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INTRODUCTION 

A filter is a system that is designed to process signals into those we desire. The purpose of using a filter can 

be various, to extract a desired signal from noisy data (measurement), to transform signals, to suppress noise, 

to separate two signals that are mixed in one measurement, etc. An optimum filter is such a filter used for 

acquiring a best estimate of desired signal from noisy measurement. It is different from the classic filters like 

lowpass, highpass and bandpass filters. Optimal filters are optimum because they are designed based on 

optimization theory to minimize the mean square error between a processed signal and a desired signal, or 

equivalently provides the best estimation of a desired signal from a measured noisy signal. The optimal 

filters studied in this chapter are linear optimum discrete-time filters, which include discrete Wiener filters 

and discrete Kalman filters. All of the topics in (linear) optimum filtering can be developed based on a single 

fact known as the orthogonality principle, which is the consequence of applying the optimization theory.   

 

Signals and measurements: 

 

 It is pervasive that when we measure a (desired) signal 

d(n), noise v(n) interferes with the signal so that a 

measured signal (Fig. 1(a)) becomes a noisy signal x(n)  

 x(n)=d(n)+v(n) (1) 

It is also very common that a signal d(n) is distorted in its 

measurement (e.g., an electromagnetic signal distorts as it 

propagates over a radio channel). Assuming that the system 

causing distortion is characterized by an impulse response 

of )(nhs , the measurement of d(n) (Fig. 1(b)) can be 

expressed by the sum of distorted signal s(n) and noise v(n)  

 x(n)=s(n)+v(n)= ∗)(nhs d(n)+v(n) (2) 

where  

 s(n)= ∗)(nhs d(n).  (3) 

If both d(n) and v(n) are assumed to be wide-sense stationary (WSS) random processes, then x(n) is also a 

WSS process. The signals that we discuss in this chapter will be WSS if they are not specially specified.  

 If signal d(n) and measurement noise v(n) are assumed to be uncorrelated (this is true in many practical 

cases), then 0)()( == krkr vddv . In this case, the noisy signal, x(n)= ∗)(nhs d(n)+v(n), in Eq. (2) may have the 

relation of )(krx  with )(krd  and )(krv  (the autocorrelations of x(n), d(n) and v(n), respectively) as follows,  

 { } )()(*)()()()()()()( ** krkrkhkhkrkrnxknxEkr vdssvsx +−∗=+=+=   (4) 

and the crosscorrelation between d(n) and x(n), )(krdx , given by 

 { } [ ]{ } )()()()()()()()()( *** krkhkrnvnskndEnxkndEkr dsdsdx ∗−==++=+=   (5) 

For the noisy signal of the form x(n)= d(n)+v(n) in Eq. (1), a special case of Eq. (2) where )(nhs = )(nδ  and 

no distortion happens to d(n) in its measurement, we have 
 )()()( krkrkr vdx +=   (6) 
 

 

 

 

 

Fig. 1. Measurements of (a) a signal with 

 noise, and (b) a signal with distortion and 

 noise. 
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 )()( krkr ddx =   (7) 

The z-transforms of Eqs. (4) to (7) are given, respectively, by  

 )()()1()()( ** zPzPzHzHzP vdssx +=  (8) 
 

 )()1()( ** zPzHzP dsdx =   (9) 
 

 )()()( zPzPzP vdx +=   (10) 
 

 )()( zPzP ddx =   (11) 
The relations in Eqs. (4) to (11) will be useful below in the discussion of various Wiener filters. 
 
Signal to noise ratio (SNR): 

 To determine how large a desired signal is in a noisy measurement, the signal to noise ratio (SNR) is used 

that is defined as the ratio of the signal power dP  to the noise power vP ,  

 ( )vd PPSNR 10log10=  (dB) (12) 

When d(n) and v(n) both are zero mean processes with variances 2dσ  and 2
vσ , respectively, then 

)0(dr = { }22 )(ndEd =σ  and { }22 )(nvEv =σ , and the SNR becomes  

 ( )22
10log10 vdSNR σσ=  (dB) (13) 

When )sin()( ϕω += nAnd  is a deterministic sinusoid and v(n) is white nose, then 22APd =  and 2
vvP σ=  

 ( ))2(log10 22
10 vASNR σ=  (dB) (14) 

For digital signals given over interval 10 −≤≤ Nn , the SNR can be calculated by 
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The q-transform: 

The q-transform is one that is based on a time shift operator, called q-operator, in the time domain. q is 

defined as the forward shift operator that yields  

 qy(n)= y(n+1),  (16) 

and 1−q  is defined as the backward shift operator that makes  
1−q y(n)= y(n–1).  (17) 

 The q-transform applies to both deterministic and random processes whereas the z-transform only applies 

to deterministic signals. Since it can be directly used in the time domain, the q-transform is convenient to use 

to find a system function, which is equivalent to the z-transform. This is shown in the following example. 
 
Example. q-transform 
For a difference equation, y(n)–0.5y(n–1)=x(n)+0.25x(n–1), we can write it in the q-transform as follows 

 y(n)(1–0.5 1−q )=x(n)(1+0.25 1−q )  

and dividing (1–0.5 1−q ) on both sides of the above equation, we have  

 )(
5.01

25.01
)( 1

1

nx
q

q
ny −

−

−
+=   

Denoting )5.01()25.01()( 111 −−− −+= qqqH   
we may express y(n) as 

 )()()( 1 nxqHny −=   
which is equivalent to the convolution  
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 y(n)= )()( nxnh ∗ . 

As we can see, )( 1−qH  and ( ) ( )11 5.0125.01)( −− −+= zzzH  are of the same form. Thus, in sequel we will 

use either )( 1−qH  or )(zH  to express the system function, an equivalent transform of h(n).  

Noting that qq =− *1)(  or 1*)( −= qq , we can calculate the autocorrelation of y(n) in the following manner 
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where )(* qH  is of the same form as ( ) ( )zzzH 5.0125.01)/1( ** −+= , and which is equivalent to  

 )()()()( * krkhkhkr xy ∗−∗=   

 
Optimum filtering and the mean square error minimization: 

Optimum filtering is to acquire the best linear estimate of a desired signal from a measurement. The main 

issues in optimal filtering contain  

• filtering that deals with recovering a desired signal d(n) from a noisy signal (or measurement) x(n); 

• prediction that is concerned with predicting a signal d(n+m) for m>0 from observation x(n); 

• smoothing that is an a posteriori form of estimation, i.e., estimating d(n+m) for m<0 from data x(n); 
• deconvolution that is to deal with finding the unit sample response (or a system function) of a LSI filter.  
 

 Let us look at an optimum 

LSI filter with a system 

function H(z) or a unit sample 

response h(n) (see Fig. 2). It is 

designed for the best linear 

estimate of a desired signal 

d(n+m) from the measured signal (the input to the filter) x(n)= ∗)(nhs d(n)+v(n), that contains a desired 

signal d(n) that is distorted due to )(nhs , and measurement noise v(n). That is, the output of the optimum 

filter is the best linear estimate of d(n+m), denoted by )|(ˆ nmnd + , which means the best linear estimate of 

d(l) at time l=n+m based on the values of input signal x(l) up to time l=n, e.g., x(0), x(1), x(2), …, x(n).  

 It should be noted that the first index n+m in )|(ˆ nmnd +  (i.e., the index on the left side of vertical bar 

“|”) is related to one in the estimated signal d(n+m), and the second index n (on the right side of “|”) is 

related to one in the input signal x(n) used for estimating d(n+m). For m=0, we have )|(ˆ nnd , simply denoted 

by )(ˆ nd . Note that in the Hayes' textbook the notation )(ˆ mnd +  (or )(ˆ mnx + , …) is used instead of 

)|(ˆ nmnd +  (or )|(ˆ nmnx + , …).  
 An optimum filter for a best estimation is achieved at by minimizing the mean square error (MSE)  

 { }2|)(| neE=ξ  (18) 
where  

 )|(ˆ)()( nmndmndne +−+=  (19) 

is the error between signal d(n+m) and its estimate )|(ˆ nmnd + .  

 The filter’s output )|(ˆ nmnd +  can be expressed as a convolution as follows  

 )()()|(ˆ nxnhnmnd ∗=+  (20) 

 
 

Fig. 2. General Wiener filtering problem 
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Introducing the q-transform of h(n), )|(ˆ nmnd +  can be written as  

 )()()|(ˆ 1 nxqHnmnd −=+ . (21) 
 
Issues in Wiener filtering:  

Depending on what is m in Fig. 2 and how desired signal d(n) and measurement x(n) that contains d(n) plus 

noise v(n) are related to each other, a number of important problems may be cast into a Wiener filtering 

framework.     

1. m=0: it is the filtering problem. The filters used are causal and the goal is to estimate d(n) from the 

current and past values of x(n). The estimate of d(n) is )(ˆ nd .  

2. m>0: it is the prediction problem. The filters are trying to predict (estimate) d(n+m) using a linear 

combination of previous values of x(n). The filters are causal. The estimate of d(n+m) is denoted by 

)|(ˆ nmnd + . 

3. m<0: it is the smoothing problem that  is the same as the filtering problem except estimating d(n+m) is 

allowed to use noncausal filters, or using all x(n), i.e., the past values for n<n+m, the current values 

for n=n+m, and the future values for n>n+m. The estimate of d(n+m) is )|(ˆ nmnd + . 

4. When the signals x(n) and d(n) are related by )()()()( nvngndnx +∗=  where g(n) is the unit sample 

response of a linear shift-invariant filter, estimating g(n) is the deconvolution problem.  
 
Types of Wiener filters – causal and noncausal FIR and IIR filters:  

Consider an LSI Wiener filter with a system function �
=

−=
N

Mk

kzkhzH )()( , (N>M). Depending on the values 

of N and M, the Wiener filters may be classified as  

causal FIR Wiener filters for M=0, N>0, with �
=

−=
N

k

kzkhzH
0

)()( ;  (22a) 

noncausal FIR Wiener filters for M<0, N>0, with �
=

−=
N

Mk

kzkhzH )()( ; (22b) 

causal IIR Wiener filters for M=0, ∞=N , with �
∞

=

−=
0

)()(
k

kzkhzH ;  (22c) 

noncausal IIR Wiener filters for M<0 (or −∞=M ), ∞=N , with �
∞

=

−=
Mk

kzkhzH )()( . (22d) 

 One of the central issues in designing Wiener optimum filters is to find the coefficients of the filter that 

create the minimum mean square error { }2|)(| neE=ξ . 

 
FIR WIENER FILTERS 
 
FIR Wiener filtering problems in a general way:  

Let us first discuss a FIR Wiener filtering problem in a 

general way so that we can apply it to filtering, 

predicting and smoothing problems.  

 Consider a noisy signal x(n) that contains desired 

signal d(n) plus noise v(n). Here x(n) and d(n) are 

assumed to be jointly wide-sense stationary random 

processes with known autocorelations, )(krx  and )(krd , 

 
 

Fig. 3. FIR Wiener filtering problem in general. 
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and known cross-correlation )(krdx . The specific relation between x(n) and d(n) is not specified yet at the 

moment. We design an FIR Wiener filter that provides the minimum mean-square error (MMSE) estimate of 

a desired signal d(n+m) from x(n), as shown in Fig. 3.  

 The system function of an FIR filter of (p–1)th-order is given by  

 �
−

=

−=
1

0
)()(

p

k

kzkwzW . (23) 

The input to the filter is x(n). The output of the filter is )|(ˆ nmnd + , estimate of d(n+m), given by 

 �
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p

k

knxkwnxnwnmnd ,  (24) 

which shows that the p values of x(l), from time l= n–p+1 up to time l=n, are used to estimate d(n+m). 

The mean square error to be minimized for finding the filter’s coefficients is  

 }|)({| 2neE=ξ    (25) 

where e(n) is the estimate error expressed as 

 )|(ˆ)()( nmndmndne +−+= = d(n+m) – �
−

=
−

1

0
)()(

p

k
knxkw .  (26) 

 The coefficients w(n) of the filter are determined by minimizing the MSE }|)({| 2neE=ξ , which is done 

by setting 0)(* =∂∂ kwpξ  for k=0, 1, …, p–1 (k starts from 0!) so that we have  
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that is  
 

 { } 1 1,..., 0,;0)()( * −==− pkknxneE  (28) 
 

which is known as the orthogonality principle or the projection theorem.  

 Using Eq. (26) in Eq. (28) may give us  

 { } { } 0)()()()()()()()()(
1

0

***
1

0
=−−−−+=

	


�

�

�

−�
�

�
�
�

� −−+ ��
−

=

−

=

p

l

p

l
knxlnxElwknxmndEknxlnxlwmndE  (29) 

Since x(n) and d(n) are assumed to be jointly WSS processes, we have autocorrelation, )( lkrx − = 

{ })()( * knxlnxE −− , and cross-correlation )( mkrdx + = { })()( * knxmndE −+ . Then, Eq. (29) reduces to  
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which are known as the Wiener-Hopf equations, a system of p equations with p unknowns, w(k) for k=0, 1, 

…, p–1, so that the filter’s coefficients can be determined. Eq. (30) can be expressed in the matrix form as  
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in which the relation )()(* krkr xx −=  is used since x(n) is WSS. Eq. (31) can be written in a compact form as 

 dxx rwR =  (32) 
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where xR  is a pp×  Hermitian Toeplitz matrix of autocorrelation, w is the vector of the filter coefficients, 

and dxr  is the vector of cross-correlation between d(n+m) and x(n). The matrix form is easy to implement in 

MATLAB.  

 Since the Wiener-Hopf equations are derived from the orthogonality principle by using the relations 

{ })()( * knxlnxE −− = )( lkrx −  and { })()( * knxmndE −+ = )( mkrdx +  (see Eqs. (28)–(30)), then we may say 

that the Wiener-Hopf equations and the orthogonality principle are equivalent in designing optimum filters.  

 Applying the orthogonality principle (Eq. (28)) to calculating the MSE (Eq. (25)), we may have 

 }|)({| 2neE=ξ
�	

�


�

��

�

�

�
�

�
�
�

� −−+== �
−

=

*1

0

* )()()()()}()({
p

k
knxkwmndneEneneE   

  { } { } { })()()()()()()( *
1

0

*** mndneEknxneEkwmndneE
p

k
+=−−+= �

−

=
 

  
	


�

�

�

+�
�

�
�
�

� −−+= �
−

=
)()()()( *

1

0
mndknxkwmndE

p

k
  (33) 

Since { })()( * mndmndE ++ = )0(xr  and { })()( * mndknxE +− = { }[ ]** )()( knxmndE −+ = )(* mkrdx + , we have  

 �
−

=
+−=

1

0

*
min )()()0(

p

k
dxd mkrkwrξ  (34) 

which is a reduced MSE, called minimum mean-square error (MMSE). 

Note that Eq. (34) holds only if all the coefficients, w(k) for k=0, 1, …, p–1, are determined by Wiener-Hopf 

equations (Eq. (30) or (31)), which can be seen in problem 7.4 in the Hayes’ textbook.  

 If the measurement x(n) is of the form x(n)= ∗)(nhs d(n)+v(n) where d(n) and v(n) are uncorrelated and 

their autocorrelations, )(krd  and )(krv , are known, then we can use Eq. (4) and (5) (namely, 

)()(*)()()( * krkrkhkhkr vdssx +−∗=  and )()()( * krkhkr dsdx ∗−= ) in Eqs. (30) and (34) to determine w(k) and 

the MMSE minξ . For x(n)=d(n)+v(n), we should use )()()( krkrkr vdx +=  and )()( krkr ddx =  instead.  

 The results that we have obtained from the above study can be applied to filtering (m=0), predicting 

(m>0) and smoothing (m<0) problems.  
 
Summary  
 To determine the coefficients w(k) for an optimum filter, we first set 0)(* =∂∂ kwpξ  (optimization), 

then have { } 0)()( * =− knxneE  (the orthogonality principle), and finally obtain �
−

=
+=−

1

0
)()()(

p

l
dxx mkrlkrlw  

(the Wiener-Hopf equations). The three-step procedure, i.e., from optimization to orthogonality principle, 

and then to Wiener-Hopf equations, results in an optimum Wiener filter, will be called here three-step 

optimization. 

 The orthogonality principle, { } 0)()( * =− knxneE , results in a reduced MSE, the minimal MSE 

�
−

=
+−==

1

0

**
min )()()0()}()({

p

k
dxd mkrkwrndneEξ . In other words, a filter determined from Wiener-Hopf 

equations is an optimum filter in the MSE sense (with a reduced MSE). 

 By setting m be different values, the Wiener-Hopf equations in Eq. (30) and the expression for minξ  in Eq. 

(34) obtained here can be applied to filtering (m=0), predicting (m>0) and smoothing (m<0) problems.  
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Wiener filtering:  

For Wiener filtering problem, all we need to do is to set m=0 in Eqs. (30) and (34), and then we have the 

Wiener-Hopf equations are  

 �
−

=
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1

0

1 ..., ,1 ,0;)()()(
p

l
dxx pkkrlkrlw ,  (35) 

or in the matrix form 
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and the minimum mean-square error is  
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Example 1. Wiener Filtering  (Example 7.2.1 in the textbook) 
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Example. FIR Wiener Filter for radio channel equalization   

 

Consider a communication signal d(n) that is transferred using BPSK-modulation, in which only the symbols 

+1 and –1 are used. The signal d(n) in this case can be considered as an uncorrelated, zero-mean random 

process, namely, its autocorrelation is )()( kkrd δ= . Due to multi-path fading, the received signal through a 

radio channel is of the form 

 )()(
5.01

1
)(

1
nvnd

q
nx +

+
= −   

where ( )15.011 −+ q  is the channel effect, and v(n) is a white noise process that has a zero mean and a 

variance 2
vσ  and is uncorrelated with d(n).  

Find an FIR Wiener filter of order one 

 11 )1()0()( −− += qwwqW  

that gives an optimum estimation of d(n), i.e., )()()|(ˆ 1 nxqWnnd −= .  

Solution 

The FIR Wiener filter can be found from the Wiener-Hopf equations 
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where the autocorrelation is )()()( krkrkr vsx +=  and the cross-correlation is  
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Since ( )( ) ( )( )zz

zz

zz
zPzPzP vvv

vvsx
5.015.01

5.05.025.11

5.015.01

1
)()()(

1

2122
2

1 ++
+++=+

++
=+= −

−

−
σσσσ ,  

we have { } ( )( ) ( ) ( )[ ]12122
2

1 5.05.05.05.05.025.11
5.01

1
)()( +−− −+−+−+

−
== k

v
k

v
k

vxx zPZkr σσσ   

 ( ) 22

3

4
75.01

3

4
)0( vvxr σσ +=+= , and ( )

3

2
5.0

3

4
)1( −=−=xr   

 �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

+−
−+

0

1

)1(

)0(

3432

3234
2

2

w

w

v

v

σ
σ

 �  �
�

�
�
�

�
�
�

�
�
�

�

+−
−+

=�
�

�
�
�

�
−

0

1

3432

3234

)1(

)0(
1

2

2

v

v

w

w

σ
σ

 

 For 02 =vσ , �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

−
−

=�
�

�
�
�

�
−

5.0

1

0

1

3432

3234

)1(

)0(
1

w

w
, that is 11 5.01)( −− += qqW , and )()|(ˆ ndnnd = .  

 For 2
vσ =2, �

�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

+−
−+

=�
�

�
�
�

�
−

0625.0

3125.0

0

1

23432

32234

)1(

)0(
1

w

w
, i.e., 11 0625.03125.0)( −− += qqW . 
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Wiener prediction:  

For the predicting problem, we can directly use all the results (i.e., the Wiener-Hopf equations in Eqs. (30)–

(32) and the MMSE in Eq. (34)) obtained in the previous section on a FIR Wiener filtering problem in a 

general way, just by setting m>0. Here we discuss the prediction issue in the absence and presence of noise.    

 

A. Wiener prediction in the absence of noise:  

 For the prediction in the absence of noise, the observation is noise-free so that x(n)= ∗)(nhs d(n). If we 

consider the case of )(nhs = )(nδ , i.e., x(n)=d(n), then we have )(krx = )(krd  and )(krdx = )(krx . The m-step 

prediction of x(n+m) is made from a linear combination of the current and previous values of x(n) (Fig. 5).  

The Wiener-Hopf equations for the m-step prediction in the absence of noise become  

 �
−

=
−=+=−

1

0

1 ..., ,1 ,0;)()()(
p

l
xx pkmkrlkrlw  (38) 

and in the matrix form  

 

�
�
�
�

�

�

�
�
�
�

�

�

−+

+
=

�
�
�
�

�

�

�
�
�
�

�

�

−�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−

−
−

)1(

...

)1(

)(

)1(

...

)1(

)0(

)0(...)2()1(

............

)2(...)0()1(

)1(...)1()0(
*

**

pmr

mr

mr

pw

w

w

rprpr

prrr

prrr

x

x

x

xxx

xxx

xxx

 (39)  

The minimum mean-square error is  

 �
−

=

+−=+=
1

0

**
min )()()0()}()({

p

l
xx mlrlwrmnxneEξ  (40) 

 

Example 2. Linear Prediction in the absence of noise  

 

    
 

Fig. 5. The m-step prediction in the absence of noise. 
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B. Wiener prediction in the presence of noise:  

 

 In the presence of noise v(n), the m-step prediction of d(n) is made from the noisy measurement 

x(n)= ∗)(nhs d(n)+v(n) (or x(n)=d(n)+v(n) if )(nhs = )(nδ ), and the FIR Wiener predictor for the prediction is 

determined from the Wiener-Hopf equations in Eqs. (30) or (31), and the MMSE is calculated using Eq. (34). 

 

Example 3. One-step linear Prediction in the presence of noise  

 

Design a FIR Wiener predictor of the first order 

 )1()1()()0()|1(ˆ −+=+ nxwnxwnnd   

for one-step linear prediction of an AR(1) process d(n) in a noise measurement as follows 

 )()()( nvndnx +=   

where d(n) is assumed to have ||)( k
d kr α=  ( 1|| <α ), and v(n) is zero mean white noise with a variance of 2

vσ  

and uncorrelated with d(n). 

Solution. 

The first-order FIR Wiener filter for the one-step prediction can be found from the Wiener-Hopf equations  

 �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

)2(

)1(

)1(

)0(

)0()1(

)1()0(

dx

dx

xx

xx

r

r

w

w

rr

rr
 

Since d(n) is uncorrelated with v(n), then )()( 2|| kkr v
k

x δσα +=  and ||)()( k
ddx krkr α== . The Wiener-Hopf 

equations become  

 �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

+
+

22

2

)1(

)0(

1

1

α
α

σα
ασ

w

w

v

v  

Solving for w(0) and w(1) yields 

 �
�

�
�
�

� −+
−+

=�
�

�
�
�

�
�
�

�
�
�

�

+−
−+

−+
=�

�

�
�
�

�

ασ
ασ

ασ
α

α
α

σα
ασ

ασ 2

22

22222

2

222

1

)1(1

1

)1(

1
)1(

)0(

v

v

vv

v

vw

w
 

Therefore, the one-step predictor is 

 )1(
)1(

)(
)1(

)1(
)|1(ˆ 222

22

222

22

−
−+

+
−+

−+=+ nxnxnnd
v

v

v

v

ασ
ασ

ασ
αασ

  

As 2
vσ → 0, the predictor becomes the noise-free solution as in the previous example. 

The minimum mean square error (MMSE) is  

 )2()1()1()0()0( **
min dxdxd rwrwr −−=ξ )2()1()1()0()0( ddd rwrwr −−= 222

42222

)1(

)21(
1

ασ
ασαασ

−+
+−+−=

v

vv  

The MMSE increases as 2vσ  increases. In the limiting case that 2
vσ ∞→ , 1min →ξ . 

 


