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This thesis is concerned with detection of transient signal families and detectors in non-
linear static sensor systems. The detection problems are treated within the framework of
likelihood ratio based binary hypothesis testing.

An analytical solution to the noncoherent detection problem is derived, which in con-
trast to the classical noncoherent detector, is optimal for wideband signals. An optimal de-
tector for multiple transient signals with unknown arrival times is also derived and shown
to yield higher detection performance compared to the classical approach based on the
generalized likelihood ratio test.

An application that is treated in some detail is that of ultrasonic nondestructive testing,
particularly pulse-echo detection of defects in elastic solids. The defect detection problem
is cast as a composite hypothesis test and a methodology, based on physical models, for
designing statistically optimal detectors for cracks in elastic solids is presented. Detec-
tors for defects with low computational complexity are also formulated based on a simple
phenomenological model of the defect echoes. The performance of these detectors are
compared with the physical model-based optimal detector and is shown to yield moderate
performance degradation.

Various aspects of optimal detection in static nonlinear sensor systems are also treated,
in particular the stochastic resonance (SR) phenomenon which, in this context, implies
noise enhanced detectability. Traditionally, SR has been quantified by means of the signal-
to-noise ratio (SNR) and interpreted as an increase of a system’s information processing
capability. Instead of the SNR, rigorous information theoretic distance measures, which
truly can support the claim of noise enhanced information processing capability, are pro-
posed as quantifiers for SR. Optimal detectors are formulated for two static nonlinear sen-
sor systems and shown to exhibit noise enhanced detectability.
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Chapter 1
Introduction

THE subjects of signal detection and information theory, in one way or an-
other, deal with processing of information bearing signals in order to make

inferences concerning the information they contain. These fields trace back to the
classical work of Bayes, Gauss, Fisher [1], and Neyman and Pearson [2] but it was
not until the 1930’s and 1940’s that Wiener [3], Shannon [4], and others, shaped
the disciplines into the form we see today.

Ever since the early dawn of signal detection and information theory, the fields
have been actively used in a multitude of applications ranging from communica-
tions and physics to economics. This progress is in many aspects due to the access
of high performing computers, which open the possibilities to process, store and
collect massive amounts of data in order to implement many of the computationally
demanding methodologies within information theory and signal detection.

Still, several applications remain that can benefit from utilizing the general
results that have been presented within these disciplines, both when it comes to
pushing the envelopes of already existing methods but also in explaining and un-
derstanding new phenomena.

This introductory chapter is intended to give a brief overview of the general
framework used to solve detection problems but also the different application ar-
eas considered in the thesis as well as the current state-of-the-art approaches and
solutions to the problems under study. Section 1.1 outlines the generic approach to
solve detection problems based on statistical binary hypothesis testing and also how
this generic setting can be used to cast the specific problem of detecting transient
signal families and signals acquired with nonlinear sensors. Section 1.2, presents
the two considered application areas, which are magnetic field detection and de-
fect detection by means of ultrasonic nondestructive testing. The specific problems
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4 Chapter 1: Introduction

considered in the thesis are presented in Section 1.3, followed in Section 1.4 by a
list of the contributions and publications on which the thesis is based. Finally, in
Section 1.5, an outline of the thesis is given.

1.1 Derivations of optimal detectors

From a purely mathematical perspective the problem of optimal signal detection
was solved once it was connected to statistical hypothesis testing and thereby the
classical 1933 paper by Neyman and Pearson [2]. However, this insight only sig-
naled the beginning of a new quest from an engineering point of view. The main
objective of this engineering quest is to explicitly derive and apply optimal detec-
tors for special, practically relevant problems.

The generic approach to solve detection problems is here briefly described by
considering the binary hypothesis test. Binary hypothesis testing is concerned with
deciding among two possible statistical hypotheses (situations), denotedH0 and
H1 respectively, by processing the outcomes,y, of a stochastic variableY . The
stochastic variableY is assumed to have two possible probability distributionsP0

andP1 underH0 andH1, respectively. This problem may be written as

H0 : Y ∼ P0

versus
H1 : Y ∼ P1,

(1.1)

whereY ∼ P denotes thatY has the probability distributionP . In [2] Neyman
and Pearson present a general formalism for finding a decision rule with the highest
probability of correct detection given a specified probability of false alarm. It is
shown that the key quantity to compute is the likelihood ratio which is given by

L(y) =
p1(y)
p0(y)

, (1.2)

wherep0 andp1 are the probability density functions (pdfs) ofY under theH0 and
H1 hypotheses, respectively. A comparison of the likelihood ratio to a threshold
then yields the Neyman-Pearson optimal decision rule

δ(y) =

{
1 if L(y) ≥ τ

0 if L(y) < τ,
(1.3)

where the thresholdτ is selected to satisfy the imposed false alarm constraint.
Hence, given an observationy the decision rule in (1.3) produces eitherδ(y) = 0
or δ(y) = 1 corresponding toH0 andH1, respectively. Detection strategies where
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the likelihood ratio is compared to a threshold is also the result of a number of
other optimization criteria and is described in some more detail in Appendix A.

Thus, to derive an optimal detector oneonly has to cast the signal detection
problem as a binary hypothesis test and then find an expression for the likelihood
ratio between the considered hypotheses. Several practically relevant detection
problems have been solved by using this methodology and proved useful in ap-
plications such as radar [5, 6, 7, 8, 9, 10], sonar [5, 6, 11], and communication
[12, 13].

The ambition of this thesis is to contribute to the above mentioned engineering
quest by focusing on deriving and applying optimal detectors for some problems
associated with detecting transient signal families as well as signals acquired with
nonlinear sensors.

1.1.1 Detection of transient signal families in Gaussian noise

The need to detect transient signals is apparent in applications such as radar [5, 6,
7, 8, 9, 10], sonar [5, 6, 11], communication [12, 13], and ultrasonic nondestruc-
tive testing (UNDT) [14], with the latter being studied in some detail in this thesis.
Moreover, in many of the above mentioned applications it is common that the tran-
sient signal to be detected can exhibit different waveforms from one measurement
to another.

In digital communication systems this situations arises, for example, when the
symbol to be transmitted is represented by an amplitude modulated sinusoid. At the
receiver the carrier frequency and the modulation might be known but the ampli-
tude and phase may not. This yields that the transient signal to be detected can be
represented by an explicit mathematical expression with the amplitude and phase
as unknown parameters.

In the radar, sonar, and UNDT applications the transient signal to be detected is,
for example, generated by the back-scattered echo from a potential object impinged
by a transmitted pulse. The waveform of the received target echo is dependent on
the the physical attributes involved in the scattering process such as the objects
shape, location, orientation, material, etc.

Regardless of the signal generating mechanism, the transient signal family can
be described by

S = {s̄(θ)|θ ∈ Λ}, (1.4)

wheres̄(θ) = [s1(θ), . . . , sN (θ)]T is a vector1 of samples from a transient signal,θ
represents explicit mathematical or underlying physical parameters andΛ is some

1In the discrete time problems treated in this thesis vectors are taken to be columnar and the
superscriptT denotes transposition.
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space whereθ takes its values.
The problem of detecting a transient signal, randomly drawn from the family in

(1.4), and corrupted by an additive noise can be formulated as a binary hypothesis
test (1.1). A discrete time formulation of (1.1) may be expressed as

H0 : Ȳ = V̄
versus

H1 : Ȳ = s̄(θ) + V̄ ,
(1.5)

whereȲ ∈ R
N is a stochastic vector representing a sampled version of the ob-

served signal and̄V is a vector of noise samples. In statistical hypothesis testing
the problem in (1.5) is commonly referred to as a composite hypothesis test since
theH1-hypothesis is dependent on the unknown parameterθ.

Thus, to find an optimal detector for (1.5) on the form (1.3) the likelihood ratio
needs to be computed. This involves not only knowledge of the statistical prop-
erties of the noisēV , and the waveforms of the signalss̄(θ) but also the random
law describing how the signals̄s(θ) are drawn from (1.4), i.e. the distribution of
θ on Λ. Even if all this knowledge is available and expressed by explicit mathe-
matical expressions the derivation of the likelihood ratio is often a formidable task
to perform analytically. Historically, the analytical approach was the main route
to consider in order to achieve a practically useful detector, but due to the current
access of high performing computers alternative approaches, based on numerical
solutions, are opened up.

1.1.2 Optimal detectors in nonlinear sensor systems

Sensors are generally based on mechanisms where one physical quantity can be
coupled to another, e.g. a magnetic field at the input to the sensor yields an elec-
trical voltage at its output. Several of these physical mechanisms are nonlinear by
nature and when designing sensors great effort and ingenuity are used to obtain a
linearized regime within which the sensor is to be operated. However, in situations
when a sensor is operated outside its linear regime, e.g. in very noisy environ-
ments, the interpretation of the sensor outputs becomes more complicated. This
limits the original usability of the sensor to reach end objectives such as detection,
estimation, prediction etc.

Recently a new approach for detecting a weak harmonic signal in additive
Gaussian noise, measured by a nonlinear sensor, was proposed independently by
Hibbset al. [15] and Rouseet al. [16]. Their method utilizes the nonlinear char-
acteristics of the super conductive quantum interference device (SQUID) to detect
a weak magnetic field corrupted by an additive Gaussian noise. The key step in
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their proposed detection strategy is to “tune” the SQUID to operate in the so-called
stochastic resonance (SR) regime [17, 18].

In this context the SR effect yields the somewhat unintuitive phenomenon of
increased detectability with increased noise strength. A generally accepted descrip-
tion of the SR phenomenon is that of a noise induced performance enhancement in
terms of the system’s information processing capability [17, 18, 19, 20, 21]. Al-
though SR has been observed in several different application areas and contexts,
one of the most studied and exemplified is that of signal detection, mainly due to
the unintuitive effect of noise enhanced detection performance. Recently a similar
study has been presented in the signal processing community where Kay poses the
question: “Can detectability be improved by adding noise?” in a paper with the
same title [22].

As pointed out above, the approach taken by Hibbset al. [15] and Rouseet
al. [16] was based on the SR phenomenon and focused less on the signal process-
ing methodologies associated with optimal detection. Therefore, it is of interest
to explore the potential of deriving and applying statistically optimal detectors for
nonlinear sensors. The fundamental problem considered is to detect if a weak sig-
nal is present in an additive Gaussian noise environment based on measurements
acquired with a nonlinear sensor. This problem is naturally cast within the frame-
work of binary hypothesis testing by modeling the hypotheses in (1.1) as

H0 : Yt = gβ(Vt), 0 ≤ t ≤ T
versus

H1 : Yt = gβ(st + Vt), 0 ≤ t ≤ T.
(1.6)

Herest is the signal to be detected,Vt is the additive Gaussian noise,Yt is the
sensor output signal andgβ represents the nonlinear sensor, which can be “tuned”
by means of the parameterβ. Obviously, even if the noiseVt is Gaussian and
the signal to be detected,st, is deterministic and known, the sensor outputYt

will be non-Gaussian under bothH0 andH1 due to the nonlinear characteristic
of gβ . Generally, non-Gaussian detection problems are analytically intractable and
thereby usually attracts alternative types of signal processing, e.g. wavelet decom-
positions, neural networks, and higher order statistics. A comprehensive tutorial
on non-Gaussian detection problems can be found in [23]. The preferred approach
for a particular problem depends on the level of knowledge that can be used in
describing the stochastic processes. In situations when little knowledge is at hand
one has to retreat to suboptimal techniques which are tailor made for the particular
problem. The approach taken by Hibbset al. [15] and Rouseet al. [16] can be
considered to belong to these suboptimal techniques since their method is based on
qualitative reasoning concerning the spectral characteristics of the signal and not
on the likelihood ratio.
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When the sensor transfer characteristicsgβ , the statistical properties of the
noiseVt as well as the signal to be detectedst, are all considered to be known
there is no need to retreat to suboptimal procedures to solve (1.6). Instead the
classical statistical hypothesis testing approach can be used to construct an opti-
mal likelihood ratio detector. The statistical hypothesis testing formulation of the
sensor-detector problem does not only have the benefit of ensuring optimality, it
also provides a framework for an information theoretic (IT) view on the sensor
“tuning” problem. Moreover, as is shown in this thesis, the IT formulation yields,
as a “Bonus”, a generalization of the SR phenomenon.

Due to the development of digital signal processors (DSP) ubiquitous algo-
rithms can be implemented in sensor systems to tackle problems such as “tuning”
and detection. The signal processing approach can in this way enhance perfor-
mance of nonlinear sensor systems by expanding the sensors operating regime and
has the benefit of alleviating the constraints imposed by linearizion and thereby
reducing, for example, energy consumption, complicated and costly design proce-
dures, the use of expensive materials etc.

1.2 The considered application areas

In this thesis the two considered application areas are defect detection by means
of ultrasonic nondestructive testing (UNDT) and detection of magnetic fields mea-
sured by means of a nonlinear magnetic sensor. Although many of the utilized
methodologies and results presented here are of general applicability this section is
intended to give an overview of the two application areas as well as a brief descrip-
tion of some of the state-of-the art methods of particular interest for the problems
treated in this thesis. The considered application areas are briefly presented next.

1.2.1 Ultrasonic defect detection using piezoelectric transducers

Most transducers used for ultrasonic nondestructive testing (UNDT) are based on
piezoelectric materials due to their ability to convert electric energy to mechanical
energy and vice versa. In this type of testing procedure, acoustic waves or pulses
in the frequency range of1 − 10 MHz, are transmitted into a test specimen and
the reflected echoes are analyzed to make inferences about the condition of the
specimen. Many materials, such as stainless steel and copper, consist of randomly
configured and densely packed crystals or grains. These grains, as well as other
micro-structural inhomogeneities, affect the acoustical impedance of the material.
Therefore, when an acoustic pulse is emitted into a material the pulse will be scat-
tered, not only by the defects, but also by a myriad of micro-structures that will
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cause the received signal to exhibit a random behavior. This signal, which is in-
duced by the backscattering from the material micro-structure is commonly called
clutter.

Common UNDT objectives are to detect defects or to characterize the shape,
location, and orientation of material inhomogeneities. Furthermore, material prop-
erties such as density and stiffness can also be estimated by means of an UNDT
system. These objectives are of significant importance in many industrial branches
such as nuclear power plants, aircrafts, and construction sites, where components
of metal, composites, and concrete are tested for flaws. Yet another vast area where
ultrasonics has been found very useful is medical diagnosis. Detection of tumors
and monitoring of pregnancies (fetus) are two examples.

The main components of a typical UNDT measurement system are depicted
in Figure 1.1. An electric pulser is used to excite one transducer (or an array of
transducers), which converts the electric energy into a displacement field. The
displacement field propagates into the test specimen where the wave is scattered
by inhomogeneities in the solid. Parts of these scattered waves are received by a
single transducer (or an array of transducers), which converts the scattered field
into an electric signal. The signal is amplified in a receiver and can be viewed on
an oscilloscope for instantaneous visual examination or discretized and stored in a
computer.

Oscilloscope

Pulser

Receiver

Digitizer Computer

Transmitter/Receiver
Transducer

Test
Specimen

Figure 1.1: Schematic of an UNDT system.

There are three main transducer configurations used in ultrasonic contact test-
ing scenarios. The applicability of the configurations depend on the end objective
of the examination and the geometrical shape of the specimen being tested. These
different configurations are depicted in Figure 1.2 and referred to aspulse-echo,
pitch-catch, and through-transmission. A common test scenario is the so-called
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(b) (c)(a)

Figure 1.2: Different contact testing configurations: (a) pulse-echo setup, (b)
pitch-catch set up, (c) through-transmission setup.

immersion testing whereby the object is immersed in water in order to achieve a
“good” acoustic coupling between the object and the transducer. The UNDT con-
tributions in this thesis exclusively considers the contact testing pulse-echo config-
uration, which also is the most common setup in industrial applications.

The physical mechanisms from pulser to receiver can in most cases be con-
sidered as linear and time invariant [14]. Thus, the whole measurement process
from the electrical excitation pulse to the received electrical signal can be mod-
eled as a series of linear time-invariant (LTI) systems. Due to the LTI properties,
the systems can, mathematically, be treated individually and reconfigured when
modeling/computing overall signal responses.

Often the operator of an UNDT system visually examines the raw signal to de-
termine if a test specimen contains defects. This is a very time consuming process
since the defect echoes can be severely obscured by the clutter noise and requires
extensive experience in order to be successful in finding small defects. Moreover,
this kind of screening process is colored by the operators subjectivity and ability to
maintain attention through out the inspection of large amounts of data.

In order to alleviate the burden on the operator, to increase detection perfor-
mance, and to reduce subjectivity and time consumption, appropriate signal pro-
cessing algorithms can be utilized to aid the operator. Such signal processing al-
gorithms have mainly been designed for reducing the clutter noise in the measured
signals. Since the grains in a material specimen being tested have fixed locations,
the clutter noise signal will not vary in time, thus simple averaging of multiple mea-
surements will not reduce the clutter. However, the clutter noise signal is highly
dependent on the position and the frequency characteristic of the transducer. These
effects are employed in the two main approaches currently used for clutter suppres-
sion. In the first, the spatial diversity of the material grains is utilized by performing
multiple measurements, each at a slightly different position. The resulting signals
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are then averaged yielding a reduction of the clutter. This approach relies on the
fact that the echo from a large defect will not change dramatically when moving
the transducer slightly. The other approach utilizes the frequency diversity by us-
ing transducers with different center frequencies, whereby the clutter component
in the signal will vary for different frequency bands while the echo from a large
defect should remain relatively constant. Thus, both these approaches rely on the
qualitative insights that the echo from a large defect is relatively unchanged over
some specific frequency range as well as small shifts of the transducer position.
However, these techniques are both costly and time consuming due to the need of
multiple measurements and/or the use of several transducers.

One approach, known as split spectrum processing (SSP) [24, 25, 26, 27] uti-
lizes the underlying idea in the frequency diversity approach by using one wide-
band transducer and then synthetically segmenting the measured signal,ȳ, into
separate sub-bands using a filter bank, see Figure 1.3. These sub-band signals are
then combined, usually by some nonlinear operation, into a filtered signal, denoted
z̄ in Figure 1.3. The SSP approach is qualitative since it is not based on any explicit
assumptions of the physical properties of the defects other than that the echo signal
from a large potential defect will contain spectral energies over a wide frequency
band.

y

.  
.  

. z

fN

f2

f1

Operation
Nonlinear

IFFT

IFFT

IFFT

FFT

Figure 1.3: Schematic of an SSP system. The sampled signal received from the ul-
trasonic transduceryn is filtered through a digitally implemented filter bank using
the fast Fourier transform and the filter bank outputs are then processed by some
memoryless nonlinear operation.

The SSP technique is dependent on several parameters, for example, the center
frequencies of the bandpass filters, their bandwidth, and overlap in the frequency
domain. Extensive research [24, 28, 29, 30] has been devoted to developing strate-
gies for finding parameters yielding an output signal,z̄, which clearly shows if a
defect is present. The parameter optimization is mainly complicated by the non-
linear operation used to combine the output from the filter bank. One optimization
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technique proposed in [28, 29, 30] is based on the so-called signal-to-noise ratio
enhancement (SNRE), which is the ratio between the input- and the output SNR.
The SNRE is defined by

SNRE=
SNRIn

SNROut
=

E1{yn0}√
E0{(yn0)2}

/
E1{zn0}√
E0{(zn0)2}

(1.7)

whereyn0 andzn0 are the input and output signals, respectively,n0 is the sample
number corresponding to the specific time instant of interest, andE0{·} andE1{·}
denote the expectation underH0 andH1, respectively. The basic idea in this op-
timization strategy is then simply to find the SSP parameters which maximize the
SNRE in (1.7) when presented training data containing clutter contaminated defect
echoes as well as only clutter.

1.2.2 Detection of a magnetic field by means of a nonlinear sensor

Magnetic sensors are useful in a wide area of application and for a variety of final
objectives. There exist a multitude of magnetic sensor types, which are based on
different physical mechanisms and which are applicable in situations depending
on sensitivity requirements and environment of operation. The two types of mag-
netic sensors studied in this thesis are the magneto-resistive (MR) and the super
conductive quantum interference device (SQUID), which both are inherently non-
linear. Common application areas for both these sensors are nondestructive testing
and geomagnetism. For both these applications the main objectives are detection,
localization, and classification of either objects buried in the ground or defects re-
siding in components. The MR sensor, in particular, is also often used for reading
the magnetic stripe on, for example, credit cards and the SQUID sensor has been
found very useful in naval warfare where again detection, classification and local-
ization are the primary goals.

In this thesis the problem in focus is that of detecting a magnetic fieldst, con-
taminated by a strong additive ambient noisevt, based on measurements,yt, from
the MR or the SQUID sensor, see Figure 1.4.

�{0, st}

vt

yt {0, 1}
+ gθ(·) δθ(yt)��� �

Sensor Detector

Figure 1.4: Schematic block structure of a sensor-detector system.
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A complication encountered when applying these sensors in very noisy envi-
ronments is their nonlinear transfer characteristics which makes it difficult to inter-
pret the output signalyt. This complication is often overcome by some means of
sensor tuning where the transfer characteristic is altered so that the sensor produces
valuable output signals. In Figure 1.4 the sensor transfer characteristic is denoted
gβ whereβ denotes the tuning parameter.

There are several techniques of varying degree of sophistication for tuning
magnetic sensors [31]. One simple, but efficient, way to tune a magnetic sensor
is to inject a carefully chosen external magnetic field, thereby altering the work-
ing point of the sensor. In this case the tuning parameterβ could, for example,
correspond to the amplitude of the injected field.

A central problem is to find an appropriate value for the tuning parameterβ.
This should naturally be solved with the final objective in mind in order to reach
the highest possible performance. As mentioned previously, a recently proposed
method, presented in [15, 16], for improving the detectability of a weak harmonic
signal in additive Gaussian noise, is based on tuning a nonlinear sensor to operate
in the SR regime. This approach is briefly discussed in the proceeding section.

Operating a sensor in the SR regime

The term stochastic resonance (SR) has been given to a phenomenon that may
occur in nonlinear systems whereby some particular features of a weak input ex-
citation is amplified by the assistance of a random signal, e.g. noise. This has
rendered a multitude of publications where systems have been operated in the
SR regime in order to exhibit noise induced enhancement of detection perfor-
mance [19, 20, 21], channel capacity [32, 33], neuronal responses [34], image
and signal processing [35, 36], etc. Due to the occurrence of SR in such a vari-
ety of contexts, different characterizations (definitions) of the SR effect have been
proposed [18]. In many of these studies the quantifier for SR is tailor made for the
specific application under study to exhibit and use the desired effect.

The role of SR in sensor-detector applications is one of the main topics of this
thesis, which is further explained by an example given below. In this example the
sensor is represented by a nonlinear dynamical system and the detector is intended
to operate on the output from the sensor. The particular nonlinear dynamics used in
the example is that of a double-well potential2. This particular dynamics is chosen
since it is a classical example of the SR effect.

2Double-well potential means that the dynamical system has two local minima in the state space,
see Figure 1.5
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EXAMPLE 1.1: SRIN A DOUBLE-WELL SENSOR

Consider a sensor with a transfer function that can be described by the stochastic
nonlinear differential equation (SNDE)

Yt = Y0 +
∫ t

0

d

dy
f(Yτ )dτ + st + σVt. (1.8)

Here,Yt is a stochastic process representing the sensor’s output signal,f is a
nonlinear function representing the double-well potential of the system,st is a
periodic excitation signal, andVt is a zero mean unit variance white Gaussian
noise scaled by the noise strength parameterσ. The input signal,st, is taken to
be harmonic and described by

s(t) = A0 cos(2πf0t), (1.9)

whereA0 determines the strength andf0 the frequency. Moreover, let the double-
well potential,f , be represented by

f(x) =
b

4
x4 − a

2
x2. (1.10)

The dynamics in (1.10) has two potential minima located at±xm = ±
√

a/b.
In the absence of noise, and when the system is unperturbed the minima are
separated by a potential barrier with the hight given by∆V = a2/(4b).

If the system in (1.8) is perturbed only by the harmonic signal in (1.9), then
the potential minima are tilted up and down periodically, thereby lowering the
potential barrier separating them. If the periodic forcing is strong, i.e. large
amplitudesA0, then the system’s state will transit between the potential minima
with a rate corresponding to half the forcing frequencyf0. This type of excitation
is called supra-threshold forcing and is visualized in Figure 1.5. A periodic
forcing with small amplitudes,A0, will cause the system’s state to rock back and
forth in one of the potential wells. This is commonly calledsub-threshold.

The output signal from the system in (1.10), when excited by a sub-threshold
periodic forcingst, exhibits interesting behavior when altering the inherent noise
strengthσ. First consider the noise strengthσ to be small, then only few transi-
tions between the potential minima will occur, generating an output signal with
the typical behavior presented in the lower left plot in Figure 1.6. On the other
hand, if the noise strength is very high, several random transitions between the
potential minima will occur, producing an output signal as in the upper left plot in
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f(x)
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Figure 1.5: The double well potential in (1.10) excited by a periodic forcing.

Figure 1.6. For a moderate noise strength the system operates in an intermediate
regime where the systems state transits between the wells with a rate synchro-
nized with half of the periodic forcing. This is depicted in the middle left plot
in Figure 1.6. Also presented in the right column of Figure 1.6 are the power
spectra averaged over 500 realizations of the corresponding time domain signals.

Curiously, when the noise strength is increased and reaches some intermedi-
ate level the sensor output signal starts to oscillate betweenxm and−xm with a
period equivalent to half the forcing frequency. This is the SR effect, which is
also clearly visible in the frequency domain plots in Figure 1.6. Thus, if a fre-
quency based detector, with a detection statistic represented by the amplitude of
the power spectral component at half the forcing frequency, was to operate on the
sensors output signal, then the detectability would be improved by adding noise.

In the light of the behavior of the signals presented in Figure 1.6 it is tempting
to quantify the SR effect, and thereby the information processing capabilities of
the system, in terms of spectrum based measures, since the barrier-crossing rate
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Figure 1.6: On the left the nonlinear sensor output signal is displayed for different
noise strength parameter valuesσ (increasing values from the bottom row to the
top row). Also depicted by the dashed line is the harmonic input signal, with a
normalized amplitude. On the right the corresponding power spectra based on
500 realizations of the output signal is displayed.

depends critically on the noise strengthσ. Indeed, the most common way to char-
acterize SR is by means of a signal-to-noise ratio (SNR) of the system’s output
signal. This SNR is expressed in the spectral domain by exclusively considering
the spectral component at the fundamental frequency given by the input excitation,
which corresponds tof0 in Example 1.1. By assuming that the system has a sta-
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tionary solution when the excitation signalst = 0 and a cyclostationary solution
whenst is harmonic as in (1.9), this spectral based SNR measure may be expressed
as [18]

dSR =
a

S0
V (f0)

. (1.11)

HereS0
V (f0) is the power spectral component atf0 of Yt without any periodic

excitation of the system anda = |c1|2/2π, wherec1 is the first coefficient in
the Fourier expansion

∑
n∈Z

cnei2πf0nt of the ensemble averaged system response
with a harmonic excitation of frequencyf0. Obviously, this approach makes most
sense if the system under study can be described by a SNDS as in (1.8) and the
excitation signal is harmonic. However, similar spectral based SNR measures has
also been utilized for other types of systems and excitation signals [18].

The motivation for having a quantifier for the SR phenomenon and thereby the
information processing capability of a nonlinear system lies not only in describing
the phenomenon but also, and more importantly, in that such a measure can serve
as a cost function when optimizing system performance. In many practical appli-
cations, altering of the noise strength is not an option to be considered. Instead,
from a technical perspective, a similar effect can occur by “tuning” the system to
operate in the intermediate regime where the SR effect becomes pronounced. For
the double well potential this could, for example, be made by altering the barrier
hight ∆V . As mentioned, Hibbset al. [15] and Rouseet al. [16] managed to
operate a SQUID in its SR regime. At the sensor output they utilized a frequency
based detector, set to the fundamental frequency of the input signal, to detect har-
monic magnetic fields. This system clearly showed better detectability with in-
creased noise strength. Also, the spectral based SNR measure of the sensor output
in [15, 16] indicated a similar performance enhancement. Based on the results
from these studies general conclusions of noise enhanced detection performance
were drawn. In this thesis, these types of general conclusions are reconsidered us-
ing optimal detectors instead of detectors based on suboptimal detection statistics.

1.3 Problem formulations

In several applications such as digital communications, radar and sonar, the signal
family to be detected can be modeled by an amplitude modulated sinusoid. Thus,
the signal family may be expressed as

st = Aat sin(2πfct + φ) (1.12)

whereA is the amplitude,at is the envelope,fc is the carrier frequency andφ is
the phase angle. For this case the unknown parametersθ in (1.4), which spans the
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signal family, can be various combinations ofA, fc, andφ.
Due to the wide applicability of the signal family in (1.12) significant research

has been devoted to developing detectors for these types of signals, in particular
when corrupted by an additive Gaussian noise. The resulting detection strategies
focus on providing high performing and practical solutions to problems whereθ
includes close to all permutations of the unknown parametersA, fc and φ. A
comprehensive display of several of these detectors and strategies can be found
in [5, 7, 8, 12]. Some special cases, which have received extra attention, are listed
below:

1. A, at, fc, andφ are completely known3

2. A, at, andfc are known and deterministic andφ ∼ U [0, 2π], whereU [·, ·]
denotes the uniform distribution.

3. at andfc are known and deterministic,φ ∼ U [0, 2π] andA ∼ R(σA), where
R(σ) denotes the Rayleigh distribution.

One well-known detector is thenoncoherent detector, which is applicable for
the case listed in item 2 above. However, in the derivations of the likelihood ratio
for the noncoherent detection problem it is assumed that the envelopeat satisfies
the so-callednarrowband approximation, which can be expressed as

∫ T

0
a2

t cos(4πfct + 2φ) dt = 0, ∀φ ∈ [−π, π]. (1.13)

This entails that the bandwidth of the envelope is narrow in comparison with the
(carrier) frequency,f0, of the sinusoid. In the case of wideband transient signals
the envelope can not be considered to satisfy the narrowband approximation (1.13)
and thereby the classical noncoherent detector will be suboptimal. This is the topic
for the first problem statement described below.

Problem 1: Wideband noncoherent detector

The objective is to derive an expression of the likelihood ratio for the non-
coherent detection problem without imposing the narrowband approximation
in (1.13). The objective is also to evaluate the performance of this detector
compared to the classical noncoherent detector to find out the performance
degradation caused by imposing the narrowband approximation. �

3This case simply yields the matched filter detector which is optimal regardless of the wave form
of the signal [8].
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An often encountered problem when detecting transient signals is that of un-
known arrival time. This situation arises, for example, in the radar, sonar, and
UNDT applications where the measured signal is generated by backscattered echo-
es due to a transmitted pulse. For this scenario, the arrival time of the received
target echo is mainly dependent on the location of the object to be detected.

The objective is to find a detector which can determine if there is a transient
signal, e.g. target echo, present anywhere within a measurementyT

0 = {yt; t ∈
[0, T ]}, taken over some specific time intervalt ∈ [0, T ]. As always, the key
issue in formulating such a detector is to find a detection statistic, preferably the
likelihood ratio. A common approach to obtain a detection statistic for this problem
is by means of a maximum likelihood formulation [12]

max
τ∈[0,T ]

{L(yT
0 |τ)}, (1.14)

whereL(yT
0 |τ) is the likelihood ratio for the case of a single pulse with known

arrival time. For the case of detecting a single pulse with ana priori known arrival
time pdfpΥ the optimal detection statistic is given by [7, 37]

∫ T

0
L(yT

0 |τ)pΥ(τ) dτ. (1.15)

An extension of the unknown arrival time problem discussed above is consid-
ered in the problem statement below and treats the case when the measured signal
may consist of multiple pulses all with unknown arrival times. This scenario could,
for example, also occur in the radar, sonar, and UNDT applications when there are
multiple targets generating reflected echoes or a single target located in an environ-
ment with multi-path propagation. Yet another example is targets of extended spa-
tial dimension with several reflecting surfaces generating multiple reflected pulses
even if only one pulse was transmitted.

Problem 2: Multiple pulses with unknown arrival times
The objective is to first derive an expression for the likelihood ratio when
the signal to be detected can consist of multiple transient signals with un-
known arrival times. Then compare the performance of a detector based on
this likelihood ratio to one with the maximum likelihood ratio detection statis-
tic in (1.14). �

Generally, formulating an optimal detector for a hypothesis problem such as
(1.5) requires that an accurate representation of the signal familyS in (1.4) is ac-
cessible. In all practical detection problems the signals to be detected are, in one
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way or another, generated by some underlying physical mechanisms. In some of
these situations it is difficult to derive/obtain an explicit parameterized mathemat-
ical model of the signal family. A scenario where this difficulty may emerge is
that of defect detection by means of UNDT which is the focus of the third problem
statement below. As mentioned, common approaches to test for defects by means
of a piezoelectric UNDT system are aimed at reducing the clutter noise in the mea-
sured signal and does not explicitly utilize the framework of binary hypothesis
testing to solve the problem. Thus, a signal detection treatment of the ultrasonic
defect detection problem seems appropriate and has the potential to contribute to
the UNDT application area. The ambition is to add the UNDT problem as yet
another field to the list of applications where optimal signal detection is useful.

Problem 3: Physical model-based optimal UNDT detector for cracks
The objective is to present a methodology for the design of statistically op-
timal UNDT detectors for cracks in elastic solids based on physical models.
Subproblems to consider are:

•• Formulate the crack detection problem as a one sided composite hypoth-
esis test of the form (1.5).

• Utilize state-of-the-art numerical simulation programs to sample the crack
echo family of interest to obtain transient signal family members to de-
tect.

• Modify the state-of-the-art ultrasonic clutter model in [38] for the prob-
lem of interest and derive a numerically more efficient algorithm than that
of [38].

• Unify the numerical crack echo and clutter models with the classical the-
ory of signal detection to obtain an optimal detector for the special case
of strip-like cracks with unknown orientation embedded in materials with
a grainy micro-structure like steel and copper.

• Determine the performance of the optimal detector through Monte-Carlo
simulations to obtain upper bounds on detectability provided that the
physical models used are accurate.

• Compare the performance with the so-called generalized likelihood ratio
test4 (GLRT). �

The physical model-based approach outlined above can obviously be adopted
for other detection problems where numerical physical models of the signal gen-
erating mechanisms are accessible. In some cases it may, however, be of to high

4The GLRT detection strategy is briefly described in Appendix A.
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computational complexity for a practical detector implementation. In these situ-
ations one has to retreat to other alternatives when constructing detectors. Since
the main difficulty lies in accurately representing the signal family, one alternative
approach is to postulate a signal family which is tractable when deriving optimal
detectors. Preferably, such a signal family should be representative for the under-
lying physical mechanisms and could, for example, be based on a phenomenolog-
ical model5. The appeal of this approach is that the introduced assumptions are
confined to the postulated signal model and thereby any deviations from optimal
detection performance can be directly traced to the assumed signal family.

This type of phenomenological signal modeling approach was adopted early
in the development of detectors for the radar and sonar applications. In particular,
a signal model described by the amplitude modulated sinusoid in (1.12) has been
frequently used to represent both radar and sonar echoes when deriving detectors
which have been proved to work successfully in both application areas. However,
this methodology has not been fully embraced in the field of UNDT for the problem
of detecting defects.

Problem 4: Phenomenological model-based UNDT detectors for cracks

Employ a simple phenomenological signal model, based on (1.12), for the
crack echoes to derive and apply low-complexity signal family detectors. In
this context, utilize the solution to Problem 2, which makes it possible to con-
sider multiple transients with unknown arrival times. Compare the performance
of these low-complexity detectors to the physical model-based optimal detec-
tor in Problem 3. Moreover, due to the wideband character of the ultrasonic
echoes it is also of interest to utilize the knowledge gained from solving Prob-
lem 1 when evaluating the applicability of the low-complexity detectors.�

Problem 5 stated below concerns the information processing capability in non-
linear sensor-detector systems in particular as well as the concept of quantifiers
for SR in general. As pointed out previously, general claims of noise enhanced
information processing capability based on the SR effect, when the SNR in (1.11)
serves as a quantifier, has been presented in many different scenarios and reported
to occur in a wide class of nonlinear systems [18]. One scenario which has been
vigorously studied in the SR community, and is also of specific interest in this the-
sis, is that of signal detection. In this scenario the nonlinear system constitutes
a sensor and the information to be passed through the system is the presence or

5By phenomenological modeling we mean modeling which is qualitative, i.e. which does not rely
on an underlying detailed physical model but rather based on a combination of observed measure-
ments and physical qualitative reasoning.
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absence of a signal contaminated by an additive Gaussian noise. The traditional
SR based approach to the detection problem does not utilize all information avail-
able in the sensors input signal, by simply constructing a frequency based detector.
Therefore it is of interest to instead pursue an optimal signal detection approach
based on a likelihood ratio detector. It is also of interest to scrutinize if the SR
phenomenon, when quantified with the SNR in (1.11), generally can support the
claim of noise enhanced information processing capability of nonlinear systems.

Problem 5: Noise enhanced detectability in nonlinear sensor systems
Reconsider the problem of detecting signals contaminated by additive Gaus-
sian noise acquired with a nonlinear sensor in the context of optimal detection
theory. Subproblems to consider are:

•• Derive an optimal detector which relies on the whole probabilistic struc-
ture of the problem by casting it as a binary hypothesis test.

• Determine if the SR phenomenon exist in an information theoretic sense
by employing information measures from the Ali-Silvey class6. Also
evaluate the performance of the optimal detector in terms of Receiver Op-
erating Characteristics7 (ROCs) and the minimum achievable probability
of error.

• If the SR phenomenon exist, then determine a criteria for “true” (or gen-
eralized) SR. �

The final problem statement is dedicated to performance optimization of non-
linear sensors and detectors, and is essentially an application of the results from
the previous problem. The approach to optimize the performance of detecting a
magnetic field by means of a SQUID, presented in [15, 16], focuses on tuning the
sensor to operate in the SR regime by maximizing the SNR in (1.11). An, in some
aspects, similar technique is also employed in the application area of UNDT and
presented in [24, 25, 26, 27], where the detection performance of the parameter-
ized and nonlinear SSP detector is optimized by maximizing the SNRE in (1.7).
Although the two application areas discussed above are quite different, there are
similarities between the two optimization approaches. In particular the utilization
of an optimization criterion which is based on some type of second order statistic,
namely the SNR in (1.11) for sensor tuning and the SNRE in (1.7) for the SSP
tuning.

6The Ali-Silvey class of information measures [39, 40], is also commonly called Csiszár f -
divergences [41, 42], and can be interpreted as distance measures between two probability distri-
butions. These are further discussed in Appendix B.

7Detection performance evaluation by means of ROCs is briefly described in Appendix A.
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However, an important issue to consider is that various types of SNRs does
not generally reflect the detectability accurately8 [8, 40, 43]. Thus, in order to un-
dertake the task of tuning nonlinear sensors and detectors, with respect to optimal
detection performance, it is essential to employ adequate and reliable measures as
cost functions.

Problem 6: Optimization of nonlinear sensors and detectors
The objective is to employ adequate and reliable measures for detectability for
both performance comparisons and parameter tuning. The specific subprob-
lems to consider are:

•• Employ information measures from the Ali-Silvey class [39, 40] for tun-
ing nonlinear sensors.

• Use the probability of error when selecting parameters for the phenomeno-
logical model-based detectors (Problem 4). �

1.4 Contributions

The solution to the wideband noncoherent detector (Problem 1) is described in
Paper I:

Daniel E. Asraf and Mats G. Gustafsson, “An Analytical Series Expan-
sion Solution to the Problem of Noncoherent Detection,” submitted to
IEEE Transactions on Information Theory.

This result provides a generalization of the noncoherent detector where the narrow-
band condition previously imposed on the amplitude modulation has been relaxed.

The derivation of a detector for multiple transient signals with unknown arrival
times (Problem 2) is treated in Paper II:

Daniel E. Asraf and Mats G. Gustafsson, “Detection of Multiple Tran-
sient Signals with Unknown Arrival times,” submitted toIEEE Trans-
actions on Information Theory.

The presented solution generalizes the single pulse detection approach given in [7,
37] by allowing for a random number of pulses of unknown arrival times. Hence,
it includes the case of a single pulse with unknown arrival time as a special case.

8Detectability quantified with SNRs is further discussed in Appendix B.
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The physical model-based transient signal detection strategy for cracks in elas-
tic solids (Problem 3) is presented in Paper III:

Daniel E. Asraf and Mats G. Gustafsson, “Optimal Detection of Crack
Echo Families in Elastic Solids”, accepted for publication inThe Jour-
nal of the Acoustical Society of America.

The phenomenological model-based transient signal detection strategy for
cracks in elastic solids (Problem 4) is presented in Paper IV:

Daniel E. Asraf and Mats G. Gustafsson, “Phenomenological Detec-
tors for Crack Echo Families in Elastic Solids” submitted toThe Jour-
nal of the Acoustical Society of America.

The proposed parameterized detectors are “tuned” based on the probability of error
criterion (Problem 6).

The influence of noise on performance of an optimal detector for signals ac-
quired with a nonlinear sensor (Problem 5) is presented in Paper V:

John W.C. Robinson, Daniel E. Asraf, Adi R. Bulsara and Mario E.
Inchiosa, “Information-Theoretic Distance Measures and a General-
ization of Stochastic Resonance”Physical Review Letters, vol. 81, no.
14, pp. 2850–2853, Oct. 1998.

A new definition of the SR phenomenon is proposed, which generalizes the original
formulation, and the methodology is exemplified by studying signal detection by
means of the SQUID sensor. Also pointed out is the need for accurate performance
measures when tuning both the sensor and the detector (Problem 6).

The problem of sensor tuning by means of information theoretic distance mea-
sures (Problem 6) is studied in Paper VI:

Karl Stranne, Daniel E. Asraf, John W.C. Robinson, Peter Lindqvist
and Peter Sigray, “Information-Theoretic Characterization of System
Performance for a Nonlinear Magneto-Resistive Sensor”,Stochastic
and Chaotic Dynamics in the Lakes, AIP Conference Proceedings 502,
Melville, NY, 2000, pp 603–608.

In this study the magneto-resistive sensor is used to exemplify the proposed ap-
proach but the methodologies are generic and can be adopted in tuning also other
types of nonlinear sensors.
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1.5 Outline of the thesis

The different chapters in this comprehensive summary are intended to provide the
reader with the background and the surrounding theories on which the papers are
based. The main contributions of the papers are also presented in the chapters. A
brief outline of each chapter is given below.

Chapter 2: Signal detection.
This chapter presents the core of the signal detection concepts that has been used
in both application areas; defect detection by means of UNDT and detectors for
nonlinear sensors. It includes signal detection in discrete time as well as continu-
ous time and a non-Gaussian signal detection problem. Also briefly summarized
are the two application independent contributions in Paper I and Paper II.

Chapter 3: Defect detection in ultrasonic nondestructive testing.
This chapter contains a brief description of the ultrasonic models employed for the
transducer, the defect scattering as well as the clutter noise. Thereafter, the detec-
tion approaches taken in Paper III and Paper IV are summarized.

Chapter 4: Detectors in nonlinear sensor systems.
This chapter contains a brief description of two static nonlinear sensors, namely the
super conductive quantum interference device (SQUID) and the magneto-resistive
(MR) sensor, that have been used in Paper V and Paper VI. Thereafter, the contri-
butions in Paper V and Paper VI are summarized.

Chapter 5: Concluding remarks and future work.
In this chapter some additional conclusions, of more general nature, concerning
the presented studies are given. Also briefly discussed are suggestions for both
interesting and necessary directions for future work.
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Chapter 2
Signal detection

THE field of signal detection sprung, in many aspects, from the theoretical
problems associated with the application and development of the radar, in

which the problem is to detect the presence or absence of a target. In a 1943 report,
dedicated to the radar detection problem, D.O. North presented, among several
other remarkable discoveries, for the first time the so-called matched filter princi-
ple [44]. Ever since then, signal detection has also been found useful for applica-
tions such as sonar, communication, seismology and radio astronomy. Some of the
other early pioneers in the field of signal detection who developed several results of
significant importance are Van Trees [5, 6, 45], Helstrom [7], and Woodward [9].

This chapter is intended to give the framework for the signal detection problems
treated in the thesis. Overall, the chapter is colored by the considered application
areas and in particular the problem formulations presented in the previous chap-
ter. This chapter begins in Section 2.1 by treating the problem of signal detection
in discrete time and is followed in Section 2.2 by signal detection in continuous
time. In Section 2.3, a non-Gaussian detection problem of particular interest for
the nonlinear sensor application is briefly presented.

2.1 Signal detection in discrete time

This section presents the basic principles for discrete time signal detection, which
has been employed in Paper III and Paper IV for the problem of detecting strip-like
cracks. The UNDT defect detection problem is further developed in Chapter 3,
where several concepts from this section are employed.

The underlying observation model is that of a continuous time waveform con-
sisting of either a signal corrupted by additive noise, or noise only. Moreover, the

27
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observed continuous time signal is considered to be discretized into a vector ofN
samples and the objective is to process theseN samples to determine if the obser-
vation contains only noise or a noise contaminated signal. Hence, the hypothesis
for the discrete time signal detection problem can be described by

H0 : Ȳ = V̄
H1 : Ȳ = S̄ + V̄ ,

(2.1)

whereȲ = [Y1, . . . , YN ]T is a stochastic vector representing the observation,S̄ =
[S1, . . . , SN ]T is the signal to be detected, andV̄ = [V1, . . . , VN ]T is the additive
noise with a pdf denotedpV . In this discrete time setting the observation space is
the set ofN -dimensional vectors with real components, i.e.Ȳ ∈ R

N .
A decision rule for the hypotheses in (2.1) which is optimal in the NP or Bayes’

sense1 is

δ(ȳ) =

{
1 if L(ȳ) ≥ τ

0 if L(ȳ) < τ.
(2.2)

Here ȳ is a realization of̄Y , τ is a detection threshold, andL(ȳ) = p1(ȳ)/p0(ȳ)
is the likelihood ratio, wherep0 andp1 denotes the pdfs of̄Y underH0 andH1,
respectively. The pdf of̄Y under the null hypothesis in (2.1) is simply

p0(ȳ) = pV (ȳ), (2.3)

whereasp1 depends onpV as well as the statistical nature of the signalS̄.
Following the formalism presented by Garth and Poor [23], signal detection

problems are categorized within a hierarchical framework. The hierarchy begins
with a completely known and deterministic signal and ranges through parameter-
ized signals, stochastic signals, both fully and incompletely modeled, and ends at
unstructured signals. For the cases of interest in this thesis the statistical proper-
ties of the signal̄S are considered to be known and based on this assumption the
pdf of Ȳ underH1 can be computed. In particular, given a realizations̄ of S̄ the
conditional pdf ofȲ is

p1(ȳ|s̄) = pV (ȳ − s̄). (2.4)

Thus, a general expression forp1 is

p1(ȳ) = ES̄{pV (ȳ − S̄)}, (2.5)

whereES̄ denotes the average with respect to the signalS̄. Hence, based on (2.3)
and (2.5) the likelihood ratio can expressed as

L(ȳ) = ES̄

{
pV (ȳ − S̄)

pV (ȳ)

}
= ES̄{L(ȳ|S̄)}, (2.6)

1The NP and Bayes’ optimality criteria are discussed in Appendix A.
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whereL(ȳ|·) denotes the conditional likelihood ratio.
Not much can be said about tests based on (2.6) without making further sim-

plifying assumptions. The assumption that will be used throughout the remainder
of this section is that the additive noise,V̄ in (2.1), is zero mean colored Gaussian
with a known covariance matrixΣV . The pdf of a Gaussian random vectorX̄ with
realizations̄x ∈ R

N can be described by

pX(x̄) =
1

(2π)N/2|ΣX |1/2
exp

{
−1

2
(x̄ − µ̄X)T Σ−1

X (x̄ − µ̄X)
}

, (2.7)

whereµ̄X � E{X̄} is the mean,ΣX � E{(x̄− µ̄X)(X̄− µ̄X)T } is the covariance
matrix, |ΣX | denotes the determinant ofΣX andΣ−1

X denotes the inverse ofΣX .
The notation that will be used to describe a random variable with a pdf on the form
(2.7) isN (µ̄X , ΣX). Thus, the noise,̄V in (2.1), isV̄ ∼ N (0, ΣV ).

In the considered UNDT application the clutter noise can in many cases be
accurately modeled by a colored Gaussian process [46, 47, 48, 49, 50]. This is
also the property for the physics based clutter noise model derived in Paper III and
briefly presented in Chapter 3. However, in the nonlinear sensor-detector applica-
tion, considered in this thesis, the statistical properties under both hypotheses will
be non-Gaussian yielding that other approaches than those presented in this section
have to be considered. These techniques are discussed in Section 2.3.

2.1.1 Detection of deterministic signals in Gaussian noise

The first category in the hierarchy mentioned above is when the signal to be de-
tected in (2.1) is known and deterministic. This scenario is commonly known as
thecoherent detection problem and is particularly favorable analytically since the
likelihood ratio can be obtained regardless of the waveform of the signal to be de-
tected. In the light of the UNDT defect detection problem this could correspond to
detection of one type of defect with an a priori known shape and location. Since
if only defects of the same shape and location can occur, and the transmitting and
receiving transducers have fixed locations, then the received waveform generated
by the defect echo will not exhibit any variations.

The hypothesis for the coherent detection problem can be expressed as (2.1),
whereS̄ is replaced by a known and deterministic signals̄. In order to obtain the
NP or Bayes optimal decision rule for the coherent detection problem the likelihood
ratio has to be computed. Since the noise is zero mean Gaussian with a known
covariance matrix the pdf of the null hypothesis,p0(ȳ), is immediately obtained
from (2.3). Furthermore, since the signal is considered to be completely known
and deterministic the expectation in (2.5) can be dispensed off, which yields the
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pdf for the alternative hypothesisp1(ȳ) = pV (ȳ − s̄). Thus, the discrete time
likelihood ratio for the coherent detection problem is given by

L(ȳ) =
p1(ȳ)
p0(ȳ)

=
1

(2π)N/2|ΣV |1/2 exp{−1
2(ȳ − s̄)T Σ−1

V (ȳ − s̄)}
1

(2π)N/2|ΣV |1/2 exp{−1
2 ȳT Σ−1

V ȳ}

= exp
{

s̄T Σ−1
V ȳ − 1

2
s̄T Σ−1

V s̄

}
.

(2.8)

The natural logarithm2 of (2.8) yields

ln{L(ȳ)} = s̄T Σ−1
V ȳ − 1

2
s̄T Σ−1

V s̄, (2.9)

and since the second term in (2.9) is independent of the observationsȳ it can be
included in the detection thresholdτ . This yield a detection statistic on the form

T (ȳ) = s̄T Σ−1
V ȳ. (2.10)

Hence, the NP and Bayes optimal decision rule can be expressed as

δ(ȳ) =

{
1 if T (ȳ) ≥ τ ′

0 if T (ȳ) < τ ′,
(2.11)

where

τ ′ = log{τ} +
1
2
s̄T Σ−1s̄. (2.12)

In the NP case the thresholdτ is determined from the imposed false alarm con-
straint and in the Bayes caseτ depends on the assigned costs as well as the hy-
potheses a priori probabilities (for details see Appendix A).

Coherent detection performance

Another appealing feature of the coherent detector is that both the NP and Bayes
detection performance can be analyzed analytically. This analytical tractability
comes from the fact that the detection statisticT (ȳ) in (2.10) is Gaussian under
both H0 andH1, since it is a linear combination of Gaussian random variables.
Thus, to evaluate the performance of an NP or Bayes optimal detector one can
determine the pdfs of the detection statistic and then calculate either the Bayes
risk, or in the NP case, the probability of detection verses the probability of false

2Any monotone function of the likelihood ratio can equally well serve as a detection statistic (for
details see Appendix A).
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alarm. Since the pdfs ofT under bothH0 andH1 are Gaussian it is sufficient to
find the means and variances. The mean underH0 andH1 is

E{T (Ȳ )|H0} = 0 and E{T (Ȳ )|H1} = s̄T Σ−1
V s̄, (2.13)

respectively. The variance is the same under both hypotheses and is given by

Var{T (Ȳ )|Hj} = s̄T Σ−1
V s̄, j = 0, 1. (2.14)

By defining
d2 � s̄T Σ−1

V s̄, (2.15)

the probability of detection for the decision rule in (2.11) can be expressed as [5]

PD(δ) = 1 − Φ
(

ln{τ}
d

− d

2

)
. (2.16)

HereΦ denotes the cumulative probability distribution function (cdf) of aN (0, 1)
random variable. The probability of false alarm can also be expressed in terms of
the cdf of aN (0, 1) random variable, yielding [5]

PF (δ) = 1 − Φ
(

ln{τ}
d

+
d

2

)
. (2.17)

For anα-level NP test the probability of false alarm isPF (δ) = α and since
Φ is a monotonically increasing function it has an inverse, yielding that the natural
logarithm of the threshold can be expressed as

ln{τ} = dΦ−1(1 − α) − d2

2
. (2.18)

Now by using (2.18) in (2.16) the probability of detection can be expressed in terms
of α as

PD(δ) = 1 − Φ(Φ−1(1 − α) − d). (2.19)

SinceΦ is a monotonically increasing function the performance of anα-level NP
detector for the coherent detection problem will improve monotonically with in-
creasingd.

A similar conclusion is also arrived at when evaluating the performance of the
Bayes decision rule with uniform cost and equal priors [5]. Thus, the quantity
which is intimately related to the detection performance isd in (2.15), which can
be interpreted as a measure of the signal-to-noise ratio (SNR).

The notion of signal-to-noise ratio appears in many different manifestations
and has been, and is still, used for several purposes also outside the scope of detec-
tion of deterministic signals in Gaussian noise. In the SR application, mentioned in
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the previous chapter, a SNR measure expressed in a narrowband in the frequency
domain is used to measure performance of nonlinear systems. Also mentioned in
the previous chapter is the employment of an SNR enhancement for parameter op-
timization of the SSP detector. From the derivations above it is clear that the ability
of the SNR measure in (2.15) to reflect optimal performance depends heavily on
the assumption of Gaussianity. Since the systems in the SR and SSP applications
are nonlinear and thereby, in the general case, yields non-Gaussian signals it is
questionable if these SNR measures serve the purpose of which they are intended.

2.1.2 Detection of parameterized signals in Gaussian noise

In the previous section the signal to be detected was considered known and deter-
ministic. A generalization of this case arises when the waveform of the signal is
allowed to vary. This is often a more realistic model in particular when the signal
is generated by some underlying physical mechanism which in one way or another
can vary and thereby produce signals of different waveforms. For the case of defect
detection by means of UNDT this framework, in contrast to the coherent detection
problem, can be applied in such a way that the defects to be detected are allowed to
have different shapes and/or locations. This idea is used in Paper III of this thesis
where the problem is to detect cracks, with unknown orientation, based on a phys-
ical model. In Paper IV, the same problem is considered, but instead of employing
a physical model for the crack echoes, a phenomenological model is used.

The problem of detecting a family of signals contaminated by Gaussian noise
leads to the composite hypothesis test

H0 : Ȳ = V̄
H1 : Ȳ = s̄(θ) + V̄ ,

(2.20)

wheres̄(θ) is a known vector-valued function ofθ, which is a single or a set of
unknown parameters taking values in some spaceΛ.

For a givenθ, the signal,̄s(θ), in (2.20) is completely known. Thus, the like-
lihood ratio for (2.20), conditioned onθ, can be obtained in the same fashion as in
the previous section by substitutings̄ in (2.8) for s̄(θ) yielding

L(ȳ|θ) = exp
{

s̄(θ)T Σ−1
V ȳ − 1

2
s̄(θ)T Σ−1

V s̄(θ)
}

. (2.21)

There are different strategies when dealing with composite hypothesis tests,
such as (2.20), some of which are mentioned in Appendix A, and the applicability
of these different approaches depends mainly on the a priori knowledge available.
The expression in (2.21) forms the basis for the Bayes, the NP, and the generalized
likelihood ratio test (GLRT) strategies, which are those considered in this thesis.
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If θ is assumed to be a realization of a random variableΘ, having the known
prior pdf pΘ, then the unconditional likelihood ratio for (2.20) can be obtained
from (2.6) as

L(ȳ) = ES̄{L(ȳ|S̄)} = Es̄(Θ){L(ȳ|s̄(Θ))} = EΘ{L(ȳ|Θ)}. (2.22)

By using (2.21) in (2.22) and explicitly writing out the expectation integral gives

L(ȳ) =
∫

θ∈Λ
exp

{
s̄(θ)T Σ−1

V ȳ − 1
2
s̄(θ)T Σ−1

V s̄(θ)
}

pΘ(θ) dθ, (2.23)

which is the NP and Bayes optimal detection statistic for (2.20).
If the a priori pdfpΘ is unknown other types of tests have to be employed, e.g.

the GLRT. The GLRT detection statistic can be expressed as

T (ȳ) = max
θ∈Λ

{L(ȳ|θ)}. (2.24)

This detection statistic is of significant practical interest since it does not require
a priori knowledge of the parameter distribution, which is often hard to obtain.
Moreover, a detector based on the statistic in (2.24) has been shown to have very
competitive performance compared to the optimal NP and Bayes detectors for sev-
eral problems [12], which also is the conclusion drawn in Paper III where it is
employed to the problem of detecting cracks of unknown orientation.

It is generally mathematically intractable to obtain closed form solutions for
the likelihood ratio in (2.23). The difficulty lies in solving the expectation integral
for arbitrary signal models and parameter pdfs. Although for some special cases
closed form solutions are attainable, one is illustrated in the example below. The
detector in this example is used in the phenomenological model based approach to
detect cracks presented in Paper IV and summarized in Chapter 3.

EXAMPLE 2.1: THE NONCOHERENT DETECTOR

Consider the hypothesis problem in (2.20) with a signal of the form

sn(θ) = an sin(2πfc(n − 1)Ts + θ), n = 1, . . . , N (2.25)

wherean, fc, andTs are the envelope, carrier frequency, and sampling time,
respectively, all of which are assumed to be known. Moreover,θ is the phase
of the sinusoidal carrier and is assumed to be unknown and stochastic with a
uniform distribution over[0, 2π]. Hence, by using (2.23) the likelihood ratio for
this problem can be expressed as

L(ȳ) =
1
2π

∫ 2π

0
exp

{
s̄(θ)T Σ−1

V ȳ − 1
2
s̄(θ)T Σ−1

V s̄(θ)
}

dθ. (2.26)
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wheres̄(θ) = [s1(θ), s2(θ), . . . , sN (θ)]T . In order to solve the integral in (2.26)
the two terms in the exponential function have to be simplified.

First, consider the first term of the exponential function in (2.26). By using
the trigonometric identitysin(b + c) = sin(b) cos(c) + cos(b) sin(c) the signal
s̄(θ) in (2.25) can be expressed as

s̄(θ) = s̄scos(θ) + s̄c sin(θ), (2.27)

where the components in̄ss ands̄c aressn = an sin(2πfc(n − 1)Ts) andscn =
an cos(2πfc(n − 1)Ts), respectively. This yields that the first term in (2.26) can
be expressed as

s̄T (θ)Σ−1
V ȳ = cos(θ)h̄T

s ȳ + sin(θ)h̄T
c ȳ (2.28)

where

h̄c = s̄T
c Σ−1

V and h̄s = s̄T
s Σ−1

V . (2.29)

These two vectors are sometimes called in-phase and quadrature filters, respec-
tively.

The second term in the exponential function in (2.26) is now considered.
Since the covariance matrix,ΣV , is symmetric and positive-definite a spectral
decomposition yields

ΣV =
N∑

k=1

λkūkū
T
k = UΛUT , (2.30)

whereλk are the eigenvalues and̄uk the corresponding orthonormal eigenvec-
tors. By using (2.30) the second term in the exponential function in (2.26) can be
expressed as

s̄T (θ)Σ−1
V s̄(θ) = s̄T (θ)UΛ−1UT s̄(θ)

=
N∑

m=1

N∑
k=1

N∑
n=1

1
λn

Um,nUk,nsm(θ)sk(θ)

=
N∑

m=1

N∑
n=1

1
λn

Um,nUm,na2
m sin2(2πfc(m − 1)Ts + θ)

=
N∑

m=1

N∑
n=1

1
λn

Um,nUm,na2
m

[
1
2

+
1
2

cos(4πfc(m − 1)Ts + 2θ)
]
.

(2.31)
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The third equality in (2.31) is due the orthogonality of the eigenvectors inU and
the forth equality is obtained with the trigonometric identitysin2(b) = 1/2 −
1/2 cos(2b). Furthermore, assuming that the square of the envelopea2

1, . . . , a
2
N

is slowly varying with respect to twice the carrier frequency yields

N∑
m=1

N∑
n=1

1
λn

Um,nUm,na2
m

1
2

cos(4πfc(m − 1)Ts + 2θ) ≈ 0. (2.32)

This is the before mentionednarrowband approximation. By employing the nar-
rowband approximation to (2.31) the second term in the exponential function in
(2.26) can be reduced to

s̄T (θ)Σ−1
V s̄(θ) ≈ 1

2
āT Σ−1

V ā, (2.33)

whereā = [a1, a2, . . . , aN ]T .

Finally, by using (2.33) and (2.29) in (2.26) the likelihood ratio takes the
form

L(ȳ) =
1
2π

∫ 2π

0
exp{cos(θ)h̄T

s ȳ + sin(θ)h̄T
c ȳ − 1

4
āT Σ−1

v ā} dθ

= exp{−1
4
āT Σ−1

v ā} 1
2π

∫ 2π

0
exp{cos(θ)h̄T

s ȳ + sin(θ)h̄T
c ȳ} dθ

= exp{−1
4
āT Σ−1

v ā}I0(r).

(2.34)

HereI0 is the zeroth-order modified Bessel function of the first kind and

r =
√

(h̄T
s ȳ)2 + (h̄T

c ȳ)2. (2.35)

Since the factorexp{−1
4 āT Σ−1

V ā} in (2.34) is independent of the observations,
ȳ, it can be included in the detection threshold when formulating a decision rule.
Moreover, the Bessel function,I0, is monotonically increasing yielding thatr
can replace the likelihood ratio as a detection statistic. Thus, the NP and Bayes
optimal decision rule for the noncoherent detection problem is

δ(ȳ) =

{
1 if r ≥ τ ′

0 if r < τ ′,
(2.36)

whereτ ′ = I−1
0 (τ exp{1

4 āT Σ−1
V ā}). It should be noted that this decision rule is

derived based on the narrowband approximation and is thereby optimal for cases
when (2.32) holds.
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A detector for signals of the form (2.25) and based on the statistic in (2.35) is
commonly callednoncoherent detector or envelope detector. Similar to the coher-
ent detector, the performance of the noncoherent detector can be treated analyti-
cally [5, 7, 8]. However, this is not generally the case for composite hypothesis
tests, such as (2.20), where performance analysis has to be treated on a case by
case basis.

2.1.3 Detection of Gaussian signals in Gaussian noise

In the two preceding sections the signal to be detected was assumed to be highly
structured, either completely known or parametrically determined. In this section
the statistical nature of the signal̄S in (2.1) is modeled by a Gaussian random
vector with a known mean̄µS and covariance matrixΣS , i.e. S̄ ∼ N (µ̄S , ΣS).
Moreover, V̄ and S̄ are also assumed to be independent. Under the foregoing
assumptions, the distributions of the observationȲ in (2.1) can be described by
Ȳ ∼ N (0, ΣV ) andȲ ∼ N (µ̄S , ΣV + ΣS) underH0 andH1, respectively. The
likelihood ratio can thereby be expressed as

L(ȳ) =
p1(ȳ)
p0(ȳ)

=
|ΣV |1/2

|ΣV + ΣS |1/2
exp

{
1
2
ȳT Σ−1

V ΣS(ΣV + ΣS)−1ȳ

+ µ̄T
S (ΣV + ΣS)−1ȳ − µ̄T

S (ΣV + ΣS)−1µ̄S

}
.

(2.37)

The natural logarithm of the likelihood ratio in (2.37) gives the detection statistic

T (ȳ) =
1
2
ȳT Σ−1

V ΣS(ΣV + ΣS)−1ȳ + µ̄T
S (ΣV + ΣS)−1ȳ + G, (2.38)

whereG = (1/2) ln{|ΣV |/|ΣV + ΣS |} − µ̄T
S (ΣV + ΣS)−1µ̄S is independent of

the observation̄y and can thereby be included in the detection thresholdτ .
A well-known case of the Gaussian signal detection problem is detection of an

amplitude modulated sinusoid, where the phase is a uniform random variable and
the amplitude is a Rayleigh random variable [5, 12]. This case can be considered to
fall into the categories of both parameterized signal detection and Gaussian signal
detection but is treated in this section because the likelihood ratio is most easily
obtained by using the analytical framework presented here. The classical detec-
tor [5, 12] for this problem is commonly calledquadrature matched filter and has
been, and still is, widely used in radar, sonar, and communication systems. In the
example below a wideband version of the classical quadrature matched filter detec-
tor is derived. The detector in this example is also used in the phenomenological
model based approach to detect cracks presented in Paper IV and summarized in
Chapter 3.
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EXAMPLE 2.2: WIDEBAND QUADRATURE MATCHED FILTER DETECTOR

Consider the hypothesis problem in (2.1) with a signal of the form

Sn = Aan sin(2πfc(n − 1)Ts + Θ), n = 1, . . . , N, (2.39)

where the amplitudeA is a Rayleigh distributed random variable, i.e.A ∼
R(σ2

A), and the phase angleΘ of the sinusoid is a uniformly distributed random
variable, i.e.Θ ∼ U [−π, π]. Moreover, assume thatσA, the carrier frequency
fc, the sampling intervalTs, and the envelopēa = [a1, . . . , aN ] are all known.

By using the trigonometric identitysin(b+c) = sin(b) cos(c)+cos(b) sin(c)
the signal can be expressed as

Sn = A1an sin(2πfc(n − 1)Ts) + A2an cos(2πfc(n − 1)Ts), (2.40)

whereA1 = A cos(Θ) andA2 = A sin(Θ). The stochastic variablesA1 and
A2 can be shown [51] to be independent identically distributed (i.i.d.) zero mean
Gaussian with varianceσ2

A, i.e. Ai ∼ N(0, σ2
A), i = 1, 2. Hence, the signal in

(2.40) is zero mean Gaussian with 2 degrees of freedom. A vector representation
of the signal is

S̄ = S
(

A1

A2

)
, (2.41)

where

S =




0 a1

a2 sin(2πfcTs) a2 cos(2πfcTs)
...

...
aN sin(2πfc(N − 1)Ts) aN cos(2πfc(N − 1)Ts)


 . (2.42)

This yields the explicit expression for the signal covariance matrix as

ΣS = E{S̄S̄T } = σ2
ASST . (2.43)

The natural logarithm of the likelihood ratio can now be straightforwardly
obtained by using (2.43) in (2.38) yielding

ln{L(ȳ)} =
σ2

A

2
ȳT Σ−1

V SST (ΣV + σ2
ASST )−1ȳ + G, (2.44)

where

G =
1
2

ln
{

|ΣV |
|ΣV + σ2

ASST |

}
. (2.45)
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The expression for the detection statistic in (2.44) can be reduced into a nu-
merically efficient formulation by using the matrix inversion lemma [12]

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1. (2.46)

In (2.44) letA = ΣV , B = σAS, D = σAST andC = I2×2, whereI2×2 rep-
resents an2 × 2 identity matrix. The detection statistic can now be expressed as

ln{L(ȳ)}

=
σ2

A

2
ȳT Σ−1

V SST
[
Σ−1

V − Σ−1
V σ2

AS(σ2
AST Σ−1

V S + I2×2)−1ST Σ−1
V

]
ȳ + G

=
σ2

A

2
ȳT HHT ȳ − σ2

A

2
ȳT HQHT ȳ + G.

(2.47)

HereQ is a2 × 2 matrix given by

Q = σ2
AST Σ−1

V S(σ2
AST Σ−1

V S + I2×2)−1, (2.48)

andH is aN × 2 filter given by

H = Σ−1
V S = [h̄s h̄c]. (2.49)

It should be noted thatH contains the in-phase and quadrature filters, also defined
for the noncoherent detector in (2.29).

In the derivation of the classicalquadrature matched filter, which also is called
square-law envelope detector, the2 × 2 matrix Q in (2.48) is approximated to be
diagonal [5, 12]. This simplification is based on the assumption of narrowband
signals [5, 12], with a condition equivalent to the narrowband approximation in
(2.32), and thus not satisfied for wideband transient signals, i.e. envelopesā of
short time duration. Since no approximations are employed in Example 2.2, a
detector based on the statistic in (2.47) is optimal also when the envelopeā has
short time duration.

2.2 Signal detection in continuous time

In the case of discrete time signal detection the mathematical toolbox required to
treat the various problems considered was that of ordinary probability calculus.
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The main reason for this is that the observation space isR
N , thus the probability

densities or families of densities under the two hypotheses are onR
N and can be in-

tegrated by means of the regular Riemann integral to give probabilities.3 However,
when facing continuous time detection problems the observations are realizations
of a random variable indexed by time as a continuous parameter. The observation
space is then a set where each element is a continuous time waveform, i.e. afunc-
tion space. Thus, to treat continuous time detection problems requires the notion
of probability densities in function spaces and methods of integration of in such
spaces. This section is not claimed to be a comprehensive treatment on this subject
but covers some selected issues of interest for Paper I and Paper II, which utilizes
the continuous time formalism. Rigorous and comprehensive presentations can be
found in [8, 53].

The hypothesis problem for signal detection in continuous time, corresponding
to (2.1), can be expressed as

H0 : Yt = Vt, 0 ≤ t ≤ T
H1 : Yt = St + Vt, 0 ≤ t ≤ T,

(2.50)

where{St; t ∈ [0, T ]} is the signal to be detected and{Vt; t ∈ [0, T ]} represents
an additive noise which here is assumed to be white Gaussian with spectral height
N0/2. The autocovariance function for the white Gaussian noise is

CV (t, u) = E{VtVu} =
N0

2
δ(t − u), t, u ∈ R, (2.51)

whereδ denotes the Dirac delta function. In the discrete time setting the more
general case of colored Gaussian noise was considered. This more general case
can also be treated in the continuous time formalism by means of, for example, the
Karhunen-Lóeve expansion [8], but is omitted in this brief presentation.

An NP an Bayes optimal decision rule for the hypothesis problem in (2.50) can
be described by

δ(Y T
0 ) =

{
1 if L(Y T

0 ) ≥ τ

0 if L(Y T
0 ) < τ,

(2.52)

whereY T
0 denotes the observed signal in the time interval[0, T ] andL(Y T

0 ) is
the likelihood ratio. Since the likelihood ratio in the continuous time setting is
L(Y T

0 ) = p1(Y T
0 )/p1(Y T

0 ), the pdfs are required to be defined on a space of
functions which will be denotedΩ. This demands a generalization of the concept

3There do exist some “exotic” cases even forR
N where more general integration techniques are

required [52].
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of pdfs to incorporate also function spaces, which is established by the Radon-
Nikodym derivative [8, 53]. Given a probability measureP on an arbitrary space
Ω the corresponding pdfp can be expressed by the Radon-Nikodym derivative as

p =
dP

dµ
. (2.53)

Hereµ is a so-calledσ-finite measure onΩ that dominatesP , i.e. µ � P . A
thorough presentation of measures and generalized integration can be found in [52].

Based on the Radon-Nikodym derivative in (2.53) the likelihood ratio for (2.50)
can be formally expressed. Let the probability measures for the observation under
H0 andH1 be denotedP0 andP1, respectively, and the corresponding pdfs be
denotedp0 and p1, respectively. This yields the likelihood ratio as the Radon-
Nikodym derivative ofP1 with respect toP0 according to

L(Y T
0 ) =

p1(Y T
0 )

p0(Y T
0 )

=
dP1(Y T

0 )
dµ(Y T

0 )

/
dP0(Y T

0 )
dµ(Y T

0 )
=

dP1

dP0
(Y T

0 ). (2.54)

It should be noted that the measureµ in (2.53) does not need to be explicitly defined
in order to express the likelihood ratio in (2.54).

The same hierarchy of detection problem that was mentioned for the discrete
time case is also applicable for continuous time detection problems and is for (2.50)
dependent on the statistical properties of the signalSt. The subsections below
considers the cases whenSt is known and deterministic as well as parameterized.

2.2.1 Detection of deterministic signals in Gaussian noise

The scenario considered here is whenSt in (2.50) is deterministic and known i.e.
St = st. The most common4 and also the simplest formulation of the likelihood
ratio is obtained by first rewriting the hypotheses in (2.50), withSt = st, into an
equivalent form given by

H0 : Xt = Wt

H1 : Xt =
∫ t
0 sudu + Wt.

(2.55)

HereXt =
∫ t
0 Yudu andWt =

∫ t
0 Vudu. The stochastic process{Wt; t ∈ [0, t]}

is a so-called Wiener process which is a Gaussian process with zero mean and
autocovariance

CW (t, u) =
N0

2
min{t, u}, (t, u) ∈ [0, T ]2. (2.56)

4Another approach to obtain the likelihood ratio is based on the Kahrunen-Loéve transformation
and Grenander’s theorem [8].
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The likelihood ratio for (2.55) is given by the Cameron-Martin formula [8] and can
be expressed as

L(XT
0 ) = exp

{
2

N0

∫ T

0
st dXt −

1
N0

∫ T

0
s2
t dt

}
. (2.57)

Thus a Bayes or NP optimal detector for (2.55) is obtained by constructing a deci-
sion rule on the form (2.52) where the the likelihood ratio is given by (2.57).

The reason for reformulating the original hypotheses in (2.50) into the equiva-
lent form in (2.55) lies in that the Cameron-Martin formula for the likelihood ratio
is based on Pitcher’s theorem [8]. Pitcher’s theorem presents an expression for the
likelihood ratio when the additive stochastic process is continuous and of bounded
variation. The Gaussian white noise in the original hypotheses in (2.50) does not
have bounded variance sinceE{V 2

t } = CV (t, t) = (N0/2)δ(t − t), which is the
motivation for the reformulation. However, the Wiener process in the reformulated
hypotheses (2.55) has bounded variance sinceE{W 2

t } = CW (t, t) = (N0/2)t,
and thus allows the likelihood ratio to be obtained via Pitcher’s theorem.

The equation in (2.57) bears a clear resemblance to the corresponding discrete
time formulation in (2.8). It should be noted though, that the first integral in (2.57)
is not a regular Riemann integral due to the randomness ofXt. This integral is a
so-calledmean-square Stieltjes integral and because of the randomness defined in
a stochastic sense as the mean square limit [8].

2.2.2 Detection of parameterized signals in Gaussian noise

A continuous time equivalent to the discrete time parameterized signal detection
problem can be expressed by the hypotheses

H0 : Xt = Wt

H1 : Xt =
∫ t
0 su(θ) du + Wt,

(2.58)

wherest(θ) is a known function of the unknown parametersθ.
In the discrete time formulation the likelihood ratio in (2.22) is obtained by

taking the expectation, with respect toθ, of the conditional likelihood ratio. An
equivalent approach is also applicable in the continuous time case where the condi-
tional likelihood ratio for (2.58) is given by the Cameron-Martin formula in (2.57)
by substitutingst for st(θ) yielding

L(XT
0 |θ) = exp

{
2

N0

∫ T

0
st(θ)dXt −

1
N0

∫ T

0
s2
t (θ) dt

}
. (2.59)

Just as in the discrete time case the conditional likelihood ratio in (2.59) is the
quantity which constitutes the basis for the Bayes, the NP, and the GLRT detectors
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considered in this thesis. The detection statistic for the GLRT is

T (XT
0 ) = max

θ∈Λ
{L(XT

0 |θ)}, (2.60)

and when the a priori pdf,pΘ, for θ is known the Bayes and the NP test statistic is
given by

L(XT
0 ) =

∫
θ∈Λ

exp
{

2
N0

∫ T

0
st(θ) dXt −

1
N0

∫ T

0
s2
t (θ) dt

}
pΘ dθ. (2.61)

The detection statistics in (2.60) and (2.61) are both very similar to their dis-
crete time counter parts with no significant differences apart from the mean-square
Stieltjes integral.

Wideband noncoherent detector

The formalism presented above is used in Paper I, where the problem of detecting a
continuous time amplitude modulated sinusoid with unknown and uniform phase is
treated. This so-called noncoherent detection problem was presented in a discrete
time setting with a colored Gaussian noise in Example 2.1, where a solution based
on the narrowband approximation was derived.

In the continuous time setting and when the noise is taken to be white Gaussian
the hypotheses are described by (2.58), where the signal to be detected is given by

st(θ) = at sin(2πfct + θ), t ∈ [0, T ]. (2.62)

Hereat is a known waveform representing the envelope,fc is a known frequency,
andθ is an unknown uniformly distributed phase angle. The unconditional likeli-
hood ratio (i.e. optimal detection statistic) is given by (2.61) withΘ ∼ U [0, 2π] ,
yielding

L(XT
0 ) =

1
2π

∫ π

−π
exp

{
2

N0

∫ T

0
st(θ)dXt −

1
N0

∫ T

0
s2
t (θ)dt

}
dθ. (2.63)

The well-known noncoherent detector is based on an approximative solution to
the likelihood ratio integral in (2.63) and is given by [8]

L(XT
0 ) ≈ e

− a2

2N0 I0

(
2r1

N0

)
. (2.64)

Herea2 =
∫ T
0 a2

t dt andr1 =
√

A2
c + A2

s, with Ac andAs defined by

Ac �
∫ T

0
at cos(2πfct)dXt and As �

∫ T

0
at sin(2πfct)dXt. (2.65)
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To obtain (2.64) the narrowband approximation [8] is imposed, which requires that
a2

t is slowly varying relative4πfc. However, the expression in (2.64) holds with
equality ifa2

t is constant or a raised-cosine [8].
An analytical series expansion solution to the noncoherent detection problem,

which does not rely on the narrowband approximation and is thus valid for any
waveform of the envelopeat, is derived in Paper I. The analytical series expansion
solution is given by

L(XT
0 ) = e

− a2

2N0

[
I0

(
2r1

N0

)
I0

(
r2

2N0

)
+ 2

∞∑
l=1

I2l

(
2r1

N0

)
Il

(
r2

2N0

)
cos(lφ)

]
.

(2.66)
Herer2 =

√
B2

c + B2
s , with Bc andBs defined by

Bc �
∫ T

0
a2

t cos(4πfct) dt and Bs �
∫ T

0
a2

t sin(4πfct) dt, (2.67)

andφ = 2φ1 + φ2, whereφ1 = tan−1(Ac/As) andφ2 = tan−1(Bs/Bc).
The advantage of a detector based on the general expression in (2.66) over

the classical noncoherent detector with the detection statistic given by (2.64) is
illustrated in Paper I for a particular envelope signalat. In this study Monte-Carlo
simulations are used to compute the detector performance in terms of minimum
probability of error and ROC curves for different bandwidths of the envelope signal
and different SNRs. These results clearly show that the narrowband approximation
yields a performance degradation for the classical noncoherent detector when the
bandwidth of the envelope is large, i.e. the narrowband approximation does not
hold. A similar behavior will of course also be obtained for other types of envelopes
(except raised-cosine) for which the narrowband approximation does not hold.

Multiple pulses with unknown arrival time

The continuous time formalism is also employed in Paper II, which treats the prob-
lem of detecting multiple transient signals, with unknown arrival times, contami-
nated by an additive white Gaussian noise. The hypotheses for this problem can be
described by (2.58), where the signal to be detected is on the form

st = st(θ1, . . . , θM , τ1, . . . , τM ) =
M∑

m=1

xt(θm, τm), t ∈ [0, T ]. (2.68)

Here M is the number of pulses,xt(θ, τ) denotes a transient (pulse) which is
nonzero in a finite time intervalt ∈ [τ, τ +Tx], whereτ is the time location (arrival
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time),Tx is the duration time of the pulse, andθ is a parameter vector determining
the waveform of the pulse.

When deriving an expression for the likelihood ratio the following assumptions
are imposed:

• The arrival timesτm are assumed to be independent realizations of a stochas-
tic variableΥ taking values in the set[0, T − Tx] with a known prior distri-
butionPΥ and corresponding pdfpΥ.

• The total time occupied by the pulses isM ·Tx 	 T , i.e. the pulse durations
are very short,Tx 	 T

M .

• The waveform parametersθm are assumed to be independent realizations
of a stochastic variableΘ taking values in some setΛ with a known prior
distributionPΘ.

The assumptions above can be found relevant in applications such as radar, sonar,
and ultrasonic nondestructive testing (UNDT) where pulse-echo detection tech-
niques are employed. In, for example, the UNDT application an impinged defect
can generate several short pulses with arrival times that can be modeled as random
due to their dependence on a potential defect’s location, shape, and orientation.
The UNDT application is further discussed in Paper IV and Chapter 3, where also
the result from this section is employed in deriving detectors.

Under the foregoing assumptions, and whenst contains a fixed number of
pulses, it is shown in Paper II that the likelihood ratio can be expressed as

L(XT
0 |M) =

[ ∫ T−Tx

0
L(Y τ+Tx

τ )pΥ(τ) dτ

]M

, (2.69)

whereL(Xτ+Tx
τ ) is the likelihood ratio for a single pulse with known arrival time

i.e. L(Xτ+Tx
τ ) = Eθ{L(XT

0 |θ, τ)}. Moreover, since(·)M is monotone, a detec-
tion statistic, equally efficient in discriminating the hypothesis as the likelihood
ratio in (2.69), is given by

T (Y T
0 ) =

∫ T−Tx

0
L(Y τ+Tx

τ )pΥ(τ) dτ. (2.70)

This expression is equivalent to the likelihood ratio for the case whenst only con-
tains a single pulse, i.e.M = 1.

A classical approach to obtain a detection statistic for the problem of detecting
a transient signal with unknown arrival time is to compute the maximum likelihood
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(ML) ratio over the time interval of interest. Thus the detection statistic is given by

T (Y T
0 ) = max

τ∈[0,T−Tx]
{L(Y τ+Tx

τ )}. (2.71)

As mentioned, a decision rule based on this statistic is known as a generalized
likelihood ratio test (GLRT).

The advantage of a detector based on the expression in (2.70) over the GLRT,
with the detection statistic given by (2.71), is illustrated in Paper II for a particu-
lar signal family. In this study Monte-Carlo simulations are used to compute the
detector performance in terms of ROC curves for different noise strengthsN0/2.
In general, regardless of the particular transient signal family, if the assumptions
stated above are satisfied then a detector based on (2.70) can be expected to out-
perform the GLRT based on (2.71).

2.3 Detection of non-Gaussian signals

In the previous sections the problem of detecting a signal contaminated by additive
Gaussian noise was considered. As mentioned, this standard problem formula-
tion is applicable for a wide range of detection problems and can easily be treated
mathematically due to the properties of Gaussianity and additivity.

In some situations the stochastic processes involved can not be modeled as
Gaussian. Detection of non-Gaussian signals is a very wide area and is generally
associated with several mathematical difficulties, some of which are overcome by
introducing assumptions and simplifying models. Due to the mathematical com-
plications, the solutions to the non-Gaussian detection problems has branched off
into a set of special cases. An overview of several non-Gaussian signal detection
problems is nicely presented in a tutorial paper by Garth and Poor [23]. A less
general presentation is given in [54] which focuses on signal detection problems
with an additive non-Gaussian noise.

In this section a discrete time non-Gaussian detection problem is considered,
which is of interest for the studies in Paper V and Paper VI. For this problem the
observations underH0 andH1 are modeled by a static nonlinear function of either
only an i.i.d. Gaussian noise or a known deterministic signal contaminated by an
additive i.i.d. Gaussian noise. Thus, the hypotheses can be expressed on the form

H0 : Yn = g(Vn), n = 1, . . . , N
H1 : Yn = g(sn + Vn), n = 1, . . . , N,

(2.72)

whereg is a static nonlinear function,V1, . . . , VN are i.i.d. Gaussian random vari-
ables and̄s = [s1, . . . , sN ]T is a known and deterministic signal to be detected.
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Since the functiong is nonlinear the resulting pdfs of̄Y = [Y1, . . . , YN ]T under
the two hypothesis will be non-Gaussian.

If only one time instant is considered then the problem reduces toR and the
pdfs ofYn under the two hypotheses can be obtained via the formula of probability
densities through a nonlinearity [55]. Specifically, ifZ = g(X) and the pdf ofX
is pX then the pdf ofZ can be expressed as

pZ(z) =
M∑

m=1

pX(a(m)
z )

|g′(a(m)
z )|

, (2.73)

whereg′(x) = d
dxg(x) and{a(m)

z }M
m=1 are theM roots to the equationz = g(x).

Thus, by employing (2.73) the pdf ofYn underH0 is

p0(yn) =
M∑

m=1

pV (b(m)
yn )

|g′(b(m)
yn )|

, (2.74)

where{b(m)
yn }M

m=1 denotes theM roots, which satisfyyn = g(b(m)
yn ). Similarly, the

pdf of Yn underH1 becomes

p1(yn) =
K∑

k=1

pV (c(k)
yn )

|g′(sn + c
(k)
yn )|

, (2.75)

where{c(k)
yn }K

k=1 denotes theK roots, which satisfyyn = g(sn + c
(k)
yn ). The like-

lihood ratio for (2.72) can thus be expressed by using (2.74) and (2.75) yielding

L(yn) =
p1(yn)
p0(yn)

=
M∑

m=1

pV (c(m)
yn )

|g′(sn + c
(m)
yn )|

/ K∑
k=1

pV (b(k)
yn )

|g′(b(k)
yn )|

. (2.76)

Moreover, since the noise samplesV1, . . . , VN are assumed i.i.d. the likelihood
ratio for the whole signal, i.e. all samplesn = 1, . . . , N , can be expressed as

L(ȳ) =
N∏

n=1

L(yn). (2.77)

Closed form expressions for the likelihood ratio in (2.77) is generally difficult to
find since analytical expressions for the pdfs ofYn under the two hypotheses can
be hard to obtain. The tractability of the problem depends mainly on the structure
of the nonlinearityg and the pdf of the noisepV . However, the formula for trans-
formation of pdfs in (2.73) can be utilized to obtain numerical representations for
the pfds under the two hypothesis and thereby the likelihood ratio. This numerical
approach is taken in Paper V and Paper VI where the performance of an optimal
detector for a static nonlinear sensor is evaluated.



Chapter 3
Defect detection in ultrasonic
nondestructive testing

TO utilize accurate signal models is often beneficial in reaching a signal pro-
cessing objective such as detection. This chapter is intended to give a brief

presentation of the signal models, for the UNDT defect detection application, em-
ployed in this thesis. The model of the received signal includes modeling of the
transducer, the defect echo, and the material clutter noise. In particular, the de-
fects are assumed to be crack-like and reside in an elastic solid such as steel or
copper. In modeling the crack echo two different approaches are taken where one
is based on an advanced physical model and the other is a simple phenomenolog-
ical model based on qualitative reasoning of the involved scattering mechanisms.
Equipped with the models mentioned above the defect detection problem can be
solved within the framework of optimal signal detection presented in Chapter 2.

This chapter begins in Section 3.1 with a short background on elastodynamic
wave propagation and scattering. Section 3.2, is devoted to the modeling of the
transducer. The two crack echo models are presented in Section 3.3, and in Section
3.4, the clutter noise model is presented. Finally, in Section 3.5 the defect detec-
tion problem is cast as a composite binary hypothesis test and the signal detection
approaches that have been used in Papers III and Paper IV are summarized.

3.1 Elastodynamic preliminaries

The equations governing elastodynamic wave motions are the equation of motion
and the stress-strain constitutive relationship [56]. These expressions provide the
basis for obtaining explicit mathematical models for many of the processes in-

47
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volved in an UNDT measurement, such as transmission, propagation, scattering,
and reception.

The equation of motion, expressed in Cartesian tensor notation and with the
Einstein summation convention, for an isotropic elastic solid, without body forces,
at some point̄x may be written as [14]

ρ
∂2uk(t, x̄)

∂t2
=

∂τlk(t, x̄)
∂xl

. (3.1)

Here,ρ is the density of the medium,uk is the particle displacement,τlk is the
symmetric stress tensor, and the subindices denote thex, y, z-dimension. The con-
stitutive equation can be expressed as [14]

τlk(t, x̄) = Clkmn εmn(t, x̄), (3.2)

whereClkmn denotes the stiffness constants for the material andεmn is the material
strain. Moreover, for small displacements the strain can be approximated by [14]

εmn(t, x̄) =
1
2

(
∂um(t, x̄)

∂xn
+

∂un(t, x̄)
∂xm

)
. (3.3)

The particle displacement,uk, in the equation of motion (3.1) have three spa-
tial degrees of freedom and can be decomposed into two dominating and funda-
mentally different wave components [14]. The wave component associated with
the particle displacements in the propagation direction is called pressure waves or
P-waves and the component with displacements orthogonal to the propagation di-
rection is referred to as shear waves or S-waves. These wave modes have different
wave speeds, for example, in metals the P-waves travels approximately twice as
fast as the S-waves [14]. Other wave modes that occur in elastic wave propagation
and scattering are; Rayleigh waves, Lamb waves, and leaky waves. The different
wave modes can exist simultaneously in an elastodynamic medium and depend on
the propagation direction and mode conversions at boundaries in the medium.1

It is often a formidable task to accurately model the scattered field from an
inhomogeneity in an elastic solid. Analytical closed form solutions only exist for
a few special cases. Generally, scattering problems are solved by introducing the
ansatz [14]

uk(t, x̄) = u
(in)
k (t, x̄) + Uk(t, x̄), (3.4)

whereuk is the total displacement field,u(in)
k is the incident field generated by

the transmitting transducer andUk is the scattered field from a inhomogeneity in
the elastic solid. The scattered field,Uk, is obtained by using the ansatz in (3.4)
and then solving the equation of motion (3.1) when imposing boundary conditions
representing the scatterer.

1A mode conversion occurs when one wave mode is transformed into another.
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3.2 Modeling of the piezoelectric transducer

Piezoelectric materials posses the ability to convert electrical energy to mechanical
energy and vice versa, due to a coupling between mechanical motion and time-
varying electric fields. This feature makes piezoelectric materials very useful for
constructing ultrasonic transducers. A schematic of a typical piezoelectric trans-
ducer is presented in Figure 3.1. The electric field is applied via the electrodes,
which are attached on both sides of the piezoelectric crystal.

�������
�������
�������
�������

External
housing

Connector

Backing

Wear plate

Electrodes

Piezoelectric
crystal

Figure 3.1: Schematic of a piezoelectric transducer.

In the transmission phase an electric excitation signals
(in)
e (t), generally in

the form of a short pulse, induces a damped vibration in the piezoelectric crystal.
The vibrations generate longitudinal waves that propagate both backward into the
backing, where they are absorbed, and forward into the acoustic medium.

A piezoelectric transducer can often be modeled as a linear time invariant (LTI)
system [14] with an electro-acoustic impulse responseβea(t) (in [14] the particle
velocity is used whereas here the particle displacement will be used, which is sim-
ply related to the velocity through time differentiation). The particle displacement,
u(t), normal to the transducer face (the normal displacement) is then described as

u(t) = βea(t) ∗ s(in)
e (t), (3.5)

where∗ denotes convolution. The model in (3.5) can be generalized by introducing
a spatial weighting functiona(x̄ST

), wherex̄ST
is a point on the transducer surface

ST . The normal displacement at the pointx̄ST
then becomes

u(x̄ST
, t) = a(x̄ST

) u(t). (3.6)

In this thesis the transducer is modeled as a so-called piston transducer which
means that the weighting functiona(xST

) is uniform overST .
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Moreover, in order for the mechanical motion, generated by the piezoelectric
crystal, to propagate into the test specimen, the transducer needs to be in physical
contact with the object. The most common approach is to apply a coupling gel or a
layer of water as an interface between the transducer and the medium but in some
applications the transducers are welded to the test object.

In the reception phase a displacement at every point on the face of the receiv-
ing transducer induces a spatially distributed stress throughout the piezoelectric
crystal, which collectively give rise to an electric field over the electrodes. Thus,
the voltage signal measured by a receiving transducer can be modeled as being
proportional to the spatial average of the normal displacement over the transducer
surface [57]

〈u〉(t) =
∫

x̄∈ST

u(t, x̄) dx̄. (3.7)

In a similar fashion as in the transmission phase, the piezoelectric crystal can be
considered to have an acousto-electrical impulse responseβae(t). Hence, the re-
ceived voltage signal can be described as [57]

x(t) = βae(t) ∗ 〈u〉(t). (3.8)

When specifying the properties of a piezoelectric transducer used for UNDT
applications it is common to define an overall impulse response, which includes
the effects of both transmission and reception [14]. The overall impulse response
is often referred to as the transducers efficiency factor and is defined as

β(t) = βae(t) ∗ βea(t) ∗ s(in)
e (t). (3.9)

The benefit of introducing the overall impulse response in (3.9) is that the
model for the received signal can be formulated in such a way that the reception
and transmission of the transducer, and the wave propagation and scattering can
be treated separately. Thus, in order to obtain the scattered signal response the ef-
ficiency factor in (3.9) is convolved with the combined impulse responses for the
wave propagation and scattering.

The efficiency factor, expressed in the frequency domain, that has been used in
Paper III and Paper IV is given by [58]

β̃(ω) =

{
sin2

(
π |ω|−ω1

ω2−ω1

)
, ω1 ≤ |ω| ≤ ω2,

0, otherwise,
(3.10)

where the upper and lower frequencies aref2 = ω2/2π = 6.68 MHz andf1 =
ω1/2π = 1.32 MHz, respectively. Hence, the center frequency of the probe is
4 MHz and the -3 dB bandwidth is2.68 MHz, yielding a relative bandwidth of
67%. Figure 3.2 shows this efficiency factor in both the time- and the frequency
domain.
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Figure 3.2: The transducer efficiency factor in (3.10) plotted in the time domain
(left) and the frequency domain (right).

3.3 Modeling of the crack echo

The UNDT defect detection problem in this thesis considers the special case of
detecting a crack residing in an elastic solid by means of a pulse-echo measurement
configuration. In order to employ the signal detection framework, presented in
Chapter 2, an explicit model of the crack echo is required. This section presents
the two models for crack echoes, which have been used in Paper III and Paper IV.

3.3.1 Physical model in the frequency domain

The physical model for the crack echoes adopted in this thesis has been developed
by Mattssonet al. [58, 59, 60, 61]. This model is based on the so-called electrome-
chanical reciprocity theorem [14, 62] and is formulated in the frequency domain
by considering harmonic waves. The work by Mattssonet al. [58, 59, 60, 61]
also resulted in a numerical package, which in a modified form has been used in
this thesis to compute crack echo signals. This section will briefly present the
electromechanical modeling approach and the modification made to the original
numerical package.

The electromechanical reciprocity theorem [14] presents a relation between
two different electromechanical states of the same body in terms of the electro-
magnetic and elastodynamic fields. This theorem was for the first time applied to
the problem of elastic wave scattering in an ingenious paper by Auld [62] where
a methodology applicable to several UNDT problems is presented. The set-up
considered in the approach by Auld is that of an elastic body with two piezo-
electric transducers attached. Moreover, in order to apply the electromechanical
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reciprocity theorem the two different states of the considered volume must be de-
fined. In the approach by Auld, the first state corresponds to the solution when one
of the transducers is excited by an electromagnetic wave, which carries powerP
and is of frequencyω, in the absence of the defect. The second state corresponds
to the solution when the other transducer is excited by an electromagnetic wave
with the same frequency and power, butin the presence of the defect. Auld derives
an expression for the reflection coefficient, at the receiving transducer, due to the
scatterer. The reflection coefficient, in Cartesian tensor notation, is given by [62]

δΓ(ω) =
iω

4P

∫
x̄∈SF

[u(1)
k (ω, x̄)τ (2)

kl (ω, x̄) − u
(2)
k (ω, x̄)τ (1)

kl (ω, x̄)]n(SF )
l dx̄,

(3.11)
where i =

√
−1, P is a constant representing the feeding power to the firing

transducer,u(b)
k and τ

(b)
kl are the displacement and stress, respectively, andb =

{1, 2} denotes the state. Moreover, the integration in (3.11) is performed over
the surface of the defect here denotedSF and n̄(SF ) denotes the inward-directed
normal toSF . From a signal processing point of view the reflection coefficient
in (3.11) is simply a frequency domain expression of the impulse response of the
defect observed at the receiving transducer.

As mentioned in the previous section, the electrical signal from the receiving
transducer generated by a defect echo is obtained by convolving the transducer
efficiency factor in (3.9) with the impulse response of the defect. In the frequency
domain this operation corresponds to a multiplication. Thus, the electrical signal
in the frequency domain can be expressed as

s̃(ω) = β̃(ω)δΓ(ω). (3.12)

For the pulse echo set-up considered in this thesis there is only one transducer
present but the approach by Auld is still applicable by simply letting the position
for the two transducers coincide. The problem geometry as well as the crack spe-
cific parameters are depicted in Figure 3.3. The crack defect is modeled as open
and strip-like with an infinite length in theY -direction. Moreover, the boundary
conditions at the crack, expressed in the primed coordinate system in Figure 3.3,
are taken to be so-called spring boundary conditions [61]

uk(x′, y′, 0+) − uk(x′, y′, 0−) = 0, |x′| > w/2, ∀y′

Kkl[ul(x′, y′, 0+) − ul(x′, y′, 0−)] = w n
(z′)
l τlk(x′, y′, 0−), |x′| ≤ w/2, ∀y′

n
(z′)
l τlk(x′, y′, 0+) − n

(z′)
l τlk(x′, y′, 0−) = 0, ∀x′, ∀y′.

(3.13)
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Figure 3.3: The geometry of the strip-like crack model showing the parameters
specifying the crack widthw, center location(x0, z0), and angular orientationϕ
with respect to theX-axis. A primed coordinate system (X ′, Y ′, Z ′) is attached
to the crack with the origin at the crack center.

Heren(z′) is a normal to the surfacez′ = 0 andKkl are the spring constants [61]

(Kkl) =


K11 0 0

0 K22 0
0 0 K33


 . (3.14)

By using the boundary conditions in (3.13) and the ansatz in (3.4) the reflection
coefficient in (3.11) is reduced to [61]

δΓ(ω, θ) =
iω

4P

∫ ∞

−∞

∫ w/2

−w/2
∆U

(2)
k τ

(1)
lk n

(z′)
l dx′ dy′. (3.15)

Here∆U = U(x′, y′, 0+) − U(x′, y′, 0−) is the so-called crack opening displace-
ment (COD) andθ contains the defect related physical parameters such as the crack
width w, locationx0, z0, and angular orientationϕ (wherex0, z0 andϕ correspond
to the position and the orientation of the primed coordinate system).

In the numerical package by Mattssonet al. [58, 59, 60, 61], the expres-
sion in (3.15) is solved one frequency at a time for a predefined set of frequen-
cies. The time domain signal, for a given transducer efficiency factorβ̃(ω), is
then obtained by performing an inverse Fourier transformation of (3.12). How-
ever, it was found that the supposedly constant feeding power to the transmitting
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probe, i.e.P in (3.15), was indirectly varied as a function of frequency in the orig-
inal numerical package. Instead of assigning a specific feeding power,P , to the
transmitting transducer a constant displacement amplitude,U0, is assigned at the
surface,ST , of the transducer. Since the displacement is uniform over the face of
the transducer it is acting as a piston source. The feeding power to a piston trans-
ducer that is required to maintain a displacement amplitude,U0, independent of the
displacement frequency,ω, is proportional to [14]

P ∝ cρω2U2
0 , (3.16)

wherec is the sound velocity andρ is the density of the wave propagation medium.
Thus, from (3.16) it is clear that assigning a constant displacement amplitudeU0

implies a feeding powerP that increases withω2. This behavior results in crack
echo signals that are significantly up-shifted in frequency, see right column in Fig-
ure 3.4 were signals corresponding to a crack with different angular orientations
are displayed. The original computer package was therefore modified by introduc-
ing a frequency scaling of the assigned displacement amplitude for the transmitting
transducer according to

U0(ω) ∝ 1
ω

√
P

cρ
, ω �= 0, (3.17)

whereP is kept constant.
Simulated crack echo signals with the constant feeding power modification are

presented in the left column in Figure 3.4. These echo signals are computed for
a strip-like crack with different angular orientationsϕ (see Figure 3.3) and with a
probe efficiency factor given by (3.10). From Figure 3.4 it can clearly be seen that
the echo from a crack withϕ = 45o andϕ = 90o contains several pulses. The first
and the second pulses are reflections of the P-wave from the cracks near-tip and
far-tip, respectively. The other pulses, which arrives later in time, are due to the
slower propagating mode converted waves [58].

3.3.2 Phenomenological model in the time domain

In the previous section the physical principles governing elastodynamic wave mo-
tions were utilized to obtain an advanced numerical model of the crack echo. In
this section the crack echo is represented by a simple phenomenological model
in the form of an explicit mathematical expression based on qualitative reasoning
of the involved scattering mechanisms. This model is employed in Paper IV, and
is inspired by the impulse-response method by Lhémery, who has published a se-
ries of theoretical and application oriented papers on the subject [63, 64, 65, 66].
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Figure 3.4: Crack echoes for different angular orientationsϕ = 0 (upper row),
ϕ = 45o(middle row) andϕ = 90o(last row), computed with the original numeri-
cal package (d)-(f) and the modified version (a)-(c).

Although the impulse-response method is also based on fundamental physical prin-
ciples its formulation allows approximations to easily be introduced. This is a great
advantage since, apart from the obvious desire that the model should represent the
crack echo accurately, another main objective is that the model is tractable for de-
riving detectors.

The impulse-response method is formulated in the time domain, in contrast to
the modeling approach in the previous section. A defect echo signal can thereby
be expressed as [63]

s(t; θ) = β(t) ∗ h(t; θ), (3.18)

whereβ(t) is the transducer efficiency,h(t; θ) is the impulse response of the de-
fect andθ, as before, represents the underlying physical parameters such as shape,
location, orientation etc. A general approach to derive the impulse response for a
defect of complex geometry and with different acoustical impedances can be found
in [66].



56 Chapter 3: Defect detection in ultrasonic nondestructive testing

In [65] Lhémery studies the special case of a so-called penny shaped crack
and presents a signal processing method for defect discrimination. Lhémery shows
that the impulse response for a penny shaped crack consist of two components
separated in time. The one appearing first in time is the contribution from the
crack tip closest to the receiving transducer and the second is from the far tip. The
crack defect impulse response can then be described by

h(t; θ) = hnear tip(t; θ) + hfar tip(t; θ). (3.19)

The occurrence of separate signal components, indicated by (3.19), can also
be observed in the simulated crack echo responses in Figure 3.4, where also a
few more mode converted pulses appears. Based on these simple observations the
expression in (3.19) is extended to includeM components. This yields

h(t; θ) =
M∑

m=1

hm(t; θ), (3.20)

whereh1(t; θ) andh2(t; θ) are the near-tip and far-tip impulse responses respec-
tively. The remaining terms in (3.20) represent the mode converted contributions
in the crack impulse response.

Instead of deriving a physically based expression for eachhm(t; θ) in (3.20)
according to [66] a simple parametric model is postulated. Since the transducer
is assumed to generate a transient wave-pulse the efficiency factorβ(t) will have
a bandpass character. Thus, each signal component consisting ofβ(t) ∗ hm(t; θ)
will also be bandpass and can thereby be represented by an amplitude modulated
sinusoid [13]

β(t) ∗ hm(t; θ) ≈
{

Amam(t − τm) sin(ωm(t − τm) + φm), t ∈ [τm, τm + Ta]
0, otherwise

θ̃m = [Am ωm τm φm].
(3.21)

Hereτm is the arrival time,Am is the amplitude,ωm is the carrier frequency,φm is
the phase angle,am(t) is the envelope andTa is the time duration of the envelope.
The phenomenological crack scattering model then becomes

s(t; θ) ≈ s(t; θ̃1, . . . , θ̃M , a1, . . . , aM ) =
M∑

m=1

x[t; θ̃m, am(t)], (3.22)

wherex[t; θ̃m, am(t)] is given by (3.21). Note that the physical parameterθ has
been replaced by a set of “unphysical” parameters,θ̃1, . . . , θ̃M , and the envelopes
a1(t), . . . , aM (t).
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3.4 Modeling of clutter noise in metals

Polycrystalline materials, such as stainless steel and copper, consist of densely
packed crystals or grains, which are randomly configured throughout the material.
Therefore, in an UNDT scenario, when an acoustic pulse is emitted into a material
the pulse will be scattered by a myriad of micro-structures causing the received
signal to exhibit a random behavior. This signal is commonly called clutter.

It has been shown that the clutter signal from materials can be modeled as a
colored Gaussian process when the number of grains is large [46, 47]. Due to this
property, clutter models in UNDT studies are often modeled as colored Gaussian
processes [26, 49, 50, 67]. One evident dilemma with this approach is to find out
how the noise process should be colored. An approach to overcome this difficulty is
to derive a physical model based on the material micro-structural properties. Such
a clutter model has been put forward by Yaldaet al. [38] and Margetanet al. [68].

The clutter noise model used in this thesis (Paper III and Paper IV), is a mod-
ification of the model by Yaldaet al. [38], which considers an immersion testing
pule-echo set-up with a focused transducer. The new model, derived in Paper III
and briefly presented here, is modified in the following aspects:

• The configuration is that of pulse-echo contact testing.

• The transducer is modeled as unfocused.

• Approximations are introduced to reduce the computational complexity.

The backscattered noise is assumed to be dominated by single scattering of the
incident wave field by the individual grains. Based on this assumption the basic
idea in this modeling approach is that the clutter noise is a superposition of the
backscattered field from all grains isonified by the transmitting transducer.

By specifying the time interval within which the clutter noise signal is to be
computed will impose restrictions on the depth coordinate. Thistime window of
interest (TWOI) together with the beam pattern for the transducer yields aspatial
region of interest (SROI) within which the backscattering from grains are to be
modeled. The geometry of the problem is depicted in Figure 3.5.

In the model by Yaldaet al. [38] a clutter noise realization is obtained by
adding the backscattered field from all grains in the SROI. To alleviate much of the
computational complexity the SROI is here first decomposed intoN sub-regions
SROIn, which are slices perpendicular to the propagation direction of the incident
wave, see Figure 3.5. The backscattered contribution from all grains within the
SROIn can then be represented by a frequency and depth dependent random vari-
ableQn(ω). The statistical properties ofQn(ω) are derived in Paper III, where it
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Figure 3.5: Sketch over the clutter noise model geometry illustrating the SROI and
thel:th grain residing in then:th sub region, SROIn.

is shown, based on the central limit theorem, thatQn(ω) can be modeled as a zero
mean Gaussian random variable. The frequency domain clutter noise signal can be
expressed as

ṽ(ω) = β̃(ω)
ω2

4πρc4

N∑
n=1

exp{2(j ω
c − α)Rn}
Rn

Qn(ω), (3.23)

whereα is the material attenuation coefficient,Rn is the distance from the trans-
ducer to the center of then:th slice.

The discrete time clutter noise realizations used in Paper III and Paper IV
were computed by a numerical implementation of (3.23) under the assumption
of a large number of grains. In this implementation a clutter noise realization,
v̄ = [v(1), . . . , v(N)]T , is obtained by an inverse discrete Fourier transformation
of [ṽ(ω1), . . . , ṽ(ωN )] computed from (3.23) atN equidistant frequencies. Since
the frequency domain clutter signal in (3.23) consists of linear combinations of
Gaussian random variables, its inverse Fourier transform,v̄, will also be Gaussian.

A realization of a typical clutter noise signal for a stainless steel with a probe
efficiency factor given by (3.10) is depicted in Figure 3.6 in both the time and the
frequency domain.
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Figure 3.6: A clutter noise realization in the time domain (left) and the corre-
sponding discrete Fourier transform (right).

3.5 Signal detection applied to nondestructive testing

The framework of parameterized signal detection, presented in Section 2.1.2, is
suitable for treating the defect detection problem. In a typical UNDT situation, a
potential defect can have different locations, orientations, and shapes, all of which
will affect the backscattered wave-field and thereby the measured signal. These
defect related physical attributes, which for example are represented byθ in (3.15),
can often be considered a priori unknown from one inspection to another. The
uncertainty about the defect related physical attributes can be modeled by con-
sideringθ to be a realization of a stochastic variableΘ with the pdfpΘ. Thus,
the uncertainty aboutθ is transformed into an uncertainty about the defect echo
s̄. The ensemble of the defect echo signals for all possible values ofθ may be
represented by

S = {s̄(θ) ∈ R
N | θ ∈ Λ}, (3.24)

whereΛ is the set whereθ takes its values.
In a testing situation the defect echo,s̄(θ), is drawn from the signal familyS

in (3.24), according to the pdfpΘ(θ). Moreover, by omitting multiple reflections
the clutter noise can be considered both as additive and independent of the defect
generated signal. Thus, the defect detection problem can be cast as the composite
hypothesis test

H0 : Ȳ = V̄
H1 : Ȳ = s̄(Θ) + V̄ ,

(3.25)

whereV̄ ∼ N (0, ΣV ) represents the clutter noise.
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As shown in Section 2.1.2, a decision rule for (3.25) can be formulated as

δ(ȳ) =

{
1 if T (ȳ) ≥ τ

0 if T (ȳ) < τ.
(3.26)

Hereτ is a user defined threshold andT is a detection statistic given by either the
likelihood ratio in (2.23), for the NP and Bayes optimal detector, or the maximum
likelihood ratio in (2.24) for the generalized likelihood ratio test (GLRT).

The particular problem considered in Paper III and Paper IV is to detect a strip-
like crack residing in an elastic solid. Equipped with the signal models presented
in Sections 3.3.1 and 3.3.2 a few approaches to compute a detection statistic are
presented in the following sections.

3.5.1 Physical model based crack echo detector

Instead of pursuing an analytical approach in deriving a detector for strip-like
cracks, the likelihood ratio in (2.23) can be computed numerically. This is sim-
ply achieved by a discretization of the pdfpΘ in (2.23) atM sample pointsθm,
and generatinḡs(θm) by means of the computerized mathematical model of the
crack scattering described in Section 3.3.1. Thus, the numerical approximation of
the likelihood ratio reads

L(ȳ) =
∫

θ∈Λ
L(ȳ|θ) pΘ(θ) dθ ≈

M∑
m=1

L(ȳ|θm) Pθm , (3.27)

wherePθm = pθ(θm)∆θ and∆θ is the volume around each sampling point. The
conditional likelihood ratio in (3.27) is

L(ȳ|θm) = exp
{

s̄(θm)T Σ−1
V ȳ − 1

2
s̄(θm)T Σ−1

V s̄(θm)
}

. (3.28)

The NP and Bayes optimal detector for (3.25) can be implemented as a non-
linear filter bank based on (3.28) and (3.27), which is depicted in Figure 3.7 as a
block diagram.

If the a priori pdfpΘ is not known, which is often the case in a practical situa-
tion, the GLRT approach can be adopted. A numerical approximation of the GLRT
detector in (2.24) can straightforwardly be obtained based on the same filter bank,
given by (3.28), that was used for the NP and Bayes optimal detector. Thus, the
GLRT detection statistic is

T (y) = max
m

{L(y|θm)}. (3.29)

The corresponding block diagram for the GLRT detector is depicted in Figure 3.8.



3.5. Signal detection applied to nondestructive testing 61

Σ
H

H

M

.

.

.

y y

1

0τ<
>

θ2

θ

θ1

θ1L(       )

L(       )θ2

L(       )θM

.  
.  

.

P

P

P

L(   )

Figure 3.7: Block diagram of the NP and Bayes optimal detector

H

H

.

.

.

.  
.  

.y ymax{    }.

1

0

θ1L(       )

L(       )θ2

L(       )θM

>
τ<T(   )
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In Paper III the detection approaches described above are exemplified by as-
suming that the cracks position(x0, z0), widthw, and the constantsKij are known
while the angular orientationϕ is unknown, see Figure 3.3 and the boundary condi-
tions in (3.13). Thus, in this caseθ in (3.28) and (3.29) corresponds to the angular
orientationϕ of the crack. One should note that a fundamental limitation of the
filter bank implementation of the detectors described above is the computational
complexity. For a problem withK unknown parameters which need to be dis-
cretized intoM different intervals, the number of filters in the filter bank isMK ,
i.e. the number of filters grows exponentially with the number of parametersK.
Thus, except for problems with few unknown parameters, one has to consider sub-
optimal family detectors with lower complexity.
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3.5.2 Phenomenological model based crack echo detector

The phenomenological signal model in Section 3.3.2 has been employed in Pa-
per IV to obtain low complexity detectors for crack defects. This signal model
consists of superpositions of pulses given by (3.21). Since the statistical variabil-
ity of the underlying physical parameters of the cracks were represented by the
stochastic variableΘ in (3.25), the arrival time and waveform parameters in (3.21)
are also modeled as stochastic. The problem of detecting several pulses with un-
known arrival time is studied in Paper II, where an approximation of the NP and
Bayes optimal detection statistic is given. This result is applied in Paper IV to the
crack echo detection problem. In order to obtain a simple detection statistic, of low
computational complexity, the following assumptions are imposed:

• The number of pulses are assumed to be fixed and the stochastic parameters
of the pulses are assumed to be statistically independent.

• The carrier frequencies are assumed to be equal and deterministic but un-
known for all pulses and will be denotedωc.

• The discrete time envelopes for all pulses are assumed to be known and equal
and denoted̄a = [a(1), . . . , a(Na)]T , whereNa is the number of samples of
the envelope.

• The arrival timesτ1, . . . , τM are assumed to be realizations from indepen-
dent identically distributed (i.i.d.) stochastic variables with a uniform dis-
tribution on the observation interval. In the discrete time representation this
corresponds to a uniform probability mass function on[1, N − Na].

• The pulse durations are assumed to be short relative the acquisition time, i.e.
Na 	 N .

Under these assumptions the detection statistic takes the form (see Paper II)

T (ȳ) =
N−Na∑
n=1

EA,φ

{
Lωc(ȳ

n+Na
n |A, φ)

}
, (3.30)

whereȳn+Na
n denotes the sub-vector ofȳ from n to n + Na and

Lωc(ȳ
n+Na
n |A, φ) = exp

{
x̄T Σ̃−1

V ȳn+Na
n − 1

2
x̄T Σ̃−1

V x̄

}
. (3.31)

HereΣ̃V is the covariance matrix (of sizeNa × Na) of the noiseV̄ and

x(n; A, φ, ωc) = Aa(n) sin(ωc(n − 1)Ts + φ) n = 1, . . . , Na, (3.32)

whereTs is the sampling time.
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The assumptions listed above are not based on any detailed analysis of the
statistical properties of the model parameters but rather imposed to obtain a math-
ematically tractable problem. Clearly, the position, orientation, and size of a crack
will affect the arrival times as well as the waveforms of the pulses via the intri-
cate relationship between the underlying physical parameters and the parameters
in (3.21). Due to the lack of knowledge concerning this intricate relationship and
the statistical properties of a potential crack’s physical parameters the assumptions
listed above are intentionally conservative in the sense that they introduce very
little a priori knowledge. By refining these assumptions to agree more with the
underlying physical reality the detector will yield higher performance but become
significantly more complex. In the following subsections three approaches to solve
EA,φ{Lωc(ȳn+Na

n |A, φ)} in (3.30) are pursued based on different assumptions of
the statistical properties of the model parametersA andφ.

Case 1: Matched filter detector

By ignoring thatA andφ can exhibit any form of variability the problem reduces
to detecting a deterministic pulse. This is equivalent to the coherent detection
problem described in Section 2.1.1, with the likelihood ratio given by (2.8). Thus,
under these simplified assumptionsEA,φ{Lωc(ȳn+Na

n |A, φ)} reduces to

Lλ(ȳn+Na
n ) = exp

{
x̄T (λ)Σ−1

V ȳn+Na
n − 1

2
x̄T (λ)Σ−1

V x̄(λ)
}

, (3.33)

whereλ = [ωc A φ] are some fixed parameters. �

Case 2: Noncoherent detector

The previous case is here extended by allowing the phaseφ to have a uniform
distribution, i.e. φ ∼ U [0, 2π]. This corresponds to the noncoherent detection
problem, presented in Example 2.1, where the likelihood ratio is given by (2.34).
Thus,EA,φ{Lωc(ȳn+Na

n |A, φ)} can then be expressed as

Lλ(ȳn+Na
n ) = exp{−1

4
āT Σ−1

v ā}I0

(√
(h̄T

s (λ)ȳn+Na
n )2 + (h̄T

s (λ)ȳn+Na
n )2

)
,

(3.34)
whereh̄s(λ) andh̄c(λ) are given by (2.29) and depend onλ = [ωc A]. Recall that
the likelihood ratio for the noncoherent detection problem was derived under the
narrowband approximation. Since the defect echo pulses are relatively wideband
it is questionable if the narrowband approximation is satisfied for these types of
pulses. �
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Case 3: Wideband quadrature matched filter detector

The final case that has been considered is when both the pulse amplitudeA and
the phaseφ are modeled as random. The amplitude is here assumed be Rayleigh
distributed, i.e.A ∼ R(σA), with an unknown density parameterσA. As in the pre-
vious case, the phase is taken to be uniformly distributed. This is equivalent to the
detection problem described in Example 2.2. The likelihood ratio for this problem
is given in (2.47), which yields thatEA,φ{Lωc(ȳn+Na

n |A, φ)} can be expressed as

Lλ(ȳn+Na
n ) = exp{Gλ}

× exp
{

σ2
A

2
(ȳn+Na

n )T HλHT
λ ȳn+Na

n − σ2
A

2
(ȳn+Na

n )T HλQλHT
λ ȳn+Na

n

}
,

(3.35)

whereλ = [ωc σA], andGλ, Qλ, andHλ now depend onλ and are given by (2.45),
(2.48), and (2.49), respectively. �

The remaining problem is now to find appropriate values for the parameterλ in
(3.33), (3.34), and (3.35). As mentioned, in previous UNDT studies [28, 29, 30],
parametric detectors for defects have been optimized by using the SNRE in (1.7) as
a criterion function. An alternative strategy is adopted here, which is simply based
on finding the parameterλ∗ that minimizes the probability of error

λ∗ = arg min
λ

{PE(δλ)}. (3.36)

Hereδλ∗ is on the form (3.26) with the detection statistic given by (3.30).
In Paper IV, the probability of error, for the three detectors presented above, is

computed versus the various parameters inλ. From these simulations it can be con-
cluded that it is feasible to optimize the detector parameters based on the minimum
probability of error criterion even for quite small training data sets. Moreover, these
results show that the detection performance is mainly dependent on the parameter
specifying the carrier frequencyωc. Also presented in Paper IV are the ROCs for
the proposed detectors, which are compared to the physical model-based optimal
detector (Paper III). Moreover, since the wideband quadrature matched filter de-
tector (Case 3 above) only shows a slight improvement in the ROCs compared to
the noncoherent detector (Case 2 above) the crack echo pulses can be considered
to satisfy the narrowband condition in this context. This is supported by the study
in Paper I, where the effect of the signal bandwidth on the performance of the
noncoherent detector is analyzed. However, even though the proposed detectors
are based on quite ad hoc assumptions they result in only moderate performance
degradation compared to the physical model-based optimal detector.



Chapter 4
Detectors in nonlinear sensor
systems

THIS chapter is devoted to the problem of detecting signals acquired with a
nonlinear sensor, for which three main topics are considered. The first is to

derive an optimal detector for a static nonlinear sensor system and in particular
to evaluate the detection performance as a function of the noise strength. This
problem can be treated by means of the framework of non-Gaussian signal detec-
tion, presented in Section 2.4. As was pointed out in Section 1.2.2, detectability in
nonlinear sensor systems could under certain circumstances be enhanced by noise.
This phenomenon has been studied under the name of stochastic resonance (SR)
[18, 19, 20, 21], which was illustrated in Example 1.1 by means of a dynamical
system with a harmonic input signal. The SR phenomenon has also been studied
in static (non-dynamical) systems [69, 70]. The second main topic is to propose
a generally applicable quantifier for the SR phenomenon, which truly reflects the
information processing capability of a system. The third topic concerns optimiza-
tion of a tunable nonlinear sensor for detection, which is treated by employing the
insights from the two above mentioned topics.

The nonlinear sensors that have been used in this thesis are the static SQUID
and the static MR sensor, which are described in Sections 5.1 and 5.2, respectively.
These sensors are used to illustrate the approaches taken for the three topics men-
tioned above, which are briefly outlined in Section 5.3.

65
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4.1 The superconducting quantum interference device

The superconducting quantum interference device (SQUID) is an electromagnetic
apparatus that converts magnetic flux variations into a voltage variation. The
SQUID is the most sensitive magnetic sensor currently available, achieving a mag-
netic field resolution in the order of10−15 Tesla. A significant limitation of the
practical usefulness of the SQUIDs is their sensitivity to both inherent and external
noise. There are two main types of SQUIDs namely the rf (or AC) SQUID and
the DC SQUID. The rf SQUID is the one studied in Paper V, and its fundamental
components are depicted in Figure 4.1. This section will only give a brief descrip-
tion of the SQUID sensor, an in depth presentation of SQUIDs, their underlying
physical mechanisms and operation can be found in [31].

Josephson junction

Superconducting ring

Low−temperature cage

eΦ

Φ

Figure 4.1: Simplified schematic of a SQUID sensor depicting the externally ap-
plied magnetic fluxΦe and the fluxΦ trapped in the superconductive ring.

A time varying external magnetic flux,Φe(t), is applied to the SQUID’s super-
conductive ring, which is shielded by a low-temperature cage, see Figure 4.1. This
external flux is here given by

Φe(t) = Φi(t) + ΦDC + σΦV (t), (4.1)

whereΦi(t) is the input flux to be measured (detected),ΦDC is a known DC level
applied to obtain a symmetric transfer characteristic,ΦV (t) is a noise disturbance
of zero mean and unit variance, andσ is a noise strength parameter. The noise term
σΦV (t) in (4.1) can often be modeled as Gaussian with a normalized autocorrela-
tion given by

R(τ) =
1
σ2

Et{σΦV (t)σΦV (t + τ)} = e−|τ |/τv , (4.2)
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whereτv is the noise correlation time. Furthermore, the noise bandwidthτ−1
v is in

many situations considerably larger than the bandwidth of input flux signalΦi(t),
yielding that the noise can be approximated as being white [19].

The externally applied flux,Φe, yields a magnetic flux through the supercon-
ductive loop (denotedΦ in Figure 4.1), which evolves according to the dynamics
determined by the superconductive properties of the ring and the Josephson junc-
tion. The dynamics of the magnetic flux through the superconducting loop can be
described by [18, 19]

LC
d2

dt2
x(t) = −τL

d

dt
x(t) − U ′[x(t)] + xe(t). (4.3)

Herex(t) = Φ(t)/Φ0 is the normalized flux in the loop,xe(t) = Φe(t)/Φ0 is
the normalized external flux,Φ0 = �/2e is the flux quantum,L is the inductance
of the loop,C is the junction capacitance, andτL = L/Rj , whereRj is the so-
called normal state resistance of the junction. Moreover,U ′(x) = d

dxU(x), with
the functionU given by [18, 19]

U(x) =
1
2
x2 − β

4π2
cos(2πx), (4.4)

whereβ = 2πLIc/Φ0, andIc is the so-called loop critical current. The parameter
β determines the shape of the potential governing the dynamics of the SQUID.

In most practical applications the SQUID loop is shunted by a low resistance
yielding thatLC 	 τL and thereby that the L.H.S. of (4.3) can be neglected [19].
Thus, in these cases the dynamics in (4.3) is reduced to

τL
d

dt
x(t) = −U ′[x(t)] + xe(t). (4.5)

Due to the modeling assumptions above the first order system in (4.5) bears a clear
resemblance to the system studied in Example 1.1 (Chapter 1) with the exception
of being multi-well. Several studies of various SR phenomenas in rf SQUIDs de-
scribed by (4.5) have been published, many of which are devoted to signal detection
[15, 16, 19, 20, 21].

A further simplification of the rf SQUID transfer characteristic in (4.5) can be
made if the noise bandwidth,τ−1

v , not only is considered to be much larger than the
bandwidth of the input flux signalxi(t), but also much less thanτ−1

L , i.e. τv � τL.
This is valid in many situations sinceτL is typically in the order of10−10 to 10−12

seconds which far exceeds the bandwidth of most real-world signals of interest.
Thus, by settingτL

d
dtx(t) = 0 the dynamics in (4.5) can be approximated by the

quasi-static form [71]
U ′[x(t)] = xe(t). (4.6)
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The measured output voltage signal from the quasi-static rf SQUID is proportional
to the so-called shielding fluxxs(t) = x(t) − xe(t). A non-dynamic transfer
characteristic can now be obtained by solving (4.6) forxs(t) as a function ofxi(t).
This has been done analytically [71, 72], in form of a Fourier-Bessel expansion
when0 ≤ β < 1, yielding

xs(t) = lim
N→∞

N∑
n=1

(−1)n

nπ
Jn(nβ) sin[2πn(xi(t) + xDC)], (4.7)

wherexDC = ΦDC/Φ0 andJn denotes ann:th order Bessel function of the first
kind. The quasi-static SQUID model in (4.7) has been reported [72] to exhibit
SR like phenomenon, when altering the parameterβ. However, in [72] no SNR
enhancement was found when altering the noise strength parameterσ. This model
is also used in Paper V to exemplify the proposed information theoretic approach
to quantify SR.

4.2 The magneto-resistive sensor

The magneto-resistive (MR) sensor utilizes the magneto-resistive effect in fer-
romagnetic transition metals in order to measure external magnetic fields. The
essence of this effect is that the resistance in a ferromagnetic material is dependent
on the angle between the internal magnetization and the direction of an applied
current. When an external magnetic field is applied the internal magnetization is
rotated, thereby changing the resistance. In Paper VI a so-called barber pole MR
sensor is used to detect weak magnetic DC fields in a strong noisy background.
In this work the transfer characteristic of the MR sensor is obtained experimen-
tally due to difficulties to determine all the required physical parameters and also
since the available mathematical models for MR sensors transfer characteristics are
quite crude. The experimental procedure for acquiring the transfer characteristic is
simply to apply external fields of known amplitude to the sensor and measure the
sensors response. This section gives a brief presentation of the basic functionality
of an MR sensor, a thorough description of the MR effect can be found in [31].

The basic element in an MR sensor is a thin film of a magneto-resistive alloy
etched into a rectangular shape with electrodes attached at both ends. In order to
linearize the sensor for small external fields so-called barber poles are etched on
the thin film, see Figure 4.2. The barber poles are a series of strips of high electrical
conductivity that force the current flow in the thin film into a direction determined
by the inclination of the barber poles.

In ferromagnetic materials there are certain preferred directions for the mag-
netization, this is due to the materials crystal structure and orientations. The most
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Figure 4.2: Schematic of an MR sensor with barber poles.

preferred direction is the so-called easy axis (e.a.), which in Figure 4.2 is assumed
to be aligned with thex-direction. It has been shown that the resistance of the MR
element can be described by [31]

R(θ) = R⊥ + ∆R cos2(θ). (4.8)

Hereθ is the angle between the internal magnetization,M , and the direction of the
applied current,∆R = R‖−R⊥, whereR⊥ andR‖ are the resistances perpendicu-
lar and parallel, respectively, to thex-direction. Under the influence of an external
magnetic field,H̄ = [Hx Hy]T , the direction of the magnetizationM will rotate,
which is represented by the angleϕ between the e.a. andM . An approximate
relation between the external field̄H andϕ for an ellipsoidal-shaped thin film is
given by [31]

sin(ϕ) =
Hy

H0 + Hx/ cos(ϕ)
, (4.9)

whereH0 is the so-called characteristic field which is material dependent. Fol-
lowing [31], rough approximations of MR sensors’ transfer characteristics can be
expressed in terms of the resistance by using (4.8) and (4.9), and assuming that the
x-component of the external field isHx = 0. They-component of the external
field is here assumed to be given by

Hy(t) = Hs(t) + σHV (t), (4.10)
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whereHs(t) is the magnetic field to be measured (detected),HV (t) is an ambient
zero mean unit variance white Gaussian noise disturbance, andσ is a noise strength
parameter.

For an elliptic MR element without barber polesα ≈ 0, which yields that
θ ≈ ϕ (see Figure 4.2). Thus, by using (4.8) and (4.9) the resistance can be
expressed as a function of they-component of the external field according to

R(Hy) = R0 − ∆R

(
Hy

H0

)2

, (4.11)

whereR0 = R⊥ + ∆R. Figure 4.3 depicts the resistanceR as a function of the
external filedHy normalized byH0.

The resistance for an elliptic MR element with barber poles, inclined so that
α = 45o, can be expressed as [31]

R(Hy) = R0 − ∆R
Hy

H0

√
1 −

(
Hy

H0

)2

. (4.12)

A typical behavior of the transfer characteristic in (4.12) is depicted in Figure 4.3,
where it can clearly be seen thatR(Hy) can be well approximated as linear for
Hy/H0 close to zero. However, if the sensor is intended to operate in a very noisy
environment then the external field can not be confined to small amplitudes only,
thereby violating the classical operating conditions. In these situations a wider
domain of the MR sensor transfer characteristic will be utilized yielding that the
sensor must be considered both nonlinear and non-bijective.
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Figure 4.3: Typical transfer characteristics of an MR sensor expressed in terms of
the MR elements resistance as a function of the external fieldsy-component. The
resistance is plotted for an MR element without barber poles (dashed) and with
barber poles (solid).
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4.3 Optimal detectors in static nonlinear sensor systems

The problem of detecting a known signal contaminated by additive noise and mea-
sured by means of a static nonlinear sensor is considered. Moreover, the sensor’s
static nonlinear transfer characteristic, below denotedg, is assumed to be known
yielding that the problem can be expressed as a binary hypothesis test on the form

H0 : Yn = g(σVn), n = 1, . . . , N
H1 : Yn = g(sn + σVn), n = 1, . . . , N.

(4.13)

Here,s̄ = [s1, . . . , sN ]T is the sampled signal to be detected,σ is a noise strength
parameter andV1, . . . , VN are noise samples, which are assumed to be i.i.d. Gaus-
sian with zero mean and unit variance.

The hypotheses in (4.13) can be directly associated with those in (2.72) yield-
ing an optimal detector on the from

δ(y) =

{
1 if L(ȳ) ≥ τ

0 if L(ȳ) < τ,
(4.14)

where the likelihood ratio is given by

L(ȳ) =
N∏

n=1

M∑
m=1

pV (c(m)
yn )

|g′(sn + c
(m)
yn )|

/ K∑
k=1

pV (b(k)
yn )

|g′(b(k)
yn )|

. (4.15)

In the following two sections the particular problems covered in Paper V and
Paper VI, are briefly presented.

4.3.1 Detectability in nonlinear sensor systems

In this section, the performance of a sensor-detector system, in terms of detectabil-
ity as a function of the noise strength, is considered. As mentioned previously,
these types of studies have been conducted under the name of stochastic resonance
(SR), where various kinds of SNR measures, computed on the output of the sensor,
has been used to reflect the performance as a function of the noise strengthσ. The
deflection ratio orgeneralized signal-to-noise ratio can be used to express many of
the various definitions of SNRs by appropriately choosing1 the functionG below.
The deflection ratio is defined by [8, 40]

d∆(p0, p1) �
(
E1

{
G(Ȳ )

}
− E0

{
G(Ȳ )

})2
Var0

{
G(Ȳ )

} , (4.16)

1For example, a connection between the deflection ratio in (4.16) and the SNR in (1.11), which
has been used in several SR studies, is derived in [73].
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wherep0 andp1 are the pdfs of̄Y underH0 andH1, respectively, and Var0{G(Ȳ )}
denotes the variance ofG(Ȳ ) underH0. However, unlessG in (4.16) is given
by the likelihood ratio in (4.15), the SNRs are not adequate for evaluating the
performance of a nonlinear sensor with respect to hypothesis testing (for details
see Appendix B). In such situations alternative measures must be employed which
incorporate the whole probabilistic structure of the problem at hand.

From an information theoretic perspective, the problem of assessing perfor-
mance of a signal transformation, such as performed by a sensor, can be seen as
evaluating how much relevant information that is preserved after the signal has
been processed. The hypotheses of the underlying signal in (4.13), i.e. before the
influence of the sensor, can be described by

H0 : Xn = σVn, n = 1, . . . , N
H1 : Xn = sn + σVn, n = 1, . . . , N.

(4.17)

The ability to discriminate betweenH0 andH1 in (4.17) is determined by the pdfs
of X̄ = [X1, . . . , XN ]T underH0 and H1, which shall be denoted̃p0 and p̃1,
respectively. Likewise, the ability to discriminate betweenH0 andH1 in (4.13)
depends on the corresponding pdfs ofȲ , i.e. p0 andp1, which are determined
by g as well asp̃0 andp̃1. Moreover, the optimal performance for discriminating
between the hypotheses in (4.17) gives the upper limit for the hypothesis test in
(4.13), which is achievable ifg in (4.13) is sufficient for the binary hypothesis
problem in (4.17), i.e. sufficient for{p̃0, p̃1}. A brief discussion on sufficient
statistics can be found in Appendix B.

Instead of following the conventional SR approach, by computing some kind
of SNR, an alternative route is taken where the so-calledf -divergences are used to
compute a performance measure based on the pdfs of the sensor output signal. The
f -divergences are described by [39, 40, 41]

df (p0, p1) = h

(∫
ȳ∈RN

f

(
p1(ȳ)
p0(ȳ)

)
p0(ȳ) dȳ

)
, (4.18)

whereh is an increasing function onR andf is a convex2 real function onR+,
i.e. [0,∞]. The properties for thef -divergences are summarized in Appendix B,
where it is pointed out that these measures, in contrast to the SNRs, can be used to
evaluate if a given signal transformation is sufficient with respect to{p̃0, p̃1}.

The basic idea for evaluating the information processing capability of a sen-
sor, is to computedf (p1, p0) as a function of the noise strengthσ and examine if
the divergence exhibits a local maximum for increased noise strengthσ. It should

2A function is said to be convex if for any two pointsA andB on the curvey = f(x), the chord
betweenA andB lies above the curve.
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be noted that the hypothesis problem in (4.17) is equivalent to the coherent detec-
tion problem described in Section 2.1.1, where it is shown that the detection per-
formance is monotonically dependent ond in (2.15), which for (4.17) reduces to
d = s̄T s̄/σ2. This yields thatdf (p̃0, p̃1) is monotonically dependent ond, whereas
the behavior ofdf (p0, p1) not only depends ond but also ong.

For the particular problem studied in Paper V,g is the static SQUID transfer
characteristic in (4.7) and the hypotheses in (4.13) are reduced to only include a
single time sample sincēs is taken to be a known DC signalµ. Moreover, the de-
tection performance for the SQUID sensor-detector system is evaluated in terms of
df (p0, p1) for increasing values of the noise strengthσ while simultaneously scal-
ing the DC levelµ so thatd = µ2/σ2 is kept constant. The particularf -divergence
measure that is used in this study is the so-called Kolmogorov variational distance3.
In addition to the Kolmogorov variational distance the performance is also ex-
pressed in terms ROC curves and minimum achievable probability of error for the
optimal detector in (4.14). Based on these performance measures it is shown that
the detectability in a static SQUID sensor system can be enhanced by increasing the
noise strengthσ. However, such a noise enhanced detection performance will not
occur if g in (4.13) is bijective and the detector is optimal. As a conclusion it can
be stated that a necessary requirement for noise enhanced information processing
performance of a nonlinear system is that the system is non-bijective.

The use off -divergences as quantifier for SR, which was proposed in Paper V,
are applied to a dynamical system, similar to the system in Example 1.1, in a paper
by Robinsonet al. [74]. In [74] it is shown that the detectability does not exhibit
enhancement when increasing the noise strength. This result is in conflict with
the generally accepted notion of SR and is simply due to the fact that the system
is bijective. It represents an interesting example of how the SNR measures, that
traditionally has been used to quantify SR, does not suffice in describing the infor-
mation processing capability of a nonlinear system.

4.3.2 Sensor optimization for detection

In most practical detection scenarios the strength of the ambient noise can not be
altered, which was the case considered in the previous section. A more practically
relevant problem is tuning of a sensor’s transfer characteristic in order to improve
the detectability in a given measurement environment. The hypotheses for this
problem can be expressed as

H0 : Yn = gβ(σVn), n = 1, . . . , N
H1 : Yn = gβ(sn + σVn), n = 1, . . . , N.

(4.19)

3The Kolmogorov variational distance is given by (4.18) withh(z) = z andf(z) = |π1z − π0|.
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whereβ is some parameter by which the sensor transfer function may be modified.
If gβ is bijective for all possible parameter settings it will clearly be sufficient

for all inference problems since the inverse,g−1
β , exist for allβ. However, ifgβ is

not bijective for anyβ it is not immediately clear ifgβ is sufficient for a particular
inference problem. Therefore, when facing an inference problem which is to be
solved based the statisticgβ(X) the success could be crucially dependent on the
choice ofβ. This naturally leads to the problem of finding a parameter setting so
the function either becomes bijective or preserves as much relevant information
as possible concerning the particular inference problem. As mentioned earlier, in
the detection performance studies by Hibbset al. [15] and Rouseet al. [16],
the sensor is tuned to operate in the SR regime where the quantifier (the tuning
criterion function) is the SNR in (1.11). Due to the weakness of the SNR measure
the approach taken here is instead based on thef -divergences as a tuning criterion
function. Thus, the optimal setting forβ in (4.19) is given by

β∗ = arg max
β

{df (p0, p1)}. (4.20)

This approach simply strives to findβ that maximizes the divergence between the
pdfs of the sensor output underH0 andH1, i.e. p0 andp1 respectively.

The SQUID sensor and the MR sensor, presented in the previous sections, are
used in Paper V and Paper VI to illustrate the sensor tuning approach by means
of f -divergences. In these studies the objective is to operate the sensors in a noisy
environment where it can not be guaranteed that the sensors are confined to operate
in their linear regime.

In paper V, the Kolmogorov variational distance is displayed versus the static
SQUID nonlinearity parameterβ in (4.7). This result shows that, for a given noise
strengthσ, the Kolmogorov variational distance, and thereby the detectability, es-
sentially increases monotonically with increasingβ.

In paper VI, a similar study based on the MR sensor is performed, where the
Kolmogorov variational distance and the Kullback-Leibler divergence4 are used
as optimization criteria. In this paper the sensor tuning is performed by simply
injecting a known DC signal at the sensor input. Thus, the transfer function in
(4.19) is given bygβ(X) = g(β+X), whereβ is the known DC tuning andg is the
experimentally determined transfer function, which resembles the transfer function
in (4.12). From this study it is shown that both divergence measures display distinct
local maxima, which indicate that by properly choosingβ, the MR sensor can be
tuned to improve the detectability for a given measurement environment.

4The Kullback-Leibler divergence is given by (4.18) withh(z) = z andf(z) = − ln{z}.



Chapter 5
Concluding remarks and future
work

THIS chapter will give some general comments and remarks on the insights
that have been gained in this thesis in addition to the specific conclusions

that are presented in the papers and throughout the previous chapters. Also briefly
discussed in this chapter are some possible directions for future work.

As mentioned in the introduction, the main objective of this thesis is to con-
tribute to the engineering quest by explicitly derive and apply optimal detectors for
special, practically relevant problems. The particular problems in focus were to
detect transient signal families as well as signals acquired with nonlinear sensors.
This quest lead, for example, to the study of detecting multiple pulses with un-
known arrival times, which is applicable to the UNDT application, even though the
underlying assumptions may not be fully satisfied. This quest also lead to the study
of detection of wideband signals, since, for example, the pulses generated from an
UNDT system can exhibit a rather wideband characteristic. However, the pulses
from an UNDT system will, more often than not, be narrow enough for the narrow-
band approximation to hold, yielding that the classical noncoherent and quadrature
matched filter detectors can not be ruled out for these types of applications. Still,
the use of the analytical solutions to the wideband noncoherent and quadrature
matched filter detectors might be applicable in situations where a stationary har-
monic signal source is located in a Gaussian noise environment and the measured
signal is obtained by a mobile sensor that travels by the source with a high speed.
This scenario can, for example, occur in air-borne surveillance systems.

The main conclusion regarding the UNDT defect detection problem is that the
framework of composite hypothesis testing is appropriate since it can treat the oc-
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currence of defects of various shapes and orientations. Moreover, a suitable ap-
proach to obtain detectors for this problem is to employ the solution techniques for
detection of parameterized signals, where the signals can be represented either by
a physical model or a phenomenological model. If sufficienta priori knowledge is
available the physically model based strategy has the benefit of being optimal and
can be used for a wide variety of defect types as long as a physical model is ac-
cessible. On the other hand, the phenomenological model based approach has the
benefit of reducing the computational complexity and also that the assumptions re-
garding the signal models are explicit. Thus, any reduction in performance relative
to the optimal performance can be directly traced to the imposed modeling assump-
tions. Any detection approach where the modeling assumptions are implicit, such
as split spectrum processing (SSP), makes parameter tuning and interpretations of
performance behavior less obvious.

The most urgent direction for future work is to perform real data experiments,
where the proposed detector strategies can be employed and the validity of both the
physical and the phenomenological defect echo models investigated. An obstacle
in such a study, which is of significant importance, is to find a practically realizable
approach to estimate detector performance, for example in the form of ROC curves.
Another important direction for future work is to extend the statistical hypothesis
testing problem to include multidimensional signals, acquired e.g. with a sensor
array.

Throughout the thesis, and in most practical applications, the ultrasonic exci-
tation pulse has beena priori determined without a detailed consideration to the
particular detection problem at hand. An interesting aspect of pulse-echo detection
problems, not only applicable to UNDT but also to sonar and radar, is to determine
the most appropriate pulse to transmit in order to maximize detectability.

The framework of optimal signal detection is also suitable for detection prob-
lems when the signals are acquired with nonlinear sensors. However, this prob-
lem departs from the analytically tractable case of Gaussian signal detection and
thereby requires either more advanced analytical treatment or retreating to numer-
ical solution techniques. The main conclusion for the nonlinear sensor-detector
application is that the stochastic resonance (SR) phenomenons can be treated by
utilizing concepts from both optimal signal detection and information theory. In
particular, by quantifying the SR effect in terms of thef -divergences yields that
the phenomenon can truly be interpreted as a noise enhanced gain of the systems
information throughput. Apart from detection, another interesting problem is sig-
nal/parameter estimation in nonlinear sensor systems.



Appendix A
Background on binary hypothesis
testing

In this Appendix the binary hypothesis testing problem is treated in some more
detail to give the reader additional insight into the role of the likelihood ratio as
well as some of the optimality criteria used to design detectors.

The Appendix is introduced in Section A.1 with a brief presentation of simple
and composite hypothesis tests. The Bayesian and Neyman-Pearson optimality
criterion are described in Section A.2 and Section A.3, respectively, followed by
the generalized likelihood ratio strategy in Section A.3. Finally, in Section A.4,
some common approaches for evaluating detector performance are presented.

A.1 Simple and composite binary hypothesis testing

Binary hypothesis testing is concerned with deciding among two possible statistical
hypothesis, denotedH0 andH1 respectively, by processing the outcomes,y, of a
stochastic variableY taking values in some spaceΩ. When the stochastic variable
Y is assumed to have two possible probability distributionsP0 andP1 underH0

andH1, respectively, the hypotheses can be expressed as

H0 : Y ∼ P0

H1 : Y ∼ P1.
(A.1)

The test in (A.1) is sometimes known assimple since each of the two hypothesis
correspond to only a single distribution for the observation, andH0 andH1 are
commonly referred to as thenull andalternative hypotheses, respectively.
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In the case when several distributions can occur under either both or only one
of the two hypothesis the test is commonly referred to ascomposite. This can be
described by

H0 : Y ∼ P0

H1 : Y ∼ Pθ,
(A.2)

whereθ is a parameter used to index the family of distributions that can occur
under theH1 hypothesis, i.e.{Pθ|θ ∈ Λ}, andΛ is some space whereθ takes its
values.

The main objective of binary hypothesis testing is to formulate a decision rule
which, based on an observationy , in some optimal fashion can discriminate be-
tweenH0 andH1. The discrimination is achieved by mapping the observationy
into either1 or 0 corresponding toH1 andH0, respectively. Thus, the decision
rule can be considered to partition the observation spaceΩ into subsetsΩ1 and
Ω0 = Ωc

1, whereΩc
1 denotes the complement toΩ1, so that observationsy ∈ Ω1

andy ∈ Ωc
1 yields1 and0, respectively. The decision rule can thereby be formu-

lated as

δ(y) =

{
1 if y ∈ Ω1,

0 if y ∈ Ωc
1.

(A.3)

The key problem in obtaining an optimal decision rule of the form (A.3) is
to define in which sense the test is desired to be optimal and then partition the
observation space accordingly. There are several strategies that can be employed
to obtain a decision rule, the applicability of which are mainly dependent on the
type of test and the amount of a priori knowledge that is available. In this thesis
the strategies that has been exclusively used are Bayes’, Neyman-Pearson’s and the
generalized likelihood ratio. These strategies are briefly described below.

A.2 Bayesian optimality

In this presentation of the Bayesian optimal decision rule, the simple hypothesis
testing problem in (A.1) is considered and thea priori probabilities forH0 and
H1, here denoted byπ0 andπ1, respectively, are assumed to be known. However,
an analogous treatment can be employed for the composite hypothesis test in (A.2)
by assuming that the parameterθ is a random quantity,Θ, with a knowna priori
probability distributionQ and the corresponding pdfq. Based on thea priori
knowledge, the composite hypothesis test in (A.2) can then be transformed into a
simple test by [8]

p1(y) = Eθ{pθ(y)} =
∫

θ∈Λ
pθ(y)q(θ) dθ, (A.4)
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and letting the probability distributionP1 correspond to the probability densityp1.
The Bayes optimal decision rule for (A.1) is defined as the one that minimizes,

over all decision rules, a criterion function known as Bayes risk. The Bayes risk is
intended to assign an overall cost for all possible permutations of deciding between
H0 andH1 when either of them is true. The first step in constructing an expression
for the Bayes risk is by defining a so-calledconditional risk as the average cost
incurred by the decision rule,δ, when one of the hypothesis is true. The conditional
risk can be expressed as

Rj(δ) = C1jPj(Ω1) + C0jPj(Ω0), j = 0, 1 (A.5)

whereCij are positive numbers representing the cost of choosingHi when in fact
Hj is true. The Bayes risk, for some given priorsπ0 andπ1, is then obtained as the
average of the conditional risk in (A.5), yielding

r(δ) = π0R0(δ) + π1R1(δ). (A.6)

Thus, the Bayesian strategy for finding a decision rule can be expressed as

min
δ

{r(δ)}. (A.7)

By using (A.5) and the identityPj(Ω1) = 1 − Pj(Ω0), the Bayes risk in (A.6)
can be expressed as

r(δ) =π0C00 + π1C01 + π0(C10 − C00)P0(Ω1) + π1(C11 − C01)P1(Ω1)
=π0C00 + π1C01

+
∫

y∈Ω1

π0(C10 − C00)p0(y) − π1(C01 − C11)p1(y) dy,

(A.8)

wherePj(Ω1) =
∫
Ω1

pj(y) dy is used in the second equality. By assuming that
C11 < C01 andC00 < C10, the regionΩ1 that minimizesr becomes

Ω1 =
{

y ∈ Ω|π1(C01 − C11)p1(y) ≥ π0(C10 − C00)p0(y)
}

. (A.9)

The region in (A.9) can also be expressed as

Ω1 =
{

y ∈ Ω|p1(y)
p0(y)

≥ τ

}
, (A.10)

where

τ =
π0(C10 − C00)
π1(C01 − C11)

. (A.11)
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Moreover, the expression forΩ1 in (A.10) consists of the quantity

L(y) =
p1(y)
p0(y)

, (A.12)

which is known as the likelihood ratio. Thus, the Bayes optimal decision rule for
(A.1) can be expressed as

δ(y) =

{
1 if L(y) ≥ τ

0 if L(y) < τ,
(A.13)

and is commonly known as a likelihood ratio test.
A noteworthy special case of the Bayes risk criterion occurs when the cost

assignment is uniform, i.e.Cij = 0 if i = j andCij = 1 if i �= j. The Bayes risk
then reduces to

r(δ) = PE(δ) = π0P0(Ω1) + π1P1(Ω0), (A.14)

which is the average probability of error. Hence, in this case the Bayes optimality
criterion is a minimum probability of error scheme.

A.3 Neyman-Pearson optimality

The Neyman-Pearson (NP) optimal decision rule is defined by the one that max-
imizes the probability of detection, over all decision rules satisfying an imposed
false-alarm constraint. Hence, the NP criterion for obtaining a decision rule can be
expressed as

max
δ

{PD(δ)} whenPF (δ) ≤ α, (A.15)

wherePD(δ) andPF (δ) denotes the probability of detection and probability of
false alarm, respectively, given the decision ruleδ and the false alarm constraintα.
The Neyman-Pearson optimality criterion is a very operationally attractive criterion
since the trade off between detectability and false alarm is placed in the hands of
the designer in a way that is easy to relate to the final outcome.

When deriving an expression for the NP decision rule, the simple hypothesis
test in (A.1) will be considered, but as in the Bayesian case an analogous treatment
can be employed for the composite hypothesis test in (A.2). The probability of
false alarm and the probability of miss for the test in (A.1) given a decision ruleδ,
i.e. acceptance regionΩ1, can be expressed as

PF (δ) = P0(Ω1) =
∫

y∈Ω1

p0(y)dy, (A.16)
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and

PD(δ) = P1(Ω1) =
∫

y∈Ω1

p1(y)dy. (A.17)

The acceptance regionΩ1, i.e. decision rule, can be obtained by means of
Lagrange multipliers, with the constraintPF (δ) ≤ α. Hence, the criterion to be
maximized can be expressed as

r(δ) = PD(δ) + λ(PF (δ) − α) (A.18)

whereλ is the Lagrange multiplier. By expressing the probabilities in (A.18) in
terms of the integrals in (A.16) and (A.17) the expression in (A.18) reads

r(δ) =
∫

y∈Ω1

[p1(y) + λp0(y)] dy − λα. (A.19)

For this expression to be maximized, ally such that the integrandp1(y)+λp0(y) ≥
0 should be included inΩ1. Thus, the acceptance regionΩ1 becomes

Ω1 =
{

y ∈ Ω|p1(y) + λp0(y) ≥ 0
}

=
{

y ∈ Ω|p1(y)
p0(y)

≥ −λ

}
, (A.20)

where, again, the likelihood ratio occurs. Since,L(y) = p1(y)/p0(y) ≥ 0 the
Lagrangian multiplier must satisfyλ ≤ 0. Thus, by introducingτ = −λ, the NP
optimal decision rule for (A.1) can be expressed as

δ(y) =

{
1 ifL(y) ≥ τ

0 ifL(y) < τ.
(A.21)

Moreover, the thresholdτ has to be chosen so that the constraintPF (δ) ≤ α is
satisfied. By using (A.21) the imposed false alarm constraint can be expressed as

PF (δ) =
∫ ∞

τ
pL(L|H0) dL = α, (A.22)

wherepL(·|H0) denotes the pdf for the likelihood ratio (detection statistic) under
H0. Thus, by solving (A.22) forτ yields the detection threshold.

A.4 The generalized likelihood ratio strategy

In the case of a composite hypothesis test, such as (A.2), both the Bayes and the
NP strategies considersθ to be a random quantityΘ with a knowna priori dis-
tribution Q in order to transform the composite test into that of a simple test via
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(A.4). Based on this knowledge these two approaches yielded clear cut optimiza-
tion strategies. However, in many practical situations there is only limited a priori
knowledge available for the distribution ofΘ. In these situations the integral in
(A.4), which transformed the composite test into that of a simple test, can not be
solved, yielding that other detection strategies has to be considered.

One approach is to postulate an ignorant (uniform) prior distribution forΘ
and then proceed and treat the problem within the Bayesian or NP framework.
The obvious drawback with this approach is if the postulated distribution forΘ
deviates much from the true distribution which can result in detection performance
significantly lower than the optimal.

Other ways to cope with the problem of unknown distribution ofΘ, when fac-
ing a composite hypothesis, are the uniformly most powerful (UMP) test, locally
most powerful (LMP) test and the generalized likelihood ratio test (GLRT) [8, 12].
In many cases these techniques suffer less from the performance degradation that
can occur when postulating an ignorant prior forΘ. The test that has been em-
ployed in this thesis, is the GLRT which is based on the maximum likelihood (ML)
ratio as detection statistic. Thus the GLRT statistic for the composite hypothesis
test in (A.2) is

TGLRT(y) =
maxθ{pθ(y)}

p0(y)
= max

θ∈Λ
{L(y|θ)}, (A.23)

whereL(y|θ) = pθ(y)/p0(y) is the conditional likelihood ratio. The GLRT detec-
tor can thereby be described by

δ(y) =

{
1 if maxθ{L(y|θ)} ≥ τ

0 if maxθ{L(y|θ)} < τ.
(A.24)

Although the GLRT is not associated with any optimality criterion it is a very
intuitive approach since among allθ the GLRT uses the maximum likelihood es-
timate in forming the detection statistic. Moreover, the GLRT has proved to yield
competitive detection performance, compared to the optimal, for several examples
of composite hypothesis tests [12].

A.5 Detector performance evaluation

The generic structure of the detectors presented in the previous sections can be
described by the decision rule

δ(y) =

{
1 if T (y) ≥ τ ,

0 if T (y) < τ,
(A.25)
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whereT (y) is the detection statistic, which could be either the likelihood ratio in
the case of the Bayes and NP test or the GLRT statistic. In fact, any monotone
function of the likelihood ratio can also serve as detection statistic equally efficient
in discrimination between the hypothesis as the likelihood ratio. Thus, a detection
statistic given by

T̃ (y) = f(L(y)), (A.26)

with f being any continuous monotone function, would also yield optimal perfor-
mance. This is a very convenient property which can be used when implementing
detectors but also when analytically evaluating detection performance. When con-
structing a decision rule based on a transformed statistic it is also required that the
threshold is modified accordingly in order to maintain the desired false alarm rate
(in case of the NP test) or the risk (in case of the Bayes test). Sincef is monotone
its inverse exist and the modified threshold can thus be obtained by

τ ′ = f−1(τ). (A.27)

The decision rule in (A.25) can be viewed as consisting of two components.
The first is the computation of the detection statistic and the second is the threshold
operation of the detection statistic. Figure A.1 is a schematic presentation of the
building blocks in a threshold decision rule.

y {0, 1}
T (y)

≥
<

τ�� �

Detector

Figure A.1: Block structure of a threshold detector

The detection performance of a given detector can be evaluated in several dif-
ferent ways depending of the type of problem that is considered, the end objective
of the evaluation and the optimality criterion that has been employed. In the case of
an NP detector the performance is commonly presented by means of the so-called
receiver operating characteristic (ROC) curves. This type of evaluation displays
the probability of detection versus the probability of false alarm. The probabil-
ity of detection and false alarm in (A.17) and (A.16), respectively, were expressed
as integrals overΩ. It is often a formidable task to perform such integrations, so
instead these probabilities can be expressed based on the optimal decision rule in
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(A.25). The probability of detection is thus given by

PD(δ) =
∫ ∞

τ
pT (T |H1) dT, (A.28)

and the probability of false alarm is

PF (δ) =
∫ ∞

τ
pT (T |H0) dT, (A.29)

wherepT (T |H0) andpT (T |H1) are the pfd’s of the detection statistic underH0 and
H1, respectively. When conducting a performance evaluation several ROC curves
are often computed for different scenarios of varying degree of detection difficulty.
Each ROC curve is then associated, or labeled, with some type of measure intended
to represent the difficulty of the considered problem. Measures used to label ROC
curves are for example signal-to-noise ratio or simply the energy of the noise.

In the case of a Bayes detector the performance is simply given by the value of
the Bayes risk in (A.6). Also in this case the risk is often associated with a measure
indicating the underlying detection difficulty. A quantity of particular interest in
several detection problems is the minimum achievable probability of error which is
given by the Bayes risk with a uniform cost assignment. The expressions in (A.28)
and (A.29) can also be employed to obtain the minimum achievable probability of
error by using the thresholdτ = π0/π1 and the expression in (A.14), yielding

PE(δ) = π0PF (δ) + π1[1 − PD(δ)]. (A.30)

For most detection problems analytical performance evaluations are mathemat-
ically intractable. The cause for this is twofold; the first difficulty is to obtain the
pdfs of the detection statistic under the two hypothesis and secondly, even if these
pdfs could be obtained, it is difficult to perform the integrations in (A.28) and
(A.29). Another way to formulatePD(δ) andPF (δ), which is very useful when
numerically computing the detector performance is by means of the expressions

PD = E1{δ(Y )} =
∫

y∈Ω
δ(y)p1(y) dy, (A.31)

and

PF = E0{δ(Y )} =
∫

y∈Ω
δ(y)p0(y) dy. (A.32)

These expressions can be employed to numerically evaluate the performance of a
detector by means of Monte-Carlo simulations. In the Monte-Carlo approach a
number of observations,y, are randomly generated for bothH0 andH1. These
observations are then presented to the detector and the resulting outcomes are av-
eraged according to (A.31) and (A.32).



Appendix B
Sufficient statistics and statistical
distance measures

Statistical inference problems in the context of signal processing are concerned
with extracting information from information bearing signals. The inference prob-
lem for both the transient signal family and the nonlinear sensor application con-
sidered in this thesis is that of detection. In both these applications signals are
processed either by sensor transfer functions or by functions generating detection
statistics. The ambition is that these transformations produces a so-called suffi-
cient statistic, which preserves all relevant information available in the original
signal that is useful for hypothesis testing. The amount of relevant information for
hypothesis testing can be quantified by means of statistical distance measures.

This Appendix is introduced with a brief presentation of sufficiency in Sec-
tion B.1, followed in Section B.2 by a presentation of a few statistical distance
measures and their relating properties.

B.1 Sufficient statistics

Although the concept of sufficiency in this thesis is only needed in the context of
detection it will first be described in a general setting and then translated into the
special case of binary hypothesis testing.

Suppose thatY is a stochastic variable taking values in an observation space
Ω, and that the distribution ofY is a member of a family of distributions indexed
by ξ which takes values in some setΛ. Moreover, let the family of distributions
be denoted{Pξ|ξ ∈ Λ}. Then consider the situation when inferences are to be
made aboutξ when an observationy of Y are available. Note thatξ affectsY only

85
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through its probability distributionPξ and, conversely, the statistical behavior ofY
reflects the state ofξ. Thus, all available information aboutξ is contained in the
raw observationy.

If inferences aboutξ were to be made ony directly, all information would be
utilized and the results would be optimal. On the other hand, if inferences about
ξ were to be made based on a functionG(y) of the observationy the result will
depend heavily on the properties of the functionG. If G(Y ) preserves all the
information inY aboutξ, G(Y ) is said to be a sufficient statistic for{Pξ|ξ ∈ Λ}.
This may simply be expressed asG(Y ) is sufficient forξ when{Pξ|ξ ∈ Λ} is
understood. Thus, a statistical inference problem can be solved by either analyzing
Y directly or, equally well, based onG(Y ) if it is a sufficient statistic forξ.

Definition B.1 Sufficiency
Let G be a function which maps members from some space Ω into some arbi-

trary set Γ thus
G : Ω → Γ. (B.1)

Assume that Y ∈ Ω is a stochastic variable with a probability distribution belong-
ing to the family of distributions {Pξ|ξ ∈ Λ} on Ω, thus

Y ∼ P when P ∈ {Pξ; ξ ∈ Λ}. (B.2)

The function G(Y ) is said to be a sufficient statistic for {Pξ; ξ ∈ Λ} if the distri-
bution of Y conditioned on G(Y ) does not depend on ξ ∈ Λ.

Note that all bijective functionsG are obviously sufficient forξ since the in-
verseG−1 exist. Hence, there exist many sufficient statistics for any given statisti-
cal inference problem. However, in many applications it is desirable to reduce the
dimensionality of the original observationY while maintaining the information
aboutξ. This leads to the concept of minimal sufficiency. A minimal sufficient
statistic is the most compact representation of the observation without destroying
information aboutξ.

It is difficult to obtain and identify non-trivial sufficient statistics for a given sta-
tistical inference problem in general and minimal sufficient statistics in particular.
The Fisher-Neyman factorization theorem [8] provides means to find a sufficient
statistic (although not minimal) useful for several inference problems. Consider
Definition B.1 of sufficiency and suppose the distributionPξ has a corresponding
pdf pξ. The Fisher-Neyman factorization theorem then states thatG(Y ) is suffi-
cient for ξ if and only if there exist some functionsa andbξ such that the pdfpξ

can be expressed as

pξ(y) = bξ(G(y))a(y), ∀ y ∈ Ω and ∀ ξ ∈ Λ. (B.3)



B.1. Sufficient statistics 87

The problem of finding a sufficient statistic forξ givenpξ then reduces to finding
some functionsa andbξ, which factorizespξ according to (B.3).

In binary hypotheses testing the objective is to optimally discriminate between
two hypotheses based on an observationy of Y . Recall, that this problem could be
described by

H0 : Y ∼ P0

H1 : Y ∼ P1.
(B.4)

Thus, in the light of the definition of sufficiency the family of probability distribu-
tions ofY in (B.2) is reduced to{P0, P1}, i.e ξ ∈ {0, 1}. Moreover, if an optimal
decision is to be made based on a function of the observation, such asG in (B.1),
the function has to be sufficient for{P0, P1}, i.e. preserve all information relevant
for discriminating betweenP0 andP1. An expression that computes the likelihood
ratio for (B.4) is an example of a function of the observation which generates a
detection statistic that is sufficient for{P0, P1}. This is illustrated by the following
example by applying the Fisher-Neyman factorization theorem.

EXAMPLE B.1: SUFFICIENT STATISTIC FOR A SIMPLE HYPOTHESIS TEST

Consider the simple hypothesis testing problem in (B.4) and let the distributions
P0 and P1 have the corresponding pdfsp0 and p1, respectively. An optimal
detection statistic, generated by some function of the observationy, must be
sufficient forξ whenξ ∈ {0, 1}.

The pdfs for the two hypothesis may be written on the form

pξ(y) = [p1(y)]ξ[p0(y)]1−ξ, ξ ∈ {0, 1}. (B.5)

Moreover, this expression may be factorized as

pξ(y) =
[
p1(y)
p0(y)

]ξ

p0(y) = bξ(L(y))a(y) (B.6)

whereL(y) = p1(y)/p0(y) is the likelihood ratio,bξ(l) = lξ anda(y) = p0(y).
Thus, according to the Fisher-Neyman factorization theoremL(Y ) is a sufficient
statistic forξ.

In signal detection the observation spaceΩ is, for example,RN or C([0, T ]) and
for these cases the likelihood ratio significantly reduces the dimensionality of the
problem into a detection statistic onR.
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B.2 Statistical distance measures

In the previous section the somewhat abstract concept of sufficiency was discussed
in order to point out that performance evaluations of signal transformations, in the
context of hypothesis testing, should reflect sufficiency with respect to{P0, P1}.
This section will present a number of statistical distance measures between two
probability distributions, namely the so-calledf -divergences and the deflection
ratio. Thef -divergences in particular, can be used to evaluate if a given signal
transformation is sufficient with respect to{P0, P1}. This is not generally the case
for the deflection ratio. However, the deflection ratio can be used to express many
different definitions of SNRs and thereby appears either directly or indirectly in
many detection studies [8].

Thef -divergences are presented in Section B.2.1, followed in Section B.2.2 by
a presentation of the deflection ratio.

B.2.1 Information theoretic distance measures

A number of fundamental performance limits for binary hypothesis testing can be
expressed in terms of thef -divergences, which has been introduced by Csiszár
[41, 42] and independently by Ali and Silvey [39]. Some examples are the bound
in Stein’s lemma [75], the Chernoff bound [8, 75] and the bound on minimum
achievable probability of error in Bayesian hypothesis testing. These bounds ex-
presses how well one can perform certain aspects of a binary hypothesis test, such
as the probability of detection or probability of false alarm. Several connections
to performance limits for other statistical inference problems also exist and can be
found in [8, 40, 75]. However, in this thesis the focus is on the connections to the
minimum achievable probability of error.

Thef -divergences is a class of measures which can be interpreted as expressing
the dissimilarity or distance1 between two pdfs. Intuitively this is an appropriate
measure for a binary hypothesis test, since the larger the distance is between the
pdfs under the two hypothesis the better the detectability and vice versa.

Let Y be a stochastic variable taking values in some setΩ and let the statistical
properties ofY be described by the two probability distributionsP0 andP1 with
corresponding pdfsp0 andp1, respectively. Thef -divergences can be described by

df (p0, p1) = h

(
E0

{
f

(
p1(Y )
p0(Y )

)})
= h

(∫
y∈Ω

f

(
p1(y)
p0(y)

)
p0(y) dy

)
, (B.7)

1The word distance is not used in the strict sense that it has in metric spaces, it simply denotes
how dissimilar two probability distributions are.
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whereE0 is the expectation overP0, h is an increasing function onR andf is a
continuous convex2 real function onR+, i.e. [0,∞]. Furthermore, the functionf
also satisfies

f(0) = lim
u→0

f(u)

0 · f
(

0
0

)
= 0

0 · f
(

a

0

)
= lim

ε→0
ε · f

(
a

ε

)
= a · lim

u→∞ ·f(u)
u

.

(B.8)

The conditions stated in (B.8) are imposed onf so that the expression in (B.7) can
be computed for subsets ofΩ with zero probability forP0 as well as subsets ofΩ
where bothP0 andP1 are zero.

The properties of thef -divergences can be summarized by:

1. If X = G(Y ) is a transformationΩ → Γ then

df (p0, p1) ≥ df (p̃0, p̃1), (B.9)

wherep0 andp1 are the pdfs ofY andp̃0 andp̃1 are the corresponding pdfs
of X = G(Y ), respectively.

2. The distanced(p0, p1) has its minimum whenP0 = P1 and maximum when
P0 ⊥ P1, where⊥ denotes orthogonality in the sense thatP0 andP1 does
not share any subsets ofΩ where both are nonzero.

Property 1 above is of significant importance since it constitutes an equivalence to
the data processing inequality [75] and thus enables evaluation of sufficiency forG
with respect to binary hypothesis testing, i.e.{P0, P1}. Sufficiency with respect to
hypothesis testing is obtained when the distance betweenp0 andp1 is equal to the
distance betweeñp0 andp̃0. Property 2 has an intuitive appeal since it reflects the
notion of a distance by yielding a minimum if the pdfs are identical and a maximum
when pdfs are completely dissimilar.

A common way to quantify the performance of a detector is by means of the
minimum achievable probability of error. Due to the intractability to analytically
compute the probability of error for general hypothesis testing problems several
studies [8, 39, 76] about distance measures were driven by the search for its upper
and lower bounds. In fact, the minimum achievable probability of error,PE , can

2A function is said to be convex if for any two pointsA andB on the curvey = f(x), the chord
betweenA andB lies above the curve.
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be included in the class off -divergences in (B.7) by defining the distancedE =
1 − PE . The expression forPE in (A.14) can be reformulated according to

PE = π0P0(Ω1) + π1P1(Ω0) =
∫

Ω1

π0p0(y) dy +
∫

Ω0

π1p1(y) dy

=
∫

Ω
min{π0p0(y), π1p1(y)} dy =

∫
Ω

min
{

π0, π1
p1(y)
p0(y)

}
p0(y) dy,

(B.10)

thusdE expressed on the form (B.7) is obtained byh(x) = 1 − x andf(x) =
min{π0, π1x}.

Below are two of the most well-known members of thef -divergences briefly
presented.

The Kolmogorov variational distance

The Kolmogorov variational distance can be expressed in slightly different ways
and is known under many names, for example Kolmogorov divergence, Variational
distance ordE -divergence. The Kolmogorov variational distance is obtained when
h(x) = x andf(x) = |π1x − π0| in (B.7) yielding

dE(p0, p1) =
∫

Ω

∣∣∣∣π1
p1(y)
p0(y)

− π0

∣∣∣∣p0(y) dy =
∫

Ω
|π1p1(y) − π0p0(y)| dy. (B.11)

Sometimes the expression in (B.11) is called the weighted Kolmogorov divergence
since the a priori probabilitiesπ0 andπ1 are included. An unweighted version of
(B.11) is obtained byh(x) = x andf(x) = |x − 1|.

Perhaps the most fundamental connection between thef -divergences and lim-
its for inference is the relation between the minimum achievable probability of er-
ror in Bayesian hypothesis testing and the Kolmogorov variational distance. This
relation is given by [40, 76]

PE =
1
2
− 1

2
dE(p0, p1). (B.12)

This divergence measure was used in Paper V, with the objective to generalize
the stochastic resonance effect by expressing it as a gain in information throughput,
and in Paper VI by serving as an optimization criterion for sensor tuning.

The Kullback-Leibler distance

The Kullback-Leibler (KL) distance is also known as the relative entropy or infor-
mation divergence. This divergence measure is obtained by settingh(z) = z and
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f(z) = − ln{z} in (B.7), yielding

dKL(p0, p1) =
∫

Ω
− ln

(
p1(y)
p0(y)

)
p0(y) dy. (B.13)

The Kullback-Leibler divergence can be used to place a lower bound on the mini-
mum achievable probability of error according to [40]

edKL(p0,p1) ≤ 8PE . (B.14)

It should be noted that this KL distance is not symmetric sincedKL(p0, p1) �=
dKL(p1, p0) unlessp0 = p1, and does thereby not behave like a distance in the
conventional sense. However, it is possible to construct a symmetric distance mea-
sure byJ(p0, p1) = dKL(p0, p1)+dKL(p1, p0) this distance measure is commonly
called the Kullback’sJ-divergence.

The KL distance in (B.13) was used in Paper II by serving as an alternative to
the Kolmogorov variational distance for the sensor tuning problem.

B.2.2 The deflection ratio

One of the major disadvantages to the distance measures presented in the previous
section is that they are often difficult to compute analytically for general pdfs. In
such situations less rigorous distance measures can be employed, that are analyti-
cally more tractable and at least captures some of the main dissimilarities between
the pdfs.

The signal-to-noise ratio is a widely used concept in many areas of signal pro-
cessing. It is often used to quantify the detection difficulty when computed di-
rectly on the input signals, and as a measure of the detector performance when
computed from the detection statistic. There are almost as many definitions of
the SNR as there are researchers and the definitions are often tailor made for the
particular problem under study. For example, in the stochastic resonance appli-
cation presented in Chapter 1, a frequency domain SNR measure were used. As
also mentioned in Chapter 1, a time domain SNR measure has been used for the
split spectrum processing application. A measure that captures many of the various
definitions of SNRs is the deflection ratio orgeneralized signal-to-noise ratio. The
deflection ratio is defined by [8, 40]

d∆(p0, p1) � (E1 {G(Y )} − E0 {G(Y )})2

Var0 {G(Y )} , (B.15)

whereG some function of the observation and Var0{G(Y )} denotes the variance
of the statisticG(Y ) whenY ∼ P0.
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In detection applications the deflection ratio can be interpreted to express the
effectiveness of a detection statisticG in separating the two hypothesis. The diffi-
culty to compute the deflection ratio in (B.15) obviously depends on the choice of
the functionG as well as the statistical properties ofY , i.e. P0 andP1.

As mentioned, other SNR definitions can be described on the form (B.15). This
is achieved by choosing the functionG in some appropriate fashion. However, ar-
bitraryG yields distance measures which do not necessarily reflect the dissimilar-
ity between two pdfs adequately. This becomes clear by first reformulating (B.15)
according to

d∆(p0, p1) =

[∫
Ω G(y)p1(y) dy −

∫
Ω G(y)p0(y) dy

]2

Var0{G(Y )}

=

[∫
Ω G(y)p1(y)

p0(y)p0(y) dy −
(∫

Ω G(y)p0(y) dy

)(∫
Ω

p1(y)
p0(y)p0(y) dy

)]2

Var0{G(Y )}

=

[
E0

{
G(Y )p1(Y )

p0(Y )

}
− E0{G(Y )}E0

{
p1(Y )
p0(Y )

}]2

Var0{G(Y )}

=
Cov20

(
G(Y ), p1(Y )

p0(Y )

)
Var0{G(Y )} .

(B.16)

By means of the Cauchy-Schwartz inequality the square of the covariance can be
bounded by Cov2{x, z} ≤ Var{x}Var{z}, with equality if x = z. Then the ex-
pression for the deflection ratio in (B.16) can be bounded by

d∆(P0, P1) ≤ Var0

{
p1(Y )
p0(Y )

}
= dχ2(p1, p0), (B.17)

with equality if G(y) = p1(y)
p0(y) , i.e. if G is the likelihood ratio. The quantitydχ2

is a distance measure from the class in (B.7) withf(x) = (x − 1)2 andg(x) = x
and thereby posses the properties forf -divergences. Thus for generalG, i.e. vari-
ous definitions of the SNR, the deflection ratio in (B.15) does not belong to thef -
divergences and does thereby not inherit the desirable properties forf -divergences.
This leads to the conclusion that the deflection ratio with an arbitraryG not nec-
essarily can be used to adequately reflect if a detection statistic is sufficient for
a given hypothesis test. This point is made in Paper III, where the deflection ra-
tio, with G(z) = ‖z‖2, is used to evaluate and compare the performance of two
detectors.
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[18] L. Gammaitoni, P. Jung P. Ḧanggi, and F. Marchesoni, “Stochastic reso-
nance,”Rev. of Mod. Phys., vol. 70, no. 1, pp. 223–287, 1998.

[19] A. Bulsara and A. Zador, “Threshold detection of wideband signals: A noise-
induced maximum in the mutual-information,”Phys. Rev. E, vol. 54, no. 3,
pp. 2185–2188, 1996.

[20] V. Galdi, V. Pierro, and I. Pinto, “Evaluation of stochastic-resonance-based
detectors of weak harmonic signals in additive gaussian noise,”Phys. Rev. E,
vol. 57, no. 6, pp. 6470–6479, 1998.

[21] P. Jung, “Stochastic resonance and optimal design of threshold detectors,”
Elsevier Phys. Lett A, vol. 207, pp. 93–104, 1995.

[22] S. Kay, “Can detectability be improved by adding noise?,”IEEE Sig. Proc.
Lett., vol. 7, no. 1, pp. 8–10, 2000.

[23] L.M. Garth and H.V. Poor, “Detection of non-gaussian signals: A paradigm
for modern statistical signal processing,”IEEE Trans. Info. Theory, vol. 82,
no. 7, pp. 1061–1095, 1994.

[24] I. Amir, N.M. Bilgutay, and V.L. Newhouse, “Analysis and comparison of
some frequency compounding algorithms for the reduction of ultrasonic clut-
ter,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 33, no. 4, pp. 402–
411, 1986.



BIBLIOGRAPHY 95

[25] N.M. Bilgutay, U. Bencharit, R. Murthy, and J. Saniie, “Analysis of a non-
linear diverse clutter suppression algorithm,”Ultrasonics, vol. 28, pp. 90–96,
1990.

[26] M.G. Gustafsson, “Nonlinear split spectrum processing using optimal detec-
tion,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 43, pp. 109–124,
1996.

[27] V.L Newhouse, N.M. Bilgutay, J. Saniie, and E.S. Furgason, “Flaw-to-grain
echo enhancement by split-spectrum processing,”Ultrasonics, vol. 20, pp.
59–68, 1982.

[28] N.M. Bilgutay, U. Bencharit, and J. Saniie, “Enhanced ultrasonic imag-
ing with split-spectrum processing and polarity thresholding,”IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 37, no. 10, pp. 1590–1592,
1989.

[29] P. Karpur, P.M. Shankar, J.L. Rose, and V. L. Newhouse, “Split spectrum
processing: optimizing the processing parameters using minimization,”Ul-
trasonics, vol. 25, pp. 205–208, 1987.

[30] P. Karpur, P.M. Shankar, J.L. Rose, and V.L. Newhouse, “Split spectrum
processing: determination of the available bandwidth for spectral splitting,”
Ultrasonics, vol. 26, pp. 204–209, 1988.
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