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IIR WIENER FILTERS 

 

An IIR filter may have a system function �
∞

=

−=
Mk

kzkhzH )()( . This indicates that an IIR filter consists of an 

infinite number of coefficients. To design an IIR filter, therefore, we have to determine an infinite number of 

filter coefficients, unlike to design an FIR filter for which we only need to find a finite number of filter 

coefficients. An IIR filter can be noncausal when M<0 and causal for 0≥M .  

 

Noncausal IIR Wiener filter:  

The noncausal IIR filter to be studied here has a system function 

 �
∞

−∞=

−=
k

kzkhzH )()(   (41) 

that contains the components with the negative powers of z as well as with the positive powers of z (which 

are equivalent to the negative-time unit sample response, i.e., 0)( ≠kh  for k<0). This means that H(z) 

contains both causal part [ ] �
∞

=

−
+ =

0
)()(

k

kzkhzH  and noncausal part [ ] �
−

−∞=

−
− =

1
)()(

k

kzkhzH . A noncausal IIR 

filter is a smoothing filter and is unrealizable.  

Let us consider a noncausal IIR Wiener that we use to estimate desired signal d(n) from a noisy signal x(n) 

(see Fig. 6). It is assumed that d(n) and x(n) are jointly WSS with given autocorrelations )(krd  and )(krx , 

and the cross-correlation )(krdx . 

The input to the filter is the noisy signal x(n), and the 

output is  

 �
∞

−∞=
−=∞

l

lnxlhnd )()()|(ˆ ,  (42) 

which is the estimate of d(n) at time n based on all 

the signal values x(n) up to the infinite time instant 

∞=n , i.e., x(n) for ∞<<∞− n .  

The estimate error is  

 )|(ˆ)()( ∞−= ndndne = �
∞

−∞=
−−

l
lnxlhnd )()()(  (43) 

To design an optimum IIR Wiener filter with system function H(z) in Eq. (41), or equivalently to determine 

the filter coefficients h(l) for ∞<<∞− l  that produce the minimum mean-square error, we use the so-called 

three-step optimization. We first set 0)(* =∂∂ khξ  for ∞<<∞− k , and then we have  

 { } { })()(
)(

|)(|
)()(

*
*

2
**

neneE
kh

neE
khkh ∂

∂=
∂

∂=
∂

∂ξ
��

�
�
�

��

�
�
�

	


�
�

� −−
∂

∂= �
∞

−∞=k
knxkhnd

kh
neE )()()(

)(
)( ***

*  

 = { } 0)()( * =−− knxneE ,  ∞<<∞− k  (44) 

which is the orthogonality principle. Substituting e(n) into Eq. (44), we have  

 { } { } 0)()()()()()()()()( *** =−−−−=
�
�
�

�
�
� −	


�
�

� −− ��
∞

−∞=

∞

−∞= ll
knxlnxElhknxndEknxlnxlhndE  (45) 

 

 
 

Fig. 6. A noncausal IIR Wiener filter 
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Using the relations )(krdx { })()( * knxndE −=  and )( lkrx − { })()( * knxlnxE −−=  in Eq. (45), we obtain the 

Wiener-Hopf equations for the noncausal IIR Wiener filter 

 �
∞

−∞=

∞<<∞−=−
l

dxx kkrlkrlh ;)()()( .  (46) 

Obviously, for an infinite number of coefficients, we can not use the matrix operation as we did in the FIR 

filter case. Howeve, on the left side of Eq. (46) is a convolution of h(n) with )(krx  so that we have   

 )()()( krkrkh dxx =∗  (47) 

which becomes )()()( zPzPzH dxx =  in the z-transform domain. Thus, the system function of the IIR filter 

may be written as the ratio of the cross-power spectrum )(zPdx  and the power spectrum of x(n), )(zPx ,  

 
)(

)(
)(

zP

zP
zH

x

dx=   (48) 

This shows that the coefficients h(l) of an IIR Wiener filter can be found by the inverse z-transform of 
)()()( zPzPzH xdx=  where )(zPdx  and )(zPx  are available from the z-transform of )(krx  and )(krdx .  

In the same way as in the FIR Wiener filter case, the minimum mean-square error can be obtained,  

 �
∞

−∞=

−==
l

dxd lrlhrndneE )()()0()}()({ **
minξ   (49) 

Using the Parseval's theorem and considering �−= π
π

ω ωπ dePr j
dd )()2/1()0(  the error can be expressed as  

 [ ]�� −−
−=−=

π

π
ωωωπ

π
ωω ω

π
ω

π
ξ dePeHePdePeHr j

dx
jj

d
j

dx
j

d )()()(
2

1
)()(

2

1
)0( **

min  (50) 

 

 If a noisy signal is of the form x(n)= ∗)(nhs d(n)+v(n) in which d(n) and v(n) are uncorrelated with given 

)(krd  and )(krv  (or given )(zPd  and )(zPv ), then in Eqs. (48) and (49) we can use Eqs. (8) and (9), i.e., 

)()()1()()( ** zPzPzHzHzP vdssx +=  and )()1()( ** zPzHzP dsdx = , to determine H(z).  

 If we have x(n)=d(n)+v(n), then we use Eqs. (10) and (11), i.e., )()()( zPzPzP vdx +=  and )()( zPzP ddx = , 

instead. In this case, for example, we have the Wiener-Hopf equations 

 [ ] )()()()( krkrkrkh dvd =+∗  (51) 

The z-transforming of Eq. (55) gives us the system function  

 
)()(

)(
)(

zPzP

zP
zH

vd

d

+
= .    (52) 

The minimum mean-square error is    

 [ ] [ ]�� −−
−=−=

π

π

ωω
π

π

ωωω ω
π

ω
π

ξ deHePdePeHeP jj
d

j
dx

jj
d )(1)(

2

1
)()()(

2

1 *
min  

  �− 	
	



�

�
�


�

+
=

π

π
ωω

ω
ω ω

π
d

ePeP

eP
eP

j
v

j
d

j
vj

d
)()(

)(
)(

2

1
�−=

π

π

ωω ω
π

deHeP jj
v )()(

2

1
. (53) 

 

Example 4. Noncausal Wiener Smoothing  

Suppose that d(n) is a real-valued AR(1) process given by  

 d(n)=ad(n−1)+ bw(n) 

(where w(n) is zero-mean, unit variance white noise) and observed in the presence of noise v(n), 

 x(n)=d(n)+v(n) 
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Assuming that v(n) is a white noise process with a zero mean and a variance 2
vσ , and is uncorrelated with 

d(n), design a noncausal IIR Wiener smoothing filter �
∞

−∞=

−=
k

kzkhzH )()(  for estimating d(n) from x(n) and 

find the mean-square error of the estimate.  

 

Solution 

Performing the q-transform on d(n)=ad(n−1)+bw(n) yields  

 d(n)= )()()(
1

1
1 nwqHnw

aq

b
d

−
− =

−
 

and we can find the power spectrum of d(n) as follows 

 
)1)(1(

)()/1()()( 1

2

azaz

b
zPzHzHzP wddd −−

== −  

Since )()()( zPzPzP vdx +=  and )()( zPzP ddx =  in this case, and 2)( vv zP σ= , we use Eq. (52) to find the 

system function in the following manner 

 
)()(

)(
)(

zPzP

zP
zH

vd

d

+
= = 	




�
�


�
+

−−−− −−
2

1

2

1

2

)1)(1()1)(1( vazaz

b

azaz

b σ =
)1)(1( 122

2

azazb

b

v −−+ −σ
 

From Eq. (53) we may have  

 minξ �−=
π

π

ωω ω
π

deHeP jj
v )()(

2

1
)0()(

2
2

2

hdeH v
jv σω

π
σ π

π

ω == �−  

 

If we take a=0.5, b=0.5, and 2
vσ =0.25 as a specific example, then the Wiener filter is of the form   

 H(z)=
)1)(1( 122

2

azazb

b

v −−+ −σ
=

)5.01)(5.01(25.025.0

25.0
1 zz −−+ − =

)2344.01)(2344.01(

2344.02
1 zz −−

×
−  

The inverse z-transform of H(z) gives us the unit impulse response, 

 { } ||)2344.0(4960.0)()( nzHZnh ×==  

which is obviously noncausal.  

The minimum mean-square error in this case will be 

 1240.04960.025.0)0(2
min =×== hvσξ  

It is interesting to look at the effect of the Wiener filter on the error { }2
)(neE=ξ .   

Without filtering of x(n) with the Wiener filter, we set H(z)=1 and thus we have )(ˆ nd =x(n), and the error 

becomes   

 { }2
)(neE=ξ = { }2

)(nvE = 2
vσ =0.25 

which is approximately two times the MMSE, 1240.0min =ξ .  

This demonstrates that the Wiener filter reduces the MSE by approximately a factor of two. 
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Causal IIR Wiener filtering:  

A causal IIR filter has the system function 

 �
∞

=

−=
0

)()(
k

kzkhzH   (58) 

which contains only the components with the non-positive powers of z. For k<0 we have 0)( =kh . In the 

similar way as we did for the noncausal IIR Wiener filter, we consider the filtering problem in which we 

estimate the desired signal d(n) from a noisy signal x(n), as illustrated in Fig. 8. Assuming that d(n) and x(n) 

are jointly WSS, we may have autocorrelations )(krd  and )(krx , and the cross-correlation )(krdx .  

 

 

 

Fig. 8. A causal IIR Wiener filter 

 

 

When the noisy signal is input to the filter, the output of the filter is the estimate of d(n), )(ˆ nd  of the form  

 �
∞

=

−=
0

)()()(ˆ
l

lnxlhnd   (59) 

Note that )(ˆ nd = )|(ˆ nnd , the estimate of d(n), uses only the previous and current values of the signal x(l), 

i.e., x(l) for nl ≤<∞− .  

The estimate error is  

 )(ˆ)()( ndndne −=   (60) 

To find the filter coefficients that minimize the mean-square error }|)({| 2neE=ξ , we use the same way as 

we did for the noncausal IIR Wiener filter. Specifically setting 0)(* =∂∂ khξ  for ∞<≤ k0 , we find the 

Wiener-Hopf equations as follows 

 �
∞

=

∞<≤=−
0

0;)()()(
l

dxx kkrlkrlh  (61) 

The only difference between Eqs. (46) and (61) is the limits imposed on the summation, i.e., the values of k 

for which the equations hold. Because of the restriction ∞<≤ k0  for a causal IIR filter, however, Eq. (61) 

can not be expressed as such a relation )()()( krkrkh dxx =∗  as in Eq. (47) because )()()( krkrkh dxx ≠∗  for 

0<k . Thus, the coefficients of a causal IIR filter can not be found in the same way as for the noncausal IIR 

filter in Eq. (48).  

 Here we shall deal with the method to find the coefficients for a causal IIR filter. Consider a random 

regular process x(n) that can be spectrally factorized into the form  

 )/1()()( **2
0 zQzQzPx σ=

)/1()(

1
** zFzF

=  (62) 

where Q(z) is minimum phase and monic with the following form,  

 �
∞

=

−+=
1

)(1)(
k

kzkqzQ  (63) 

and F(z) is the whitening filter of x(n), given by  
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 �
∞

−∞=

−==
l

lzlf
zQ

zF )(
1

)(

1
)(

00 σσ
 (64) 

Note that the whitening filter F(z) is not monic because the coefficient of )0(f  is 0/1 σ . With introducing 

F(z) the causal filter in Fig. 8 can be rearranged as in Fig. 9 in which the whole system becomes a series 

connection of the whitening filter F(z) with G(z) that is a cascade of )(1 zF −  and H(z).  

 

 

 

Fig. 9. An alternative form of  

 the causal Wiener filter in  

 Fig. 8.  

 

Looking at the whitening filter F(z) in Fig. 9, we see that the random process x(n) gets into the filter and the 

filter’s output is unit variance white noise )(nε . The input x(n) and the output )(nε are related with  

 �
∞

−∞=
−=

l

lnxlfn )()()(ε   (65) 

The second filter G(z) in Fig. 9 is a cascade of )(1 zF −  and H(z), namely,  

 G(z)= )(1 zF − H(z).  (66) 

Since both )(1 zF − = 	



�
�


� += �
∞

=

−

1
00 )(1)(

k

kzkqzQ σσ  and �
∞

=

−=
0

)()(
l

lzlhzH  are causal, then G(z)= )(1 zF − H(z) 

is causal because there are no positive powers of z in G(z). The input to G(z) is white noise )(nε  and the 

output is )(ˆ nd , the best linear estimate of d(n). Since G(z) is an optimum filter (because )(1 zF −  is fixed for 

the given x(n) and H(z) is determined by Eq. (61)) the Wiener-Hopf equations for G(z) are  

 ∞<≤=−�
∞

=
kkrlkrlg d

l

0,)()()(
0

εε  (67) 

Since white noise )(nε  has a unit variance and its autocorrelation is )()( kkr δε = , then Eq. (67) becomes 

 ∞<≤= kkrkg d 0,)()( ε  (68) 

Since the z-transform of g(k) is [ ]+

∞

=

−
∞

=

− === �� )()()()(
00

zPzkrzkgzG d
k

k
d

k

k
εε  we have  

 [ ]+= )()( zPzG dε  (69) 

where [ ]+⋅  means the causal part. It should be noted that G(z) is causal. The cross-correlation )(krdε  can be 

found as follows,   

 
��

�
�
�

��

�
�
�

	



�
�


� −−=−= �
∞

−∞=

*
* )()()()}()({)(

l
d lknxlfndEknndEkr εε { }�

∞

−∞=
−−=

l

lknxndElf )()()( **  

 �
∞

−∞=
+=

l
dx lkrlf )()(* )()(* krkf dx∗−=   (70) 

Taking the z-transform of Eq. (70) yields the relation, 

 
)/1(

)(
)/1()()(

**
0

**

zQ

zP
zFzPzP dx

dxd σε ==  (71) 

Inserting Eq. (71) into Eq. (69), and then using Eq. (66), we can find the system function H(z) as follows  
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+
	



�
�


�
==

)/1(

)(

)(

1
)()()(

**2
0 zQ

zP

zQ
zGzFzH dx

σ
,     (72) 

The coefficients h(l) of the causal IIR Wiener filter can, thus, be found by the inverse z-transform of H(z).  

It is worthwhile comparing H(z) for the causal IIR Wiener filter in Eq. (72) with H(z) for the noncausal IIR 

Wiener filter in Eq. (48) that can be rewritten as 

 
)/1(

)(

)(

1

)(

)(
)(

**2
0 zQ

zP

zQzP

zP
zH dx

x

dx

σ
== ,     (73) 

where )/1()()( **2
0 zQzQzPx σ= , and which shows the difference from the causal filter in Eq. (72).  

In the same way as for the noncausal IIR filter, the minimum mean-square error for the causal IIR filter can 

be found to be  

 �
∞

=

−==
0

**
min )()()0()}()({

l
dxd lrlhrndneEξ  or  (74) 

 

 [ ]�− −=
π

π
ωωω ω

π
ξ dePeHeP j

dx
jj

d )()()(
2

1 *
min  (75) 

 When a noisy signal is of the form x(n)= ∗)(nhs d(n)+v(n) with )(krdv =0 and given )(krd  and )(krv , we 

can use Eqs. (8) and (9), i.e., )()()1()()( ** zPzPzHzHzP vdssx +=  and )()1()( ** zPzHzP dsdx = , in Eq. (72).  

 When x(n)=d(n)+v(n), then we use Eqs. (10) and (11), i.e., )()()( zPzPzP vdx +=  and )()( zPzP ddx = .  

 In any case, the spectral factorization of )(zPx  is always needed in the following manner 

 )/1()()( **2
0 zQzQzPx σ=  (76) 

 

Example 5. Causal Wiener Filtering  

Suppose that d(n) is an AR(1) process given by  

 d(n)=0.8d(n−1)+w(n) 

(where w(n) is white noise with zero mean and variance 2
wσ =0.36) and observed in the presence of noise 

v(n), 

 x(n)=d(n)+v(n) 

Assuming that v(n) is a white noise process with a zero mean and a unit variance, and is uncorrelated with 

d(n), design a causal IIR Wiener filter �
∞

=

−=
0

)()(
k

kzkhzH  for estimating d(n) from x(n) and find the mean-

square error of the estimate.  

 

Solution 

From the q-transform on d(n)=0.8d(n−1)+w(n), given by  

 d(n)= )()()(
8.01

1 1
1 nwqHnw

q d
−

− =
−

 

we can find the power spectrum of d(n) as follows 

 
)8.01)(8.01(

36.0
)()/1()()( 1 zz

zPzHzHzP wddd −−
== −  

where 36.0)( 2 == ww zP σ . Since x(n)=d(n)+v(n), we have )()( zPzP ddx =  and )()()( zPzPzP vdx += . Noting 

that 2)( vv zP σ= =1, The spectral factorization of )(zPx  can be made in the following way 
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)8.01)(8.01(

)5.01)(5.01(
6.11

)8.01)(8.01(

36.0
)( 1

1

1 zz

zz

zz
zPx −−

−−=+
−−

= −

−

− = )/1()(2
0 zQzQσ  

where 2
0σ =1.6 and 

)8.01(

)5.01(
)( 1

1

−

−

−
−=

z

z
zQ  

From Eq. (72) it follows that the system function of the causal IIR Wiener filter is of the form 

 
+

− 	



�
�


�
=

)(

)(

)(

1
)( 12

0 zQ

zP

zQ
zH dx

σ
 

in which  

 =	



�
�


�

+
− )(

)(
1zQ

zPdx

+

−

− 	



�
�


�

−
−

−− )8.01(
)5.01(

)8.01)(8.01(

36.0 1

1 z

z

zz
=

+
− 	




�
�


�

−− )5.01)(8.01(

36.0
1 zz

 

 =
+

−−

−

	



�
�


�

−−
−

)21)(8.01(

72.0
11

1

zz

z
=

+
−− 	


�
�

�

−
−

− 11 21

6.0

8.01

6.0

zz
= 18.01

6.0
−− z

 

where )21/(6.0 1−− z  is noncausal since { } )1(26.0)21/(6.0 11 −−×−=− −− kuzZ k . 

Therefore, the Wiener filter becomes 

 111

1

5.01

375.0

)8.01(

6.0

)5.01(

)8.01(
6.1

1
)( −−−

−

−
=

−−
−=

zzz

z
zH  

and the unit impulse response is  

 { } )()5.0(375.0)()( nuzHZnh n×==  

which is obviously causal.  

The estimate of d(n) can be written as 

 )(ˆ nd = )(
5.01

375.0
)()( 1

1 nx
z

nxqH −
−

−
=  

which can, alternatively, written as  

 )(375.0)1(ˆ5.0)(ˆ nxndnd =−−  

The minimum mean-square error can be calculated from Eq. (74)  

 375.0)8.0()5.0(375.01)()()0()()()0(
000

*
min =−=−=−= ���

∞

=

∞

=

∞

= l

ll

l
dd

l
dxd lrlhrlrlhrξ  

Comparing with the MMSE, minξ =0.4048, for the first-order FIR Wiener filter in Example 1 (or Example 

7.2.1), we can see that the performance of the causal IIR Wiener filter is slightly improved that uses all of the 

previous values of x(n).   

If we conduct the estimation of d(n) using a noncausal IIR Wiener filter which can be found to be  

 
)(

)(
)(
)(

)(
zP

zP

zP

zP
zH

x

d

x

dx == =
)5.01)(5.01(

36.0
6.1

1
1 zz −− −  or { } ||)5.0(3.0)()( nzHZnh ×==  

the MMSE is )0(2
min hvσξ = 13.01 ××= =0.3, which is smaller than the one for the causal IIR Wiener filter 

since the noncausal IIR Wiener filter uses all the values of x(n) for the estimation.  

 

From this example, one may conclude that the more information (the more values) about x(n) is used in the 

designing of an optimum filter the better performance (the smaller MMSE) the filter may have. 
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Causal IIR Wiener filters in general:  

 

In this section the causal IIR Wiener filtering problem that we just studied is going to be extended to a 

general case (Fig. 10) which may include Wiener prediction (m>0), smoothing (m<0) and filtering (m=0).  

 

 

 

Fig. 10. Causal IIR Wiener filter. 

 

The input to the filter is still a noisy observation x(n), but the output is the estimate of d(n+m), given by 

 �
∞

=
−=+

0
)()()|(ˆ

l
lnxlhnmnd  (77) 

which is based on the noisy observation x(l) for nl ≤<∞− .  

The estimate error is  

 )|(ˆ)()( nmndmndne +−+= = �
∞

=
−−+

0
)()()(

l
lnxlhmnd  (78) 

Since the output of the filter is )|(ˆ nmnd + , the Wiener-Hopf equations for H(z) are expressed as 

 �
∞

=
∞<≤+=−

0
0;)()()(

l
dxx kmkrlkrlh  (79) 

The Wiener-Hopf equations for filter G(z)= )(1 zF − H(z) (refer to Fig. 9) are of the form 

 ∞<≤+=−�
∞

=
kmkrlkrlg d

l
0,)()()(

0
εε  (80) 

which, due to )()( kkr δε = , become, 

 ∞<≤+= kmkrkg d 0,)()( ε  (81) 

Since { } )()( zPzmkrZ d
m

d εε =+ , then we have 

 [ ]+= )()( zPzzG d
m

ε  (82) 

Since the cross-correlation between d(n) and )(nε  is  

 
��

�
�
�

��

�
�
�

	


�
�

� −−+=−+=+ �
∞

−∞=

*
* )()()()}()({)(

l
d lknxlfmndEknmndEmkr εε  

 { }�
∞

−∞=
−−+=

l
lknxmndElf )()()( ** �

∞

−∞=
++=

l
dx lmkrlf )()(* )()(* mkrkf dx +∗−=   (83) 

then the z-transform of Eq. (83) yields the relation, 

 
)/1(

)(
)/1()()( **

0

**

zQ

zPz
zFzPzzPz dx

m

dx
m

d
m

σε ==  (84) 

Substituting Eq. (84) into Eq. (82), and noting that G(z)= )(1 zF − H(z) and )(1)( 0 zQzF σ= , we can find the 

system function H(z) for a general causal IIR Wiener filter as follows  

 
+
	



�
�


�
==

)/1(

)(

)(

1
)()()( **2

0 zQ

zPz

zQ
zGzFzH dx

m

σ
  (85) 

The minimum mean-square error is   

 �
∞

=
+−=+=

0

**
min )()()0()}()({

l
dxd mlrlhrmndneEξ  (86) 
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Eqs. (85) and (86) can be used to treat Wiener prediction (m>0), smoothing (m<0) and filtering (m=0, in this 

case Eq. (85) = Eq. (72) and Eq. (86) = Eq. (74)).  

 

 
Causal IIR Wiener prediction:  

 

To find a causal IIR Wiener filter for m-step prediction, we can directly use Eqs. (85) and (86) by setting 

m>0.   

 Here we shall deal with a Wiener filter for m-step prediction of a signal in the absence of noise and 

without distortion, as shown in Fig. 11. Since the observation of d(n) is noise-free and distortion-free, then 

we have x(n)= d(n) so that )(krx = )(krd  and )(krdx = )(krx , which give )(zPx = )(zPd  and )(zPdx = )(zPx .  

In this case, we shall find a Wiener filter to perform an m-step prediction of x(n) (i.e., the estimate of 

x(n+m)) from x(l) for nl ≤<∞− .  

 

Fig. 11. The m-step prediction problem in the absence of 

noise (m>0) 

 

The input to the filter is naturally x(n) and the output is  
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which is the m-step prediction of x(n+m) based on the signal x(l) for nl ≤<∞− . 

From Eq. (85) and noting that )(zPdx = )(zPx , the system function of the m-step prediction Wiener filter can 

be written as 
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Because )/1()()( **2
0 zQzQzPx σ= , Eq. (87) becomes 
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It should be stressed that �
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=
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)(1)(
k

kzkqzQ  is monic. If we use Taylor series expansion to the second 

factor, [ ]+)(zQzm , in Eq. (88), we may have   
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Inserting Eq. (89) into Eq. (88), we have  
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For m=1 and 2, i.e., one- and two-step predictions, it follows from Eq. (90) that  
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From Eq. (86) and taking into account )(krdx = )(krx , we may have  
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Example 6. Causal Linear Wiener Prediction 

Consider the ARMA(1,1) process  

 )1()()1()( −+=−+ nbnnayny εε  

where )(nε  is a white noise process with unit mean and variance 2
εσ . y(n) can be expressed in the q-

transform as follows,  
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From Eq. (90), we can easily find the one-, two-, and m-step causal IIR Wiener predictors of y(n). 

For the one-step prediction (m=1), the system function of the causal IIR Wiener filter is  
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For the two-step prediction (m=2), the system function is  
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For the three-step prediction (m=3), the system function is  
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Example 7. Causal Linear Wiener Prediction (Example 7.3.3 in the textbook) 

 


