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PARAMETRIC METHODS FOR POWER SPECTRUM ESTIMATION 

Parametric methods for power spectrum estimation are based on parametric models, and they include those 

of the autoregressive (AR) spectral estimation, the moving average (MA) spectral estimation, and the 

autoregressive moving average (ARMA) spectral estimation, which are, respectively, based on the AR, MA, 

and ARMA models. The maximum entropy method is of the same form of the AR spectral estimation.  

In parametric methods, a parametric model for a random process is first selected and then the model 

parameters are determined.  

 The parametric spectral estimators are less biased and have a lower variance than the nonparametric 

spectral estimators. With parametric methods it is possible to significantly improve the resolution of the 

spectrum estimation unless the model used is consistent with the random process being analyzed. Otherwise 

inaccurate or misleading spectrum estimates may result.  

 

General consideration of parametric model spectrum estimation: 

 As we have learnt in the previous lectures concerning Signal Modeling, a random process can be 

modeled with an ARMA model, or an AR model, or an MA model. The AR and MA models are the special 

cases of the ARMA model. Supposing that a random process x(n) is modeled as an ARMA(p, q) process 

with an ARMA(p, q) model, then the system function of the model is  
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In this case, the power spectrum of the process x(n) can be computed in the following manner,  
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Alternatively, if the autocorrelation )(krx  is given, the power spectrum can be obtained from the Fourier 

transform of )(krx , 
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Eqs. (44) and (45) demonstrate two approaches to computing the power spectrum of an ARMA process, and 

also reveal two equivalent representations of an ARMA random process, that is, the process can be 
represented equivalently either by a finite sequence of model parameters )(kap  and )(kbq , or by an 

autocorrelation sequence )(krx . The equivalence of the two representations is because the autocorrelation 

and the model parameters are related with the Yule-Walker equations, 
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 In practice, a random process x(n) is often given only over a finite interval, 10 −≤≤ Nn , and in this case 

the autocorrelation of x(n) must be estimated in a finite sum as follows, 
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When the ARMA model in Eq. (43) is selected for modeling process x(n), the model parameters in this case 
are determined from this estimated autocorrelation sequence )(ˆ krx , and they are different from )(kap  and 

)(kbq  determined from )(krx  since )(ˆ krx  is, in general, not equal to )(krx . Such model parameters that are 

determined from )(ˆ krx  are denoted by )(ˆ kap  and )(ˆ kbq , which give an estimate of the power spectrum, 
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Eq. (48) is a general case of the parametric spectral estimation methods. In this case, all we need to do for 

estimating the power spectrum is to find )(ˆ kap  and )(ˆ kbq . When )(ˆ kap  and )(ˆ kbq  are determined, 

)(ˆ ωj
x eP  is found. 

 Among these parametric spectral estimations, the AR estimation is the most popular. This is because the 

AR parameters can be found by solving a set of linear equations. Whereas, for the ARMA and MA 

parameters, a set of nonlinear equations need to be solved, which will be much more difficult.   

 

Autoregressive spectrum estimation:  

The autoregressive spectrum estimation is based on the AR model. In this case, a random process x(n) is 

modeled as an AR(p) process. If the autocorrelation )(krx of a random process x(n) is given, the AR 

parameters, )(kap  and )0(b , can be determined from )(krx  using the AR model. Then the power spectrum 

of the AR process is  
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 If a random process x(n) is given over a finite interval 10 −≤≤ Nn , the autocorrelation of x(n) must be 

estimated, and it is denoted )(ˆ krx . The AR parameters that are determined from the estimated 

autocorrelation )(ˆ krx  are defined as )(ˆ kap  and )0(b̂ . The power spectrum that is estimated based on x(n) 

for 10 −≤≤ Nn  is  
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Several approaches are available for finding )(ˆ krx  from the finite data record of a process x(n) for 

10 −≤≤ Nn , such as autocorrelation method, covariance method, and modified covariance method, which 

are presented below. When )(ˆ krx  are found, )(ˆ kap  and )0(b̂  can be found using the MYWE method or the 

EYWE method, which are studied extensively in the lectures on Signal Modeling.   

 

A. The autocorrelation method  
The AR parameters )(ˆ kap  are found by solving the autocorrelation normal equation   
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 (51) 

where the autocorrelation estimate is given by 
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Substituting )(ˆ kap  and )0(b̂  into Eq. (50) gives the estimate of the power spectrum of the process x(n).  

 Note that Eq. (51) is the same in form as the modified Yule-Walker equations, but the autocorrelation 

values in Eq. (51) are the estimated ones, )(ˆ krx , from a finite data record, i.e., x(n) for 10 −≤≤ Nn . The 

autocorrelation estimate )(ˆ krx  is biased. This method that estimates the power spectrum using the 

autocorrelation method is also referred to as the Yule-Walker method (YWM).  

 Since Eq. (52) gives a biased estimate, a variation of Eq. (52) is of the following form 
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which may give an unbiased estimate. However, this can not guarantee the autocorrelation matrix to be 

positive definite and consequently, the variance of )(ˆ ωj
x eP  tends to be large when the matrix is ill-

conditioned or singular. Thus, the biased estimate in Eq. (52) is more preferable to the unbiased estimate in 

Eq. (52’).  

 Like in a periodogram, the autocorrelation method uses the windowed data to estimate the autocorrelation 

and thus has window effect on the spectral estimate. Since the window effect will become severe for short 

data records, the autocorrelation method is not often used in the case of short data records. An artifact, called 

spectral line splitting that means the splitting of a single spectral peak into two or more separate and distinct 

peaks, may appear in the autocorrelation method when x(n) is overmodeled, i.e., when the model order p is 

too large, because a pole in the model, in general, may create a spectral peak. An example of such an artifact 

is shown in Fig. 8.24. 

 

 

 

 

 

 

 

 

 

Fig. 8.24. Spectral line splitting of an AR(2) process, x(n) = –0.9x(n–2) + w(n). Two all-pole 

spectrum estimates were computed using the autocorrelation method with order p = 4 (solid 

line) and p = 12 (dashed-dot line) 
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B. The covariance method  
In the covariance method the AR parameters )(ˆ kap  are determined by solving the normal equations, 
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where the autocorrelation estimate is given by 
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which is different from the autocorrelation method in that no windowing of the data is required since the 

values of x(n) used for finding ),(ˆ lkrx  in Eq. (55) are all in the interval 10 −≤≤ Nn  and thus no zero-

padding is needed. This means that there is no windowing effect in the variance method. Therefore, for short 

data records the variance method generally gives higher resolution spectrum estimates than the 

autocorrelation method.  
 
C. Modified covariance method  
In the modified covariance method the AR parameters )(ˆ kap  are also determined by solving the normal 

equations in Eq. (54). But the autocorrelation estimate is found in a different way as follows  
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which is derived by minimizing the sum of the squares of the forward and backward prediction errors, that is,  
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are the forward and backward prediction errors, respectively (see pp. 322-324 in the Hayes’ book). In 

contrast to the autocorrelation and covariance methods, the modified covariance method is observed to give 

statistically stable spectrum estimates with high resolution, and not to be subject to spectral line splitting.  

 

Example 5. Estimation of the power spectrum of an AR(4) process.  

 Consider the AR(4) process generated by the difference equation 

 )()1(9224.0)3(6293.2)2(7476.3)1(7377.2)( nwnxnxnxnxnx +−−−+−−−=  

where w(n) is unit variance white Gaussian noise. The filter generating x(n) has a pair of poles at 
π2.098.0 jez ±=  and a pair of poles at π3.098.0 jez ±= . Using the data records of length N = 128, en ensemble 

of 50 spectrum estimates were calculated using the Yule-Walker method, the covariance method, and the 

modified covariance method, and the Burg’s method. The overlay plots of the 50 estimates from the four 

methods are shown in part (a) in 8.25 to 8.28, and the ensemble average of the 50 estimates and the true 

power spectrum are shown in part (b) in 8.25 to 8.28.   
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Figs. 8. 25 to 8.28. 
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E. Selection of the model order:  

The selection of the model order in the AR spectral estimation is critical in the parametric methods. Fig. 8.24 

shows that spectral line splitting artifact appears in the autocorrelation method when the model order p 

selected is too large, because each of the poles in the model, in general, may create one spectral peak. This 

brings up the question of how to select an appropriate model order p for an AR spectrum estimation. If the 

model order p used is too small, then the resulting spectrum will be smoothed because the spectral peaks in a 

true power spectrum can not be represented with an enough number of poles. If, on the other hand, the model 

order p used is too large, then the power spectrum may contain more spectral peaks than those in a true 

power spectrum, and in this case the so-called spectral line splitting artifact is present, as the example in Fig. 

8.24. This reveals a necessity to have some approaches to selecting an appropriate model order that gives the 

parametric model a best fit of a given data record. A relevant idea would be to adjust the model order until a 

certain modeling error becomes minimum. There are several approaches to selecting model order that were 

established based on such an idea.  

 One of them is the Akaike Information Criterion expressed as  

 pNp p 2log)AIC( += ε  (60) 

and the other is the minimum description length  

 pNNp p )(loglog)MDL( += ε  (61) 

Two other often used criteria are Akaiker’s Final Prediction Error 

 
1

1
)FPE(

−−
++=

pN

pN
p pε  (62) 

and Parzen’s Criterion Autoregressive Transfer function  
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In Eqs. (60) to (63), p is the model order to be selected, N is the length of the data record, and pε  is the 

prediction error. For short data records, none of the criteria tend to work particularly well, and thus, these 

criteria should only be used as indicators of the model order. Eqs. (60) to (63) show that all these criteria 

depend on pε . Since different modeling techniques, e.g., the autocorrelation and covariance methods, may 

have different prediction errors, then the model order may be different even for the same data.  
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Moving average spectrum estimation:  
The moving average spectrum estimation is carried out based on the MA model that models a random 

process x(n) as an MA process. The system function of the filter that generates the MA process by filtering 

unit variance white noise is of the form,  
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Thus, the power spectrum of the process x(n) is  
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In terms of the autocorrelation )(krx  the power spectrum can be written as 
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where )(krx  and )(kbq  are related with the Yule-Walker equations 
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If a random process x(n) is given over a finite interval 10 −≤≤ Nn , we only have the estimate of the 

autocorrelation of x(n), )(ˆ krx . The MA parameters that are determined from the estimated autocorrelation 

)(ˆ krx  are )(ˆ kbq . The estimate of the power spectrum of x(n) is  
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Equivalently, directly using the autocorrelation estimate )(ˆ krx , we may have the alternative form of the 

estimate of the power spectrum,  
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 Comparing the estimate in Eq. (69) with the Black-Tukey estimate in Eq. (41), we can see that the MA 

estimate is equivalent to the Black-Tukey estimate if the window w(n) used extends from –q to q. However, 

there is a subtle difference between the two estimates; for the MA spectral estimate in Eq. (69) the random 

process x(n) is modeled as an MA process of order q, and thus the autocorrelation sequence is zero for |k|>q. 

In this case, if the autocorrelation estimate )(ˆ krx  is unbiased for qk ≤|| , then { } )()(ˆ ωω j
x

j
MA ePePE =  so that 

)(ˆ ωj
MA eP  is unbiased.  

 In the Blackman-Tukey method, no assumption is made about x(n), and due to the windowing effect, 

thus, the Blackman-Tukey spectral estimate will be biased unless x(n) is an MA process.     

 

Autoregressive moving average spectrum estimation:  

The ARMA spectrum estimation is performed based on the ARMA model that models a random process x(n) 

as an ARMA process. This method has been dealt with in the earlier section, General consideration of 

parametric model spectrum estimation.  
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Minimum Variance Spectrum Estimation (a nonparametric method): 

 

In the minimum variance (MV) method the power spectrum is estimated by filtering a random process with a 

bank of narrowband bandpass filters. The bandpass filters are designed to be optimum by minimizing the 

variance of the output of a narrowband filter that adapts to the spectral content of the input process at each 

frequency of interest. 

 

A. The relation of the variance with the power spectrum  

Consider a zero mean WSS process y(n). The variance of y(n) is  

 { }22 )()( nyEny =σ , (70)  

which is the power of the process y(n). For a given autocorrelation )(kr y  we have  
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and then )(2 nyσ = )0(yr  does not vary with n, and thus denote  

 { }22 )(nyEy =σ . (72)  
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which shows the relation of the variance with the power spectrum.  

 

B. FIR bandpass filter bank and the variances of the filters’ outputs: 

Consider a bank of FIR bandpass filters (Fig. 3), all having order p and the frequency responses (or the 

system function) of the following form, 
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 Fig. 3. A bank of bandpass filters in the minimum variance  

 spectrum estimation 

 

The input to the filters is x(n), and the outputs of the bandpass filters are )(nyi  for i=0, 1, …, L. To use such 

a filter bank to estimate the power spectrum of x(n) with a finite-length data record, we should constrain all 

bandpass filters that, at their center frequencies iω , have a unit gain,  
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so that the power spectra of the filters' outputs )(nyi  are )( i
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Using the vector notations,   
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Eq. (75) can be written as 
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Since the autocorrelations of the output processes )(nyi  and the input process x(n) are related in the 

following manner (see Eq. (91) in DISCRETE-TIME RANDOM PROCESS (3))  
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then the variance of the output process )(nyi , which is equal to )0(
iyr , is of the form 
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and its matrix form will be  

 ix
H
iyi

gRg=2σ ,  (81) 

which shows the relation of the variance of the output of the ith filter with the filter coefficients )(ngi , for a 

given random process with the autocorrelation matrix xR .  

 

C. The FIR bandpass filters with minimum variance  

Designing a filter is just determining the filter coefficients based on a certain criterion. The criterion that we 

use here is the minimum variance of )(nyi , which is obtained by minimizing 2
iyσ  in Eq. (81) under the 

constraint given by Eq. (78). The approach to this constrained minimization problem is given in Section 

2.3.10 in the Hayes' textbook. Using this approach, the coefficients of the optimum filter in terms of 

minimum variance are found as follows   
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which obviously satisfies i
H
i ge =1, and inserting Eq. (82) into Eq. (81) the minimum variance is, thus, 

determined as follows  
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which is the best estimate of the variance of the process x(n) at frequency iω  in terms of minimum-variance, 

that is, )(ˆ 2
ix ωσ = { }2min

iyσ . Since Eqs. (82) and (83) are derived at an arbitrary frequency iω , then these two 

equations hold for all ω . Therefore, the optimum filter and the estimate of the variance of x(n) can be 

written, respectively, as  
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which is frequency dependent, and where  
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 [ ]Tpggg )(...,),1(),0(=g   (87) 

and  

 [ ]Tjpj ee ωω ...,,,1=e .  (88) 

Till now we have found the variance estimate of the process x(n) but not the power spectrum estimate yet.  

 

D. The minimum variance spectral estimate 

To find the power spectrum estimate, let us look at the bandpass filter bank again. Since the bandpass filters 

are narrowband and the bandwidth of the ith filter )( ωj
i eG  is assumed to be ∆ , then in the bandwidth ∆ , 

that is, 22 ∆+≤≤∆− ii ωωω , we may assume 1)( ≈ωj
i eG  (due to the given constraint in Eq. (75)), and 

out of the bandwidth ∆ , 0)( ≈ωj
i eG . In this case, the relation of the variance of )(nyi  with the power 

spectrum of x(n) in Eq. (73) becomes  
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Since the estimate of the variance of x(n) is equal to the minimum variance of )(nyi , that is, 2ˆ xσ = { }2min
iyσ , 

then the (best) estimate of the power spectrum of x(n) in terms of minimum variance can be expressed, from 

Eq. (89), as 
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In Eq. (90) the bandwidth ∆  is still unknown. To find ∆ , we consider estimating the power spectrum of a 

white noise process with a zero mean and a variance of 2
xσ . The autocorrelation matrix of the white noise is 

xR = I2
xσ , and then the bandpass filters with minimum variances are  
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which is frequency dependent, and the estimate of the variance of x(n) is  
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which is independent of frequency. Substituting Eq. (92) into Eq. (90) yields the minimum variance estimate 

of the power spectrum,  
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Since the power spectrum of a white noise process is equal to its variance 2
xσ , then we set the power 

spectrum of white noise to be equal to its estimate, i.e.,  
 2)()(ˆ

x
j

x
j

x ePeP σωω == , (94) 

which is actually an assumption we impose here. The bandwidth ∆  can, thus, be determined, 
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 For a general WSS random process x(n), we adopt this bandwidth ∆  for the white noise case, and then 

the estimate of the power spectrum of the general process x(n) in Eq. (90) becomes  
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Usually xR  is unknown, and then xR  may be replaced with an estimate, xR̂ .  

Since the optimum bandpass filters are established based on the autocorrelation xR̂  whose values are 

determined from the data, then the minimum variance spectrum estimation may be thought of as a data-

adaptive modification to the periodogram. Generally the minimum variance spectrum estimation offers 

higher resolution than the periodogram and Blackman-Tukey methods. 

 It should be noted that, although the MV method is established using a bank of filters, the MV spectral 

estimate does not need to use the filters in the end. One of the reasons is that the bandwidth found for white 

noise in Eq. (95) is adopted to a general WSS random process so that the MV spectral estimate is 

independent of the filters whose bandwidth should be determined from the general random process. Since in 

the MV spectral estimate no filter model and thus no model parameters need to be found and used, then the 

MV spectral estimation falls into the category of the nonparametric methods.  

 Note that the inverse transform of the MV estimate does not match the autocorrelation sequence that is 

used to create the MV estimate, unlike the autoregressive spectrum estimate that does match.  

 

Example 5. MV estimate of the power spectrum of an AR(1) process (Example. 8.3.2) 
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Maximum entropy method (an AR method): 

The maximum entropy spectral estimation is established based on an explicit extrapolation of a finite length 

sequence of a known autocorrelation of a random process x(n). The extrapolation should be chosen so that 

the random process characterized by the extrapolated autocorrelation sequence has maximum entropy. The 

random process treated here is assumed to be Gaussian so that the concerned problem becomes solvable. 

 

A. The concept of entropy 

 Entropy is a measure of randomness or uncertainty. For a Gaussian random process x(n) with power 

spectrum )( ωj
x eP , the entropy of the random variable x(n) is expressed by 
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B. Extrapolation of the autocorrelation  

 Given the autocorrelation )(krx  of a WSS process for pk ≤|| , we want to extrapolate )(krx  for pk >|| . 

Supposing that the extrapolated autocorrelation is )(kre , the power spectrum of x(n) can be written as 
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Now the question is how or what criterion should be used to determine the extrapolated autocorrelation. As 

the name of the method indicates, the maximum entropy is the criterion for performing the extrapolation. A 

maximum entropy extrapolation is equivalent to finding the sequence of the extrapolated autocorrelations 

that make x(n) as white (random) as possible. From the power spectrum point of view, this maximum 

entropy extrapolation makes the power spectrum as flat as possible.  

 

C. The maximum entropy spectral estimate 

 If a random process x(n) is assumed to be a Gaussian process with a given segment of the autocorrelation 

)(krx  for pk ≤|| , then the extrapolated autocorrelation )(kre  that maximizes the entropy in Eq. (97) can be 

found by setting )()( * krxH e∂∂ =0, specifically   
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Using the conjugate symmetry )()(* krkr xx −=  in Eq. (99), the derivative in the integral becomes  
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Inserting Eq. (100) into Eq. (99), we have  

 �−
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Defining )(1)( ωω j
x

j
x ePeQ = , Eq. (101) becomes   
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which shows that the inverse Fourier transform of )( ωj
x eQ , namely )(kqx , is equal to zero for pk >|| . 

Therefore, the Fourier transform of )(kqx  is  
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From Eq. (103), we may define the maximum entropy (MEM) estimate of the power spectrum )( ωj
x eP  for a 

Gaussian process, as follows  
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Noting that )()( kqkq xx
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)()0()()( ωωω , we can perform 

spectral factorization on Eq. (104) and may have )(ˆ ωj
mem eP  in the following form   
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which is the same as the AR spectrum estimate. Since )(krx  are given for pk ≤|| , the coefficients )(kap  

can be found by solving the following normal equations  
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and )0(b  can be determined from  
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Defining [ ]Tppp paa )(...,),1(,1=a  and [ ]Tjpj ee ωω ...,,,1=e , the MEM may written as  
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 The maximum entropy method is equivalent to the Yule-Walker method (YWM), an AR spectrum 

estimation method. The difference between the two methods lies in that in the MEM the random process x(n) 

is assumed to be Gaussian, whereas in the YWM x(n) is assumed to be an AR process.  

 

Example 6. MEM estimation of the power spectrum of a complex exponential in noise (Example 8.4.1)   
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Summary of spectral estimation methods: 

• Power spectrum of a WSS process x(n): �
∞

−∞=

−=
k

jk
x

j
x ekreP ωω )()( , (note ∞<<∞− k ) which is the Fourier 

transform of the autocorrelation sequence )(krx . 

• )( ωj
x eP  can only be estimated when the data available for a random process x(n) are of finite-length or 

the data are contaminated with noise.  

• Estimating the power spectrum is equivalent to estimating the autocorrelation. 

• Two classes of methods for power spectrum estimation: nonparametric methods and parametric methods  

In each class there are a set of methods. Since )( ωj
x eP  is estimated with this or that method, the 

performance of the estimating method must be evaluated by looking into the expected value (bias) and 

the variance of the estimate )(ˆ ωj
x eP . 

 

 

 

Some useful MATLAB functions  

 

>> Pxx = PYULEAR(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in  

  % the vector Pxx, using Yule-Walker's method. 

>> Pxx = PCOV(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in the  

  % vector Pxx, using the Covariance method. 

>> Pxx = PBURG(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in the  

 % vector Pxx using Burg's method. 

>> Pxx = PMCOV(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in the  

 % vector Pxx, using the Modified Covariance method. 


