the left side we obtain

M
∑

i=1

log

(

1 +
α

y + i

)

≤
M
∑

i=1

α

y + i
(3.78)

with equality for α
y+i = 0. Inserting this into (3.77) we further find that

exp

(

α
M
∑

i=1

1

y + i

)

≤ exp [α (ln(y +M) − ln(y + 1))] (3.79)

=

(

y +M

y + 1

)α

=

(

1 +M/y

1 + 1/y

)α

≤ (1 +M/y)
α (3.80)

where the inequality in (3.79) tends to equality as M grows to infinity. This con-
cludes the proof, and it is seen that the approximation (3.75) gains in accuracy
when the number of observations, N , is large and the sum of the past order sizes,
Y , is large. It has been verified by simulation that the approximation is excellent
even for small values of N and Y .
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Figure 3.4: The exact marginal probability distribution (3.21) for n with knowl-
edge of past data, and the approximation (3.14) with 〈nu〉 = Y

N−1 .

In Figure 3.4, we plot the exact probability distribution (3.21) for future order
sizes given past data and, in comparison, the approximate distribution using (3.14)
with 〈nu〉 = Y

N−1 for different values of N . We see that the approximation is
indeed very near the exact curve.

Appendix 3.C Derivation of Expected Loss for Partitioned
Intervals

When the nu axis has been partitioned into K intervals, for example logarithmi-
cally spaced such as in Section 3.2.2, the expected loss contribution given that the
order size is within bin k (ranging over ak ≤ nu ≤ bk − 1) becomes

〈Lu | nu ∈ k〉 =

bk−1
∑

nu=ak

1

bk − ak
g(nu − Su − xu) , k = 1 . . .K − 1. (3.81)
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Recalling that g(nu − Su − xu) = 0 if nu ≤ Su + xu and g(nu − Su − xu) =
nu − Su − xu otherwise, we rewrite the expected loss as

〈Lu | nu ∈ k〉 =

βk−1
∑

nu=αk

nu − Su − xu

bk − ak
(3.82)

where
αk

4
= max(Su + xu, ak) (3.83)

and
βk

4
= max(Su + xu + 1, bk) . (3.84)

The first part of the sum in (3.82) is

1

bk − ak

βk−1
∑

nu=αk

nu

=
1

2

β2
k − βk − (α2

k − αk)

bk − ak
. (3.85)

To see this, note that

βk−1
∑

nu=αk

nu =

βk−1
∑

nu=0

nu −
αk−1
∑

nu=0

nu (3.86)

and that a sum of the type
∑x−1

nu=0 nu describes an area of a large triangle with sides
of length x− 1, i.e. having area 1

2(x− 1)2, plus the area of x− 1 small triangles,
each of area 1/2 (see Figure 3.5). The total area described by such an area is thus

1

2
(x− 1)2 +

1

2
(x− 1) =

1

2
(x2 − x) . (3.87)

The second part of the sum in (3.82) is

1

bk − ak

βk−1
∑

nu=αk

(−Su − xu)

= −βk − αk

bk − ak
(Su + xu) . (3.88)

Combining these results we obtain

〈Lu | nu ∈ k〉 =
1

2

β2
k − βk − (α2

k − αk)

bk − ak
− βk − αk

bk − ak
(Su + xu) . (3.89)



Chapter 3. Controlling Production Resources to Meet Customer Demands 93

β
k
−1

β
k
−1 β

k
−1 small triangles

of area 1/2        

Large triangle of 
area 1/2 (β

k
−1)2  

Figure 3.5: The sum
∑βk−1

nu=0 nu describes the area under the curve, the sum of a
large triangle and a number of smaller triangles. Here, βk − 1 = 4.

Appendix 3.D Derivation of Expected Loss given Uncer-
tain Production Capacities

We here derive a general expression for the expected loss when production capac-
ities and order sizes are uncertain.

Recall that the expected loss (3.17) was either one of two possibilities, de-
pending on the sign of xu + Su. This did not present any problem since xu =
∑T

t=1

∑R
r=1 curtρurt and Su were known. Here, however, curt is uncertain, and

consequently so is xu + Su. We must therefore also consider the probability qu

for the event xu + Su > 0. The expected loss contribution for widget type u is
thus the expectation of L over the joint probability P (nuxu | {xu + Su > 0}I)
with probability qu, and with probability 1 − qu it is the expectation of L over
P (nuxu | {xu + Su ≤ 0}I). Assuming that knowledge of nu does not give any
information about curt the joint probabilities factor into two independent factors

P (nuxu | {xu + Su > 0}I) = P (nu | {xu + Su > 0}I)
× P (xu | {xu + Su > 0}I) (3.90)
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(and likewise for the case when xu + Su ≤ 0). This means that we can first
determine the expectation of the loss based on the uncertainty concerning the orders
nu (this was derived in the previous section with the result (3.18)) and then average
this expression over the uncertainty concerning xu to arrive at the expected loss
expression for the joint uncertainty about nu and xu.

Thus, according to the sum and product rules of probability theory, the ex-
pected loss contribution for type u widgets (c.f. (3.17)) becomes

〈Lu〉 = qu

∫

P (xu | {xu + Su > 0}I)〈L1u,P (n|I)〉dxu

+ (1 − qu)

∫

P (xu | {xu + Su ≤ 0}I)〈L2u,P (n|I)〉dxu (3.91)

where qu = P (xu + Su > 0 | I), and 〈L1u,P (n|I)〉 and 〈L2u,P (n|I)〉 denotes the
expected per-widget-type loss from Section 3.2.1 for xu+Su > 0 and xu+Su ≤ 0
respectively. This new notation is used to make a distinction between the expected
loss with respect to P (nu | I) in (3.17) and the one currently under investigation.
〈L1u〉 and 〈L2u〉 will now be used to describe the latter.

Now, in order to determine (3.91) we must first compute the probability distri-
bution P (xu | {xu + Su > 0}I). According to the product rule (2.3),

P (xu | {xu + Su > 0}I) =
P (xu{xu + Su > 0} | I)
P ({xu + Su > 0} | I) , (3.92)

where
P ({xu + Su > 0} | I) =

∫ ∞

−Su

P (xu | I)dxu (3.93)

is a normalizing constant and

P (xu{xu + Su > 0} | I) = P (xu | I) xu > −Su . (3.94)

Thus, conditioning on {xu+Su > 0} ⇔ {xu > −Su} simply truncates P (xu | I),
putting a limit on the range of values that xu can take, and yields

P (xu | {xu + Su > 0}I) =
P (xu | I)

∫∞
−Su

P (xu | I)dxu
xu > −Su . (3.95)

Note that the normalizing constant in this expression is equal to qu and conse-
quently the expected loss contribution for xu + Su > 0 becomes

〈L1u〉 = qu

∫

P (xu | {xu + Su > 0}I)〈L1u,P (n|I)〉dxu

=

∫ ∞

−Su

P (xu | I)〈L1u,P (n|I)〉dxu . (3.96)
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The case for xu + Su ≤ 0 is entirely analogous.
We thus find that (3.91) becomes

〈Lu〉 =

∫ ∞

−Su

P (xu | I)〈L1u,P (n|I)〉dxu

+

∫ −Su

−∞
P (xu | I)〈L2u,P (n|I)〉dxu . (3.97)
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Chapter 4
Bidding under Uncertainty in a
Certain Type of Auctions

WE here consider a bidding situation in which customers compete for a re-
source which can only be used by one customer at a time. To each competi-

tor the resource carries a certain utility, the carrying capacity of the resource, which
varies over time. For instance, the carrying capacity may in a mobile telecommu-
nications network be the time-varying data rate over the communications channel.

At an auction each competitor submits one sealed bid, and after all bids have
been collected a winner is announced who gets access to the resource for a certain
time period. For the next period, a new auction is carried out again under similar
circumstances. A customer may come and go at any time, but in the presently
considered applications a customer normally stays for a large number of auctions.

If the winning bid was q and the carrying capacity of the winning customer was
c, the winning customer pays qc monetary units, i.e. q is the price per unit utility.

The auctioneer’s income for each auction is thus determined by qc, and the
winning customer is hence the one with maximum price-capacity product qc.

Our problem set-up is the following:

• Different bidders u may have different carrying capacities cu

• Each bidder u reports its own carrying capacity cu to the auctioneer along
with its bid qu. Both values are hidden for other customers.

• Although all information reported to the auctioneer is sealed, a bidder ob-
tains some implicit information regarding other bidders’ carrying capacities
and bids from how many times the bidder wins the auction. The bidder does

97
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however not know who wins an auction that is not won by the bidder, nor, in
that case, the winning price-capacity product.

• The auctioneer knows all bidders’ carrying capacities and bids.

The question we seek to answer is then: What is the best bid that a customer
can make? Clearly, the answer depends on the customer’s need for carrying capac-
ity, and – having established a loss function describing this – any information at
hand that can assist in reaching a decision. This type of problem was considered by
Friedman (1956), and a similar strategy as the one we will use here was suggested.
Friedman considers the objective of bidding for maximum expected profit in a sce-
nario where a government agency invites a large number of companies in the same
industry to bid for contracts. Friedman notes that ’the difficulty in determining the
expected profit lies in determining ... the probability of winning as a function of
the amount bid’. He suggests the use of histograms of bids from old auctions, as-
suming that all previous bids are made public after an auction. In our scenario, we
do not assume knowledge of all previous bids. In many auctions only the winning
bids are announced, and then Friedman’s method would fail to determine a prob-
ability distribution for the other customers’ bids. From our present understanding
of probability theory as logic, however, the solution is straightforward. As always,
a probability distribution should not reflect old frequencies but carry all informa-
tion, and lack thereof, that we actually have concerning the unknown event. In our
specific scenario, the information we assume to be in possession of will lead to a
maximum entropy problem. In general, additional information should be processed
through Bayes rule.

Before turning to the actual formalization of the problem, let us first examine a
model scenario in mobile communications.

EXAMPLE 4.1 Bidding for quality-of-service

In a cellular mobile telecommunications network customers compete for access
to the communications channel. In traditional networks, the users are all treated
equally with respect to the number of times a user gets access. This however
implies suboptimal resource utilization, and consequently if users pay a certain
amount per transmitted bit, the network operator fails to maximize its revenues.
Instead, the operator should transmit to the user with maximum capacity if all
users pay the same amount per unit throughput, or, if users pay different prices, to
the user with maximum price-capacity product. This corresponds to maximizing
the revenues over a short time horizon.

In Section 5.6 we discuss such a scenario in which users are allowed to dy-
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namically change the prices that they are willing to pay for transmission. In order
to realize such a system, each user should report to the network its transmission
capacity (the number of bits that can be transmitted over the channel at some
desired bit-error or packet-error rate) for the coming time slot and the price that
the user will pay per unit throughput.

The user can then bid according to its needs for transmission capacity. The
price per unit throughput thus becomes lower for a user near the base station, and
higher for a user with worse channel conditions. This may be construed as unfair,
but consider then a user with severe channel conditions who gets access without
having to compensate for that by paying a higher price. In an overloaded net-
work, prioritizing a user with a bad average channel results in rejecting perhaps
two or three users having better channels.

Thus, in order to be fair to one user with a bad channel, we find ourselves be-
ing unfair to several other users! At the same time, we are also loosing revenues.
The same resources could have been awarded to these other users and thereby
more than one paying customer could have been given satisfactory service.

We argue that the least unfair policy is the one where the winning user is the
one that has the largest price-capacity product, but note that fairness is a some-
what elusive concept, which has not yet been given any satisfactory mathematical
definition1.

4.1 The Basic Reasoning of Bidding under Uncertainty

Consider a customer, Mr A, who desires access to a certain resource, the level of
desire being characterized by a utility or a loss function L(d, θ). The loss function
determines the loss suffered by the customer upon making decision d should θ turn
out to be the true state of nature. In our problem, d is the bid qA that Mr A makes,
and θ is the throughput that he is awarded. Here, θ is either 0 or cA, Mr A’s carrying
capacity associated with the resource.

Mr A should make a bid qA so that the chance of winning the auction is such
that his loss is minimized. Now, assume that he has no information concerning the

1There are a number of more or less ad hoc mathematical definitions of fairness, such as min-max
fairness and proportional fairness (see e.g. Boudec, 2003), but there is no single one that is generally
agreed upon. The entropy (relative to a ’fair distribution’ describing the relative requirements of
different users) of the instantaneous resource distribution or its average could be a reasonable mea-
sure of fairness, but it does not seem to help in forming constructive criteria for resource allocation
decisions.



100 4.2. The Bidding Policy

outcomes or winning bids of previous auctions, nor knowledge of other customers’
utility functions or channel conditions. Clearly, at this stage Mr A is at a loss, and
has too little information to be able to give any well-grounded bid. Depending on
his loss function he would either bid very little, or make a very generous offer. The
former case would correspond to Mr A being a man concerned about his expenses,
whereas in the latter case Mr A’s loss function would reflect a less constrained bud-
get. In any case, the information at hand is insufficient for Mr A to feel comfortable
that he has made a sound decision.

In terms of probability theory, Mr A’s probability distribution for θ has too high
entropy to confidently rule out any specific course of action. Mr A would be happy
for any information that could reduce this entropy and single out a specific bid.

From the auctioneer’s viewpoint, having uninformed customers is of no advan-
tage. The customers have no way of obtaining a given service level with any degree
of confidence, since there is no information to guide their decisions. Consequently,
the auctioneer would soon be out of business.

Consider a more reasonable auctioneer, who after every nth auction announces
the average winning price-capacity product for that period, µw = 〈qwcw〉, and
some measure of the variability of the same quantity, say the variance σ2

w =
〈(qwcw − 〈qwcw〉)2〉. With this information, Mr A, knowing his own carrying ca-
pacity cA, can compare his price-capacity product qAcA to the average winning one
and, accounting for the variance, make a bid with some confidence of minimizing
his loss.

4.2 The Bidding Policy

It is clear that Mr A should make the decision which minimizes his expected loss,

〈L(qA, cA)〉 =

∫

p(cA|I)L(qA, cA)dcA (4.1)

where p(cA|I) represents the probability that Mr A receives the resource and thereby
obtains cA units of carrying capacity, conditioned on all information I available to
Mr A in making the bid qA.

The bid will depend just as much on the choice of loss function as on the prior
information. The onus is therefore on Mr A to formulate a loss function which
matches his values. Of course, different customers have different needs for the re-
source being put up for sale, and thus different users will in general reach different
conclusions as to the best bid even though their information is equivalent. There is
nothing irrational in this; on the contrary it reflects a great deal of rationality as it
portrays the differing requirements of each user.
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In the following section we present a number of loss functions reflecting dif-
ferent optimization objectives. We then derive the probability distribution p(cA|I)
for the case where the auctioneer after each nth auction announces the average
winning price-capacity product and its variance over the preceding n auctions.

4.2.1 Typical loss functions

Different customers may have different service demands. We here propose a num-
ber of loss functions that are intended to reflect typical requirements. The loss
functions would moreover often be supplemented by a constraint on the maximum
allowed bid.

Constant demand

A customer u wishing to obtain a certain amount φu of goods over the coming N
time slots should use

L(qu, xu(qu)) = |xu(qu) − φu| , (4.2)

where xu(qu) is the actual amount of goods that the user will obtain for qu mone-
tary units.

Price-performance ratio

A customer umay wish to increase his bid if that bid would result in a significantly
increased amount of delivered goods. In some sense, the price-performance ratio
should be optimized. A possible formalization is the following: A price increase
of 1 unit is acceptable given that the amount of goods obtained then increases by
at least a factor a. Then the following loss function should be used.

L(qu, xu(qu)) =
aqu

max(xu(qu), b)
, (4.3)

where xu(qu) is the actual amount of goods that the customer will obtain for qu

monetary units. If xu(qu) > b then an increased bid, qu → qu + 1 will result in a
lower loss if and only if xu(qu + 1) > axu(qu), because then we obtain

L(qu + 1, xu(qu + 1)) =
aqu+1

xu(qu + 1)
<

aqn

xu(qu)
= L(qu, xu(qu)) . (4.4)

The formulation (4.3) also includes a minimum acceptable delivery size; if the
user is to pay more than 0 monetary units per bit then the throughput must satisfy
xu(qu)/aqu > b.
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For example, if the customer requires at least an amount of 50 units per time
slot, and if a price raise of 1 unit is acceptable only if the obtained goods then
double, the loss function is 2qu/max(xu(qu), 50).

4.2.2 The basic probability distribution

The following distribution is fundamental for the bidding problem, because it shows
in general how to calculate the probability for obtaining a given service level. The
procedure follows the same pattern for other states of knowledge as well.

Let the probability that a certain customer uwill have the largest price-capacity
product of all customers be denoted by P (u | I). Then P (u | I) is equal to
the probability that the customer v with the largest price-capacity product of all
other customers has a lower price-capacity product than customer u. Letting y ≡
qvcv denote the largest price-capacity product among all customers except u, we
can thus find the probability that u wins by marginalization: first determine the
probability that y < cuqu assuming knowledge of cu, i.e.

∫ cuqu

0 P (y | cuI)dy,
then multiply this with the probability distribution for cu given I to obtain the joint
probability for cu and y < cuqu, and integrate the result over all possible outcomes
of cu. In summary, we have

P (u | I) =

∫

P (cu | I)
∫ cuqu

0
P (y | cuI)dydcu . (4.5)

In order to determine this probability distribution we must first find the proba-
bility distribution for cu and that for y. We will consider a general case in which
the carrying capacities cu may be unknown in advance, as that is often the case in
mobile communications. If the capacity is already known the solution simplifies
straightforwardly.

Assume that there are K different possible capacities ck. We suppose further
that each customer stores the number of time slots that each capacity ck could be
used during a recent time window. If nothing else than these numbers are known
the probability that the customer’s carrying capacity will be ck is then the expected
frequency with which that capacity will be used. According to Laplace’s rule of
succession (see Section 2.6), the probability for having the carrying capacity ck is

P (ck | I) =
nk + 1

N +K
, (4.6)

where nk is the number of time slots over the last N records that capacity ck (but
not higher) could be attained.

Now, the distribution P (y | I) of the other customers’ best price-capacity prod-
uct depends heavily on the information I that customer u possesses. Several alter-
natives are possible. For instance, if the auctioneer does not give any information
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about the most recent winning price-capacity products, then each customer has
very vague information about the other customers. Based only on the observed
number of time slots in which the customer has received goods, a resulting infer-
ence would be very uncertain.

A more reasonable approach would be for the auctioneer to periodically broad-
cast the expected winning price-capacity product for the coming period along with
a measure of the prediction uncertainty. The simplest such scheme would consist
of recording the average of the most recent winning price-capacity products and
its variance. More advanced schemes include determining a model for the time
evolution of price-capacity products. Here, we will assume that an expectation is
available along with a variance for the prediction. These two quantities are broad-
cast to all users at regular intervals.

With no other knowledge than the mean and the variance of a variable, the
least biased probability distribution according to the maximum entropy principle is
Gaussian (see Section 2.7.1). Thus, we shall take

P (y | I) =
1√

2πσy

exp

{

− 1

2σ2
y

(y − µy)
2

}

, (4.7)

with µy denoting the expectation of y, and σ2
y the variance of the distribution. Here,

by not truncating the distribution at zero we have assumed that the variance of the
distribution is not too large compared to the mean, so that the tail of the distribution
below y = 0 is negligible. It should also be pointed out that we are told the mean
and the variance of all winning price-capacity products, which includes those times
when customer u won. However, we should actually determine a distribution for
the winning price-capacity products of all customers except u. Below, we discuss
how to adjust the mean and the variance to subtract out the contributions from cus-
tomer u. However, it is not clear in general that this distribution, having excluded
one of the components, should also be Gaussian. We have good reason to use a
Gaussian distribution if there are many bidders with independently and symmet-
rically varying price-capacity products around some mean. Now, the bids are not
logically independent since all customers base their decisions on partly the same
information. However, the capacity variations will often, for instance in the mo-
bile communications scenario described in Example 4.1, be independent among
customers, which to some extent will have a ’randomizing’ effect on the price-
capacity products. Nonetheless, we may argue that a correlated distribution might
be a better model. We will leave this alternative as a topic for future research, and
here continue to work with the Gaussian model.

Inserting (4.6) and (4.7) into (4.5) (replacing the integral over cu with a sum,
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reflecting that cu is discrete) we obtain

P (u | I) =
K
∑

k=1

nk + 1

N +K

×
∫ quck

−∞

1√
2πσy

exp

{

− 1

2σ2
y

(y − µy)
2

}

dy

=
K
∑

k=1

nk + 1

N +K
× 1

2
erfc

(

µy − quck√
2σy

)

, (4.8)

where erfc(x) = 1 − 2√
π

∫ x
0 exp(−t2)dt is the complementary error function (see

Appendix A for the evaluation of the integral in (4.8)).

4.2.3 Making the decision – expectations and computations

The expected throughput 〈xu(qu)〉 per time slot as a function of the bid qu is

〈xu(qu)〉 =
K
∑

k=1

ck × nk + 1

N +K
× 1

2
erfc

(

µy − quck√
2σy

)

. (4.9)

Similarly, the expected loss using the loss function (4.2) is

〈L(qu)〉 =

K
∑

k=1

|ck − φu| ×
nk + 1

N +K
× 1

2
erfc

(

µy − quck√
2σy

)

. (4.10)

The expected loss using (4.3) involves determining the expectation of 1/xu for
the Gaussian-distributed uncetainty of xu, an expectation which is not available in
closed form. We shall instead use the expected value of xu directly in (4.3), thus
obtaining a suboptimal solution that does not fully account for our actual uncer-
tainty in making the bid. The estimated loss L̂(qu) is then

L̂(qu) =
aqu

max(〈xu(qu)〉, b) , (4.11)

where 〈xu(qu)〉 is defined in (4.9).
It is important to see that in the preceding derivations, y is the winning price-

capacity product of all customers except customer u. In calculating the best bid,
a customer must therefore adjust the variance and the mean of the distribution for
the best price-capacity product since these quantities are broadcast and based on
all customers. These adjustments are quite difficult to carry out for a customer who
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has been awarded all or almost all resources over the last period. Usually, however,
we would expect that there are many different customers who obtain at least some
goods, and then the following adjustments may be used.

The average µy is estimated from the broadcast value µw (the average of the
winning bids) by

µy =
lµw − qu(t− 1)xu(t− 1)

l − lu
(4.12)

where l is the number of time slots between consecutive price updates, lu is the
number of time slots that customer u won, and qu(t − 1)xu(t − 1) is the sum
of customer u’s price-capacity products for the lu time slots that were won by
customer u in the previous period of l slots.

Similarly, the variance is estimated by

σ2
y =

lσ2
w − luσ

2
u(t− 1)

l − lu
(4.13)

where σ2
u is the sample variance for the price-capacity product of customer u in the

slots that this customer won.
In order to compute the minimum of either of the two expected loss expressions

(4.10) and (4.11) a numerical one-dimensional search is carried out using e.g. the
Nelder-Mead simplex algorithm (Nelder and Mead, 1965).

4.3 Examples

We now consider the performance of the scheme outlined in this chapter based on
simulations of the mobile communications scenario described in Example 4.1. As-
sume one transmitting base station and U = 4 users in the cell. With a periodicity
of n = 20 time slots, each mobile user updates its bid and submits it to the base
station. Each user is unaware of the other users’ bids and the feedback channel is
assumed to be error-free. An upper limit on the bid, qu ≤ 5 is also assumed. There
are K = 4 different transmission rates, and each user determines and tells the base
station the rate that can be used in the next time slot based on SNR measurements
and bit-error rate requirements. The base station then transmits exclusively in each
time slot to the user with the highest price-capacity product. All users have similar
channel statistics, the unquantized rates being generated by independent Gaussian
number generators. On average, 80 bits per time slot is supported, and the stan-
dard deviation is 20 bits. The rate is then quantized to the nearest level below the
unquantized value. The quantized levels are determined from maximizing the ex-
pected system throughput for 4 users employing multiuser diversity as described
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Figure 4.1: The evolution of the bids for the four users with desired rates 15, 20,
20 and 30 respectively.

in Chapter 6 with the result (in bits per time slot)

c1 = 0 c2 = 74 c3 = 92 c4 = 106. (4.14)

The rate probabilities (4.6) are updated continuously as more data becomes avail-
able.

4.3.1 Maintaining a desired throughput

We now consider a case where all four users have a desired rate per time slot
according to

φ1 = 15 φ2 = 20 φ3 = 20 φ4 = 30 (4.15)

and attempt to minimize (4.10). Figures 4.1 and 4.2 show the resulting bids and
obtained throughput per time slot from this test in a simulation lasting for 600
time slots (i.e. 30 price-update intervals). The plotted results are averages from 25
simulations.

It can be observed that there are quite substantial variations around the mean
desired rate, but on average the obtained throughput matches the desired rate well.
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Figure 4.2: The obtained throughput per time slot for the four users with desired
rates 15, 20, 20 and 30 respectively.

The average obtained rates over the entire simulated period were found to be

x̄1 = 14 x̄2 = 21 x̄3 = 21 x̄4 = 33. (4.16)

Under otherwise similar circumstances, Figures 4.3 and 4.4 show the bids and
the obtained throughput when the desired rate of user 3 was increased to 25 bits
per time slot, yielding a more competitive setting. Here, we see that the prices tend
to increase because the users have trouble obtaining the desired quality of service.
The average obtained throughput per time slot over the entire simulated period now
becomes

x̄1 = 13 x̄2 = 19 x̄3 = 26 x̄4 = 31. (4.17)

4.3.2 Buying when the price is low and the performance high

In a similar setting as the previous one, we now let user 1 minimize the approximate
expectation (4.11) of the price-performance-related loss

aqu

max(xu(qu), b)
(4.18)
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Figure 4.3: The evolution of the bids for the four users with desired rates 15, 20,
25 and 30 respectively.

with a = 2 and b = 8. Recall that use of this loss means that a 1-unit price increase
is acceptable only if it leads to more than a doubling of the obtained throughput.
Only if the throughput becomes more than 2qu × 8 bits is a non-zero bid qu prefer-
able. Users 2 − 4 continue to minimize the expected loss (4.10) for a desired rate
per time slot of

φ2 = 10 φ3 = 20 φ4 = 20. (4.19)

In Figures 4.5, 4.6 and 4.7 the bids, obtained throughput and the price-to-
obtained-throughput ratio (PTR) qu/xu are plotted as a function of time. The
results are averages from running a simulation consisting of 1800 time slots 25
times. The average obtained throughput per time slot in this case becomes

x̄1 = 34 x̄2 = 11 x̄3 = 21 x̄4 = 21, (4.20)

where we see that users 2− 4 obtain rates corresponding well to their preferences.
From Figure 4.7 we see that user 1 achieves the lowest PTR while the user with the
lowest rate requirement has the worst PTR.
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Figure 4.4: The obtained throughput per time slot for the four users with desired
rates 15, 20, 25 and 30 respectively.

4.4 Comments

We have seen in this chapter how to make competitive bids in a repetitive auc-
tion with limited information. We considered specifically an auctioneer who af-
ter a set of auctions announces the average winning price-capacity product along
with its sample variance for the preceding period. The considered auction format
sells exclusively to the customer with the highest price-capacity product in order to
maximize profits in a short perspective. We should however keep in mind that op-
timization over a short time period may be far from optimal in the long run. Taking
other long-term effects, such as customer reactions to this type of procedure and
its inherent unpredictability, into account is a vastly more difficult issue.

The performance examples show that the bidding strategies seem to perform
well, but it should be noted that a full analysis of the behavior of the bidding poli-
cies is extremely complex and has not been carried out here. The individual bidder,
in trying to make a reasonable bid in terms of his/her loss function, bases his/her
decision on information which is different for different customers (because the esti-
mates of the other users’ best price-capacity products become different for different
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Figure 4.5: The evolution of the bids for the four users with user 1 minimizing
the price-performance-related estimated loss (4.11) and the other users employing
(4.10) with desired rates 10, 20 and 20 respectively.

users depending on the number of wins for that customer). Therefore, the behavior
becomes very complex and hard to predict. A more general analysis must probably
be based on some form of theoretical analysis rather than rely on simulations. This
however is a quite complicated task and to the knowledge of this author there are
no tools from the field of game theory that are immediately suited for analysis of
this type of situation.

We however have reasonably strong confidence in that the individual policies
put forward here will continue to work well also in other cases than the ones tested
in the previous section. Our belief is founded on the desiderata of probability the-
ory, which should convince us that if the information used in our policies is valid
and adequate, the resulting inferences will indeed always be reasonable. Since
our proposed policies are based on fundamental principles of optimal reasoning,
our worries instead concern whether the information broadcast by the auctioneer
is sufficiently informative, and whether the chosen loss functions actually repre-
sent what a customer desires. This is an easier problem which readily lends itself
to analysis based on for the one part customer polls and for the other part com-
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Figure 4.6: The obtained throughput per time slot for the four users with user
1 minimizing the price-performance-related estimated loss (4.11) and the other
users employing (4.10) with desired rates 10, 20 and 20 respectively.

puter simulations such as those carried out in the previous section. We will come
back in Chapter 5 to discussing the issue of whether to use competitive bidding in
mobile communication networks makes sense from a technical and a commercial
perspective.
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Figure 4.7: The evolution of the price-to-performance ratio (the bid divided by
the obtained throughput) for the four users with user 1 minimizing the price-
performance-related expected loss (4.11) and the other users employing (4.10)
with desired rates 10, 20 and 20 respectively.



Chapter 5
Scheduling for Maximum
Throughput under Uncertainty

IN this chapter we consider a problem of scheduling transmissions from a base
station to a set of users in a cellular communications system. The problem con-

sists of distributing bandwidth among users who share a number of channels. A
number U of sources are producing bits at unknown rates. The bits from each
source are to be transmitted to one of U users (or receivers). The sources share a
number, R, of transmitters (or resources, or channels) which may be used to send
the produced bits to the receivers.

The problem is a reformulation of the ’widget problem’ studied in Chapter 3,
with some differences due to the nature of communication links.

In our present problem each transmitter-receiver pair has a time-varying num-
ber associated with it, denoting the number of bits that can be sent over the link at
a prescribed bit error rate (BER), given that the transmitter is used exclusively for
transmitting to that specific receiver. We will henceforth denote this number as the
effective capacity1 of that link.

Bits produced by the sources are stored in buffers monitored by a transmission
controller. The transmission controller aims to distribute the bits over the trans-
mitters so that the number of bits in the buffers is minimized, or equivalently so
that the system throughput is maximized. The question that we address is then:

1The term capacity is here used in a non-traditional way and should not be confused with any of
the usual information theoretic capacity definitions. The effective capacity denotes the transmission
rate for a given BER requirement that a user obtains if no other users transmit simultaneously on the
channel. The actual transmission rate becomes less than that if the channel is shared among several
users.
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given only limited knowledge of the actual source rates and effective capacities,
how should the controller distribute the resources?

The main information-theoretic motivation for using scheduling in mobile com-
munications comes from the observation by Knopp and Humblet (1995) that the
sum-of-rates capacity increases with the number of users and that it is maximized
by transmitting exclusively to the user with highest signal-to-noise ratio (SNR) at
the receiver. This phenomenon, denoted multiuser diversity by Knopp (1997), sug-
gests that independent channel fluctuations between different users should be taken
advantage of instead of being combatted. The result of Knopp and Humblet (1995)
however assumes perfect channel knowledge, additive Gaussian disturbances only,
and that transmission buffers cannot be emptied (there is always data to send).

Following the publication of Knopp and Humblet (1995), scheduling in wire-
less communications has received an increasing amount of attention, but the focus
has been on assuming that there is always data to send (buffers are never emptied)
and that the scheduler has perfect channel knowledge.

In high-level schedulers, stochastic channels are sometimes introduced by two-
state models (error-free or random errors) (see e.g. Cao and Li, 2001), which might
be considered too coarse. Casimiro Ericsson et al. (2000) suggest a framework for
scheduling several time-slots ahead which takes known buffer sizes into account
but requires perfect channel prediction (see also Casimiro Ericsson, 2001, for a
more detailed account). Another rule, the proportional fair scheduler (Viswanath
et al., 2002), gives exclusive access to the user who currently has the highest effec-
tive capacity normalized by its average allocated throughput, thus striking a bal-
ance between fairness and performance, but again requiring complete knowledge
of the effective capacities. A similar result to that of Knopp and Humblet (1995) is
obtained by Tse (1997) for a set of parallel broadcast channels corrupted only by
additive white Gaussian noise. Another line of work (Tassiulas and Ephremides,
1991, 1992), which has been used for multi-hop networks and on-off types of links
with constant effective capacity, considers queue stability as the main criterion. An
interesting application of this criterion which also shows a relation to the propor-
tional fair scheduler is reported by Andrews et al. (2001), where queue stabilizing
schedulers are adapted to support quality-of-service (QoS) constraints.

Except for base station assignments in the uplink with the objective of mini-
mizing allocated mobile powers (Rashid-Farrokhi et al., 1998) and a similar down-
link problem (Bengtsson, 2001), little has been published concerning allocation
of multiple shared transmitters. Scheduling transmissions under uncertain chan-
nel conditions and uncertain source rates with the objective of maximizing total
throughput under quality-of-service constraints has hitherto not been investigated
in any detail. The aim of this chapter is to provide such a study.

In summary, this work extends the current literature by providing means for
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resource allocation with uncertain source rates (the traffic entering the buffers),
taking buffer levels into account, and scheduling with multiple transmitters over
arbitrary time periods. Furthermore, the scheduling framework is extended to take
into account inaccurate channel predictions.

In two seminal papers, Jaynes (1957a, 1957b) introduced the maximum en-
tropy principle as a consistent method for determining probability distributions un-
der constraints on mean values of functions of data. The principle is applicable to
inference problems with well-defined hypothesis spaces but incomplete data. We
noted in Chapter 2 that the maximum entropy distribution can be realized in over-
whelmingly more ways than any other distribution. It can thus be considered as the
least biased solution for determining prior probabilities under the given constraints.
It has been successfully applied to a variety of problems, the reference list provid-
ing a sample of examples from image reconstruction (Daniell and Gull, 1980, Gull
and Daniell, 1978), spectrum estimation (Burg, 1975), finance (Buchen and Kelly,
1996), language modelling (Rosenfeld, 1996), and physics (Gruver et al., 1994, Jr.,
1980). We here propose that the maximum entropy principle be used for modelling
uncertain data flows in mobile communications systems.

The chapter is organized as follows: in Section 5.1 we present the problem
formulation, whereas in Section 5.2 we explain how the maximum-entropy princi-
ple can be used to model the uncertain source flows. Following this, Section 5.3
presents the solutions for different states of knowledge concerning source rates and
effective capacities. In Section 5.4 some observations are made concerning the be-
havior of the scheduler for different degrees of uncertainty. The performance is also
compared to that obtained by the proportional fair scheduler from Viswanath et al.
(2002). Before concluding the chapter, we discuss other approaches to scheduling
in Section 5.5.

5.1 Distributing Bandwidth among Users Sharing a Set of
Channels

The problem we shall investigate is how to allocate transmission resources with
possibly uncertain effective capacities to sources with uncertain bit rates. A mo-
tivating application has been the problem of link-level predictive scheduling of a
broadband downlink radio resource to mobile users with independently varying
channel capacities due to fast fading (see e.g. Casimiro Ericsson, 2001, Wang
et al., 2003a). Here we consider a slightly generalized problem.

In Figure 5.1 an overview of the system is given. There are U users, and
equally many buffers. We will schedule the use of the channels for T time slots.
During the scheduling horizon T , each buffer is filled with nu bits, u denoting the
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Figure 5.1: The system consists of U buffers, one for each receiver. R trans-
mission resources are available and user u receives ρurtcurt bits at time t from
transmitter r.

user index. A buffer may also have a number, Su, of bits remaining in stock from
previous scheduling rounds. The objective of interest will be to minimize the buffer
contents at the end of the scheduled time horizon. In a situation where all influxes
and effective capacities are known, this amounts to minimizing the loss function

L =
U
∑

u=1

g
(

Su + nu −
T
∑

t=1

R
∑

r=1

curtρurt

)

, (5.1)

where g(x) = x if x > 0, else g(x) = 0. The time-varying effective capacity
for the link between transmitter r and user u is denoted by the integer curt, while
ρurt is the fraction (0 ≤ ρurt ≤ 1) of the bandwidth of the rth transmitter that
we allocate to user u at time t. For instance, if ρurt = 1, then user u uses the rth
channel exclusively at time t. The total channel usage

∑

u ρurt for a given channel
r at a time t must satisfy

∑

u ρurt ≤ 1. The minimization of (5.1) is performed by
adjusting ρurt under whatever constraints the specific system poses on ρurt.

The total number of incoming bits, nu, in the time interval T is the sum of the
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Table 5.1: Definitions of the main variables in this chapter.

L The loss function, representing the sum of all users’ buffer contents after T time slots,
each term weighed by a user-specific cost per bit π(u, {θu})

U The number of users
R The number of transmitters
T The number of time slots a resource allocation is optimized over
Su The number of bits in stock for user u
nu The influx into user us transmission buffer summed over the T time slots
curt The effective capacity (the number of bits that the channel supports at some

desired BER) for the channel from transmitter r to user u at time slot t
ρurt The fraction (0 ≤ ρurt ≤ 1) of the bandwidth that is used to transmit from transmitter r

to user u at time slot t. Adjusted so that 〈L〉 is minimized
xu The total amount of data sent to user u over the T time slots (xu =

∑T
t=1

∑R
r=1

curtρurt)
π(u, {θu}) The cost per each bit intended for user u remaining in stock after the scheduled horizon
{θu} A set of known parameters that determine the user-specific cost per remaining bit

influxes at each time slot t:

nu =
T
∑

t=1

nut . (5.2)

In cases where we have knowledge of time variations, we will use this more de-
tailed notation. In general, as a notational convention, for any quantity a, we will
use at most three indices: aurt, where u (1 ≤ u ≤ U ) denotes user index, r
(1 ≤ r ≤ R) transmitter resource index, and t (1 ≤ t ≤ T ) time slot index. In this
chapter, whenever any of these three indices are omitted the quantity represents
the sum over all values of the omitted index. For reference throughout the chapter,
Table 5.1 provides a list of definitions of the main variables that we use in this
chapter.

In general, complete knowledge of the effective capacities or the number of in-
coming bits at any specific future time is unavailable. Therefore we cannot directly
minimize L but must resort to assigning probability densities for the influx nu and
the effective capacities curt and minimize the expected loss. Assuming that knowl-
edge of effective channel capacities gives no information of incoming bit rates 2,

2Although certain communication protocols actually change their transmission rates due to chan-
nel variations, these protocols, eg. TCP (Transmission Control Protocol), react on slower time scales
than would normally be used in scheduling decisions at the link layer.
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and vice versa, we can factor the joint probability3

P (nucurt|I) = P (nu|curt, I)P (curt|I) =

= P (nu|I)P (curt|I) (5.3)

and the expected loss becomes

〈L〉 =
U
∑

u=1

∞
∑

curt=0

∞
∑

nu=0

P (nu|I)P (curt|I)g
(

Su + nu −
T
∑

t=1

R
∑

r=1

curtρurt

)

.

(5.4)
Throughout the rest of the chapter we will find it convenient to use the notation

〈Lu〉 for the expected loss contribution corresponding to user u, with the total
expected loss being the sum of all user contributions:

〈L〉 =
U
∑

u=1

〈Lu〉 . (5.5)

The scheduling framework we propose relies on minimizing (5.4) subject to
various constraints. The rest of the chapter is concerned with investigating the
expected loss contributions 〈Lu〉 for a few typical cases in mobile communications
and the consequences of using buffer level minimization as a scheduling criterion.
It should be emphasized that the cases differ only in what knowledge the scheduler
uses.

Finding the minimum of (5.4) will in general turn out to require non-linear
programming. The basic constraints on ρurt are:

∑

u ρurt ≤ 1 ∀r, t (5.6)

0 ≤ ρurt ≤ 1 ∀u, r, t , (5.7)

but in general we may have an additional number of matrix equalities and inequal-
ities representing constraints imposed by the specific system architecture on differ-
ent resources. Examples of such constraints include

• a limited set Ω of rate levels, implying that the transmission rate ρurtcurt

must belong to the set Ω,

• in a time division system, ρurt can only be 0 or 1,

3To indicate that the probability expressions will change according to the information at hand, all
probabilities are conditioned on I , which denotes any available information relevant for inferring nu

or curt.
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• some channels may not be accessible to all users, i.e. ∃r, ∃u, ρurt = 0,

• in a network guaranteeing some minimum level of service quality, con-
straints may take the form of user-specific minimum channel access levels,
ρurt ≥ ηurt, or minimum transmission rates

∑

r

∑

t ρurtcurt ≥ ϕu.

These types of constraints are readily treated by available software for solv-
ing non-linear programming problems and present no conceptual difficulties. The
general problem can thus be transformed to different specialized settings, all rep-
resented by the same average loss function but with different optima due to the
restrictions on ρurt.

Minimizing the number of bits remaining in stock is equivalent to maximizing
the sum of the users’ bit rates. With this criterion, user specific priorities can be
introduced as multipliers to each user’s loss contribution in (5.5). This can be
interpreted as a user-specific cost per bit, expressed as a function π(u, {θu}) of any
set {θu} of known parameters (such as time, delay, buffer levels, average effective
capacities, average influxes, bit prices, etc.). The generalized criterion is then to
minimize

〈L〉 =
U
∑

u=1

π(u, {θu})〈Lu〉 . (5.8)

For instance, if π(u, {θu}) is defined as the reciprocal of user u’s average through-
put and we restrict ourselves to exclusive allocations, then we obtain a generalized
version of the proportional fair scheduler (Viswanath et al., 2002). We will not
consider fairness in any detail in this chapter; note that any fairness requirement
or user priority that can be formulated as a deterministic function describing an
equivalent user-specific cost per bit is compatible with the given formulation. In
Chapter 6 we will come back to the issue of fairness in connection with a study
of how limitations in channel feedback affects the performance of systems using
multiuser diversity.

Another possible approach could be to minimize the sum of the squared buffer
contents in order to prioritize large buffers and consequently aim at reducing the
risk of buffer overflow. A disadvantage of using a quadratic criterion here is that
the scheduler would no longer maximize the sum of the users’ bit rates, hence
capacity would be wasted. Another problem is that if priorities are introduced as
multiplicative factors for each user’s contribution to the total loss, the priorities will
loose their intuitive meaning as incurring a certain cost per bit to the network.

In the next sections we derive the expected loss contribution for each user u,
〈Lu〉 for different states of prior information by the use of the maximum entropy
principle. Solutions are given for the following cases:
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• Section 5.3.1 assumes knowledge of average source rates and exactly known
capacities.

• In Section 5.3.2 we relax the requirement of perfect channel knowledge and
instead assume capacity predictions of varying accuracy.

• In Section 5.3.3 source flows are subdivided into packets and the scheduler
requires knowledge of the average number of packets produced for each
packet size and the exact effective capacities.

• Finally, Section 5.3.4 provides a solution which takes account of arrival rate
patterns by the use of Laplace’s rule of succession applied on logarithmically
spaced intervals. Perfect channel knowledge is assumed.

5.2 The Maximum Entropy Approach to Source Flow Mod-
elling

The source flows in the current problem are not assumed to be known in detail.
A common assumption concerning near-future networks is that traffic to a large
extent will consist of Internet flows. Modelling an individual Internet data source
is however a notoriously difficult problem (see the discussion in Floyd and Paxson,
2001). Various distributions have been proposed, the most commonly used consists
of assuming that the number of packets per time unit is Poisson distributed. This
distribution has some justification when the incoming packet streams stem from a
large number of independent sources, but not in the case of a single-user source
flow. Another approach would be to record individual histograms for each user
in the transmitter and use them as approximate probability distributions. That is
however not realistic; the amount of data that has to be collected would typically
be larger than that obtainable during a user’s connection. A possible way around
this problem is however briefly investigated in Section 5.3.4.

Instead, we propose to use the maximum entropy approach. We shall use the
maximum entropy principle to model the source rates nu subject to knowledge of
the average source rate 〈nu〉 for each user4. Using the results from Chapter 3 we
thus obtain

P (nu|I) =
1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(5.9)

as the distribution of highest entropy subject to knowledge of 〈nu〉.
4The average source rate can be determined at the transmitter based on the incoming data. An

initial estimate can be obtained by using the average of all users’ data streams. With only a short data
record, the expectation (3.69) conditioned on the data record should be used in (5.9).
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Note that, as mentioned in Chapter 3, the distribution would be different if nu

had a known upper bound. For the case of data flows, there is an upper bound
which is determined by the bandwidth of the fixed network preceding the buffers.
This limit is however neglected here because it is usually much larger than the
expected source flow of each user.

5.3 Expected Loss Expressions for the General Resource
Allocation Problem

5.3.1 Knowledge of average source rates and exact capacities

Here we will work out the expected loss contribution of user u, 〈Lu〉 (cf. (5.5)),
for the scheduling problem when the average number of incoming bits during the
interval T , 〈nu〉, in each buffer is known and the effective capacities curt of the
transmitters are exactly known. For clarity, we use

xu =

T
∑

t=1

R
∑

r=1

curtρurt , (5.10)

describing the total number of bits sent from buffer u over the scheduled time
horizon T . With P (nu|I) given by (5.9) the expected loss contribution with known
curt becomes:

〈Lu〉 =
∞
∑

nu=0

P (nu|I)g(Su + nu − xu) (5.11)

=

{

〈nu〉
(

〈nu〉
〈nu〉+1

)xu−Su

, xu > Su

Su + 〈nu〉 − xu , xu ≤ Su .
(5.12)

The summation over nu in (5.11) is equivalent to the derivation carried out in Ap-
pendix 3.A.

In certain problems the expected values of the influxes at time t defined in (5.2),
nut, may vary over time, i.e. we have knowledge of 〈nut〉 for specified times t. For
instance, a traffic predictor may be employed which gives the expectation of the
traffic flow at different times. In Appendix 5.A the solution for this case is derived.
The resulting loss contribution for time-varying expectations of incoming bit rates
is:

〈Lu〉 =



















〈nu1〉
(

〈nu1〉
〈nu1〉+1

)xu−Su×
×∏T

k=2
1

〈nuk〉+1 × 1

1− 〈nuk〉
〈nuk〉+1

〈nu1〉+1

〈nu1〉
, xu > Su

Su + 〈nu〉 − xu , xu ≤ Su ,

(5.13)
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where, for the case xu > Su, the averages are no longer ordered chronologically,
but have been reordered by decreasing size, with the index k, to ensure convergence
of the geometrical series. Notice also that the product over all averages which are
smaller than 〈nu1〉 does not depend on xu, and consequently not on ρurt. There-
fore, if the minimum loss is calculated iteratively, the constant factor need not be
recalculated at each iteration.

5.3.2 Knowledge of average source rates and accuracy of capacity
predictions

In this section we turn to a case which is of particular interest in applications for
mobile communications. Here, a transmitter may predict future channel conditions
with some known accuracy based on measured fading patterns at the receivers (see
e.g. Ekman, 2002, Ekman et al., 2002). Adaptive modulation is then used to adjust
the transmission rate based on the predicted channel quality.

We must now consider three different effective capacities: the predicted one
ĉurt, the potential one c̄urt, and the eventually obtained one curt. The potential
effective capacity c̄urt is the number of bits that could be sent over the channel at
time t with a prescribed error rate if we knew the channel and thus could choose
the optimal modulation level. With inaccurate channel knowledge however, if the
potential effective capacity is lower than predicted, then the modulation level may
be set too high leading to a performance degradation due to increasing bit error
rates. If on the other hand the predicted capacity is lower than the potential ca-
pacity, then the modulation level is set lower than the optimum and the obtained
effective capacity will equal the predicted capacity (i.e. the obtained capacity will
again be lower than the potential capacity). Thus, the probability for the outcome
of the prediction (in the sense of being larger than, smaller than, or equal to the
potential capacity) will determine the probability for obtaining a given effective
capacity.

We assume that the accuracy of prediction is represented by a known variance,
σ2

urt, and that the prediction itself ĉurt is the expected value of the potential (but
unknown) effective capacity, c̄urt. As an example of how the prediction can be
obtained, Ekman (2002), Ekman et al. (2002) derive a quadratic channel power
predictor, based on which it is possible to derive a pdf for the channel power (Ek-
man, 2002, ch. 7-8). Using that pdf one can determine the corresponding pdf for
the effective capacity given a certain BER requirement by a change of variables.
This can for instance be carried out by using the approximate BER expressions
from Chung and Goldsmith (2001). We will however not use this particular pdf
as it is would only be valid for that predictor. Using instead the predicted value
and the standard deviation for the predictive pdf, we have a more general model,
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although of slightly higher entropy (thus disregarding some information).
In the case of a nonnegative integer quantity such as the potential effective ca-

pacity, finding the maximum-entropy distribution for known expectation and vari-
ance is analytically intractable. However, it is well-known (Shannon, 1948) that
the Gaussian distribution has the highest entropy for a given mean and variance if
the quantity of interest is defined over the entire real axis. If the expectation of a
Gaussian distribution is positive and large compared to its standard deviation, then
it has negligible probability mass for negative numbers. Therefore, for reasonably
accurate predictions of c̄urt we may safely assign a Gaussian distribution as an
accurate description of our state of knowledge.

However, as mentioned, the obtained capacity depends on the prediction error
ĉurt − c̄urt. There are three possible cases:

1. ĉurt ≤ c̄urt. In this case the obtained effective capacity will equal the pre-
dicted one, curt = ĉurt.

2. c̄urt ≤ ĉurt ≤ c∗urt. If the predicted value is higher than the potential effec-
tive capacity, then the modulation level will be set too high and thus the
obtained effective capacity will decrease. Here, curt is given by a func-
tion f(ĉurt) which depends on coding and other system-specific parame-
ters. A reasonable approximation is to assume that the obtained effective
capacity decreases linearly with the predicted value, reaching zero at a point
c∗urt = vc̄urt. We comment further on this model choice and the determina-
tion of v in the end of this section.

3. ĉurt ≥ c∗urt. In this interval, the obtained capacity is zero.

In summary we obtain an effective capacity curve as described by Figure 5.2.
In Appendix 5.B the probability for the obtained effective capacity curt given

the predicted value is derived as the sum of the contributions from each of the three
cases. It is shown that the probability for the obtained capacity is

P (curt|I) = P1(curt|I) + P2(curt|I) + P3(curt|I) (5.14)

where

P1(curt|I) =
1

2
δ(curt − ĉurt) (5.15)

P2(curt|I) =
v − 1√
2πσurtv

exp

[

−
(

v − 1√
2σurtv

)2

(curt − ĉurt)
2

]

× (H(curt) −H(curt − ĉurt)) (5.16)

P3(curt|I) = δ(curt)

(

1

2
− 1

2
erf
(

(v − 1)ĉurt

vσurt

√
2

))

(5.17)
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Figure 5.2: The obtained capacity as a function of the predicted capacity with
linear decline for too large predictions.

where H(x) denotes the Heaviside step function and erf(x) = 2√
π

∫ x
0 e

−t2dt. The
probability distribution (5.14) for the obtained capacity is plotted for ĉurt = 40 and
for different values of σurt and v in Figure 5.3.

We will now calculate each user’s contribution 〈Lu〉 to the expected loss (5.4)
with respect to P (nu|I) and P (curt|I). The two probability distributions are log-
ically independent, and hence we average the results obtained in the last section
over curt. The expected loss contribution will consist of a sum of two compo-
nents, one for xu > Su and another for xu ≤ Su, weighted by their respective
probabilities P (xu > Su|I) and 1 − P (xu > Su|I):

〈Lu〉 = P (xu > Su|I)〈Lu1〉 + (1 − P (xu > Su|I))〈Lu2〉 . (5.18)

It is however reasonable to assume that P (xu > Su|I) is approximately 1 or 0, eg.
when the standard deviation for the prediction is not extremely large. Hence we
use the simpler rule

〈Lu〉 ≈
{

〈Lu1〉 , 〈xu〉 > Su

〈Lu2〉 , 〈xu〉 ≤ Su ,
(5.19)

where 〈Lu1〉 and 〈Lu2〉 are derived below with the results (5.31) and (5.32), and

〈xu〉 =
R
∑

r=1

T
∑

t=1

ρurt〈curt〉 (5.20)
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Figure 5.3: The probability distribution for the obtained capacity curt given the
prediction ĉurt = 40. The spike at zero corresponds to setting the transmission
rate too high, leading to unacceptable bit-error rates; the spike at curt = 40 cor-
responds to the predicted capacity being less than the potential one (the Gaussian
distribution is symmetric, giving probability 1/2 for this event); the intermediate
range covers the case when the predicted capacity is higher than the potential one,
increasing bit-errors but not so much as to render the data completely useless.

where, inserting (5.15), (5.16) and (5.17) into (5.14),

〈curt〉 =

∫ ĉurt

0
curtP (curt|I)dcurt (5.21)

=
1

2

{

ĉurt + ĉurterf (αurtĉurt)

+
1√
παurt

[

exp
(

−α2
urtĉ

2
urt

)

− 1
]

}

(5.22)

with

αurt =
v − 1√
2σurtv

. (5.23)

The integral in (5.21) consists of three additive terms; the Dirac contributions
(5.15), (5.17) at zero and ĉurt, respectively, simply extracts the loss at those val-
ues; the integral of the truncated Gaussian part (5.16) follows from the procedure
in Appendix A. Adding them together yields the second equality in (5.22).



126 5.3. Expected Loss Expressions for the General Resource Allocation Problem

Consider the calculation of 〈Lu1〉 which is the expectation with respect to
P (curt|I) of the corresponding case in (5.12). To distinguish between the expected
loss with respect to P (nu|I) from (5.12) and the one currently under investigation
we here assign the notation 〈Lu1〉P (nu|I) for the former one.

We rewrite the expression for xu > Su in (5.12) using the algebraic relation
xa+b = xaxb, and obtain

〈Lu1〉P (nu|I) = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)

∑T
t=1

∑R
r=1

curtρurt−Su

= 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su T
∏

t=1

R
∏

r=1

( 〈nu〉
〈nu〉 + 1

)curtρurt

.

Averaging over P (curt|I) gives the expected loss contribution with respect to both
P (nu|I) and P (curt|I):

〈Lu1〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su

×
T
∏

t=1

R
∏

r=1

∫ ∞

−∞
P (curt|I)

( 〈nu〉
〈nu〉 + 1

)curtρurt

dcurt . (5.24)

Inserting (5.14) into (5.24), the integral over curt contains three mutually ex-
clusive intervals. We label the corresponding integrals I1, I2, and I3. The first
integral I1 corresponding to the point curt = ĉurt is simply

I1 =
1

2

( 〈nu〉
〈nu〉 + 1

)ĉurtρurt

. (5.25)

The second integral, I2, ranges from 0 to ĉurt. Using (5.16) and following the
procedure in Appendix A we obtain

I2 =

∫ ĉurt

0
P2(curt|I)

( 〈nu〉
〈nu〉 + 1

)curtρurt

dcurt (5.26)

=
1

2
exp

(

ρurtĉurt log

( 〈nu〉
〈nu〉 + 1

)

+ ρ2
urtγ

2
urt

)

×

×
(

erf
(

(v − 1)ĉurt

vσurt

√
2

+ ρurtγurt

)

− erf (ρurtγurt)
)

, (5.27)

where

γurt =
σurtv

(v − 1)
√

2
log

( 〈nu〉
〈nu〉 + 1

)

. (5.28)
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Finally, the third integral, I3, represents the single point curt = 0 and using
(5.17) we have

I3 =

( 〈nu〉
〈nu〉 + 1

)0ρurt
(

1

2
− 1

2
erf
(

(v − 1)ĉurt

vσurt

√
2

))

(5.29)

=
1

2
− 1

2
erf
(

(v − 1)ĉurt

vσurt

√
2

)

. (5.30)

Using I1 from (5.25), I2 from (5.27), and I3 from (5.30) in (5.24) the expected
loss contribution of user u with predicted capacities is, if P (xu > Su | I) = 1,

〈Lu1〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su T
∏

t=1

R
∏

r=1

(I1 + I2 + I3) . (5.31)

The second case in the expected loss contribution from user u (5.19) assuming
that P (xu ≤ Su | I) = 1 is, using (5.12) for xu ≤ Su and the definitions of xu

(5.10) and 〈xu〉 (5.20),

〈Lu2〉 =

∫

P (curt|I)(Su + 〈nu〉 − xu)dcurt = Su + 〈nu〉 − 〈xu〉 (5.32)

The loss contributions in (5.31) and (5.32) are valid when predicted capacities
can be modelled by a Gaussian distribution with known variance and expected
value 〈ĉurt〉 = c̄urt. They also require that the obtained capacity decreases linearly
when the predicted capacity ĉurt is larger than the potential capacity c̄urt. It should
however be emphasized that the linear decrease and the actual choice of v is a
subjective choice, and not a property of the channel. The value of v depends on
how sensitive the application is to departures from the desired BER. For low BER
requirements, even a small prediction error leads to a substantial departure from
the desired BER. For example, with Gray-coded M-QAM modulation5, increasing
from 4 bits to 5 bits per symbol at an SNR of 20 dB increases the BER by a factor of
more than 200. Typically, in order to determine v we find the BER increase which
means that the data must be retransmitted. We then determine the corresponding
rate increase that would cause this BER discrepancy. If for instance M-QAM is
used with a desired BER of 10−4, and if a BER increase of a factor 100 would
require that the data be retransmitted, then it can be found that v ≈ 1.5 will be
a good model. If a BER increase of a factor 10 would require retransmission,
then v ≈ 1.2. Typical values of v are thus in the range 1 < v < 2. The linear
decrease in curt for predictions larger than the potential capacity can be questioned,
but clearly it satisfies the obvious requirement that the curve should be monotonic

5Approximate BER formulas from Proakis (1995) are used in these calculations.
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decreasing. Other alternatives would be to use either some concave of some convex
decreasing function, but that could hardly make any substantial difference for the
actual expected loss value unless the magnitude of the function’s derivative would
be very nearly zero for one interval and large for the remaining part. These cases
will not be considered here, as they would rarely be encountered in practice.

The final expression for 〈xu〉 > Su (5.31) is rather complex and in the simula-
tions of Section 5.4.4 we investigate whether the basic scheduler assuming perfect
channel knowledge can be used with predicted values as an alternative to the more
computationally burdensome minimization of (5.19).

5.3.3 Knowledge of average rates for each packet size

We now consider the case where the possible sizes of incoming packets of each size
are known to the scheduler. If the number of possible packet sizes is small, then
having knowledge of the possible sizes significantly reduces the possible influx
sizes and thus we should be able to make better scheduling decisions. We further
assume that the expected number of incoming packets of each size in the time
interval T is known to the scheduler. Similarly, the effective capacities curt are
also assumed known.

Let the packet sizes in the uth buffer, cf. Figure 5.1, belong to a set {ku} with
Ku elements. Let muk be the number of packets of size k which are received
in the uth buffer during the scheduling horizon T , with 〈muk〉 assumed known.
In order to find a closed-form expression for the expected loss, we make a logic
partitioning of each buffer u into Ku buffers. Hence, each user’s buffer is split so
that each packet size gets its own buffer. The remaining number of bits from the
previous round, Su, is also split into Ku partitions Su =

∑

k kSuk. Note however
that this is only a logical separation for mathematical convenience.

Our new loss function is

L =
U
∑

u=1

∑

k∈{ku}

g
(

kmuk + kSuk −
∑T

t=1

∑R
r=1 curtρurt

Ku

)

, (5.33)

where kmuk is the size (in bits) of the packet multiplied by the number of packets
received by that size. It should be noted that the packet-enumerated loss func-
tion (5.33) is perfectly equivalent to the bit-enumerated (5.1). With the new loss
function it is however easier to model knowledge of packet-rates than when using
(5.1).

For each user u we assign a probability distribution describing our knowledge
of the future influxes muk corresponding to packets of size k. The probability
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assignment is analogous to (5.9):

P (muk|I) =
1

〈muk〉 + 1

( 〈muk〉
〈muk〉 + 1

)muk

, (5.34)

and the resulting expected loss contribution of user u is

〈Lu〉 =
∑

k∈{ku}

∞
∑

muk=0

P (muk|I)g
(

kmuk + kSuk − xu

Ku

)

. (5.35)

For each k ∈ {ku} we must separate between two possible cases, xu

kKu
> Suk

and xu

kKu
≤ Suk, which leads to different expressions. The derivation follows the

procedure in Appendix 3.A. Consequently the total user contribution consists of
the sum

〈Lu〉 =
∑

k∈{ku}
〈Luk〉 (5.36)

where

〈Luk〉 =







k〈muk〉
(

〈muk〉
〈muk〉+1

)
xu

kKu
−Suk

, xu

kKu
> Suk

k〈muk〉 + kSuk − xu

Ku
, xu

kKu
≤ Su .

(5.37)

It should be noted that if there is a wide variety of packet sizes, i.e. if Ku

is large, then the expression above would consist of too many terms for it to be
tractable in actual calculations. We should then instead assign a probability density
for nu, the number of incoming bits in each buffer. This is possible (see Jaynes,
1963b, for a similar derivation) and results in a Gaussian approximation.

5.3.4 Knowledge of past order sizes

If we have the possibility of collecting histograms of past source influxes for each
user, then we could use Laplace’s rule of succession to obtain better performance
than using just the mean influx of each stream. We would then assume that a
connection always carries similar traffic throughout its lifetime, and that there are
no temporal correlations that we can infer from the data records. Again, just as in
Section 3.2.2 the arrival rates may vary over a very large interval, say from bits per
second to tens of megabits per second, and the resulting histograms would be very
uninformative if we use one bin for each integer rate. Instead, we distribute a given
number K of bins logarithmically over the non-negative integers below a certain
upper bound. Using a logarithmic bin scaling6, we in effect consider the order of

6In Chapter 8 we extend the ideas formulated in Section 5.3.4 to adapt the bin sizes according to
data instead of using a fixed logarithmic partition.
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the influxes to be unknown below some upper limit. Then, we construct histograms
over these bins for each user and use the rule of succession (c.f. Section 2.6)

P (nuk|mu1...muKI) =
muk + 1

Mu +K
(5.38)

where muk is now the number of time slots with influx of size within bin interval k
and Mu =

∑K
k=1muk. In accordance with the derivation in Section 3.2.2 we then

arrive at the expected loss contribution

〈Lu〉 =

K
∑

k=1

muk + 1

Mu +K
〈Lu | nu ∈ k〉 , (5.39)

where

〈Lu | nu ∈ k〉 =

bk−1
∑

nu=ak

1

bk − ak
g(Su + nu − xu) , k = 1 . . .K − 1

=
1

2

β2
k − βk − (α2

k − αk)

bk − ak
+
βk − αk

bk − ak
(Su − xu) , (5.40)

and

αk
4
= max(xu − Su, ak) (5.41)

βk
4
= max(xu − Su + 1, bk) . (5.42)

Finally, for k = K we have

〈Lu | nu ∈ K〉 ≈
bK−1
∑

aK

1

log (bK/aK)nu
g(Su + nu − xu)

≈ βK − αK + log (βK/αK) (Su − xu)

log (bK/aK)
. (5.43)

5.4 Comments and Simulations

By using prior probability distributions with maximum entropy subject to our in-
formation constraints, we avoid assumptions concerning the ’underlying’ long-run
behavior of the sources. The use of the maximum entropy distribution is motivated
because it is the distribution which can arise in the greatest number of ways when
the outcomes are constrained to agree with the given information (see the Entropy
Concentration Theorem, Theorem 2.1).
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Other reasonable approaches to modelling the influxes include using more in-
formation in the initial probability assignments, and adapting the distributions ac-
cording to incoming data using Bayes’ theorem. For instance, if we have knowl-
edge of correlations over time or among different user streams, then we can use
this information in the maximum entropy formalism to obtain prior distributions
of lower entropy than using the mean values only. If such correlations are known
to exist but their absolute values are unknown a priori, then the initial probability
distribution should be updated recursively according to Bayes’ theorem as obser-
vations of the data streams become available. Another approach, where each radio
connection is assumed to operate under stationary conditions but without any cor-
relations, was given in the previous section (with a further generalization to adap-
tive bin sizes given in Chapter 8) and could be used to improve the performance
of the maximum-entropy solutions given earlier. We will however not study the
performance of that approach here, as its merits relative to the maximum entropy
approach cannot be judged without having access to real traffic. Using a simple
simulation set-up based on random-number generators as is done here cannot de-
termine which approach is better in real networks. Our simulation examples will
rather be confined to studying the effects of uncertainty concerning arrival rates and
effective capacities; therefore, we will here rely on the maximum entropy approach
for modelling uncertain source flows.

5.4.1 On the optimality of time division multiple access (TDMA)

Previous work (Bedekar et al., 1999) claims that time division is an optimal schedul-
ing policy in CDMA on the grounds that it minimizes the received power levels
from other users. However, in CDMA systems, the bad effects of interference
are alleviated by well-designed codes. The interfering users’ signal levels are not
necessarily harmful to the detection performance of the desired user and thus we
cannot conclude that it is always appropriate to use time division.

In spite of this one might conjecture that, would the buffers never be emptied,
it might be optimal to use time division also when interference does not affect re-
ceiver performance. This conjecture was proven to be true in the deterministic case
in the sense of maximizing the sum-of-rates capacity of an uplink in a multiuser
single-cell scenario by Knopp and Humblet (1995) when the time-varying fading
channels were perfectly tracked and known at the transmitters. In general, however,
neither source rates nor channels are perfectly known and buffers may be emptied.
Hence, time division is not always the best choice. To see this, consider the prob-
lem of scheduling one transmitter one time slot at a time, ie. R = 1, T = 1. It can
be observed from the expected loss expression (5.12) that if the buffer contents of
the user with the highest effective capacity cu satisfies Su ≥ cu, then the minimum
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loss is obtained by transmitting exclusively to that user. If this condition is not
met, then we cannot conclude that exclusive transmission is optimal in the sense of
maximizing expected throughput.

EXAMPLE 5.1 Sub-optimality of TDMA

Consider the problem of assigning bandwidth across two users using one trans-
mitter and one time slot, i.e. U = 2, R = 1, T = 1. Assume that the users have
S1 = S2 = 10 bits in stock and their expected influx for the next time slot is
〈n1〉 = 〈n2〉 = 10. Assume knowledge of the effective capacities, c1 = 17 and
c2 = 20.

Figure 5.4 plots the total expected buffer contents using (5.12) as a function
of ρ1 = 1 − ρ2. The optimum assignment is to split the bandwidth almost
equally among the users. Even though the user with the highest capacity seems
to have a large probability for being able to transmit 20 bits (since S2 + 〈n2〉 =
20) the uncertainty is still considerable and the best decision is to refrain from
exclusive transmission. The probability that n2 = 0 is large, and we can only
be certain about transmitting 10 bits (the number of bits already in stock) to user
2. Therefore, it would be unnecessarily risky to let user 2 obtain all bandwidth
when we know for certain that it can be used to reduce the buffer levels of user
1.

If the scheduler uses a longer time horizon, the minimum loss is obtained with
exclusive allocations for each time slot if for every time slot the user with maximum
capacity at that time fulfills the criterion Su ≥ cut. If there at any time slot is some
user with maximum effective capacity having less data to send than the channel
allows, no general conclusion about the optimality of exclusive transmission at
any time slot can be drawn. We may conjecture that the scheduler will indeed
use exclusive assignments also in many cases that are not covered by the general
conditions for optimality; the loss expression does however not give any simple
criterion for this to be the optimal choice in general.

Further, for the conjecture to be true, the transmission resources (consisting of
antennas, codes, modulation format, etc.) must be such that there is no additional
advantage of letting two users transmit at the same time. For instance, some re-
sources might not be mutually exclusive, i.e. two users may utilize them fully at
the same time. The model used here does not consider such resources.
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Figure 5.4: The expected loss using (5.12) as a function of ρ1 = 1 − ρ2 for the
scenario in Example 5.1.

5.4.2 Multiuser diversity gain

In this section we investigate how the capacity of a system increases with the num-
ber of users when utilizing multiuser diversity.

In Figure 5.5 the sum throughput is plotted as a function of the number of users
in a simulated system. The results were obtained using the basic scheduler with
perfect channel knowledge using (5.12) in a scenario with two access points. Each
user experienced independent Rayleigh fading on the time scale of slots, and the
effective capacity was modelled as the integer nearest below the Shannon capacity
for a band-limited channel disturbed by additive white Gaussian noise only7,

curt = log2 (1 + γurt) , [bits/second/Hertz] (5.44)

where γurt denotes the SNR at the receiver. Assuming one-tap Rayleigh fading,
γurt is exponentially distributed. The average SNR was set to 10 dB, and the source
rates were set so that the transmission buffers were never emptied.

Define the multiuser diversity gain, or scheduling gain, α, as the ratio between
the actually obtained total throughput, x, over some given period of time, and
the throughput that would have been obtained by simple round-robin scheduling,

7The model used here would in reality require perfect channel adaptation and a continuum of
modulation levels and coding rates.
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Figure 5.5: The total downlink throughput obtained in a system employing the
basic scheduler increases with the number of users. Each user experienced inde-
pendent Rayleigh fading on the time scale of slots, with an average SNR of 10
dB.

x(RR), over the same period,

α =
x

x(RR)
. (5.45)

Figure 5.5 then describes the scheduling gain of the simulated scenario, since
round-robin scheduling gives a sum throughput equal to the average effective ca-
pacity for any one of the users.

Remember that the effective capacity increases logarithmically with SNR (c.f.
(5.44)). Consequently, SNR fluctuations around a small average SNR causes rate
fluctuations of the same order as the SNR fluctuations, while for a larger average
channel gain, SNR fluctuations give smaller effects on the rate scale. It follows
that multiuser diversity gains are more pronounced at low SNR averages. Conse-
quently, if we weigh each user’s loss contribution with the reciprocal of that user’s
average effective capacity, users with low average SNRs will be favored compared
to high-SNR users if their SNR fluctuations are of the same magnitude. This results
in reduced system throughput, and puts users with good channel conditions at an
unexpected disadvantage. Non-obvious effects like this may follow for other forms
of suggested fairness constraints as well. Compensating one set of users often puts
other users at an unforeseen disadvantage.
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5.4.3 Comparison with proportional fair scheduling

Viswanath et al. (2002) considered a diversity scheme consisting of a scheduler and
randomized beamforming and compared it to the two-antenna space-time block
coding scheme by Alamouti (1998) and coherent beamforming without schedul-
ing. It was found that scheduling is not only a viable and economic alternative
requiring little feedback; in a multiuser setting with enough users the proposed
scheme also strictly outperformed space-time coding. With many users and few
antennas, scheduling with randomized beamforming also approaches the perfor-
mance of coherent beamforming while requiring significantly less feedback.

There is however an obvious problem with randomized beamforming. In typi-
cal settings, the merits of scheduling depends on channel predictions; this is effec-
tively contradicted by randomized channels.

In a new set of simulations we compared the proportional fair scheduler of
Viswanath et al. (2002) and the basic scheduler from Section 5.3.1 with knowledge
of effective capacities (using (5.12)). Both these schedulers use knowledge of the
channel to guide their decisions. The proportional fair scheduler does however
not consider the effects of source rates and hence the possibility of empty buffers.
Implicitly it assumes that there is always data to send.

The proportional fair scheduler works as follows. The data rates that the users
can receive at (given some BER requirement) at each time slot t (the effective
capacity, curt) is known to the scheduler. The scheduler then keeps track of the
average throughput Tu(r, t) of each user u in a past window of length tc. At each
base station r and time slot t, the scheduler transmits exclusively to the user with
the largest curt

Tu(r,t) . The parameter tc is used as a forgetting factor in the calculation
of the windowed average throughput. It is used as a means of obtaining fairness,
by giving a user access to a channel when its effective capacity is high relative to
its own average throughput over the time scale tc. Viswanath et al. (2002) con-
sidered a single base station only. Here, we adapt the proportional fair scheduler
to multiple base stations/antennas simply by treating an additional base station as
more time slots. In other words, if we are to assign two base stations and three time
slots, the scheduler works exactly as if it were to schedule one base station and six
time slots. After each single assignment, the average throughput Tu(i) (where i
indexes assignments regardless of whether it describes time slot or base station) is
recalculated according to (Tse, 2001)

Tu(i) = (1 − 1

tc
)Tu(i− 1) +

1

tc
cu,i−1δ(u− u∗) , (5.46)

where δ(u − u∗) = 1 if user u was the transmitting user u∗ in the most recent
assignment, otherwise, δ(u− u∗) = 0.
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The schedulers were run on the same data sets, with source rates nut drawn
from a Poisson random number generator8, and effective capacities generated from
the rate expression (5.44) using an exponential pdf for the SNR. The parameters
used are listed in Table 5.2. The forgetting factor for the proportional fair scheduler
was set to tc = 7.

The simulated scenario consisted of two base stations and three users. The
scheduling horizon was T = 3 time slots, and the schedulers were run for a total
of 60 time slots. The results listed in Table 5.3 are averages from 100 realizations.
The table reports average throughput and average buffer levels after the 60 time
slots (the averages being over the 100 realizations).

The results show that in this scenario the total throughput increases by approx-
imately 30% using (5.12) compared with using the proportional fair scheduler. In
particular, the throughput of user 2 is severely degraded when buffer contents are
neglected. In terms of buffer levels it is clear that the second user’s buffer would
overflow, causing further throughput degradation and increasing delays due to the
invoking of higher-layer mechanisms such as decreasing transmission rates or re-
transmissions.

Comparing the results for users 2 and 3, having equal channel statistics, we see
that the throughput ratio of the two users is identical to the ratio of their average
inflows when using maximum entropy scheduling. If the inflows are taken to reflect
each user’s service requirements, then this means that fairness is obtained without
any explicit fairness constraint on the policy. On the other hand, a user with very
low average SNR and small channel variability would obviously risk starvation
with the proposed scheduler.

It can be noted that the proportional fair scheduler could approach the perfor-
mance of the maximum entropy scheduler were the transmission buffers constantly
flooded with data. A more important observation is that this case is normally pre-
vented from occurring in a real system due to rate-control mechanisms such as
provided by TCP. Schedulers should therefore always take buffer contents into ac-
count. The additional use of source rate diversity further increases the performance
of the maximum entropy scheduler.

Another interesting result from this simulation can be observed by studying the
throughput obtained for the second user, 326 bits. Instead of trying to use multiuser
diversity to our advantage we could split the available bandwidth into three equal
parts, and always transmit to all users. Instead of 326 bits, user 2 would then obtain
a total throughput of 3.7

3 × 2 × 60 = 148 bits. Thus, the individual throughput
increases by 120% when using the fluctuating channel as a source of diversity.

8This choice is admittedly somewhat arbitrary. For a discussion of the problems involved in
modelling and simulating individual Internet sources, see Floyd and Paxson (2001).
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Table 5.2: Parameters for the comparison of proportional fair scheduling with
the maximum entropy scheduler for known channels. Average inflows per time
slot, 〈ni〉

T , average SNR (dB) at the receiver, γu, and the corresponding average
effective channel capacity (number of bits per time slot), 〈curt〉.

〈ni〉
T γu(dB) 〈curt〉

User 1 2 10 2.9
User 2 6 13 3.7
User 3 1.5 13 3.7

Table 5.3: Results for the comparison of proportional fair scheduling with the
maximum entropy scheduler for known channels. The average number of bits
remaining in the buffers after 60 time slots are listed in columns 1 and 2 for the
proportional fair scheduler (PF) and the scheduler with known curt proposed here
(ME). The last two columns display average total throughput in bits.

S60(PF) S60(ME) Tp(PF) Tp(ME)
User 1 2 11 117 108
User 2 170 35 191 326
User 3 0 4 92 88
Total 172 bits 50 bits 400 bits 522 bits

The proportional fair scheduler only achieves an increase of 29% since it does not
take the varying source rates into account. Evidently, there are substantial benefits
associated with taking advantage of the fact that, on average, the other users’ source
rates are lower than their effective capacities. Neglecting this source of diversity
results in decreased individual and total throughput.

5.4.4 Results for different amounts of channel uncertainty

Having established that taking channel information and source rates into account
are critical issues, two questions naturally arise:

1. How does the accuracy of channel predictions affect individual and total
throughput?

2. Do we need to use the more complex scheduler when using inaccurate chan-
nel predictions or can we equally well use the simpler one, assuming perfect
channel knowledge?
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To answer the first question, we study the throughput degradation of a user
as a function of increasing prediction inaccuracy. The simulation setup consists
of scheduling six users according to (5.19), with two transmitters, R = 2, and
a scheduling horizon of T = 3 time slots. All users have an average SNR of
10 dB, and the Rayleigh fading model from Section 5.4.2 is used with the effec-
tive capacity described by (5.44). (The average potential effective capacity is thus
approximately 2.9 bits.) The buffer influxes are large compared to the effective
capacities. All users except the first one have nearly perfect prediction, σurt = 0.1.
During a simulation run for 60 time slots, user one’s prediction accuracy was held
at a constant value. The simulation was then repeated for a range of increasing
prediction inaccuracies σ1rt = 0.1 . . . 3.5. Figure 5.6 shows the throughput of
user one for two different BER sensitivities, v = 1.3 and v = 1.1. We see that
the throughput degrades very quickly for decreasing prediction accuracy. Already
at σ1rt = 0.15 the throughput has degraded to roughly 60% of what a user with
σ1rt = 0.1 obtains. The reason is that there is almost always another user with
equally high predicted capacity, but with higher accuracy, thereby leaving user one
at a disadvantage since a larger uncertainty σurt results in lower expected effective
capacity (5.22).

In terms of an individual user’s performance, therefore, an important property
of the predictor is that its accuracy should be comparable to that of the other users.
On the level of system throughput, since the expected throughput 〈xurt〉 decreases
with prediction inaccuracy, the total throughput necessarily decreases too if the ac-
curacy is equal among users. But if the accuracy varies independently among users,
it is likely that there is at least one user with both high SNR and high accuracy. In
this sense, prediction accuracy should preferably vary substantially around some
average, rather than be constant at that average. Furthermore, prediction accuracy
in the high-SNR region is more important than for low SNR, since a user will only
be scheduled for transmission in the former case.

Addressing the second question, the same simulation setup was also run with
the basic scheduler using (5.12) but employing the predicted values of the effective
capacity, ĉurt, instead of the true values. The sum throughput using (5.19) relative
to the throughput corresponding to using (5.12) is given in Figure 5.7. It can be
seen that there is a significant performance difference between the two schedulers9

when there is a considerable prediction uncertainty for some users (in this case
only one) while other users have high prediction accuracy. This implies that the

9Notice that if all users would have had the same prediction accuracy (this is unlikely, since
different users move at different velocities and at higher velocities the channel changes faster than
for a stationary user), then there would not have been any performance difference between the two
schedulers, since using (5.19) would merely reduce all users’ expected capacity by a nearly equal
amount.
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Figure 5.6: The normalized throughput (1 corresponding to the throughput of user
one if σ1rt = 0.1) for user one as a function of σ1rt. All users had the same
average source rates and potential effective capacities (〈c̄〉 ≈ 2.9) (cf. Section
5.4.4). The two curves correspond to different values of the BER sensitivity v.

more complex scheduler should be used in situations where different users have
different prediction accuracies, for instance due to different user velocities (which
affect how fast the channel varies and thus how predictable it is). There is however
an intermediate solution which offers better performance than just using the esti-
mate ĉurt and also lower complexity than using (5.19); note that if we replace curt

by 〈curt〉 from (5.22) as an estimate, since increased prediction uncertainty leads
to a decreased estimate of the effective capacity, we will come closer to the per-
formance of the more complex expected loss (5.19). The two approaches coincide
when 〈xu〉 ≤ Su; when 〈xu〉 > Su it shows a qualitatively similar behavior to that
of (5.19) since the conditional-mean estimate 〈curt〉 takes account of the risk for
lower-than-predicted capacity.

5.4.5 Scheduling one time slot at a time using exclusive allocations

Despite the fact that exclusive allocations are generally suboptimal, one may in
practice use them anyway. Certain architectures only allow exclusive transmis-
sions, and there is often a computational advantage as well. In most works on
scheduling in wireless communications, due to the optimality result of Knopp and
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Figure 5.7: The relative throughput gain of the scheduler using knowledge of pre-
diction accuracy as compared to the basic scheduler using the predictions ĉurt. All
users had the same average source rates and average potential effective capacities
(〈c̄〉 ≈ 2.9) (cf. Section 5.4.4). The two curves correspond to different values of
the BER sensitivity v.

Humblet (1995) and perhaps for reasons of practical constraints, exclusive allo-
cations are the only alternative considered. Similarly, almost without exception,
scheduling over more than one time slot is not discussed.

We have seen that exclusive allocations are in general not the optimal choice
in the sense of maximizing expected throughput. Moreover, the length T of the
scheduling horizon should be chosen with some care. If possible, a longer hori-
zon should be used since the flexibility of the scheduler increases with T . This is
particularly important when the allocations are constrained so as to meet quality-
of-service demands. There is however a trade-off involved in the choice of T ; the
channel prediction accuracy decreases with the prediction horizon, and the uncer-
tainty concerning the source rates increases similarly. In the current literature, it
is typically assumed that there is no possibility of obtaining accurate channel pre-
dictions for more than one time slot ahead; hence the choice T = 1. On the other
hand, Ekman (2002) has shown that it is indeed possible to obtain reliable channel
prediction for longer horizons10, and we could therefore choose a slightly larger T .

10The prediction performance for a given horizon (measured in distance) depends on the physics of
the surrounding environment and the speed of the mobile terminal in relation to the carrier frequency.
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As it is many times supposed that Bayesian solutions are prohibitively com-
plex, we would like to point out that this is often a misconception. If we consider
the same case that the current literature focuses on, i.e. exclusive allocations and
T = 1, then the decision which maximizes the expected throughput is to choose
the user u with maximum

〈Ldiff
u 〉 4

= 〈Lu(ρut = 0)〉 − 〈Lu(ρut = 1)〉 (5.47)

with 〈Lu(ρut)〉 given by (5.12), or, for uncertain capacities, (5.19). To see this,
note that the best decision is to choose the user which reduces the total expected
loss 〈L〉 =

∑U
u=1〈Lu〉 the most of all users. If user u is chosen, only the term 〈Lu〉

corresponding to that user is affected, and the reduction is the expected number of
bits that can be sent to user u, that is 〈Lu(ρut = 0)〉− 〈Lu(ρut = 1)〉. This rule, to
select the user maximizing (5.47), involves no dynamic programming or numerical
optimization, and is computationally approximately equivalent to other proposed
schedulers.

5.5 Other Approaches to Scheduling in Mobile Commu-
nications

5.5.1 Queue stability

We noted in the introductory section of this chapter that there is a line of work that
takes queue stability as the most important property of a scheduler. The idea is
that the transmission buffers should not unnecessarily overflow, which intuitively
seems like a desirable quality. Before considering how to determine a scheduler
with this property, we must decide what we mean by the term ’stability’.

In the papers on queue-stable schedulers ’stability’ of a scheduler is taken to
mean that all data are transmitted in a bounded amount of time, i.e., the queues
are bounded over time. Now, obviously no scheduler can guarantee stability for
any amount of traffic or any channel quality. Instead, the system of data arrivals
and transmission capacities is said to be ’admissible’ if there exists some schedule
which can maintain queue stability for the particular system. A scheduler is then
said to be stable if it keeps the queues bounded whenever the system is admissible.

Andrews et al. (2000) announced a mathematical theorem which says that if
and only if the average arrival rate for each user is less than that user’s average
effective capacity, then the system is admissible. Obviously then, stability may
appear to be possible over a certain time scale, and then if the effective capacities

For an analysis of attainable prediction horizons under the Jakes Rayleigh fading model see Ekman
et al. (2002)
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or data rates change among users, it may turn out that the system is not admissible
any more. The same reference also proves, for the case R = 1 and T = 1, that
transmitting exclusively to the user u with maximum

ψucuS
β
u , (5.48)

where ψu and β are arbitrary non-negative constants, is a stable scheduling rule.
The stability result holds also when replacing Su by the maximum time du that any
bit in buffer u has spent in that buffer. Putting β = 1 and ψu = 1, we see that
this queue stabilizing scheduler (denoted Modified Largest Weighted Delay First,
M-LWDF) chooses users with high transmission rates who have not been served in
a long time.

Although queue stability may seem desirable at first glance, it would be inter-
esting to see some examples of criteria that lead to queue stabilizing schedulers.
For instance, does our criterion, to maximize the expected throughput, guarantee
stability if possible at all? Certainly so, since the buffer levels are always kept to
its minimum allowed value. But our criterion is more explicit; it always maximizes
throughput, and continues to do so even when stability cannot be guaranteed. Fur-
ther, we should ask ourselves whether stability is that important after all. In order to
guarantee that all queues be bounded at all times when possible, we effectively put
equal weight to the most unlikely, but possible, events as we do to the most typical
ones. We maintain that stability may perhaps be an indicator that a scheduling dis-
cipline is useful in certain cases, but it rarely, if ever, corresponds to the actual goal
we have set for our communications system. Such a goal should be stated clearly in
a loss function, so that we can then minimize the expected loss placing the optimal
weight (i.e. the posterior probability) on the different possible outcomes.

Although scheduling the user that maximizes (5.48) apparently has the prop-
erty that it keeps queues bounded whenever possible, that in itself does not tell
us what loss function the M-LWDF scheduler actually corresponds to. It is an ad
hoc scheduler, but can we find a loss function that actually leads to the M-LWDF
discipline? Several motivations may lead to the same decision in the end, and here
we provide one possible such motivation. Casimiro Ericsson (2004) notes that the
M-LWDF method can be derived as an approximation to a loss which sums the
squares of the buffer levels. Writing the loss as

Lu = (Su)2, (5.49)

where
Su = Su − δSu (5.50)

is the buffer level after the next scheduled time slot(s) with δSu = nu − xu, we
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have

(Su)2 = (Su + δSu)2 = S2
u + δS2

u + 2δSuSu (5.51)

= S2
u + δSu(δSu + 2Su) . (5.52)

The first term is not affected by δSu and thus the decision which minimizes the
sum-quadratic loss (5.49) minimizes δSu(δSu +2Su). Assuming that δSu is much
smaller than Su, an approximation to minimizing (5.49) is to minimize 2δSuSu, or
equivalently, since nu is fixed, to maximize

xuSu . (5.53)

This is the M-LWDF method (5.48) with β = 1 and ψu = 1.
In the literature on queue stability, scheduling algorithms that maintain stabil-

ity whenever that is possible are called ’throughput optimal’. This, however, is
severely misleading. In the standard scenario considered in these references (see
e.g. Andrews et al., 2001) there is one time slot and one resource to schedule under
no uncertainty. The decision that maximizes the throughput in simply to choose
the user with maximum cu (if that user has at least that much data to send). The M-
LWDF scheduler certainly does not follow this rule, and we can see no reason why
this scheduler, or any other that does not attempt to achieve maximum throughput,
should be defined as ’throughput optimal’. The repeated misuse of this term leads
to a false impression of the far from optimal results that these ad hoc schedulers
achieve and may mislead unwary workers and reviewers in comparing different
approaches.

5.5.2 Proportional fairness vis-à-vis logarithmic loss

We have already discussed the proportional fair scheduler in some detail in Section
5.4.3. Here we note a feature that has not been emphasized in the current literature,
and which we think provide an important rationale for its use.

Consider the problem of scheduling U users over one time slot and one trans-
mitter. Suppose now that only exclusive allocations are possible and that we know
the effective capacity cu and the expected influx 〈nu〉. Assuming further that the
number of bits in stock for each user is larger than that user’s effective capacity,
the optimal allocation is to transmit to the user with maximum cu. Now, consider
two users, Mr A and Mr B. Mr A has an average throughput of 10 bits per time
slot, while Mr B on average receives 1000 bits per time slot. If Mr A has cA = 20,
and Mr B has cB = 21, our scheduler will award Mr B channel access. But Mr
B is not likely to even notice that he gets the extra 10 bits, since this amount is
extremely small compared to his average throughput. If he is downloading a large



144 5.5. Other Approaches to Scheduling in Mobile Communications

file, the time it takes will hardly be affected by this extra throughput, while on the
other hand Mr A would have noticed a most dramatic performance increase, re-
ceiving twice the amount of data that he is accustomed to, would he instead have
been given access. As we noted in Chapter 3, Daniel Bernoulli (1738) observed
that the latter decision in general seems a more rational course of action to most
people. Indeed, we see the reason very clearly in our example. A doubling of the
average rate implies halving the download time. It seems that whether the amount
of time we halve is a minute or an hour, the utility for the user is the same. This
is reminiscent of the scale invariance argument for priors which led to a uniform
distribution for the logarithm of the parameter, and similarly, Bernoulli concluded
that the ’utility resulting from any small increase in wealth will be inversely pro-
portionate to the quantity of goods previously possessed’. From this he finds that
the corresponding utility y for someone already in possession of an amount α is

y = b log
x

α
(5.54)

when increasing his possessions to the total amount x. The constant b is arbitrary.
Notice that x = α+∆ where ∆ is the new amount that the person received. In our
problem, we may thus use the individual loss

Lu = − log

(

min(xu, Su + nu)

x̄u

)

, (5.55)

where x̄u denotes the mean allocated throughput that user u has actually obtained,
and min(xu, Su + nu) is the number of bits transmitted over the link, the min()
accounting for the case when the buffer levels are lower than the effective capacity.
Under the assumption that Su + nu ≥ xu at all times, we see that for T = 1
and R = 1 the optimal decision according to this rule is to choose the user with
maximum xu

x̄u
, the same decision that the proportional fair scheduler makes. It is

well-known that the proportional fair scheduler can be derived from the logarithmic
loss, but in the literature this loss is motivated because of its fairness property. We
stress the converse relation. The logarithmic rule is useful because it is a more
natural measure of the actual ’moral’ value of a given allocation than the absolute
value of the throughput. It further has the desirable property of achieving fairness
in the sense that users with relatively low channel quality are not completely shut-
off from transmission, but this is not the primary reason for using it. Fairness, in
some sense of this elusive concept, can be achieved in many ways, and if fairness
in itself is the ultimate goal then we should explicitly state in a loss function how
we define it. If instead – as is done here – we take the stance that the value of a
communication link for a user lies in receiving data, then the throughput is more
fundamentally important than fairness, and we should define in exactly what sense
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a rate allocation is useful for the user. In this chapter we have taken the absolute
throughput as our main criterion, but perhaps, as our discussion here indicates, we
should indeed use the logarithmic measure.

With the logarithmic loss (5.55), we have for the case of uncertain source rates
but perfectly known capacities

〈Lu〉 = P (nu + Su ≥ xu|I) log

(

xu

x̄u

)

+ P (nu + Su < xu|I)
〈

log

(

Su + nu

x̄u

) ∣

∣

∣

∣

nu + Su < xu

〉

(5.56)

where we use 〈A|B〉 to denoted the expectation of A given knowledge of B. If
Su > xu then the resulting loss is simply

Lu = log

(

xu

x̄u

)

Su > xu , (5.57)

where there is no longer any uncertainty to average over. This corresponds to
the traditional proportional fair scheduler when R = 1 and T = 1. If however
Su ≤ xu, then the uncertainty as to the outcome remains, and we must consider the
second term as well. With P (nu|I) based on knowledge of 〈nu〉, i.e. using (5.9),
we cannot obtain a closed-form expression for the expectation of log( Su+nu

x̄u
). If

we instead use n′u = 〈nu|nu + Su < xu〉 directly in the logarithm instead of
carrying out the correct sum, then, using (5.56), we have an estimate L̂u

L̂u =
∞
∑

n=xu−Su

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

log

(

xu

x̄u

)

+

xu−Su−1
∑

n=0

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

log

(

Su + n′u
x̄u

)

=

( 〈nu〉
〈nu〉 + 1

)xu−Su

log

(

xu

x̄u

)

+

(

1 −
( 〈nu〉
〈nu〉 + 1

)xu−Su

)

log

(

Su + n′u
x̄u

)

Su ≤ xu (5.58)
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where the adjusted expectation11 of nu is

n′u = 〈nu〉 +
(Su − xu)

(

〈nu〉
〈nu〉+1

)xu−Su

1 −
(

〈nu〉
〈nu〉+1

)xu−Su
. (5.60)

In this expression we have a straightforward (although approximate) generalization
of the proportional fair scheduler taking uncertainty of the arrival rates into account
and extending it to an arbitrary scheduling horizon T as well as an arbitrary number
of transmitters R. For an extension to the case of uncertain effective capacities, we
would have to carry out the steps in Section 5.3.2 for the new loss expression. We
leave this as an open door for further development.

5.6 Competitive Bidding – A Possible Solution to the Qua-
lity-of-Service Dilemma?

Recall the generalized throughput criterion (5.8) where each user’s buffer contents
are weighed according to

〈L〉 =
U
∑

u=1

π(u, {θu})〈Lu〉 . (5.61)

Now consider setting
π(u, {θu}) = qu (5.62)

where qu is the price that user u pays per transmitted bit. It then follows that by
allowing users to adjust their prices on-line different quality-of-service targets can
be achieved. There are at least two possible ways of setting the dynamic prices.
One approach is to let the network operator set the prices according to each user’s
demand, but the lack of transparency of such a solution is clearly undesirable. A
user would have to trust the operator in not increasing prices without reason.

Instead it may be a better idea to let each user set his/her own prices in a proce-
dure such as that considered in Chapter 4. There, the base station was supposed to

11The expectation of nu when Su ≤ xu is obtained by evaluating
∑xu−Su−1

nu=0
nuP (nu|I)

∑xu−Su−1

nu=0
P (nu|I)

. (5.59)

These arithmetic-geometric and geometric series are solved in the derivations of the expected loss
(5.12).
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generate reports in regular time intervals consisting of the average winning price-
capacity product and its sample variance. It was found that such a solution al-
lows users to differentiate their prices according to service demands. Simulations
showed that rate requirements were indeed satisfied with a reasonable degree of
confidence. The advantages of such a solution include that the bit prices would ac-
tually reflect the current demand-supply situation, thereby yielding a true market-
economic mechanism, and that with individual price adjustments at the mobile
terminals, a complicated U -dimensional dynamic-programming problem would be
avoided at the base station. Potential disadvantages include that very rich cus-
tomers could starve all other users, and that the feedback information sent to and
from the base station increases. The latter problem can however be alleviated by
allowing only a discrete set of possible price changes. Using for instance 2 bits of
feedback for price updates (+/− 1 or 2 units) at regular but infrequent intervals
should be sufficient to be able to maintain a desired service level. Another disad-
vantage is that a customer can never acquire a guaranteed service level by use of
this scheme. There is an element of uncertainty concerning the future service level
which may be unacceptable for applications with real-time service requirements.
For other types of traffic the gain in flexibility and the probable over-all reduction
in prices from using competitive bidding may be compelling reasons to adopt the
considered scheme. A more serious concern, however, stems from the customers’
uncertainty regarding the prices in this type of scheme. Customers may not ap-
preciate price uncertainty, but rather prefer a fixed price regardless of the amount
of data downloaded. An operator adopting a fixed price regardless of the amount
of throughput must however set a price which reflects the operator’s uncertainty
about the customers’ bandwidth requirements, yielding higher prices than with the
auctioning procedure, or introduce flow control mechanisms that put hard regula-
tions on the customers’ data flows. Most likely, a combination of higher prices and
flow regulations would result from this type of fixed pricing. In the end, whether
the customers actually prefer the auctioning procedure or the fixed-price scheme
would depend on the typical price reduction a customer obtains with the auctioning
procedure and the typical service-level variations.

In summary, for networks where the major revenue streams come from data
traffic such as Internet browsing, dynamic pricing using competitive bidding could
constitute an attractive compromise between resource utilization efficiency, quality
of service and low costs for the end user, but the uncertainty regarding prices and
service-levels may potentially outweigh these advantages.



148 5.7. Conclusions

5.7 Conclusions

In this chapter a problem of optimizing channel assignments in the presence of un-
certainty was considered for applications in mobile communications. The problem
was formulated as a minimization of the expected total buffer contents, given by the
general expression (5.4), a sum of contributions from each user. It was noted that
the framework is compatible with user priorities represented by known functions
describing an equivalent cost per bit. In Chapter 4 we noted that introducing com-
petitive bidding in combination with maximum-throughput scheduling as a means
for acquiring a desired quality of service was a feasible solution, although the ad-
ditional signaling over-head and the potential problems from unpredictability may
limit its usefulness for real-time traffic.

Each user’s contribution to the total expected loss was calculated for four dif-
ferent cases, each representing a typical state of knowledge at the scheduler. With
knowledge of effective capacities and of average influxes, the expected loss con-
tribution was found in (5.12). Using knowledge of the accuracy of capacity pre-
dictions, a Gaussian distribution was assigned for the predicted capacities. It was
noted that the obtained capacity is a function of the prediction, and the resulting
probability distribution for the effective capacities was derived for the case when
too large predictions result in a linear decrease of obtained capacity. The con-
sequent expected loss contribution was found in (5.19). In a packet data system
with knowledge of packet sizes, effective capacities, and average influxes for each
packet size, the resulting expected loss contribution was described by (5.35). Fi-
nally, with knowledge of past influxes, an expected loss expression based on the
rule of succession applied to a logarithmic partitioning of the influx sizes was given
by (5.39).

A substantial increase in throughput due to multiuser diversity gain from maxi-
mum entropy scheduling was demonstrated in simulations. A comparison of maxi-
mum entropy scheduling with the proportional fair scheduler showed that the max-
imum entropy scheduler achieved higher throughput by also utilizing source rate
diversity. Further simulations demonstrated that in order to obtain high throughput
the scheduler needs to have accurate channel knowledge. Degradation of chan-
nel prediction accuracy for one user inevitably led to reduced throughput for that
user as described by Figure 5.6. Including knowledge of prediction accuracy into
the criterion resulted in improved system performance compared to using the ba-
sic criterion with predicted capacities instead of the true values. The performance
difference was a consequence of exploiting the variations in prediction accuracy.
The larger the variations in channel prediction accuracy and the more users in the
system, the larger the resulting gain of using the full Bayesian solution (5.19).
With small or no variations of prediction accuracy among the users there was no
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performance difference (cf. Figures 5.6 and 5.7).
The Bayesian solution thus prioritizes users with well-determined high-rate

channels, and with data to send. In the limit, as the number of users tends to
infinity and the prediction accuracies vary independently over the users, the full
Bayesian solution would approach the throughput of the scheduler with perfect
channel knowledge.

Observe also that any of the proposed expected loss expressions could be used
in other types of schedulers as well. For instance, with strict delay requirements, a
simple and effective scheme for exclusive one-slot scheduling would be to transmit
to the user u who yields the largest total loss decrease, 〈L(ρur = 0)〉 − 〈L(ρur =
1)〉 (which is the best exclusive scheduling policy in the sense of minimizing ex-
pected loss). Then at the next time slot, the remaining U − 1 users would compete
similarly. For each time slot, the set of competing users is reduced, and after U
time slots, the process repeats. The maximum delay for any user would then be
2U − 1 time slots. We will have reason to come back to this simple scheduler
in Chapter 6 when we consider the implications of limited feedback channels on
system performance.

In conclusion it should be pointed out that, although the framework was for-
mulated in a communication theoretic setting, the rationale can be employed in
other forms of flow optimization problems where the demand, nu, is incompletely
known. The case of incompletely known supply, curt corresponding to the solution
laid out in Section 5.3.2, would however require a different supply distribution than
here. This is in principle straightforward; given any testable information regarding
the actual supply mechanisms, find the P (curt|I) that maximizes the correspond-
ing entropy. Given that model, the solution that maximizes the number of satisfied
orders is again given by (5.4).
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Appendix 5.A Derivation of Expected Loss given Time-
Varying Influx Averages

Here we derive the expected loss contribution for known time-varying influx av-
erages, assuming perfect knowledge of the effective capacities. The probabilities
for nut for different times t factor according to the maximum entropy principle
and thus we can rewrite the expected loss contribution as a product of indepen-
dent terms. As in (5.12) we need to separate between the cases xu > Su and
xu ≤ Su. It follows immediately from the derivation of (5.12) in Appendix 3.A
that for xu ≤ Su the loss contribution for user u is

〈Lu〉 = Su +
∑T

t=1〈nut〉 − xu

= Su + 〈nu〉 − xu , xu ≤ Su .

Consider the calculation of 〈Lu〉 in the case xu > Su. For reasons we shall
come back to in the derivation we need to reorder the 〈nut〉 by decreasing size.
Thus, we replace the time indexes t by size indexes k, where larger k corresponds
to smaller size. We start by deriving the average loss with respect to P (nu1|I),
for given smaller influxes nu2, nu3, . . ., which we denote by 〈Lu〉P (nu1|I). By
substituting Su +

∑T
k=2 nuk for Su in the derivation of (5.12) in Appendix 3.A

it follows directly that:

〈Lu〉P (nu1|I) = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su−
∑

T
k=2

nuk

= 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su
T
∏

k=2

( 〈nu1〉
〈nu1〉 + 1

)−nuk

. (5.64)

This means that the expected loss averaged over the influxes at the remaining
times, nu2, . . . , becomes:

〈Lu〉 = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su
T
∏

k=2

∞
∑

nuk=0

P (nuk|I)
( 〈nu1〉
〈nu1〉 + 1

)−nuk

.(5.65)
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The sum over nuk in (5.65) is, by using (5.9), given by

∞
∑

nuk=0

1

〈nuk〉 + 1

( 〈nuk〉
〈nuk〉 + 1

)nuk
( 〈nu1〉
〈nu1〉 + 1

)−nuk

=

∞
∑

nuk=0

1

〈nuk〉 + 1

( 〈nuk〉
〈nuk〉 + 1

〈nu1〉 + 1

〈nu1〉

)nuk

(5.66)

=
1

〈nuk〉 + 1





1

1 − 〈nuk〉
〈nuk〉+1

〈nu1〉+1
〈nu1〉



 . (5.67)

In the last equality the reordering of 〈nuk〉 by decreasing size is needed to
ensure convergence of the geometric series (5.66) (eqn. 0.231.1 in (Gradshteyn
and Ryzhik, 2000)) , which requires 〈nuk〉

〈nuk〉+1
〈nu1〉+1
〈nu1〉 < 1. The average loss is then:

〈Lu〉 = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su T
∏

k=2

1

〈nuk〉 + 1





1

1 − 〈nuk〉
〈nuk〉+1

〈nu1〉+1
〈nu1〉



 .(5.68)

Appendix 5.B Derivation of Channel PDF given Predic-
tion and Variance

In Section 5.3.2 the probability for the obtained effective capacity curt given a pre-
diction is needed in order to calculate the expected loss. We derive the probability
for each of the three cases (cf. Figure 5.2) and then add the resulting distributions
to obtain the total probability distribution.

1. When ĉurt ≤ c̄urt the obtained capacity is curt = ĉurt. Because the distri-
bution for the predicted capacity is symmetric and centered at the potential
capacity c̄urt we have

P1(curt|I) =
1

2
δ(curt − ĉurt) (5.69)

where δ is the Dirac delta.

2. In the second interval, c̄urt ≤ ĉurt ≤ c∗urt, we use the aforementioned lin-
early decreasing function in describing the obtained capacity:

curt = − 1

v − 1
ĉurt +

v

v − 1
c̄urt . (5.70)
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Leaning on previous remarks we model the potential capacity as a Gaussian
distribution according to c̄urt ∼ N (ĉurt, σ

2
urt). Using the result

x ∼ N (m , σ2) ⇒ ax+ b ∼ N (am+ b , a2σ2) (5.71)

and the relation (5.70) it is concluded that

curt ∼ N
(

− 1

v − 1
ĉurt +

v

v − 1
ĉurt ,

(

vσurt

v − 1

)2
)

(5.72)

= N
(

ĉurt ,

(

vσurt

v − 1

)2
)

. (5.73)

Notice that this distribution is attained only for the interval 0 ≤ curt ≤ ĉurt.

3. In the third interval, ĉurt ≥ vc̄urt or equivalently −∞ ≤ c̄urt ≤ ĉurt/v, the
obtained capacity is zero. The probability for this is

P3(curt|I) = δ(curt)

∫ ĉurt/v

−∞

P (c̄urt|I)dc̄urt =

= δ(curt)

∫ ĉurt/v

−∞

1
√

2πσ2
urt

exp
[

− 1

2σ2
urt

(c̄urt − ĉurt)
2
]

dc̄urt

= δ(curt)

(

1

2
− 1

2
erf
(

(v − 1)ĉurt

vσurt

√
2

))

, (5.74)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−t2dt . (5.75)

The integral in (5.74) is solved by following the procedure in Appendix A.



Chapter 6
Implications of Limited Feedback
for Scheduling and Adaptive
Modulation – Throughput,
Sensitivity, Fairness and A Way Out

WE have seen in the previous chapter that the combined use of scheduling and
adaptive modulation promises substantial throughput gains in the down-

links of cellular communication systems.
Remember that the scheduling policy that maximizes system throughput is to

transmit exclusively to the user that can receive at the highest rate at any particular
time, provided that this user has at least as much data to send as his channel can
support (Knopp and Humblet, 1995). In order to realize the potential throughput
increase, we consider a system using adaptive modulation to set the transmission
rate based on the signal-to-noise ratio (SNR) at the receiver and the required bit-
error rate (BER). The receiver thus predicts its SNR for the next time slot to be
scheduled, and determines the corresponding rate with which it can receive data.
This rate is then quantized and fed back to the base station.

With adaptive modulation on each sub-carrier in an OFDM system, or on sev-
eral antennas, the required amount of channel feedback may severely degrade the
spectral efficiency of the total system. The gain in spectral efficiency from channel
adaptation may even be less than the degradation due to the extra feedback infor-
mation. In this chapter, therefore, we investigate the implications of quantizing the
feedback information so as to maximize the expected downlink throughput in a cell
where scheduling and adaptive modulation is employed. We study the performance
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degradation, the sensitivity to quantization errors, and how fairness is affected due
to reduced feedback.

It was shown by Johansson (2003), Florén et al. (2003), Gesbert and Alouini
(2003) that the multiuser-diversity gain is not considerably reduced when channel
feedback is limited, provided that accurate knowledge of the individual channel
statistics of every user is at hand. Such aspects as how to realize these gains in
practice, the sensitivity to sub-optimum quantizations, and the effects on fairness,
were however not addressed in these references or in other works.

In Section 6.1 we discuss the case where the individual users’ channel pdf’s are
known in detail and find the optimum number of bits to use for feedback as well as
the corresponding quantization. The section ends with a discussion of the perfor-
mance implications, which leads to the conclusion that although optimum perfor-
mance would in theory be very high, an extreme sensitivity to correct quantizations
may in practice lead to drastic throughput losses. Then, in Section 6.2 we discuss
on-line adaptation of the quantizations as the channel conditions and the number
of users vary. We show how rate levels can be optimized adaptively based on the
relative frequencies with which the prior levels have been used. In Section 6.3, in
the light of our findings in Section 6.1, we investigate an alternative scheduling and
quantization procedure based on a simple modification of fixed access which we
briefly mentioned in the concluding section of Chapter 5. The proposed scheduler
guarantees a minimum inter-access time, and is therefore well suited for real-time
services such as speech. It further generalizes straightforwardly to systems using
multiple orthogonal channels, such as OFDM. In comparison to traditional Round
Robin scheduling, the proposal is seen to yield substantial throughput gains with-
out affecting fairness. Simulations verify that the proposed scheme overcomes the
shortcomings of pure multiuser diversity with only a small throughput degradation.

6.1 Quantization for Maximum Expected Throughput

We consider adaptation of downlink transmission over a fading channel. A quanti-
zation scheme is used in which the mobile terminals predict their SNR, determine
the corresponding attainable transmission rate, and send a quantized value of the
rate to the base station.

In adaptive modulation, the problem of determining SNR thresholds where to
switch from one modulation level to another under bit error rate constraints has
been investigated in many works under different assumptions and with different
optimization criteria (see e.g. Alamouti and Kallel, 1994, Chung and Goldsmith,
2001, Falahati et al., 2004, 2003, Wang et al., 2003b). In the present work we
assume that the receiver calculates the appropriate rate (modulation level) accord-
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ingly based on the predicted SNR and the desired BER.
The quantization scheme then works as follows. Let log2(M+1) be the number

of bits per time slot used for feedback, where M is the number of non-zero levels.
Each bit pattern corresponds to one ofM+1 allowed modulation and coding levels
[payload bits/symbol] q0, q1, . . . , qM (the qm are in general rational numbers). If a
user can receive qm bits per symbol but not qm+1 bits per symbol (where we assume
that 0 = q0 < q1 < q2 . . . < qM ), the user sends the bit pattern corresponding to
qm to the base station. The base station will then transmit to the user who signalled
the highest quantized rate, using that rate, in the next time slot, here assumed to
consist of l symbols. We here assume that the thresholds q0 . . . qM are common to
all users. The option to use individually adjusted thresholds will be discussed in
Section 6.3.

We now consider how the M non-zero rate levels are chosen so that the ex-
pected throughput in the cell is maximized.

Let Am denote the proposition that at least one user can receive at a rate ru

such that ru ≥ qm. Let Bm denote the proposition that at least one user can
transmit at a rate ru such that qm ≤ ru ≤ qm+1. Assuming that the transmitter
sends exclusively to the user with the highest instantaneous transmission rate, the
expected throughput 〈x〉 per transmitted symbol1 can then be written as a function
of the modulation and coding rates {qm} ≡ q0 . . . qm,

〈x({qm})〉 =

M
∑

m=1

qmP (BmĀm+1|I) (6.1)

=

M
∑

m=1

qmP (Bm|Ām+1I)P (Ām+1|I) (6.2)

where (̄·) means logical complement and I denotes any background information
we might have that is relevant to the determination of the joint probability for Bm

and Ām+1. Note that P (BmĀm+1|I) is the probability that there is at least one user
which can receive at rate qm but no user that can receive at rate qm+1 or higher.

If the number M of non-zero rates is fixed, then the optimal rates are obtained
by maximizing (6.2) by adjusting the qm, m = 1 . . .M . If we also want to decide
on the optimal number of rates, then we should maximize the expected throughput
minus the number of bits required for feedback

J({qm},M) = l〈x〉 − U log2(M + 1) (6.3)

1Throughput here is not defined as the number of correctly received bits, but as the number of
received bits at the desired BER.
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which describes the net expected throughput gained from using M non-zero rate
levels (and thus log2(M + 1) bits for feedback per user), where U denotes the
number of users, and l is the number of symbols that make up a time slot. The
optimization of J is now over both qm and M .

For notational convenience, we first derive an expression for 〈x〉 in the case
where all users’ rates are modelled by identical probability distributions. We then
state the general result where users have different rate distributions.

Note that

P (Ām+1|I) =

(∫ qm+1

0
P (ru|I)dru

)U

(6.4)

and

P (Bm|Ām+1I) = 1 − P (ru < qm|ru < qm+1, I)
U

= 1 − (1 − P (ru ≥ qm|ru < qm+1, I))
U

= 1 −
(

1 −
∫ qm+1

qm
P (ru|I)dru

∫ qm+1

0 P (ru|I)dru

)U

. (6.5)

In (6.5), the term within the parentheses describe the probability that a user has a
rate lower than qm conditional on the statement that no user (in particular, user u)
has a higher rate than qm+1

2.
Multiplying (6.4) and (6.5) we obtain the joint pdf

P (BmĀm+1|I) =



1 −
(

1 −
∫ qm+1

qm
P (ru|I)dru

∫ qm+1

0 P (ru|I)dru

)U




×
(∫ qm+1

0
P (ru|I)dru

)U

=

(∫ qm+1

0
P (ru|I)dru

)U

−
(∫ qm+1

0
P (ru|I)dru −

∫ qm+1

qm

P (ru|I)dru
)U

=

(∫ qm+1

0
P (ru|I)dru

)U

−
(∫ qm

0
P (ru|I)dru

)U

. (6.6)

2Note that the conditioning on Ām+1 limits the possible outcomes to below qm+1 and leads to a
re-normalization ensuring that the sum probability becomes unity within the range 0 . . . qm+1.
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From this it is easily seen that the joint pdf with non-identical distributions is

P (BmĀm+1|I) =
U
∏

u=1

∫ qm+1

0
P (ru|I)dru

−
U
∏

u=1

∫ qm

0
P (ru|I)dru , (6.7)

and the expected throughput can be written as

〈x({qm})〉 =
M
∑

m=1

qm

(

U
∏

u=1

∫ qm+1

0
P (ru|I)dru

−
U
∏

u=1

∫ qm

0
P (ru|I)dru

)

. (6.8)

Thus, the optimal rates {qm} for a fixed M can be found by maximizing (6.8).
Maximizing J({qm},M) in (6.3) by adjusting M and {qm} simultaneously

yields the optimal expected total net throughput increase that can be obtained by
multiuser diversity and rate adaptation taking the feedback rate into account. The
maximization generally requires numerical methods. Note that J({qm},M) is
valid for all M > 0, which covers all practical cases since for M = 0 the receiver
cannot even tell the transmitter that it has access to a channel.

Note further that the method presented here can also be used to analyze a given
quantization by calculating the ratio of the expected throughput obtained with the
given quantization and the optimum expected throughput with the same number
of feedback bits for a certain number of users and channels. For any arbitrar-
ily chosen quantization {qm}, we define this ratio as the quantization efficiency,
κ(U,M, {P (ru | I)}),

κ(U,M, {P (ru | I)}) =
〈x({qm})〉

〈x∗〉 (6.9)

where 〈x∗〉 denotes the expected throughput with optimum thresholds. We take κ
as a measure of how efficient a given quantization is.

6.1.1 Implications

Consider the case of a 1-bit quantization under the assumption that all users have
identical but independent rate distributions. In this case the expected throughput
(6.8) simplifies to

〈x〉 = q
(

1 − P (ru < q | I)U
)

, (6.10)
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where q is the single non-zero modulation and coding rate.
We can draw some interesting conclusions about the behavior of a throughput-

maximizing policy already from (6.10). The probability that there is at least one
user who can receive with an arbitrary rate q is

P (q | I) = 1 − P (ru < q | I)U . (6.11)

Now, assume that a user’s transmission rate ru can be modelled by the relation

ru = log2

(

1 +
SNRu

Γu

)

, (6.12)

where ru is the transmission rate3 of the uth user that attains the prescribed BER
at SNR = SNRu, SNRu is the predicted SNR at the receiver of user u, and Γu is a
system-specific value which depends on the desired BER and the type of modula-
tion and coding used. For instance, (6.12) is a good approximation of the attainable
rate using Gray-coded M-QAM modulation (Chung and Goldsmith, 2001) with

Γu = − ln(5BERu)

1.6
. (6.13)

Under the assumption that the SNR pdf for each user is exponential (corre-
sponding to the case of a Rayleigh fading channel) with known mean 〈SNRu〉,

P (SNRu | I) =
1

〈SNRu〉
exp

{

− SNRu

〈SNRu〉

}

, (6.14)

and that the relation between SNR and rate is given by (6.12), the rate pdf P (ru | I)
for each user is obtained by a variable transformation:

P (ru | I) = P (SNRu | I)
∣

∣

∣

∣

dSNRu

dru

∣

∣

∣

∣

= P (SNRu | I)Γu2ru ln 2

=
Γu2ru ln 2

〈SNRu〉
exp

{

−Γu (2ru − 1)

〈SNRu〉

}

. (6.15)

From (6.12) we have that SNRu = Γu(2ru − 1) and consequently dSNRu

dru
=

Γu2ru ln 2. The probability that a user can receive at a rate in the interval q1 <

3Here we treat ru as a continuous variable; in practice it should be rounded off to the nearest
smaller (rational) number specified by the modulation-coding scheme.
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ru < q2 is then

P (q1 < ru < q2 | I) =

∫ q2

q1

P (ru | I)dru

=

∫ q2

q1

Γu2ru ln 2

〈SNRu〉
exp

{

−Γu (2ru − 1)

〈SNRu〉

}

dru

= exp

{

−Γu (2q1 − 1)

〈SNRu〉

}

− exp

{

−Γu (2q2 − 1)

〈SNRu〉

}

. (6.16)

With q1 = 0 as in (6.11), (6.16) becomes

P (ru < q | I) = 1 − exp

{

−Γu (2q − 1)

〈SNRu〉

}

. (6.17)

We can easily find the throughput-maximizing value of q, by inserting (6.17)
in (6.10) and finding the integer q which maximizes (6.10) for a given number of
users U . For U = 30, with mean individual SNR 〈SNRu〉 = 13 dB and Gray-
coded M-QAM with a desired BER of 10−3, i.e. Γu determined by (6.13), we find
the optimum to be q = 4, yielding an expected throughput of 〈x〉 = 3.71 bits per
symbol4. With perfect channel information at the transmitter (i.e. without quanti-
zation) and adaptive modulation supporting any integer positive rate, the expected
throughput

〈x〉 =
∞
∑

k=0

k





(

∫ k+1

0

P (ru|I)dru
)U

−
(

∫ k

0

P (ru|I)dru
)U




becomes 4.09 bits per symbol. The performance drop by going from unlimited
resolution to a 1-bit quantization is thus only 10%!

Compare this to the case of using a traditional fixed-access scheme, in which
users transmit in the same order regardless of channel quality. Then multiuser di-
versity is completely lost, and, under the same assumptions as above, the expected
throughput with perfect channel knowledge becomes 〈x〉 = 〈ru〉 =

∫

ruP (ru |
I)dru ≈ 2.35 bits per symbol. With a 1-bit quantization, the optimally adjusted q
for maximum expected throughput is determined from (6.10) with U = 1. The re-
sult is q = 2, yielding an expected throughput of 〈x〉 = 1.22. Evidently, with fixed
access the expected throughput is approximately halved, from 2.35 bits per symbol
to 1.22 bits per symbol, by a 1-bit quantization as compared with perfect channel
knowledge. Hence, with regard to optimum throughput, it is clear that multiuser
diversity-driven systems do not suffer at all as badly from reduced feedback as does
the traditional fixed-access scheme.

4Remember that each user who is allowed to transmit will use 4 bits/symbol; even if the cor-
responding channel could support more than this, there is no way for the receiver to inform the
transmitter about that.
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Figure 6.1: The expected throughput [bits/symbol] as a function of the used modu-
lation level q for different number of users. Each curve corresponds to an increase
of 8 users from the curve below. The average SNR of each user was 13 dB and
Gray-coded M-QAM was used with a desired bit-error rate of 10−3.

Let us now discuss the sensitivity to erroneously set rate thresholds q. Consider
again a system employing pure multiuser diversity; at each time slot the user with
the highest current rate is served. With a large number of users, the probability
distribution for the rate that will be used may become extremely sharp5; up until
a certain level there will be almost probability 1 that someone can receive at that
rate, but then it suddenly drops down to zero. This drop will be extremely steep,
as illustrated in Figure 6.1 where the expected throughput is plotted as a function
of the chosen level q for different number of users. For instance, consider the same
scenario as in the preceding paragraph. Then the expected throughput with q = 4 is
3.71 bits per symbol. Increasing the threshold to q = 5 however yields an expected
throughput of only 0.81 bits per symbol, a most dramatic performance decrease!
The probability for being able to transmit at a particular rate is almost certainty;
just adding one bit to that rate leads to a probability for transmission of only 16%.
The expected throughput decreases by a factor of 4.56 if the selected threshold
changes by a factor of only 1/4. The throughput degrades to below what can be
expected from using fixed access!

5In particular, this happens when all users have the same mean SNR, e.g. due to slow power
control.
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In practice, the base station has very little information regarding individual
channels and is therefore in the unenviable position of realizing the risk for poten-
tial performance breakdown (to a level well below that of ordinary fixed access)
but having no information as to ensure its avoidance.

Moreover, since a correctly chosen threshold q will rely heavily on the upper
tails of the individual rate distributions, there is a large risk that the throughput-
maximizing q will be set so high that only a very small number of users will ever
be able to receive at that rate. Consider for example a case in which the mean
SNRs of different users range from, say, 6 − 30 dB according to distance from the
base station. The optimum rate threshold will depend almost entirely on the chan-
nels representative for the users near the base station, while the border users will
be completely shut off. Typically, the upper tail of the distribution for attainable
rates is dominated by just one or a few users. With more than 1-bit feedback, some
thresholds would be set rather low as to always guarantee some throughput, but
with only one bit for feedback, the threshold q will be set much higher. The prob-
lem with unfairness will consequently become more pronounced as the amount of
feedback is reduced.

In summary, there are apparent risks associated with using a pure multiuser-
diversity strategy, but on the other hand the system throughput may become very
large if the situations which cause the extreme sensitivity are unlikely to occur in
practice.

There are evidently two ways of tackling these problems. One way is to find
a robust mechanism for determining the optimal rate thresholds adaptively as the
channels and the number of users vary. Another way is to modify the scheduling
policy in some way as to ensure a larger degree of fairness and/or a smaller sen-
sitivity to quantization errors. In the next section we study the former alternative,
and in Section 6.3 we investigate the latter.

6.2 Feedback Adaptation

We now assume that there is only one non-zero rate threshold q, i.e. that we use a
1-bit quantization. In Section 6.4.3 we show that in a single-channel system, using
1-bit feedback often results in a larger net throughput gain (taking into account the
required feedback channel’s bandwidth) than using several bits.

Assume that we have the possibility of changing the rate threshold q on-line at
certain intervals. This requires that the transmitter has the possibility to broadcast
updated rate levels to the receivers, thus incurring some extra signalling in the
downlink. The transmitter can then tune the rate levels based on how often the
different current levels are used. Further, assume that the transmitter can transmit
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at any integer rate (or at any rate from a discrete set of rational numbers) below or
at the maximum of rmax bits per symbol.

The average throughput per symbol, x̄, over an arbitrary time interval given the
current modulation level q, 0 ≤ q ≤ rmax, can be modelled as

x̄ = ρ(q)q + e (6.19)

where ρ(q) is an unknown decreasing function of q defined on the interval 0 ≤
q ≤ rmax, and e is any outstanding variation not explained by ρ(q). The function
ρ(q) must further satisfy the evident property that the average throughput is non-
negative and not larger than the used modulation level, i.e.

0 ≤ ρ(q) ≤ 1 , ∀q . (6.20)

The true non-linear relation between the used modulation level and the cor-
responding throughput varies with the number of users and the properties of the
individual users’ channels. We shall thus have to content ourselves with choosing
a function ρ(q) containing adjustable parameters that allow us to adapt the function
to the data at hand in any given situation. The function should be flexible enough to
fit different data sets, and have as few parameters as possible. Two one-parameter
functions suggest themselves: a straight line parameterized by its slope, and an
exponential parameterized by its exponent. The former alternative is clearly in-
adequate; to be useful it would need an adjustable intercept, and even with one it
could not model the typical behavior with a relatively flat region with ρ(q) near 1
followed by a sharp knee at some critical value of q where the throughput suddenly
drops and then remains nearly 0 (cf. the examples in Section 6.1.1). The latter
alternative is not much better; an exponential can clearly not model the first flat
region, and would need to be augmented with some modification in this region.

In the light of these two examples, it is seen that a two-parameter function
would be more suitable. A model which captures the typical behavior of the
throughput – a flat region with ρ(q) nearly 1, then a knee, followed by a new
flat region with ρ(q) nearly 0 – while satisfying the quantitative requirements is

ρ(q) =
1

2
erfc

(

q − µ

σ

)

(6.21)

where µ and σ are adjustable parameters, determining the location and the sharp-
ness of the knee respectively, and erfc(x) = 1 − 2√

π

∫ x
0 exp

(

−t2
)

dt is the com-
plementary error function. A plot of the model function ρ(q) is given in Figure
6.2.

With knowledge of previously used modulation levels q and their correspond-
ing average throughput per symbol x̄ (obtained from knowledge of the number of
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used in the non-linear re-
gression (6.19) describing the relation between the used modulation level q and
the corresponding average throughput.

times the modulation level could be used in the previous time interval), we can
estimate the parameters of the non-linear regression, µ and σ.

The joint posterior distribution for µ and σ is

P (µ, σ | D, I) ∝ P (D | µ, σ, I)P (µ, σ | I) , (6.22)

where D denotes the observed input-output pairs, (x̄, q), under the M most recent
updating intervals. Using a Gaussian model for the error term e in (6.19), and
assuming that the parameters in ρ(q) has not changed significantly during the N
most recent updating intervals, the likelihood at time t becomes

P (D | µ, σ, I) ∝ exp

{

− 1

2δ2

t
∑

k=t−N+1

(ρ(qk)qk − x̄k)
2

}

, (6.23)

with δ2 denoting a constant variance for the e distribution. We shall take the priors
for µ and σ to be independent and uniform in small intervals, 1 ≤ µ ≤ µmax, and
0.5 ≤ σ ≤ σmax.

The parameters are thus found by maximizing the likelihood in the constrained
parameter space, 1 ≤ µ ≤ µmax, and 0.5 ≤ σ ≤ σmax, or equivalently minimizing
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the corresponding log likelihood,

(µ, σ) = arg min
µ,σ

t
∑

k=t−N+1

(ρ(qk)qk − x̄k)
2 . (6.24)

The minimization is carried out in a numerical search, e.g. using the Nelder-Mead
simplex algorithm (Nelder and Mead, 1965).

Having estimated µ and σ, we shall use the modulation level q which maxi-
mizes (6.19) using the estimated parameter values. This is not exactly equivalent
to maximizing the expected throughput, which would be obtained by averaging
(6.19) over the joint posterior probability distribution for µ and σ. If µ and σ are
reasonably well-determined the difference is however small.

We should also observe another important point; maximizing the (approximate)
expected throughput for the next time interval may result in a succession of choices
of the same modulation level q if the size of the user population remains approxi-
mately constant. In the worst case we would try to estimate µ and σ based only on
one value of q. Obviously, in such a case, the joint likelihood for the parameters
becomes flat, and the accuracy of the estimate is poor. A better strategy would be
to maximize the expected throughput over a longer time horizon, which results in a
balance between short-run performance and information gathering (see e.g. Zell-
ner, 1971). Such a policy is however not analytically tractable. Instead, a simple
constraint on the size of consecutive changes will be used: never allow the mod-
ulation level to increase or decrease by more than one level at a time. Then, in
cases where the same level has been used for quite a while and the uncertainty con-
cerning µ and σ becomes large, we are still guaranteed that a reasonable choice is
made. The mere fact that the same level has been used for a long while indicates
that a large sudden change is unlikely to be correct.

6.3 Diversity-Enhanced Equal Access – Rate Quantiza-
tion and Scheduling with Fairness

We have seen that a disadvantage of using scheduling with the sole objective of
maximizing throughput is that it may lead to an uneven distribution of transmis-
sions. Some users may be completely shut off from transmission for long time
periods. In systems where all users are guaranteed a certain time of access to the
network, this should be avoided. One way of reducing the risk of uneven resource
distributions is to use scheduling with other objectives than pure throughput max-
imization, e.g. by including user-specific priorities that depend on past channel
accesses, bit rate requirements, payment options, etc.
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We here propose the use of a simple method which attains both some multiuser-
diversity gain and a fixed maximum inter-access delay. The method, which was
briefly introduced in the concluding section of Chapter 5, consists of transmitting
at each time slot to the user who can transmit the largest number of bits in that time
slot. In the next time slot the procedure is repeated, but now only the remaining
users are allowed to compete for channel access. After U time slots, all users have
thus accessed the channel, and the process is restarted. This method guarantees a
maximum inter-access time of 2U − 1 time slots.

At the first time slot, the proposed policy employs a pure multiuser-diversity
strategy for U users; in the second slot it does so again but only among U − 1
users, and so on. Thus, over a period of U time slots the policy can be interpreted
as taking full advantage of multiuser diversity among a number of users that is
decreasing by one for every time slot. We would then expect that in terms of
throughput the policy would on average achieve full multiuser diversity gain for a
system of approximately U/2 users6. This is the price that is paid by guaranteeing
equal access. It can however be observed that the multiuser diversity gain increases
more slowly the larger U becomes (c.f. Figure 5.5). Thus, with many users in the
system, the gain obtained with the proposed policy will not be far from that of the
maximum throughput strategy.

We now consider the problem of determining a good quantization for this mod-
ification of round-robin scheduling. We again restrict our study to the 1-bit feed-
back case, a choice which is further discussed in Section 6.4.3. The generalization
to several bits is possible; it follows from modifying (6.29) analogously to the gen-
eral expression (6.8) for strict multiuser diversity .

The scheme consists of determining an individual quantization qu for each user.
Each receiver calculates its quantization based on channel measurements over the
last N time slots and updates the base station every Sth time slot with a new quan-
tization. (Thus a small extra amount of feedback is used in addition to the bit trans-
mitted each slot. The updates will however be made infrequently and the number
of bits required for feeding back the new threshold can be made small, e.g. 1 or
2 bits.) The base station keeps a table with a record for each user containing the
user-specific transmission rates qu, and the record gets updated with a period of S
time slots. (S andN does not have to be equal.) Then, for each time slot, each user
u sends 1-bit feedback to the base station indicating whether it supports the rate qu

or not. When a user u sends a 1 to the base station, it means that it can receive at
rate qu in the next time slot.

6It should be observed that characterizing multiuser-diversity gain only as a function of the num-
ber of users requires that all users have identical and independent rate distributions. In general, the
diversity gain should be characterized as the ratio of the expected throughput of the scheduling policy
and that of round-robin scheduling.
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An advantage of this scheme compared to the ones studied in Section 6.1 and
Section 6.2 is that the individual thresholds will be determined locally by the mo-
bile terminals, where more channel information is available for the calculation.

Assume that the system can transmit at any of K different non-zero rates,
r1 . . . rK . Let them be ordered by increasing size, so that 0 < r1 < r2 . . . < rK .
Over a period of the N most recent time slots, each receiver measures the SNR
every time slot and keeps a record of the number of slots, ni, that it was possible
to receive at the rate ri but not at the higher rate ri+1. The probability that the
channel can support rate ri on a future time slot is then calculated based on the N
most recent measurements. Assuming that the channel is ’stationary’7 during the
last N plus the next S time slots, the probability, pi, that the channel supports rate
ri at a future time slot is

pi =
ni + 1

N +K
, (6.25)

which is the same general version of Laplace’s rule of succession with K possible
outcomes that we derived and used in Section 2.6 (the same derivation with many
interesting historical comments can be found in (Jaynes, 2003), Ch. 18).

Consider the determination of the rate threshold qu for a particular user u. A
simple approach would be to maximize

quP (ru > qu | I) , (6.26)

but note that this expression does not take into account the fact that a user on aver-
age competes for access over more than one time slot. In effect, the expression does
not take full advantage of the multiuser diversity that is utilized by the proposed
scheduling policy. If the user would know the number of slots, nu (1 ≤ nu ≤ U ),
that this user has the highest rate of all users, then he should use the qu that maxi-
mizes his expected throughput per received symbol in that time slot that u obtains
access,

〈xu〉 = qu (1 − P (ru < qu | I)nu) , (6.27)

where 1 − P (ru < qu | I)nu is the probability that the rate ru is larger than qu at
least one out of nu time slots8.

In practice however, nu is unknown and we must assign a probability for
nu which represents our uncertainty concerning its actual value. The expected

7When we say that a channel is stationary over a certain time we mean simply that the causal
processes underlying the main channel variations (i.e. the geography and the velocity of the receiver)
do not change significantly over that time period.

8A useful analogy is to consider the probability for obtaining at least one 5, say, or higher when
throwing a regular die a number of times. As the number of trials increase, the probability increases
correspondingly.
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throughput is then obtained by multiplying (6.27) by P (nu | I) and then integrat-
ing out nu as a nuisance parameter.

As no value of nu within the range 1 . . . U is more likely than any other the
principle of indifference applies, and we assign a uniform probability distribution
to nu:

P (nu | I) =
1

U
. (6.28)

The expected throughput with unknown nu thus becomes

〈xu〉 = qu
1

U

U
∑

nu=1

(1 − P (ru < qu | I)nu)

= qu

(

1 − 1

U

U
∑

nu=1

P (ru < qu | I)nu

)

= qu

(

1 − P (ru < qu | I)U+1 − P (ru < qu | I)
U (P (ru < qu | I) − 1)

)

, (6.29)

where the sum on the second line is a geometric progression (eqn. 0.112 in Grad-
shteyn and Ryzhik, 2000) which yields the final equality. Note that P (ru < qu | I)
is determined from

P (ru < qu | I) =
∑

ru<qu

P (ru | I) , (6.30)

where P (ru | I) is the probability distribution (6.25) for the individual rates ru.
Each mobile terminal thus selects the qu which maximizes its expected through-

put per received symbol (6.29). The maximum is found by a one-dimensional nu-
merical search over K integers with very low computational demands.

Notice that the rate probabilities and the rate thresholds are based on the N
most recent channel measurements. The number of time slots to use for channel
measurements, N , is consequently of importance. Typically, N and S would be
chosen as the same number of slots, and the number should be large enough to
cover a number of fading dips and highs, i.e. N should be on the time scale of
shadow fading rather than on that of fast fading.

The proposed scheduling and quantization policy can straightforwardly be used
in a system with multiple orthogonal channels, such as OFDM. Now, the service
guarantee requires that each user obtain one channel access on each channel over
a time span of U time slots. The scheduler is then run in parallel on each channel,
and each user has a single rate threshold that is used on all channels.
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Figure 6.3: The quantization efficiency of a 1-bit adaptation using the procedure
in Section 6.2 in a system where all users have exponentially distributed SNR with
uniformly distributed mean SNR. The dashed line corresponds to a quantization
optimized for the 16-user case with perfect knowledge of channel parameters.

6.4 Examples and Simulations

6.4.1 On-line adaptation

It is clear that the on-line adjustment procedure given in Section 6.2 will not in
general give as good performance as the optimal procedure in Section 6.1 with
detailed knowledge of the number of users and their individual channel pdf’s. We
therefore need to analyze the performance in a controlled experiment where one
can compare the evolution of the adaptive solution and see whether it converges to
the better informed solution.

Letting the number of users increase from U = 2 to U = 30 by additions of 4
users every 10th time the rate level was updated, we tested the adaptive quantizer
on a population in which each user had exponentially distributed SNR with average
SNR generated from a uniform distribution between 0 and 11.76, i.e below 15 dB.
The Rayleigh distributions for the channel gains were independent among users
with no correlation between adjacent time slots. Only integer rate levels in the
range [1...8] were allowed. The estimation of µ and σ was based on the M = 5
most recent pairs of q, and x̄ was obtained from x̄ = fq where f is the proportion
of time slots that a receiver signaled the possibility of receiving at that rate.
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Figure 6.4: The quantization efficiency of a 1-bit adaptation using the procedure
in Section 6.2 in a system where all users have exponentially distributed SNR with
the same mean SNR. The dashed line corresponds to a 16-user optimal quantiza-
tion with perfect knowledge of channel parameters.

The test was run by choosing an initial quantization level qinit = rmax/2 = 4
and generating the frequencies with which rate qinit would be used according to
(6.6) and the rate distribution (6.15) derived from the exponential SNR distribution.
The gap factor in the rate-SNR relation was set to Γ = 2. The rate level updates
were assumed to take place with long intervals under stationary conditions, so that
the usage frequencies f were equal to the rate probabilities used by the random
number generator in the simulation of the next time slot. In order to be able to
observe any oscillations or slow convergence in the adaptation law, 10 rate level
updates were carried out in succession before increasing the number of users.

The quantization efficiency (6.9), i.e. the ratio of the expected throughput with
the best q possible and the expected throughput with the level determined from
adaptation, is shown in Figure 6.3. For comparison, the efficiency of the opti-
mal 16-user quantization is also presented. This gives the highest attainable per-
formance for 16 users, but is an unrealistic ideal as it assumes knowledge of all
channel statistics. We however show this to see how close the adaptive solution
comes to the optimum, and also to see how the 16-user optimum performs for other
population sizes. In this simulation, the first two users had relatively low mean
SNR, which results in zero throughput for the 16-user optimal case. The adaptive
scheme, on the other hand, generally achieves a high quantization efficiency. For
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the 6-user case we see that the convergence is somewhat slow. The reason is that
the two first users happened to experience bad channels; when increasing from 2
to 6 users, the optimal q increased from 3 to 6 bits per symbol.

In Section 6.1.1 we noted that the pure multiuser-diversity strategy may some-
times lead to drastic performance drops when the users have identical independent
rate distributions and the details of the distributions are unknown. The proposed
adaptation law is bound to suffer from this risk. In order to quantify what may
happen in an extreme case, a simulation was set up in which all users had exponen-
tially distributed SNR with mean SNR 13 dB, yielding the rate distribution (6.15)
with Γ given by (6.13) and desired BER 10−3. Figure 6.4 shows the quantization
efficiency (6.9) of the adaptation and a 16-user optimal quantization as the num-
ber of users was gradually increased. It can be seen that the adaptive quantizer
actually avoids using a too large q when U is large (as otherwise the quantization
efficiency would be extremely low). In the case of few users, there are occasional
mistakes, but the overall performance is very high. Obviously, in some cases the
proposed adaptive quantizer will occasionally try a too large q with an inevitable
performance loss. This difficulty is inherent in multiuser diversity due to its ex-
treme sensitivity for too large thresholds. Any adaptation mechanism must try to
explore possible improvements from increasing q and thus balance this with the
risk of performance loss.

6.4.2 Diversity-Enhanced Equal Access

In this section we aim to investigate to what extent the scheme proposed in Section
6.3 does indeed overcome the problems of fixed access and those associated with
the pure multiuser-diversity policy.

A set of simulations was carried out in which 16 users were spread out uni-
formly over the cell radius9, and where each individual user’s SNR was exponen-
tially distributed with a fixed mean proportional to d−2 where d is the distance to
the base station. The proportionality constant was chosen so that the mean SNR of
the 16 users ranged from 30 dB down to 6 dB. The rate-SNR relation (6.12) was
used with Γu = 2.

In order to test the scheduling and quantization policy under the circumstances
that it was designed for, the rate distributions were assumed to be stationary and the
system assumed to have been started in an infinite past (ensuring that the probabil-
ities P (ru | I) were set ’correctly’ for all users). The simulation was run for 1600
time slots, each consisting of only one symbol, and the reported results are aver-

9Note that this set-up is not equivalent to a uniform user distribution over the cell area, but was
chosen for simplicity. The results are however representative also for other user distributions, as
briefly mentioned in the end of the section.
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Figure 6.5: The optimized rate thresholds for 16 users having exponentially dis-
tributed SNR with mean SNR ranging from 30 − 6 dB. The users are ordered by
decreasing mean SNR. The dark color refers to the optimum fixed-access thresh-
olds, while the light color refers to the optimum thresholds using (6.29).

ages from 100 simulation runs. In order to make a fair comparison, the throughput
was set to zero in time slots when none of the remaining users could transmit at
their rate threshold. In reality, one would obviously choose to transmit to another
user who has already received service in such cases10.

Figure 6.5 shows the rate thresholds obtained from maximizing (6.29) and the
thresholds obtained from maximizing (6.26), i.e. the optimum quantization for a
fixed access scheme that does not utilize multiuser diversity. The general tendency
in using (6.29) is, as expected, to set the levels somewhat higher since a user typ-
ically competes for more than one time slot, thereby increasing his chances for
obtaining a higher rate at least once in the U slots.

In Figure 6.6, the total individual throughput obtained from using the proposed
scheduling and quantization policy is plotted and compared to the throughput ob-
tained by using the same scheduling policy but with the rate thresholds obtained
from (6.26). It can be seen that almost every user obtains increased throughput by
choosing the more aggressive quantization strategy. The total throughput summed
over all users increases by approximately 27% by using the higher rate thresholds.

10With such a mechanism, the proposed scheme would have an even bigger performance advantage
than the present simulations suggest.
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Figure 6.6: The obtained individual throughput for 16 users using rate thresholds
from Figure 6.5. The users are ordered by decreasing mean SNR. The dark color
refers to the optimum fixed-access thresholds, while the light color refers to the
optimum thresholds using (6.29).

Figure 6.7 shows the individual throughput for each user using the proposed
1-bit quantization compared to the maximum attainable when having unquantized
channel knowledge and a continuum of possible rates. We see that the performance
drop is larger for the users with low average SNR. The total throughput increase of
the unquantized case is 24%.

In order to see how the use of individual thresholds affect the performance,
we also tested using a common quantization level optimized for the median user.
With individually optimized thresholds using (6.29), the throughput increase was
approximately 80% compared to this case.

The multiuser-diversity gain was quantified by comparing the obtained through-
put to a fixed-access schedule with a common rate threshold optimized for the me-
dian user. The throughput increase was now 168%. In comparison to a fixed-access
scheme with individually and for fixed-access optimally adjusted rate thresholds,
the throughput increase was 90%.

Under somewhat different channel assumptions, with U = 16 users having
identical but independent rate distributions (6.15) with mean SNR 15 dB and Γu =
2, the performance gain of using the proposed scheduling and quantization pol-
icy was about 25% as compared to using the same scheduling policy but with the
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Figure 6.7: The obtained individual throughput for 16 users using rate thresholds
from Figure 6.5 in light color, and in dark color that of using unquantized and un-
truncated rates (i.e. assuming a continuum of available rates) in the same setting.
The users are ordered by decreasing mean SNR.

rate thresholds obtained from (6.26). The optimum rate thresholds were found to
be qu = 4 for all users. In this scenario, it is possible to determine how much
throughput is lost by using the proposed scheme in comparison to using a pure
multiuser-diversity strategy. A numerical search found the optimum common rate
threshold11 for pure multiuser-diversity to be q = 5. In order to carry out a fair
comparison between the two approaches we let our proposed policy be augmented
by a mechanism for avoiding transmitting zero bits in the time slots when none of
the remaining users can reach their rate threshold. In such time slots, the policy
instead transmits to an arbitrarily chosen user with non-zero rate. The throughput
increase from using the pure multiuser-diversity strategy with the optimum quanti-
zation is then just below 25%, as expected.

In the previous section we conjectured that the proposed scheduling and quan-
tization policy would be roughly equivalent to a pure multiuser-diversity strategy
with U/2 users. With 8 users, the optimum q for pure multiuser diversity in the
current simulation scenario is q = 4, which is also the individual optimum for the
proposed policy for 16 users. As predicted, there is no throughput difference.

11Note that in this case, since all users have identical independent rate distributions, nothing would
be gained by having individual rate thresholds. This applies to both strategies.
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6.4.3 The number of feedback bits

After introducing theM -level selection problem, we have focused on the case with
1-bit feedback. Here, we show that this is indeed a proper choice in many cases
when strict multiuser diversity is used. The optimum number of levels is obtained
by maximizing the net throughput gain (6.3) with respect to M and {qm}.

Denote the expected downlink throughput per symbol for an arbitrary choice
of log2(M + 1) 〈x〉log2(M+1). An increase from 1 bit of feedback to 2 bits is then
worthwhile according to (6.3) only if

l〈x〉2 − 2U > l〈x〉1 − U

⇔ 〈x〉2 − 〈x〉1 >
U

l
, (6.31)

i.e. if the expected downlink throughput increases by at least U/l bits per symbol
(where l is the number of symbols per time slot). Typically, l is chosen as the num-
ber of symbols that the channel is expected to be approximately constant, which
e.g. depends on expected vehicle speeds and the channel bandwidth. If l ≈ U ,
then it would be worthwhile to use 2 bits instead of 1 only if the expected down-
link throughput increases by at least 1 bit per symbol. But by utilizing multiuser
diversity we have seen that the throughput decrease by using only 1-bit feedback
may be about 10% for large U as compared to unlimited resolution. Thus, in order
to use 2 feedback bits instead of 1, we would at the very least require the expected
downlink throughput for a 1-bit quantization to be a remarkable 10 bits per symbol.

Note that this however assumes the use of strict multiuser diversity and that
the number of users is approximately the same as the slot length in symbols. It
may however be advantageous to use more than 1 bit for feedback when the slot
length l is very large compared to the number of users or when the throughput gain
from increasing to 2 feedback bits is higher than the 10% assumed above. For
instance, using a modified scheduler, such as the one proposed in Section 6.3, the
simulations in Section 6.4.2 suggest that there is a larger gain from increasing to 2
bits as compared to strict multiuser diversity.

6.5 Conclusions

We have seen that in order to achieve a certain fraction of the potential performance
gain from using adaptive modulation and coding, taking advantage of multiuser
diversity leads to lower feedback requirements than using a fixed schedule. In ad-
dition, reducing the number of feedback bits does not affect throughput nearly as
much as for the traditional single-user perspective. This illustrates why traditional
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adaptive modulation with many modulation levels substantially increases the per-
formance of non-scheduling based systems. With only one non-zero transmission
rate (i.e. no adaptive modulation), the actual bit rate reduces roughly to half of
what could be obtained without quantization. With scheduling based on channel
quality, we have the advantage of higher possible throughput as evidenced by the
scheduling gain of the unquantized case, and just as importantly, less degradation
from the unquantized theoretical throughput due to limited amounts of feedback.

However, the theoretical advantages of multiuser diversity were seen to suffer
from two distinct difficulties. First, unfairness generally increases when the num-
ber of feedback bits is reduced and users have different rate distributions. Second,
the theoretical throughput advantage has a critical proviso; the rate level must not
be set too high. It was seen that if the level is chosen just one bit over the opti-
mal value, in cases where users have identical and independent rate distributions,
the throughput may drop to below that of fixed access. The risk of sudden drastic
performance drops is inevitable in practice, as rate levels must be adjusted without
complete channel information.

In cases where this risk is considered small and unfairness is acceptable, a
practical scheme for threshold selection is required. In Section 6.2 we developed
an adaptive scheme which was seen to result in high quantization efficiency in
simulations.

For systems where unfairness and the potential performance drops of pure mul-
tiuser diversity are unacceptable, we proposed a multiuser diversity-enhanced ver-
sion of fixed access, guaranteeing that all users get equal channel access in a time
span of U slots, thereby facilitating real-time services. The scheme was seen to
yield a multiuser-diversity gain that approximately equals that obtained by a strict
multiuser-diversity strategy with U/2 users. Furthermore, the proposed strategy
avoids the quantization sensitivity of multiuser diversity by decentralizing the de-
termination of rate thresholds.

We also saw that with strict multiuser diversity, unless the number of symbols
that constitute a time slot is much larger than the number of active users in the cell,
using 2 bits for feedback results in a net throughput loss in comparison to using
just 1 bit.

It should finally be pointed out that both the proposed schemes could be used
simultaneously in a cellular system using two traffic classes; one with guaranteed
channel access and another providing best-effort service with pure multiuser diver-
sity. Such a system would be a hybrid between today’s wide-area coverage cellular
networks and the hot-spot info-station scenario as suggested e.g. by Frenkiel et al.
(2000).
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Chapter 7
Inter-Cell Scheduling, Access
Control, and Hand-Overs

A CRITICAL aspect in realizing a cost-efficient mobile communications net-
work is to utilize the spectral resources as efficiently as possible. Anticipat-

ing that a substantial part of the traffic in current and coming mobile networks will
stem from data applications, the traffic load of each user will fluctuate much more
strongly than for traditional voice services. Accordingly, as the aggregate demand
for transmission capacity in an area becomes more unpredictable, it becomes in-
creasingly important to allow dynamic reallocation of the supplies of transmission
resources to areas with currently high demands.

At the same time, each user experiences shadow fading, fast fading and distance-
related attenuation of the transmitted signal. Thus, both supply and demand for
transmission capacity is subject to a high degree of local variability. From a gen-
eral standpoint of optimal resource utilization, variations in demand and supply are
the driving forces which make dynamic optimization advantageous. In contrast, if
we fix the resource partitioning for all time, the variations are a nuisance which
degrades the resource efficiency.

In this chapter we will use the mentioned sources of variability as a means to
optimize spectral efficiency in the specific case of partitioning down-link transmis-
sion channels among interfering and non-interfering sectors in a cellular network.
The object is to maximize the expected total throughput in the considered area,
while using probability theory to explicitly take the inherent uncertainty concern-
ing individual users’ channels and traffic loads into account. The formulation,
detailed in Section 7.1, is also intended to serve as a unifying basis for a variety
of resource management problems with a common aim to optimize capacity usage.

177
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We outline how this objective can be met for hand-overs and admission control in
Section 7.4.

It can be observed that the topics of this chapter are related to that of schedul-
ing users within a sector according to channel quality and traffic requirements. This
subject is discussed in detail in Chapter 5 and Chapter 6. In discussing practical
aspects of the framework derived in this chapter, we will often assume that mul-
tiuser diversity is exploited within each sector. The derivations, on the other hand,
do not presume so.

There is an extensive literature in the related areas of dynamic spectrum par-
titioning, hand-overs, and admission control for mobile communications. As in-
dicated by Katzela and Naghshineh (1996) and Verdone and Zanella (2002), for
the most part the solutions, either explicitly or implicitly, assume voice traffic, but
more recently (Chuang and Sollenberger, 1998, Li et al., 2002, Qiu et al., 2001,
Zhang et al., 2002) attempts have been made to meet the anticipated requirements
of data traffic. Burstiness, the size of fluctuations, and its unpredictability make
resource management for data traffic a challenging problem. Critical aspects that
have not been sufficiently investigated in previous studies include uncertain traffic
and uncertain transmission capacities.

Further, allocation policies which maximize the aggregate throughput within a
group of sectors and take transmission buffers into account have not been reported
previously. Our study does not place a lot of weight on fairness and quality of ser-
vice, although we briefly discuss these issues in connection with admission control.
Instead, we set out to find a solution which tells us how to optimally partition a fi-
nite set of transmission resources under realistic levels of uncertainty. Analyzing
its behavior could then help in designing algorithms aimed at providing certain
quality-of-service levels without sacrificing too much capacity.

In the following we will assume (without loss of generality) that the consid-
ered network uses OFDM with each frequency bin being slotted in time. The set
of transmission resources to be partitioned then consists of time-frequency slots
according to Figure 7.1.

7.1 Partitioning Bandwidth for Maximum Expected Thro-
ughput

Let us first investigate the problem of partitioning bandwidth dynamically between
two sectors which cause high interference in the border zone between the two sec-
tors. Following this solution, we will see how to extend the discussion to multiple
sectors.

Consider the problem of distributingN time-frequency slots among two down-
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Figure 7.1: The set of transmission resources consists of N = T × F time-
frequency slots.

link sectors and a subarea within which a user experiences unacceptably high in-
terference from the sector which is not transmitting to the specific user. A situation
like this is depicted in Figure 7.2, where the similar case of three interfering sectors
is also shown. The same situation arises on the border between two sectors lying
side-by-side and belonging to the same base station. In all positions apart from the
high-interference area, the interference from the other sector is assumed accept-
able. Acceptable interference is here taken to mean that the system capacity be-
comes higher if the same channels are used simultaneously in the low-interference
areas than it would be if the total set of channels are divided into two mutually
exclusive subsets of channels, one for use in one area, one for use in the other.
This means that the geographical partitioning will typically remain more or less
the same irrespective of the exact bandwidth partitioning.

N3 time frequency slots are allocated to the high-interference zone (the black
area in Figure 7.2 (a) which we henceforth denote by zone 3), and the remaining
N1 = N2 = N − N3 slots are used simultaneously by base stations 1 and 2
respectively in the non-disturbed (shaded) areas (which we denote by zone 1 and
2).

In the high-interference zone, a number of transmitter options are possible.
The simplest options are exclusive transmission by the nearest base station or joint
transmission using macro diversity from all base stations. In the present study we
do not consider the macro diversity approach any further, but note that the follow-
ing problem definition is compatible with any choice of transmission strategy in
the high-interference zone.

The aim in this chapter is to find a resource partitioning which maximizes the
system throughput, which we shall define as the capacity, within the considered
area. The global optimum over the entire network would in principle involve a
global coordination, which is not tractable, but an approximation to this end can be
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obtained by using a succession of nearest-neighbor partitionings.
The partitioning is likely to be carried out at regular intervals over which the

user population in each area does not change significantly. Over the coming period
for which the partitioning is to be optimized, the traffic generated by the totality of
the respective user populations is incompletely known, as is the exact transmission
capacity. Hence, we must first assign a loss function L(N3, θj) describing the
’loss’ incurred to the system on making decision N3 should θj turn out to be the
true ’state of nature’ in terms of supply and demand for transmission capacity.
Then, having decided on a loss function, we must find probability distributions
for the remaining uncertainty, which in this case resides in the actual supply and
demand for transmission capacity. The optimal partition shall in this work be taken
as the solution found by adjusting N3 so that the expected loss, which we denote
by 〈L〉, is minimized. The loss function describes the amount of data remaining in
the transmission buffers. As has been mentioned in previous chapters, minimizing
the buffer levels is equivalent to maximizing the throughput in the considered area.

The criterion to maximize the expected capacity may be subject to scrutiny
in some applications. Depending e.g. on the network operator’s business model,
certain events that lie far out in the tails of the probability distributions may in
some cases be very costly. In those cases, another criterion should be developed,
e.g. one which is more sensitive to such extreme events, i.e. a loss which is more
sharply curved than the absolute value of the queue sizes. Note however that the
main contribution of this work is not the actual partitioning strategies, but rather
the resulting probability distributions and expectations, which are of a more general
interest, and equally valid for uses requiring other criteria.

Let Ni denote the number of time-frequency slots allocated to each zone i as
defined above, and remember that N1 = N2 = N − N3, reflecting that the same
slots can be reused in the non-disturbed zones. In the following sections, we will
use the term frame to describe a set of time-frequency slots that are allocated to a
zone. The entire scheduling frame is then theN time-frequency slots that are being
partitioned.

Let Si denote the current number of bits in the transmission buffers correspond-
ing to zone i, and let ci represent the effective transmission rate per time-frequency
slot in the i:th zone. Notice that we use the term effective rate to emphasize that ci

represents the transmission rate that is actually used, which in a system using mul-
tiuser diversity may be significantly larger than the average of all users’ individual
transmission rates (see e.g. Chapter 5).

Further, let ni denote the number of bits that will enter the i:th buffer1 over the

1Formally, we here consider one buffer per zone containing the data for all users in that zone, but
in practice this buffer is typically made up of individual buffers for each user, just as in Chapter 5.
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(a) (b)

1 1

2 2

3

Figure 7.2: The black areas denote the high-interference area where N3 time fre-
quency slots are allocated. The remaining slots are used simultaneously in the
shaded areas, where the interference is acceptably low. Figure (a) shows two in-
terfering 60 degree sectors, and (b) three-sector coordination using 120 degree
sectors.

coming scheduled time interval of T time slots.
Maximizing the throughput is equivalent to minimizing the total amounts of

data remaining in the transmission buffers for each of the three areas after T time
slots. With the given definitions, we then formulate the corresponding loss function
as

L(N3, {ci, ni}) = g (S1 + n1 − (N −N3)c1) +

+g (S2 + n2 − (N −N3)c2) + g (S3 + n3 −N3c3) , (7.1)

where g(x) = x if x > 0, else g(x) = 0. Each of the three terms in the loss
function describes the number of bits remaining in the transmission buffers for the
respective zones, i.e. the sum of the data in stock, Si, and the influx, ni, over
the coming period, minus the number of bits to be transmitted, Nici. We take
each ci to be fluctuating according to different probability distributions for each
ci. Notice that the transmission rate ci is here assumed to be fixed within each
frame of scheduled slots 2, which may seem to be a severe restriction. However,
even if the transmission rates vary within a frame, the resulting expression will
still be entirely correct provided that the partition allocates bandwidth such that
each zone has more data in its buffers than that zone’s available transmission rate.

2Otherwise, we would need to replace the single ci with N terms representing individual time-
frequency slots, as well as a decision variable for each slot. The corresponding optimal allocation
would require calculation of the probability for each possible frame of transmission rates.
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The reason is that then the non-linearities due to g(·) disappear and the expectation
calculated from the aggregate ci becomes equal to that of the sum of sub-divided
ci. That would normally be the case. In all other cases, however, the partition may
be suboptimal.

In the following section we determine the probability distributions for ni, the
incoming amounts of data, and ci, the effective transmission rate, and then in Sec-
tion 7.3 we determine the expectation of the loss (7.1) and find the solution which
maximizes the expected capacity. Following this, in Section 7.4 we extend the so-
lution to several sectors, and show that the derived expected loss unifies a number
of resource allocation problems, where we emphasize hand-overs and admission
control.

7.2 Derivations of Supply and Demand Distributions

7.2.1 The demand distribution

The distribution for the total transmission capacity demand in each zone is denoted
by P (ni|I) given information I . The background information I includes that the
total demand in the area in terms of bits per T time slots, the scheduled horizon, is
a sum of the influxes into each user’s transmission buffer for each time slot, i.e.

ni =

Ui
∑

u=1

T
∑

t=1

nut

where Ui is the number of users in the i:th zone. If we regard the data streams as
originating from some type of best-effort data service such as the Internet, each nut

can be regarded as an independent unknown variable which taken together with the
fact that Ui×T is a large number (most likely> 100), makes the resulting distribu-
tion tend into a Gaussian shape by a central limit theorem argument. In Chapter 5
each individual user’s influx was modelled by a negative exponential distribution
according to the maximum entropy principle subject to known average influxes.
A sum of such variables can be shown in computer simulations to converge to a
Gaussian distribution with reasonable accuracy even for a small (< 10) number of
terms, giving another justification for the choice of a Gaussian model.

In summary, we model the total transmission capacity demand in each zone i
in terms of number of bits, ni, required over the scheduling horizon as

P (ni|I) =
1√
2πσi

exp

(

1

2σ2
i

(ni − 〈ni〉)2
)

, (7.2)

with 〈ni〉 and σ2
i denoting the mean and the variance, respectively, as determined

by the base station serving zone i.
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7.2.2 The supply distribution

We now determine the probability distribution for the effective transmission rates
ci of each zone i. Suppose that the transmission rate for each slot can assume only
a limited set of values, ci = ci,1...ci,K and that the base station monitors and stores
the relative frequencies with which the different ci,k are used in each zone. Recall
from Chapter 6 that in a system employing multiuser diversity, the distribution of
relative frequencies with which the ci,k are used depend on the number of users
currently in the area3. Therefore, the relative frequencies for the different ci,k
should be monitored and stored as a function of population size.

Assume that according to these records, the i:th zone has until now served
mi,k time-frequency slots at the transmission rate ci,k. The total number Mi of
monitored slots can then be written as

Mi =
K
∑

k=1

mi,k ,

where K is the number of rate levels supported by the base station.
We are now interested in determining the probability for serving ri,k time-

frequency slots at rate ci,k in the next frame. Assuming that the underlying causal
mechanisms which determine the transmission rates do not change significantly
with time, it follows that the relative frequencies should remain constant as well,
and we take the probability for each ci,k as the expectation of the relative frequen-
cies with which it occurs.

We seek to evaluate

P (fi,1...fi,K |mi,1...mi,KI) =

=
P (mi,1...mi,K |fi,1...fi,KI)P (fi,1...fi,K |I)

P (mi,1...mi,K |I)
(7.4)

where
fi,k =

ri,k
∑K

j=1 ri,j
(7.5)

is the relative frequency with which ci,k will be used, and I is the background
information stated above. This problem was solved in Section 2.6, where we un-
der similar circumstances derived the probability for the occurrence of an event

3The probability that there is at least one user who can transmit at rate ci,k but no user that can
transmit at the nearest larger rate ci,k+1 is, according to (6.7),

Ui
∏

u=1

∫ ci,k+1

0

P (ru|I)dru −

Ui
∏

u=1

∫ ci,k

0

P (ru|I)dru , (7.3)

where P (ru|I) is the probability distribution for user u:s rate.
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given only a record of its previous number of occurrences. The solution was the
generalized rule of succession due to Laplace.

The probability for transmitting at a certain rate ci,k in an ’average’ time-
frequency slot during the next scheduled frame is then given by

pci,k

4
= P (ci,k|mi,1...mi,KI) =

mi,k + 1

Mi +K
. (7.6)

For an interpretation and a discussion on common-sense correspondences for
this probability assignment, see Section 2.6.

7.3 Solution to the Resource Partitioning Problem

Having derived the probability distributions for the supply and demand in each
area, we now determine the expectation of the loss (7.1). Under the condition that
the influxes ni and the effective transmission rates ci,k are logically independent,
we have

〈L〉 =

K
∑

k=1

pc1,k

∫ ∞

−∞

P (n1|I)g(S1 + n1 − (N −N3)c1,k)dn1

+

K
∑

k=1

pc2,k

∫ ∞

−∞

P (n2|I)g(S2 + n2 − (N −N3)c2,k)dn2

+

K
∑

k=1

pc3,k

∫ ∞

−∞

P (n3|I)g(S3 + n3 −N3c3,k)dn3 . (7.7)

Here we have used the more compact notation pci,k
= P (ci,k|mi,1...mi,KI)

introduced in (7.6). Integrals of the type in (7.7) are evaluated in Appendix A.
Adjusting the lower integration limit due to g(·), we find that

∫ ∞

−∞
P (ni|I)g(Si + ni −Nici,k)dni =

=

∫ ∞

Nici,k−Si

1√
2πσi

exp

(

1

2σ2
i

(ni − 〈ni〉)2
)

×

× (Si + ni −Nici,k)dni

=
1

2

[

√

2

π
σi exp

(

− α2
i

2σ2
i

)

+ αi

(

erf
(

αi√
2σi

)

− 1

)

]

(7.8)

where
αi = Nici,k − Si − 〈ni〉 . (7.9)
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The resulting expected loss is

〈L〉 =
3
∑

i=1

K
∑

k=1

pci,k

1

2

[

√

2

π
σi exp

(

− α2
i

2σ2
i

)

+ αi

(

erf
(

αi√
2σi

)

− 1

)]

, (7.10)

with pci,k
defined in (7.6) and αi defined in (7.9).

In Appendix 7.A we prove the following theorem which gives the optimum
partition between the zones when the Ni are allowed to be continuous. We shall
take the discrete solution to be the integer Ni closest to the continuous optimum.

Theorem 7.1 The partition N3 which minimizes the expected buffer levels (7.10)
is obtained by solving the equation

K
∑

k=1

(

pc3,k
c3,kerfc

(

α3√
2σ3

)

−
2
∑

i=1

pci,k
ci,kerfc

(

αi√
2σi

))

= 0

(7.11)

with

αi = Nici,k − Si − 〈ni〉 (7.12)

where it should be remembered that N1 = N2 = N −N3.

The term erfc
(

αi√
2σi

)

in (7.11) is twice the probability that ni is larger than
Nici,k − Si, i.e. it is proportional to the probability that there is a non-zero loss
contribution from zone i. Assuming that the transmission rates ci are known, the
optimum partition (7.11) thus balances the transmission rate in an average time-
frequency slot multiplied by the probability for a non-zero loss contribution from
the high-interference zone with the sum of the corresponding quantity for the two
low-interference zones. Likewise, when the ci are uncertain, the optimum is ob-
tained by balancing the expectation over pci

of these quantities.
The balance equation (7.11) does not admit a general solution in closed form

but can be solved numerically. The left hand side of (7.11) is either monotoni-
cally increasing or monotonically decreasing as a function of N1 = N2, and the
optimum can be found in a few iterations. The computational complexity should
therefore not limit the potential use of this scheduler.
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7.4 Extensions

7.4.1 Several sectors

From the balance equation to be solved for optimal local partitioning (7.11) the
generalization to l sectors with one common zone of high interference is immedi-
ate:

K
∑

k=1

(

pc3,k
c3,kerfc

(

α3√
2σ3

)

−
l
∑

i=1

pci,k
ci,kerfc

(

αi√
2σi

))

= 0 .

(7.13)

A global optimization for all sectors in a network in the general case of in-
terference between several sectors is not tractable due to the interdependence of
all partitions. But if we assume that the sectors are mainly disturbed by the three
neighboring sectors (the one standing opposite to it, and the nearest sectors to the
left and to the right) then we can make a sequential partitioning with one neighbor
at a time.

7.4.2 Hand-overs

When a user requests a hand-over from one zone or sector to another, the maximum
capacity criterion translates into recalculating the partitioning according to (7.11)
with the user transferred to the zone requested. If the optimal partition yields a
higher expected loss (7.10) than the optimal partition with the user remaining in the
current zone, then the hand-over request is rejected, otherwise it is granted. One
may also use a less throughput-oriented scheme by allowing a hand-over request
if the optimal new partition gives an expected loss that is below a given bound.
Such a bound may be calculated by weighing the cost of decreased throughput
with the cost of lost connections. Using (7.10) it is possible to explicitly calculate
the performance loss from service guarantees and decide on acceptable bounds .

There are two important factors when recalculating the partitioning with the
user changing zones. First, the aggregate buffer contents, influx expectations, and
influx variances must be adjusted in each zone by adding/subtracting the respective
quantities of that user in the new/old zone.

Secondly, the transmission rate distributions pci,k
must also change accord-

ingly. If the network takes advantage of multiuser diversity, the average transmis-
sion rate increases with the number of users, and particularly so when the user
population is small (see Chapter 5). This should be taken into account by keep-
ing separate records of the relative transmission rate frequencies according to the
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number of users in the zone. This implies assuming that the relative frequencies
of transmission rates are constant over time for each population size, but that they
vary with the population size. When the number of users in a zone is large this as-
sumption is valid, but if the number of users is very small, the effect from multiuser
diversity is lost and the specific locations and mobility of the few users take over as
the rate-determining factor. But on the other hand, the relative frequencies in the
case of few users will be almost uniform as a consequence of the mentioned effect;
the resulting rate distributions will thus reflect the inherent uncertainty and lead
us to take a precautious decision. Improved tracking of the actual capacity supply
could only be obtained from detailed channel predictions for each user, which is
not realistic on the considered time scales.

7.4.3 Admission control

In systems employing a strict capacity-optimal regimen, admission control may be
neglected altogether since the system then assigns each time-frequency slot to the
user that has the highest transmission rate. In this respect, guaranteeing certain
levels of service quality is simply suboptimal and thus any user is allowed to enter
the system, which however does not imply that the user actually gets any service.

In a less extreme network, however, where all connected users are given at
least some minimum level of service, admission control is an important issue. The
decision to admit or reject a requesting user can clearly be put in the framework we
build upon here. If the system promises some minimum service level to its users,
this means that the expected loss (7.10) cannot be allowed to grow too large.

Let the service guarantee consist of a commitment to transmit to each user u
at a rate such that the expected buffer level of that user after the completion of a
scheduling frame does not surpass a certain amount qu. For this to be a meaningful
guarantee, the expected influx 〈nu〉 of the user must be known to the network.

The fulfillment of the guarantee for users admitted to the network must be
carried out partly on the level of spectrum partitioning between zones, but mainly
on the level of user scheduling within each zone. This level of scheduling is not
studied here, but the approach presented in Chapter 5 could be used with constraints
on average allocated rates.

The decision to admit or reject a new user under the described service guar-
antee resembles the hand-over solution from Section 7.4.2. First, calculate the
optimal expected loss (7.10) with the user having gained access using the same ad-
justments as for hand-over decisions. Then, if the sum of all users’ (including the
new user) service guarantees

∑

u qu within the total two-sector area is lower than
the expected loss4 〈L〉, the new user is admitted. In this case, optimal spectrum

4Remember that the expected loss is equal to the expected amount of remaining data in the buffers
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Table 7.1: Standard parameters for performance tests for the three zones, i = 1...3.
The parameter ci is the effective transmission rate, Si is the current number of bits
in stock, and 〈ni〉 and σi is the expectation and the standard deviation, respectively,
for the number of incoming bits over a scheduling interval. The total number of
scheduled slots is N = 500

i ci Si 〈ni〉 σi

1 15 500 2500 200
2 15 500 2500 200
3 10 500 2500 200

efficiency is obtained simultaneously with guaranteed service quality.
An alternative is to allow suboptimal partitions and instead find N3 under the

criterion that the expected loss (7.10) is less than
∑

u qu. This strategy leads to
reduced throughput but admits more users.

7.5 Performance Examples

As an illustration of how the proposed scheduling framework performs, we here
investigate a few different scenarios with varying uncertainty and traffic load. We
study the basic partitioning problem for two sectors with one area of high mu-
tual interference (cf. Figure 7.2), where the solution is obtained by solving (7.11)
for N3. The other issues studied in the chapter – hand-overs, sequential nearest-
neighbor partitioning, and call-admission control – all use the same unifying frame-
work and their behavior thus follow a similar pattern. In all tests, if not otherwise
stated, the parameters in Table 7.1 are used, and the total number of scheduled slots
is N = 500.

7.5.1 Known transmission rates

Assuming that the effective transmission rate per time-frequency slot in each zone
is fixed and known5, (7.11) simplifies to

c3erfc
(

α3√
2σ3

)

−
2
∑

i=1

cierfc
(

αi√
2σi

)

= 0 . (7.14)

after the completion of the scheduled period
5This corresponds to a situation in which rate adaptation is not used, but instead power control is

employed to give all users in a zone the same ci
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Figure 7.3: The optimalN3 for fixed σ3 and varying σ1 and σ2 for known and fixed
transmission rates. Expected traffic loads etc. are shown in Table 7.1. It should be
observed that as σi becomes very large the probability mass for negative values of
ni becomes non-negligible with the Gaussian demand distribution, a fact which
may affect the accuracy at large values of σ1 = σ2.

In this case, if the traffic load in all zones exceeds the transmission capacity and
the traffic uncertainty σi is low, then the minimum required effective transmission
rate c3 for zone 3 to obtain any time-frequency slots is (assuming c1 = c2) c3 ≥
2c1. This follows directly from the definition of the loss function (7.1). But when
the system is less heavily trafficked6 the scheduler will allocate resources to all
zones according to their respective demands and effective transmission capacities.

Let us first see how the system reacts to varying amounts of uncertainty con-
cerning the capacity demands. We use the parameters listed in Table 7.1, and vary
the standard deviation of the traffic generated in zones 1 and 2 while keeping σ3

fixed. The resulting optimum N3 for three cases of effective transmission rates in
zone 3 are displayed in Figure 7.3.

We see that for higher uncertainties σ1 and σ2, the general tendency of the
scheduler is to lower N3 and thus increase the number of time-frequency slots for
zones 1 and 2. The optimal partition N3 is very nearly a linear function of σ1 and
σ2 for c3 = 5 and c3 = 10. But when the effective transmission rate of zone 3

6A well-dimensioned system should for the most part operate below the congestion level, or else
it needs to increase its transmission capacities by either adding more base stations or increasing the
bandwidth.
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Figure 7.4: The expected loss 〈L〉 as a function of N3 for varying σ1 = σ2 with
c3 = 10. Note how the optimum becomes sharper with decreasing uncertainty.
Expected traffic loads etc. are shown in Table 7.1.

equals that of the other zones, the slope decreases for increasing uncertainty. This
rather complex behavior can be understood from the observation that for increasing
σ1 and σ2 the expected loss contributions of these two zones also increase, while
the contribution from zone 3 remains the same. Thus, the relative advantage of
giving more time-frequency slots to zones 1 and 2 increases with σ1 and σ2, ex-
plaining the sign of the slope of N3, but it decreases with c3, which explains the
difference in magnitude of the slopes. For c3 = 15 the magnitude of the slope ac-
tually decreases with uncertainty; here, the scheduler strikes a balance between the
potentially higher loss contributions from zones 1 and 2, and the high utilization
which is certain to result from spectrum usage in zone 3.

The expected loss as a function of N3 is displayed in Figure 7.4 for c3 = 10
and for different values of σ1 and σ2. From this plot it can be seen that, as expected,
lower uncertainty translates into a sharper and lower optimum.

Fixing σ1 = σ2 = 200 and instead varying σ3, the optimalN3 varies according
to Figure 7.5. The variations for c3 = 5 and c3 = 10 are now small, and N3

decreases slightly as the uncertainty increases. The high-interference zone simply
obtains the time-frequency slots that are left when the other zones with higher
transmission rates and better known traffic loads have filled their needs. But when
c3 = 15, the fact that the expected loss contribution from zone 3 increases with
the added uncertainty takes over as the determining factor, and the optimal N3
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Figure 7.5: The optimal N3 for varying σ3 and fixed σ1 and σ2 with known and
fixed transmission rates. Expected traffic loads etc. are shown in Table 7.1.

Table 7.2: Transmission rates ci,k (K = 4) and corresponding probabilities pci,k
.

k 1 2 3 4
ci,k∀i 5 10 15 20
pc1,k

0.15 0.25 0.35 0.25

pc2,k
0.15 0.25 0.35 0.25

pc3,k
0.25 0.35 0.25 0.15

consequently increases with σ3.
In Figure 7.6 the optimal N3 is plotted as a function of the expected traffic in

zones 1 and 2, 〈n1〉 = 〈n2〉. In this test, the standard deviations were fixed at
σi = 200. The three curves correspond to c3 = 5, 10, 15. The curves contain no
surprises, for small traffic loads in the low-interference zones, the optimal partition
is loss-free, and thus the majority of the slots are awarded to zone 3. When the
traffic in zones 1 and 2 reaches a critical level however, N3 decreases, reflecting
the higher spectral efficiency that follows when these zones can use the available
resources.
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Figure 7.6: The optimalN3 for varying 〈n1〉 = 〈n2〉 and fixed standard deviations
with known and fixed transmission rates.

7.5.2 Uncertain transmission rates

With uncertain effective rates ci according to Table 7.2, the resulting optimal N3

as a function of the expected traffic in zones 1 and 2 are given in Figure 7.7. Apart
from the parameters just mentioned, the conditions are the same as in the equivalent
test in the case of known and fixed rates. As a comparison, the figure shows both
the true optimum obtained from solving (7.11) for N3 (solid line), and the N3

obtained by simply plugging in the average effective rates ci =
∑

k ci,kpci,k
in

(7.14)7 (dashed line). The difference is not insignificant, and shows a surprising
behavior. The true optimum is at first higher than the ’estimate plug-in’ solution,
then for an intermediate range of traffic intensity lower, and then for high loads
once again higher. For the lowest traffic loads the estimate plug-in solution has a
wide interval of N3 which reaches the same estimate of the loss and that interval
actually includes the true optimum from (7.11). However, with the use of (7.11)
there is a single sharp optimum singling out a more conservative solution, while
the suboptimal scheduler does not see any difference between a range of N3 as
wide as 100 time-frequency slots. Investigating the range of values around 〈n1〉 =
〈n2〉 = 3000, the discrepancy is no longer due to the same effect; here both

7It should be noted that this corresponds to using a loss function without the g(·) function. The
decision may then become to allocate more slots than can actually be used to some zone (while others
could in fact use it) since over-allocation decreases such a loss function.
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Figure 7.7: The optimal N3 for varying 〈n1〉 = 〈n2〉 and fixed standard devia-
tions with uncertain ci according to Table 7.2. The solid line is the true optimum
obtained from solving (7.11), the dashed line shows the decision when using the
average transmission rate in (7.14).

schedulers see one distinct optimum but the correct scheduler, aware of the actual
uncertainty concerning the transmission rate, makes a more conservative decision
which at this traffic load results in a lower value of N3. A similar situation holds
for the higher traffic intensities as well, but here a more precautious decision is to
give more time-frequency slots to zone 3 than would be obtained with the estimate
plug-in scheduler. This can be understood from studying the extreme case when
〈n1〉 = 〈n2〉 ≥ 6000. At that traffic load, the estimate plug-in solution, confident
of the fact that c1 and c2 are fixed at the average 13.5, sees that when the buffer
loads corresponding to these two zones are larger than 13.5×500 = 6750, all slots
can be used by these two zones without any risk of emptying the buffers. Compare
this to the true optimum including knowledge of the rate uncertainty. Now there
is a definite chance that the transmission rates are higher than 13.5 and thus a
few slots should be left for zone 3 where it is certain that these slots can be used.
These remarks are given further confirmation from Figure 7.8 which shows the
same scenario as above but with uniform rate distributions for all three zones. We
see that the difference becomes larger in this state of larger uncertainty, particularly
for higher traffic intensities. For example, at 〈n1〉 = 〈n2〉 = 5500 the difference in
N3 for the two schedulers is almost 100 slots. In terms of expected total throughput
the difference is however not very large; for 〈n1〉 = 〈n2〉 = 5500, the true expected
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Figure 7.8: The optimalN3 for varying 〈n1〉 = 〈n2〉 and fixed standard deviations
with uniform probability distributions for all ci. The possible rates ci are the same
as in Table 7.2. The solid line is the true optimum obtained from solving (7.11),
the dashed line shows the decision when using the average transmission rate in
(7.14).

loss becomes 〈L〉 = 5150 bits for the estimate plug-in solution, and 〈L〉 = 4786
bits for the true optimum. The relative performance difference is thus less than
10%.

7.6 Conclusions

We have presented a method for dynamic partitioning of transmission channels
among interfering sectors resulting in maximum expected throughput within the to-
tal area. As the main case of interest in this work, we investigated two sectors with
one zone characterized by high mutual interference. Maximal expected throughput
for this case is obtained by solving (7.11) for N3, the number of channels allocated
to the high-interference zone.

In Section 7.4 a natural extension to several interfering sectors was given. It
was further shown that the introduced framework can also be used for hand-overs
and admission control with quality-of-service constraints in terms of buffer levels.

The behavior of the channel partitioning solution was investigated in Sec-
tion 7.5. The results showed that the optimal partition is highly dependent on
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the amount of uncertainty concerning both traffic loads and transmission rates. It
was observed that if transmission rate uncertainty is neglected by using estimates
instead of averaging over the loss function, the resulting partitions become slightly
more hazardous. In contrast, by the correct procedure, as dictated by probability
theory, the partitions are more precautious, yielding solutions better in line with
what common sense would suggest. Even though the relative differences in Fig-
ure 7.7 are only about 10% one should keep in mind the comments made in Sec-
tion 7.5.2; the estimate plug-in solution does not see any difference in the incurred
loss in intervals as wide as 100 slots. Therefore, the actual performance difference
may become quite large depending on which of these 100 values the optimization
program happens to choose. Further, Figure 7.8 shows that for large rate uncertain-
ties the differences increase.

In calculating the expected loss (7.10), we derived probability distributions
based on two assumptions. The critical assumption for both supply and demand
distributions is that of an approximately constant number of users within each area.
This should not be restrictive, but merely place an upper limit on the length of
the scheduling intervals. It was emphasized that in networks employing multiuser
diversity, the transmission rate distributions depend on the number of users which
implies that these distributions should be calculated and stored for a number of
typical population sizes.

The schemes considered here does not rely on measurements carried out by the
receivers, which is a common problem with dynamic channel assignments. This is
both a strength and a weakness of our proposal. The problem resides in the fact
that the method completely neglects the SNR at the receiver, and therefore it treats
users very far from the base station exactly in the same way as users near the base
station. In practice therefore, in a decision whether to accept a new user or not,
there must first be a pre-access control decision on whether to consider the user at
all or not, preferably on the basis of the user’s distance to the base station. If the
mobile terminals are equipped with a positioning technology, then our approach
is very reasonable, and then there is no need to rely on SNR measurements at the
receiver. The main problem of relying on such receiver measurements in access
control decisions is that the SNR varies strongly both over fast and slow time scales.
As a connection typically lasts for several minutes, during which the user may
move quite far, the initial SNR measurements are unrepresentative for the mean
SNR during the connection. We believe that a better alternative is to make pre-
access decisions to consider the user for access or not based on the position of
the user, and then rely on the statistical channel properties of the cell for the final
access decision.

In conclusion, it should be pointed out that the probability distributions for
supply and demand were derived from particular information which is possible to
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collect by the base stations in today’s networks. Thus, the partitioning proposed
here should be possible to deploy in current or near-future systems.
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Appendix 7.A Derivation of the Optimum Partition

An N3 which minimizes (7.10) can be found using Lagrange multipliers with the
constraints N1 + N3 = N and N2 = N1. There may not exist a point where the
derivative of the loss function is actually zero. In that case the solution is simply
N3 = 0 or N3 = N according to whether the sign of the derivative of (7.10) is
negative or positive.

We form (remembering that N1 = N2)

J(N1, N3, λ) = 〈L〉 − λ(N −N1 −N3) (7.15)

and differentiate with respect to N1, N3, and λ, respectively,
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where the exponential terms cancel and the result is
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In the same way, the derivative with respect to N3 is

∂J

∂N3
= λ−
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2σ3

)

= 0 , (7.18)

and the derivative with respect to the Lagrange multiplier is

∂J

∂λ
= N3 +N1 −N = 0 ⇔ N1 = N −N3 . (7.19)
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Noting that (7.17) and (7.18) are both equal to zero, we have
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(7.20)

with, as before,
αi = Nici,k − Si − 〈ni〉 . (7.21)



Chapter 8
A New Method for Adaptive
Approximation of Non-Stationary
Posterior Distributions and
Expectations

HERE we introduce a simple and practical method for making approximate
Bayesian inference. An approximate discretized posterior probability distri-

bution is computed on block-wise data. The method is valid for arbitrary proba-
bility distributions including those that vary between blocks, but any information
regarding time-dependencies is neglected. If information of time-dependent be-
havior is available then the method does not provide an optimal approximation.

The method relies on approximating an optimal inference by using a probabil-
ity distribution for quantized intervals of the unknown quantity, and by adapting the
quantization so as to obtain higher resolution in regions of higher probability. The
probability distribution is partitioned intoK bins. After a block of data is observed,
the posterior probability for each bin is computed by the use of Laplace’s rule of
succession. The total probability in each bin is then spread out uniformly over the
individual values within the bin. Based on this posterior probability distribution,
the widths of the K bins are adjusted so as to maximize the mutual information
between the quantized distribution1 and the unquantized distribution. As we shall

1In this chapter, whenever we speak of a quantized distribution we really mean a continuous-
valued distribution over discrete intervals of the variable of interest. It is not the probabilities that are
quantized, but rather the variables for which the probability is calculated.
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see, this approach is equivalent to maximizing the entropy of the quantized dis-
tribution, and we provide a low-complexity algorithm for approximately attaining
equal probability mass within each bin. The resulting quantized distribution can be
regarded as a histogram withK bars of equal area, but in general of unequal width.
Using this strategy, the posterior quantized distribution will increase the resolution
in regions of high probability and decrease it in low-intensity regions.

The method can be used to provide adaptive quantization of arbitrary data se-
quences, or to approximate the posterior expectation of for instance some loss
function by summing over K terms. A useful feature is that the method adapts
to incoming data and takes optimal advantage of any patterns by Bayes’ theorem.

In the following example taken from mobile communications we provide a
motivating application for the method.

EXAMPLE 8.1 Adaptive inference on data streams

Consider the problem studied in Chapter 5 of scheduling transmissions to users
in a mobile communications system. A controller wishes to schedule the use of
the channel for T time slots ahead, but then faces the problem that the channel
quality and the arrival rates into each buffer is unknown. Focusing here only on
the arrival rates, a possible approach to handling the uncertainty regarding the
number of bits entering the buffer would be to assign a probability distribution
based only on the maximum entropy principle, as was discussed in Chapter 5.
This is a valid approach if the controller has information about for instance the
average arrival rate in each buffer. However, as time evolves the controller can
monitor the arrival rates and thus learn any patterns in the arrival rates by the
use of Bayes’ rule. Assuming that the statistics of the arrival rates do not change
considerably during a certain period, we could use Laplace’s rule of succession
to obtain the probability pk for an influx of size k bits,

pk =
nk + 1

N +K
, (8.1)

where nk is the number of times over the N most recent observations that the
influx consisted of k bits, and K is the number of possible influx sizes. But
if the possible data rates vary over a large interval, say from 0 bits/second to 1
megabit/second, K would be so large that the posterior distribution pk would be
uniform2 for all practical purposes (since the observations N would then typi-

2By uniform, we here refer to the fact that the majority of all possible outcomes will be equally
likely, although the distribution will have occasional peaks. When we say that a distribution is close
to uniform, we mean this in the sense that the entropy of the distribution is close to that of a uniform
one (i.e. log K).



Chapter 8. A New Method for Adaptive Approximation of Non-Stationary Posterior Distributions
and Expectations 201

cally be much smaller than K).

Instead, it could prove useful to partition the interval of possible influxes
into a smaller set of regions, or bins, and apply the rule of succession on this
smaller set of possibilities. For improved performance we should let the bin
widths be adapted based on incoming data. Then the bins should spread out and
become wide in regions where little activity is observed, and become denser in
the rate interval of frequent observations. Thus, high fidelity is attained where
it is suggested by the data, and less attention is paid to atypical rate regions.
Within each bin, the probability for individual values is assigned by the principle
of indifference. The expectation of any function of the arrival rates can then be
obtained by a simple summation over the quantized posterior distribution and the
function.

Related Work

The problem of approximating a pdf by a simpler one is certainly not new. Indeed,
since a solution to this problem has the potential of strongly simplifying Bayesian
inferences by replacing complicated integrals over nuisance parameters by simpler
integrals or sums, it is of obvious interest to a large audience. In pattern recognition
and adaptive quantization, a problem known as ’non-parametric density estimation’
is closely related. Here, the problem is to ’estimate’ a probability for obtaining a
certain value x based on a number of observations. The resulting pdf should re-
semble the true, but unknown, distribution as closely as possible. Of course, we
would state the problem somewhat differently as we regard probabilities as infor-
mation carriers rather than properties of nature. Interpreting the density estimation
problem as one of approximating a given pdf which may otherwise be difficult to
use, then we see that this problem is indeed similar to ours.

There are two standard techniques, see e.g. Fukunaga (1990), used for non-
parametric density estimation, or density approximation as we would phrase it.
The first approach, the k-nearest-neighbor approach, finds the probability at the
point x by defining a region consisting of the k nearest observations around x. The
probability for x is then taken as

p̂(x) =
k

Nw
(8.2)

where N is the total number of observations and w is the width of the region3.
The problem of determining which k to use can be solved in the sense of mini-

3Sometimes k−1

Nw
is used instead, as this provides an unbiased estimate.
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mum mean squared error, but the solution depends on the true distribution p(x). A
problem with the k-nearest-neighbor approach is that it does not result in a proper
probability density, as it does not integrate to unity, c.f. Bishop (1995). It is how-
ever mostly used for classifying observations into different classes in which case it
yields a simple rule regardless of this.

The second approach, the kernel-based or Parzen-window approach, computes
histograms using constant bin sizes and smoothes the obtained histograms with
some windowing function.

A disadvantage of both methods is that they require all samples to be retained
(increasing storage requirements), not just in which bin a sample occurred. The
kernel-based approach moreover requires quite intensive computational work.

8.1 Maximizing the Mutual Information Between an Ap-
proximate and an Exact Distribution

We here show that maximizing the mutual information between a quantized pos-
terior distribution and an exact posterior is equivalent to maximizing the entropy
of the quantized distribution. Let K be the number of bins to use in the approxi-
mation, and imin ≤ i < imax be the lower and upper bounds on the unquantized
variable i between which we want to approximate p(i | DI) (where D is the ob-
served data and I our omnipresent background information). Denoting the mutual
information4 between the quantized and the exact distributions I(k, i) and writing
p(k) = p(k | DI) for the posterior probability for obtaining an observation in bin
k, and p(i) = p(i | DI) for the posterior probability for obtaining the exact value
i, we now prove the following theorem.

Theorem 8.1 The optimum approximation to an exact distribution p(i) for a quan-
tity i, in terms of maximum mutual information between p(i) and an approximate
distribution p(k) for quantized intervals (bins) k of the same underlying variable,
is obtained when the bin widths of the latter distribution are adjusted so that the
resulting distribution for k has maximum entropy.

Proof: The mutual information between the distribution for the quantized
variable k and the distribution for the unquantized variable i is given by (c.f. (2.94))

4We here assume i to be integer-valued, but the argument goes through also for continuous quan-
tities.
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I(k, i) = H(k) −H(k | i) (8.3)

=
K
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k=1
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∑
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(8.6)

= −
K
∑

k=1

∑

i∈bin k

p(i | k)p(k) log p(k) (8.7)

= −
K
∑

k=1

p(k) log p(k) , (8.8)

where (8.5) follows from (8.4) by using the fact that
∑imax

i=imin
p(i | k) = 1 We

obtain (8.7) from (8.6) by noting that given knowledge of i we know in which bin
k the observation lies, i.e. p(k | i) = 1 or p(k | i) = 0 depending on whether i is
in bin k or not. Since p(i | k) sums to unity we finally have (8.8) from (8.7). The
theorem can also be obtained directly from (8.3) by proving that H(k | i) = 0.
(Given i, there is no uncertainty concerning which is the corresponding bin k.)

Thus, in order to obtain a quantized distribution which is as similar in informa-
tion content to the unquantized distribution as possible, we should adjust the bin
sizes to obtain equal probability mass in each bin (c.f. Example 2.1).

8.2 Maximizing the Entropy of the Approximate Distri-
bution

Assume that we observe N samples of data before updating the bin widths. Within
bin k we obtain nk observations, and we have K bins in total. Assuming that
the underlying causal mechanisms which determine the outcomes are stationary
over the N observations and the coming period of N observations, and taking no
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account of possible time-dependencies, the probability for a future observation in
bin k is

pk =
nk + 1

N +K
(8.9)

according to Laplace’s rule of succession (see Section 2.6).
Now, in order to adjust the bin widths so as to obtain equal probability for

all bins (and thus maximum entropy of the approximate distribution), we need to
determine the probability for an individual value within an arbitrary bin k. Assume
that the width of bin k is wk, i.e. the bin covers exactly wk values of the underlying
quantity i. Then our task reduces to distributing the probability pk over wk values.
In order to assume anything else than a uniform distribution within the bin we
would require some information which is not indifferent between the different wk

values. Here, we shall keep our solution general and therefore assume information
indifference between the different values. Then the principle of indifference (see
Section 2.5) behooves us to distribute the probability as

pi = pk/wk i ∈ bin k . (8.10)

An argument can be made for assigning a Jeffrey’s distribution summing to pk in
the bin with upper limit imax if that maximum is taken to be very large in compar-
ison with typical values. Similarly, if i can take on negative values, the bin with
lower limit imin could also be assigned a Jeffrey’s prior with the absolute value of
i as argument (so as to reverse the slope). We will henceforth assume a uniform
distribution in all bins, but the algorithm below does not change if we instead use
a Jeffrey’s distribution in the edge bins.

Since we then have the probability for all values i between imin and imax,
we can now simply redistribute the bins so that each bin contains approximately
probability pk = 1/K. We here suggest a simple method which distributes the bins
so as to approximately attain the maximum entropy distribution by a single sweep
of i. The emphasis is on low complexity rather than on performance, and several
other methods could easily be devised.

(1) Set k := 1, P ′ := 1, xa := imin, xb := imin + 1 and J := 1.

(2) If

|P ′/(K − k + 1) −
xb−1
∑

i=xa

pi| > J OR imax − (K − k) < xb (8.11)

then end bin k at xb − 1 (i.e. bin k is the interval xa ≤ i ≤ xb − 1)
else set J = |P ′/(K − k + 1) −∑xb−1

i=xa
pi|, xb := xb + 1 and go to (2).
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(3) If
k < K (8.12)

then set k := k+1, P ′ = 1−∑xb−1
i=xa

pi, xa := xb, xb := xb +1 and J := 1
and go to (2)
else end (since the upper limit of bin K is always imax).

The algorithm starts at imin and then step-wise increases5 the bin width until the
total bin probability is close to 1/K. Specifically, it adjusts the bin end-point so
as to have probability as close to P ′/(K − k + 1) as possible, where P ′ is the
total probability mass remaining to be partitioned and K − k + 1 is the number of
remaining bins (including the one currently under adjustment). Notice that this is
achieved by comparing the current probability mass in the bin to J , the deviation
from the desired value at the previous candidate end-point of the bin. It is impor-
tant to adjust to P ′/(K − k + 1) instead of 1/K since a narrow bin with many
observations may have much larger probability than pk = 1/K, and if the next
bin then tries to cover an interval of probability 1/K the remaining bins may have
much less than probability 1/K to share. The second stop condition in step (2)
makes sure that in the end there are not more bins to allocate than the remaining
values of i.

After each block of N data, the procedure is repeated taking into account the
new data and the previous bin sizes (which to some extent is a reflection of pre-
viously observed data). The distribution can thus adapt to changing statistics and
produce optimal approximate learning (or, to be exact, the given algorithm provides
an approximately optimal approximation to optimal learning).

It should be noted that the number of bins K should be chosen based on N .
When N is small there is no point in using a large K, because then the rule of
succession will caution us by assigning an almost uniform distribution since the
number of observations must be significantly larger than the number of hypotheses
if we are to draw any detailed conclusions about the plausibility for the different
hypotheses. This suggests that K could be optimized as a function of N , but we
leave that as a topic for further research.

There are also two variants of the approach described here:

• We could update the bins based on all previous observations, not just those
in the most recently obtained block, if we have reason to believe that the
probability distribution will remain stationary for all times.

• If the probability distribution is known to be stationary for a certain period,
we should set N according to the length of that period.

5If the range of i is very large, the step-wise increase of xb should be made larger than 1 to
decrease complexity further.
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In order to track changes as quickly as possible, we should adapt the bin widths
as often as possible, i.e. as soon as we have obtained any new data. But if we
perform updates after each new observation based on a sliding window of the N
latest samples (instead of updating the bins after every N th observation based on
these N samples), a disadvantage is that each exact sample value must be stored,
and not just in which bin it occurred (since the bins have changed during the data
gathering interval.) Moreover, the computational complexity is proportional to
how often updates are carried out. Therefore, in the following we only consider
the basic case where the bins are updated after every N th sample according to the
N most recent observations.

8.3 Computing Approximate Posterior Expectations

Given the approximate posterior distribution pk, what is the expectation of some
function f(·) of the unquantized variable? The expectation of i given the N most
recent data is obtained before repartitioning the bins (because the statistics were
collected based on the previous partition, not on the new one) as

〈i〉 =
K
∑

k=1

pk
ik−1 + ik − 1

2
(8.13)

where we define ik as the upper limit of bin k, i.e. bin k includes all values6

from ik−1 up to ik − 1, and where we define i0 = imin. Similarly, the posterior
expectation for an arbitrary function f(i) is given by

〈f(i)〉 =

K
∑

k=1

pk

ik−1
∑

i=ik−1

p(i | k)f(i)

=
K
∑

k=1

pk

wk

ik−1
∑

i=ik−1

f(i) , (8.14)

where the second equality was obtained by noting that p(i | k) = 1/wk. (Given
which bin we are in, each value within the bin is equally likely and has a probability
equal to the inverse of the bin width.) If i is instead a continuous variable, which
we denote by x to separate the two cases, the expectation is

〈f(x)〉 =
K
∑

k=1

pk

wk

∫ xk

xk−1

f(x)dx (8.15)

6If i is continuous then the upper limit for values of i within bin k is defined as i < ik instead of
i ≤ ik − 1.
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Table 8.1: The bin limits after each of the five first blocks of data were observed.

Block Bin limits
1 0 3 6 9 12 14 100
2 0 1 2 6 7 8 100
3 0 1 2 7 8 54 100
4 0 1 2 7 8 54 100
5 0 1 2 7 8 54 100

where bin k covers the continuous range xk−1 ≤ x < xk and wk is the bin width
wk = xk − xk−1. In case a Jeffrey’s distribution is used in the Kth bin, the Kth
term in the expectation (8.15) is replaced by

pK

log(xK/xK−1)

∫ xK

xK−1

f(x)

x
dx (8.16)

where log(·) represents the Napierian, or natural, logarithm, and 1
log(xK/xK−1) nor-

malizes the Jeffrey’s distribution to unity within the bin interval.

8.4 Examples

8.4.1 Convergence for a two-valued alternating sequence

We here study the performance of the proposed adaptive approximate inference for
a case with N = 100 samples per block of data. The data were generated so that
each data block consists of 50 samples taking the value i = 1 and 50 samples of
value i = 7, i.e. there are only two values and they occur with equal frequency.
An approximate inference is carried out on the interval of integers between 0 and
100. Using K = 6 bins, and an initial uniform partition over the integer interval
0...100, we let the partitioning be updated based on the relative frequencies for
the bins according to the algorithm laid out in Section 8.2. Figure 8.1 shows the
probabilities for each bin after each of the first five updates and Table 8.1 lists the
resulting repartitioning of the bins. The bins quickly concentrate around i = 1 and
i = 7, the only bins where any activity is registered, leaving larger implausible
values nearly unattended. After the first update the expectation of i becomes 9.9,
after the second and the later updates the expectation is between 4 and 5, near the
arithmetic mean (7 + 1)/2 = 4 of the sequence.
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Figure 8.1: The evolution of the probabilities in each bin based on a quantized
probability distribution in an example where each block of N = 100 samples
contained only two values, i = 1 and i = 7, occurring with exactly the same
frequency. The convergence is quick and nearly all attention is focused around the
two observed values.

8.4.2 Approximating a Rayleigh distribution

Using K = 4 bins, the approximate inference is here tested on samples gener-
ated from a Rayleigh random-number generator with parameter γ = 10, yielding
an expected value of 12.53. Each observed data block consists N = 100 sam-
ples, and the approximate inference is carried out on a range of integers between
0 and 50. Running the simulation repeatedly, we have found that the expectation
obtained from the approximate inference after having observed 3 blocks of data
ranges between 11 and 17 (depending on the particular number sequence gener-
ated). Figure 8.2 plots the probabilities in each bin and the new bin partition after
observation of 3 blocks for one particular simulation. In this case the expectation
obtained from the approximation was 12.27.

Moreover, varying the number of bins K, we obtained almost exactly the same
performance for allK > 2. Changing the block length toN = 10, the performance
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Figure 8.2: The bin probabilities and the new bin limits (K = 4 bins) after the
third update in a scenario where the approximate inference was run on data blocks
of size N = 100 produced by a Rayleigh random-number generator.

was nearly the same. Slightly higher variability of the approximate expectations
could be detected due to the small number of samples, but the difference was very
small.

8.5 Comments

We have so far only discussed the one-dimensional case. The criterion to dis-
tribute bins so that all bins have as equal probability mass as possible generalizes
straightforwardly to the multi-variable case. The problem however lies in con-
structing a simple and effective algorithm for repartitioning the bins after a block
of observations. The simplest approach would be to use the algorithm given above
independently on each variable with a constant number of bins for each dimen-
sion. We would however expect to attain much higher approximation accuracy if
we repartition bins more flexibly to take advantage of dependencies between dif-
ferent dimensions. On the other hand, a more flexible reallocation would generally
have higher computational requirements as well. A challenge for future research
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is to find an algorithm with a bin geometry constraint which is flexible enough to
provide high accuracy for general dependencies and yet allows for low-complexity
implementation. We suspect that solutions to this problem may already be accessi-
ble in the general mathematical literature, but have so far not found good candidate
algorithms.

Another important direction for future research is finding means for taking time
dependencies into account. In many cases, a quantity of interest evolves continu-
ously over time under constraints on velocity and acceleration. It would greatly
generalize the method suggested here if we could include simple time-dependent
behavior into the model. A natural starting-point would be to include block-wise
correlations and use the observed data to find a probability distribution for the pos-
sible correlations. By marginalizing over this distribution, we should be able to
make better inferences when there is some dynamical process with constant pa-
rameters that generates our observations.



Appendix A
Some Integrals Related to the
Gaussian Distribution

In many chapters in this thesis, we require a solution to an integral of the sort

I =

∫ ∞

−∞

1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

g(x− c)dx (A.1)

where c is a constant and

g(x) =

{

x , x > 0
0 , x ≤ 0 ,

(A.2)

Using the definition of g(·), we rewrite the integral (A.1) as

I =

∫ ∞

c

1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

(x− c)dx (A.3)

which is the difference between two terms, I = I2 − I1, with

I1 =

∫ ∞

c

1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

cdx . (A.4)

and

I2 =

∫ ∞

c

1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

xdx (A.5)

Let us now evaluate the first integral. Rewriting I1 as

I1 =
1√
2πσ

exp

(

− µ2

2σ2

)

c

∫ ∞

c
exp

{

− 1

2σ2
(x2 − 2xµ)

}

dx (A.6)
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and using the standard formula1 (eqn. 3.322.1 in Gradshteyn and Ryzhik, 2000)
∫ ∞

u
exp

(

−x2

4β
− γx

)

dx =
√

πβ exp(βγ2)

[

1 − erf
(

γ
√

β +
u

2
√
β

)]

[Reβ > 0, u > 0] , (A.7)

where
erf(x) =

2√
π

∫ x

0
e−t2dt (A.8)

is the error function, we find that

I1 =
c

2

(

1 + erf
(

µ− c√
2σ

))

. (A.9)

The second part of (A.1), I2, is obtained by integrating by parts. Defining

F (x) =

∫

1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

dx

=
1

2
erf
(

x− µ√
2σ

)

, (A.10)

where the second equality is obtained directly from the definition of the error func-
tion (A.8), we have

I2 = [xF (x)]∞c −
∫ ∞

c
F (x)dx . (A.11)

Using the relation (eqn. 5.41 Gradshteyn and Ryzhik, 2000)
∫

erf(ax)dx = xerf(ax) +
1

a
√
π
e−a2x2

(A.12)

we obtain
∫ ∞

c
F (x)dx =

[

(x− µ)F (x) +
σ√
2π

exp

{

− 1

2σ2
(x− µ)2

}]∞

c

. (A.13)

Inserting this result into (A.11) gives

I2 =

[

µF (x) − σ√
2π

exp

{

− 1

2σ2
(x− µ)2

}]∞

c

=
µ

2

(

1 − erf
(

c− µ√
2σ

))

+
σ√
2π

exp

{

− 1

2σ2
(c− µ)2

}

. (A.14)

1There is an unfortunate double definition of a function Φ(x) in Gradshteyn and Ryzhik (2000)
which may easily mislead the reader. In equation 3.321 it is first defined as Φ(x) =

√
π

2
erf(x) while

everywhere else in the book, including the equations immediately following 3.321, it is defined as
(see Section 8.25) Φ(x) = erf(x). The latter definition is the correct one in our case. This error does
not appear in earlier editions of the book.
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Finally, we obtain

I = I2 − I1

=
µ− c

2

(

1 − erf
(

c− µ√
2σ

))

+
σ√
2π

exp

{

− 1

2σ2
(c− µ)2

}

(A.15)

as the solution to the integral (A.1).
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