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IR WIENER FILTERS

An IR filter may have a system functiod (z) = ih(k)z‘k . This indicates that an IIR filter consists of an
k=M

infinite number of coefficients. To design an IIR filter, therefore, we haxdetermine an infinite number of
filter coefficients, unlike to design an FIR filter for whichewenly need to find a finite number of filter
coefficients. An IIR filter can be noncausal whér0 and causal foM > 0.

Noncausal IIR Wiener filter:
The noncausal IIR filter to be studied here has a system function

H(Z)= Shk)z* (41)
k=—0c0

that contains the components with the negative powezsasfwell as with the positive powersofwhich
are equivalent to the negative-time unit sample responseh{le.Z 0 for k<0). This means that(2)

o0 -1
contains both causal pafiti (z)], = Sh(k)z™* and noncausal pafti (2)]. = Y h(k)z™* . A noncausal IIR
k=0 k=-c0

filter is a smoothing filter and is unrealizable.

Let us consider a noncausal IIR Wiener that we use to esttleaiieed signadi(n) from a noisy signak(n)
(see Fig. 6). It is assumed thd{h) andx(n) are jointly WSS with given autocorrelatiomgk) and r, (k) ,

and the cross-correlation, (K) .

The input to the filter is the noisy signdgh), and the

d(n) output is
x(n) e | dinleo) 7Y e &(n|oo)=|ih(l)x(n—l), (42)

which is the estimate al(n) at timen based on all
Fig. 6. A noncausal lIR Wiener filter the signal valueg(n) up to the infinite time instant
n=o,i.e.,xn)for —co<n<co.
The estimate error is
e(n) =d(n) - d(n|@) =d(n)- Yh(l)x(n-1) (43)

|=—c0
To design an optimum IIR Wiener filter with system functi®(z) in Eqg. (41), or equivalently to determine

the filter coefficientd(l) for — o <| <o that produce the minimum mean-square error, we use the so-called
three-step optimization. We first séf/ah* (k) =0 for — <k <o, and then we have

o6 _ 0 1. 0 R 5 S
(K)o () E{Ie(n)l }— o (0 E{e(n)e (n)} = E{E(n) o () [d (n) k:z_o? (K)X (n k)}}
= Ele(n)x (n-Kk)}=0| - <k<w )

which is the orthogonality principle. Substitutieg) into Eq. (44), we have
E{[d(n) — S h(lyx(n —I)}x*(n - k)} = E{d(n)x (n-K)}- ShME{x(n-1)x (n-Kk)}=0 (45)
1200 et
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Using the relations,, (k) = E{d(n)x’ (n-Kk)} andr, (k 1) = E{x(n-1)x" (n-K)} in Eq. (45), we obtain the

Wiener-Hopf equations for the noncausal IIR Wiener filter

S () (k=1) =1 (K); =0 <k <o), (46)
e

Obviously, for an infinite number of coefficients, we can not use #@eixroperation as we did in the FIR
filter case. Howeve, on the left side of Eq. (46) is a convolutidiirpfwith r, (k) so that we have

(k) O, (K) = 14, (K)| (47)
which becomesH ()P, (z) = P, (2) in theztransform domain. Thus, the system function of the IIR filter

may be written as the ratio of the cross-power spec®yifz) and the power spectrumx(), P,(2),

H(2) = FF’,—((ZZ)) (48)

This shows that the coefficienkgl) of an IIR Wiener filter can be found by the invemwstansform of
H(2) = Py (2)/P,(2) whereP,(2) andP,(z) are available from thetransform ofr, (k) andrg (k).

In the same way as in the FIR Wiener filter case, the minimum mean-squeireagr be obtained,

&mn = E{6(n)d" ()} =14 (0) - ih(Dfé}(') (49)
|=—00

Using the Parseval's theorem and considerjr{g) = (1/277)[17”Pd (e'“)Ydw the error can be expressed as

fnn =140 | HE)RL()dw= " ["[Py () - H() P, () e (50)

If a noisy signal is of the form(n)=hy(n) Od(n)+v(n) in whichd(n) andv(n) are uncorrelated with given
ry(k) andr, (k) (or given Py(z) and R,(z)), then in Egs. (48) and (49) we can use Egs. (8) and (9), i.e.,
P(2)=H.(2H.(1/Z)P,(2) +P,(2) and P, (2) =H.(1/Z)P,(2), to determindH(2).

If we havex(n)=d(n)+v(n), then we use Egs. (10) and (11), iR.(2) = P,(2)+ P,(z) and P, (z) = P,(2),

instead. In this case, for example, we have the Wiener-Hopf equations

hk) Ol () + 1, ()] =1 (K) (51)
The ztransforming of Eq. (55) gives us the system function
H(z)=— @ (52)

PR(@+R (2D

The minimum mean-square error is

b = [ [P - R b= - [P~ HEeko

— 1 " jw I:)v(ejw) _i i jw jw
_E-[NPd (e ){Pd ):Ida)— IPV(eJ YH (e'“)dw. (53)

@)+R@E)]  2r);

Example 4. Noncausal Wiener Smoothing

Suppose thad(n) is a real-valued AR(1) process given by
d(n)=ad(n—-1)+ bw(n)

(wherew(n) is zero-mean, unit variance white noise) and observed in the presence ofmoise
X(n)=d(n)+v(n)
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Assuming thaw/(n) is a white noise process with a zero mean and a vari@pc@and is uncorrelated with

d(n), design a noncausal [IR Wiener smoothing filk&(z) = ih(k)z'k for estimatingd(n) from x(n) and

k=—c0

find the mean-square error of the estimate.

Solution
Performing theg-transform ord(n)=ad(n—1)+bw(n) yields

dm)=— Zq_l W(n) = H g (a7 )w(r)

and we can find the power spectrund@f) as follows
b2
(1-az™")(1-a2)
Since P,(2) =P,(2)+P,(2) and P, (2)=P,(2) in this case, and®,(z) =0, we use Eq. (52) to find the

Fi(2)=H,(29H, /2R, (29) =

system function in the following manner

Hz=—o@ - b’ o’ +02|= o’
R@+R(@) @-al-a)/ [(@-azh)l-az) '] b’+ol@-az’)(1-a2)

From Eg. (53) we may have

Vs 2 T
fun =5 | REEIH (@00 =24 [ H(e)dw=o?h(0)
2r 2

/e =

If we takea=0.5,b=0.5, anda\f =0.25 as a specific example, then the Wiener filter is of the form

b? _ 025 _ 2x0.2344
+02(l-az')(1-az) 025+ 0251-05z ) (1-05z) (1-0.2344z")(1-0.2344)

H(2)=
¢4 5
The inverse-transform ofH(2) gives us the unit impulse response,
h(n) = Z{H (2)} = 0.4960x (0.2344"!
which is obviously noncausal.

The minimum mean-square error in this case will be
&... =02h(0) = 025x%0.4960= 0.1240

It is interesting to look at the effect of the Wiener filter on the efrelE{je(n)f}.
Without filtering of x(n) with the Wiener filter, we sdii(2)=1 and thus we havé(n) =x(n), and the error

becomes
& = Ele(nf}= Ejv(n)?}=02=0.25
which is approximately two times the MMSE,,,, = 0.1240.
This demonstrates that the Wiener filter reduces the MSE by approximatetpradfatwo.
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Causal IIR Wiener filtering:

A causal IR filter has the system function
H(2)= > h(k)z™* (58)
k=0
which contains only the components with the non-positive powets Fdr k<O we haveh(k) =0. In the

similar way as we did for the noncausal IIR Wiener filter, cs@asider the filtering problem in which we

estimate the desired sigrd{h) from a noisy signax(n), as illustrated in Fig. 8. Assuming tha{h) andx(n)
are jointly WSS, we may have autocorrelatiop&) andr, (k) , and the cross-correlatian, (k) .

dn)
dm Y et
_ X H) I N Fig. 8. A causal IIR Wiener filter

When the noisy signal is input to the filter, the output of the filter is the estimdte)pﬂ(n) of the form
d(n)=>"h()x(n-1) (59)
1=0

Note that&(n) :c](n|n), the estimate ofi(n), uses only the previous and current values of the sighal
i.e.,x(l) for —o<l<n.
The estimate error is

e(n) =d(n)-d(n) (60)
To find the filter coefficients that minimize the mean-squareref = E{] &(n)|*} , we use the same way as
we did for the noncausal IIR Wiener filter. Specifically smgt'@f/ah*(k) =0 for Ok <o, we find the

Wiener-Hopf equations as follows

ih(l)rx(k—l)zrdx(k); 0<k <o (61)

1=0

The only difference between Egs. (46) and (61) is the limits impos#teagummation, i.e., the valueslof
for which the equations hold. Because of the restricfigrk <c for a causal IR filter, however, Eq. (61)
can not be expressed as such a relatige) Cr, (k) =r, (k) as in Eq. (47) becaudgk) [r, (k) # ry, (k) for
k <0. Thus, the coefficients of a causal IIR filter can not be fourtdérsame way as for the noncausal IIR
filter in Eq. (48).

Here we shall deal with the method to find the coefficientsafeausal IIR filter. Consider a random

regular process(n) that can be spectrally factorized into the form
1

P.(2)=0¢ W) r——— 62
(2)=0,Q(2)Q 1/ Z) FOF WZ) (62)
whereQ(2) is minimum phase andmonic with the following form,
Q@)=1+ L)z (63)
=1

andF(2) is the whitening filter ok(n), given by
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F@=—r =L Stp)z (64)

0,Q(2) 0417w
Note that the whitening filtelF(z) is not monic because the coefficient b{0) is 1/o0,. With introducing

F(2) the causal filter in Fig. 8 can be rearranged as in Fig.véhioh the whole system becomes a series
connection of the whitening filtéf(z) with G(2) that is a cascade & ™(z) andH(2).

Whitening  White

Filter noise
x(n) 1 &n) 1 x(n) c?(n)
F&= 506 F) 0097 HE Fig. 9. An alternative form of
the causal Wiener filter in
GE) Fig. 8.

Looking at the whitening filteF(2) in Fig. 9, we see that the random proods gets into the filter and the
filter’s output is unit variance white noisgn) . The inputx(n) and the outpug(n) are related with

g = f)x(n-1) (65)
|=—00
The second filte6(2) in Fig. 9 is a cascade & (z) andH(2), namely,
G@)=F (2H®. (66)

Since bothF ™(2)=0,Q(2) 200[1+ iq(k)z"‘} and H(z2) = ih(l)z'I are causal, theG(2)=F *(2)H(2)
k=1 1=0

is causal because there are no positive powerg iof G(z). The input toG(z) is white noiseg(n) and the
output is&(n) , the best linear estimate dfn). SinceG(2) is an optimum filter (becausé (z) is fixed for

the givenx(n) andH(2) is determined by Eq. (61)) the Wiener-Hopf equationgs{ay are

%g(l)rg(k—l):rdg(k), O<k<oo 67)
Sinc_e white noise(n) has a unit variance and its autocorrelation, {&) = d(k) , then Eq. (67) becomes
g(k) =ry.(k), 0<k<oo (68)

Since thez-transform ofg(k) is G(z) = éjog(k)z"‘ = é}ordg(k)z"‘ =[P,.(2)], we have
6@ =[r. ), _ _ (69

where [[]1 means the causal part. It should be noted@@3tis causal. The cross-correlatiog) (k) can be

found as follows,

. (K) = E{d(n)&’ (n—K)} = E{d(n)[ if(l)x(n—k—l)} } =3 £ OE[dmx (n-k -1}
|=—c0 |=—c0

= i Fr(Drg (k+1) = £7(=k) Drg, (K) (70)
| =—0c0
Taking thez-transform of Eq. (70) yields the relation,
. . P, (2)
P.(2=P,(9F W/ z')=—~Z7 _ 71
we (2) = P (DF ( )JOQ(UZ) (71)

Inserting Eq. (71) into Eq. (69), and then using Eq. (66), we can find the system fii{g)ias follows

17



H@) =F(A6@ = é(z) { Qf"leﬁzz)*)} | (72)

The coefficientd(l) of the causal IIR Wiener filter can, thus, be found by the inensasform ofH(2).

It is worthwhile comparindd(2) for the causal IIR Wiener filter in Eq. (72) wih(z) for the noncausal IIR

Wiener filter in Eq. (48) that can be rewritten as
H (Z) - de(z) — 21 *de(z)* ,

P(2 05Q(2)Q (U/z)

where P, (2) = JSQ(Z)Q* @/ z"), and which shows the difference from the causal filter in Eq. (72).

(73)

In the same way as for the noncausal IIR filter, the minimuanrsguare error for the causal IIR filter can
be found to be

Emin = E{e(n)d” ()} =14 (0) —ih(l)rgx(l) or (74)
1=0

Enn = [P (€) - H @)y () 0w (75)

min 277 3-1 d dx

When a noisy signal is of the forx(n)=h,(n) Od(n)+v(n) with ry, (k) =0 and givenr, (k) andr,(k), we
can use Egs. (8) and (9), iR.(2) =H (2)H.(1/Z)P,(2) +P,(2) andP,(2) =H.(1/Z')P,(2) , in Eq. (72).

Whenx(n)=d(n)+v(n), then we use Egs. (10) and (11), iR.(z) = P,(2) + R,(2) and P, (2) = P,(2).

In any case, the spectral factorizationR){z) is always needed in the following manner

P(2)=02Q(2Q 1/ Z) (76)

Example 5. Causal Wiener Filtering
Suppose thad(n) is an AR(1) process given by
d(n)=0.8d(n—1)+w(n)
(wherew(n) is white noise with zero mean and varianzg=0.36) and observed in the presence of noise
v(n),
x(n)=d(n)+v(n)
Assuming thaw(n) is a white noise process with a zero mean and a unit varamteés uncorrelated with

d(n), design a causal IR Wiener filtedl (z) = ih(k)z'k for estimatingd(n) from x(n) and find the mean-
k=0

square error of the estimate.

Solution
From theg-transform ord(n)=0.8d(n—-1)+w(n), given by

d(n):T;dlw(n) = Hy(q™)w(n)

we can find the power spectrumdth) as follows

) _ 036
Ri(2=Hy(9H, /)R, (2 = (1- 08z 1)(1- 082)

where P, (2) =02 = 036. Sincex(n)=d(n)+v(n), we haveP, (z) = P,(z) and P (2) =P,(2)+P,(2). Noting
that P,(z) = 07 =1, The spectral factorization & (z) can be made in the following way
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036 _ .. [@-05z21H(1-052)

R(2)= (1- 08z1)(1- 0.82) +1=16 (1- 08z 1)(1- 082) =0Q(2Q01/2)
- _@-o05z"
where gy =1.6 andQ(z) = m

From Eq. (72) it follows that the system function of the causal IR Wiener §li@irthe form

H (Z) - 1 de(z)
752 Az ],

in which

P.(2) | _ 036 @1-05z"Y | _ 036
QzY], |@-08z%@1-087/ (1-082) |, | (1-08z%)(1-052) |,

_ - 072zt :[ 06 06 } ___06
@-08z")(1-2zY |, [1-08z*' 1-2z'], 1-08z"

where 06/(1- 22" is noncausal sincg {06/(1- 2z1)}= -06x 2 u(-k -1).

Therefore, the Wiener filter becomes
1 @- 08z 0.6 _ 0.375
16 (1- 05z%) 1-08z') 1-05z°

H(2) =

and the unit impulse response is
h(n) = z{H (2)} = 0.375x (05)"u(n)
which is obviously causal.

The estimate od(n) can be written as
0.375

d(m) = H(a™)x(m == X
Whigh can, a[ternatively, written as

d(n)-05d(n-1) = 0.375x(n)
The minimum mean-square error can be calculated from Eq. (74)

& =10 —lio h()rs (1) =, (0) - lﬁo h(r, (1) =1—o.375|§0 (05) (08)' =0.375
Comparing with the MMSE{,,, =0.4048, for the first-order FIR Wiener filter in Example 1 (or Exampl
7.2.1), we can see that the performance of the causal IIR Wieneisfétaghtly improved that uses all of the
previous values of(n).

If we conduct the estimation dfn) using a noncausal IIR Wiener filter which can be found to be

_PR(@_R(@_1 036 _ — 02x (05N
H(@)= P(2) P, (2 16 (1-05z%)(1-057) o h(n) =Z{H (2} = 03x (05)

the MMSE is¢é,,, =02h(0) =1x 0.3x1=0.3, which is smaller than the one for the causal IR Wiener filt

since the noncausal IR Wiener filter uses all the valuegndffor the estimation.

From this example, one may conclude that the more information (thevaloes) aboux(n) is used in the
designing of an optimum filter the better performance (the smaller MMSEjtdrenfiay have.
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Causal IR Wiener filters in general:

In this section the causal IR Wiener filtering problem thatjust studied is going to be extended to a
general case (Fig. 10) which may include Wiener predictioi®}, smoothingrfi<0) and filtering (n=0).

d(n+m)
A +
x(n) | HE) .d(n+m|n) - e(n)

Fig. 10. Causal IR Wiener filter.

The input to the filter is still a noisy observatix(m), but the output is the estimatedgh+m), given by
d(n+min)= T h(l)x(n-1) (77)
1=0

which is based on thaisy observatiorx(l) for —co <l <n.
The estimate error is

e(n)=d(n+m)—c](n+m|n):d(n+m)—ih(l)x(n—l) (78)
1=0
Since the output of the filter ié(n +m|n), the Wiener-Hopf equations fbl(z) are expressed as
ih(l)rx(k—l)zrdx(k+m); 0<k<o (79)
1=0
The Wiener-Hopf equations for filt&(z2)= F ~(2) H(2) (refer to Fig. 9) are of the form
> g, (k=1)=ry(k+m), 0sk<w (80)
1=0
which, due tor, (k) = (k) , become,
g(k)=ry(k+m), O0<k<oo (81)
Since Z{r,, (k + m)} = Z"P,.(2) , then we have
G(2) =[P, (2), (82)

Since the cross-correlation betwedn) and £(n) is

r.(k+m) = E{d(n+m)e (n—-Kk)} = E{d(n+ m){ i f(I)x(n—k—I)} }
| =—co

= 5 ' WE{d(n+mx (n-k-1)} :éwf*(l)rdx(k+m+l) = (k) Oy (k+m)  (83)

|=—00
then thez-transform of Eq. (83) yields the relation,
2Py (2)
0,Q (U/Z)
Substituting Eq. (84) into Eq. (82), and noting t6&t)=F ™ (z) H(2) and F(2) :l/aoQ(z) , we can find the

Z"P,(2) =Z"P, (F (LI Z) = (84)

system functiomH(z) for a general causal IIR Wiener filter as follows

_ _ 1 Z"P, (2)
H(2) = F(2G(2) = ot
(2 =F(2)G(2) agQ(z){Q (1/2)1 (85)
The minimum mean-square error is
£nn = EL(" (N )} =1,(0) = ()5 (1-+m) (86)
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Egs. (85) and (86) can be used to treat Wiener predictivf)( smoothingrf<0) and filtering (n=0, in this
case Eq. (85) = Eq. (72) and Eq. (86) = Eq. (74)).

Causal IIR Wiener prediction:

To find a causal IR Wiener filter fan-step prediction, we can directly use Egs. (85) and (86) by setting
m>0.

Here we shall deal with a Wiener filter forstep prediction of a signal in the absence of noise and
without distortion, as shown in Fig. 11. Since the observatiatfnfis noise-free and distortion-free, then
we havex(n)=d(n) so thatr, (k) =r, (k) andry(k)=r,(k), which giveP,(z)=P,(z) and P, (2)=P,(2).

In this case, we shall find a Wiener filter to performrastep prediction ok(n) (i.e., the estimate of
X(n+m)) fromx(l) for —co <l <n.

x(n+m)
() o | Sntmin) Y e Flg. 12.»‘:)& m-step prediction problem in the absence of
- — > @7 noise

The input to the filter is naturally(n) and the output is
%(n+mn) =3 h()x(n-1) (86)
1=0
which is them-step prediction ok(n+m) based on the signg{l) for —co <l <n.
From Eq. (85) and noting thd&, (z)=P,(2), the system function of the-step prediction Wiener filter can

be written as

_ 1 Z"P(2)
@)= 0§Q(Z)[Q* W z*)l' 57
BecauseP,(2) = 0,Q(2Q (1/Z), Eq. (87) becomes
_ 1
H() —@[z Q). (88)

It should be stressed th&l(z) =1+ iq(k)z‘k is monic. If we use Taylor series expansion to the second
k=1

factor, [Z"‘Q(z)]+ , in Eg. (88), we may have
@), =[z" +a@z™ +a@2" +--+ g(m) + qm+ Dz + g(m+2)27 -,

=q(m)+q(m+1)z" +g(m+2)z 2 (<= the causal terms are left!)
=z" [q(m)z‘m +q(m+1)z ™Y + q(m+2)z (™2 ]
=2"l0@-1-qWz* - 4@z - ~g(m-z "] (89)
Inserting Eg. (89) into Eq. (88), we have
"o Zm{l_ S a7 + @27+ v g(m-Dz ]} (90

Form=1 and 2, i.e., one- and two-step predictions, it follows from Eq. (90) that
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H(2) = Z{l— - } (1)

Q2
H(2) = zz{l—i'uq(l)z'l]} 92)
Q(2)”
From Eg. (86) and taking into accoun(k) =r, (k) , we may have
&ain =15, 0)= Sh()r; (1 +m) (93)
1=0

Example 6. Causal Linear Wiener Prediction
Consider the ARMA(1,1) process
y(n)+ay(n—-1) =&(n) +be(n-1)
where £(n) is a white noise process with unit mean and variamge y(n) can be expressed in tle

transform as follows,

ym =1 DA ¢ (n) =Q(a)e()
+aq

where

-1
Qo =1+

e (1+ bq‘l)(l— ag™+a’q” - asq_s---)= 1+(b-a)q” —a(b-a)q* +a’(b-a)q”’
+a

From Eq. (90), we can easily find the one-, two-, argtep causal IIR Wiener predictorsygh).
For the one-step predictiom#€1l), the system function of the causal IIR Wiener filter is

_ 1 1+aq™ b-a
H,(q™")=q{1- =qql- = :
(@) q{ Q(q'lj} q{ 1+ bq‘l} 1+bg™

or equivalentlyy(n + 1|n) = b= a_l y(n)
1+bg

For the two-step predictioomE2), the system function is

Ay 2], 1 — Ll = 42 _1+aq_l el :_a(b_a)
Ha (g )—q{l o)t - ]} q{l feeeel SHCRLL ]} e
—a(b-a)
T+byt y(n)

or equivalentlyy(n + 2|n) =

For the three-step prediction#3), the system function is

Hg(q‘l)=qz{l—a:q)[lﬂb—a)q‘l—a(b—a)q'z]}=q2{1 izq_l [1 +(b-a)q ™ ~a(b-a)q" ]}
_a’(b-a)
1+bg™

Example 7. Causal Linear Wiener Prediction (Example 7.3.3 in the textbook)
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