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PARAMETRIC METHODS FOR POWER SPECTRUM ESTIMATION

Parametric methods for power spectrum estimation are based omepr&canodels, and they include those
of the autoregressive (AR) spectral estimation, the movingagee(MA) spectral estimation, and the
autoregressive moving average (ARMA) spectral estimatibighnare, respectively, based on the AR, MA,
and ARMA models. The maximum entropy method is of the same form of the AR speatnaliesti

In parametric methods, a parametric model for a random procdsstiselected and then the model
parameters are determined.

The parametric spectral estimators are less biased andahlaveer variance than the nonparametric
spectral estimators. With parametric methods it is possib&gtoficantly improve the resolution of the
spectrum estimation unless the model used is consistent witmtih@marocess being analyzed. Otherwise
inaccurate or misleading spectrum estimates may result.

General consideration of parametric model spectrum estimation:

As we have learnt in the previous lectures concerSiggnal Modeling, a random process can be
modeled with an ARMA model, or an AR model, or an MA model. The AR aAdrddels are the special
cases of the ARMA model. Supposing that a random progeyss modeled as an ARMA( g) process
with an ARMA(p, q) model, then the system function of the model is

3 b, (K)e ke

H(e!”) === . (43)

1+Y a, (ke ™
k=1

In this case, the power spectrum of the progégscan be computed in the following manner,

q . 2
> b, (k)e

k=0

(44)

P (") =

2

P .
1+ a, (ke
k=1

Alternatively, if the autocorrelatiom, (k) is given, the power spectrum can be obtained from the Fourier
transform ofr, (k) ,

P(e/) = Y (ke . (45)

k=—c0
Eqgs. (44) and (45) demonstrate two approaches to computing the power spéaruARMA process, and

also reveal two equivalent representations of an ARMA random otest is, the process can be
represented equivalently either by a finite sequence of model @@mana, (k) and b, (k), or by an

autocorrelation sequenag(k). The equivalence of the two representations is because the autdorre
and the model parameters are related with the Yule-Walker equations,

rx(k)+éap(l)rx(k—|):afl_ikbq(l)h*(l—k). (46)

In practice, a random procesds) is often given only over a finite intervdd<n< N -1, and in this case

the autocorrelation of(n) must be estimated in a finite sum as follows,
N-1-k
F (k) =% S x(n+K)X' (), k=0, 1, ....N-1. (47)

n=0
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When the ARMA model in Eq. (43) is selected for modeling prox@gsthe model parameters in this case
are determined from this estimated autocorrelation sequeitkg, and they are different frora, (k) and

b, (k) determined fronr, (k) since f. (k) is, in general, not equal tg(k) . Such model parameters that are

determined front, (k) are denoted byip(k) and Bq(k) , Which give an estimate of the power spectrum,

2

g - .
qu(k)e'”“"

k=0

P(e") =

(48)

2

P .
1+ &, (kje
k=1

Eq. (48) is a general case of the parametric spectral ¢istinmaethods. In this case, all we need to do for
estimating the power spectrum is to firiq)(k) and Bq(k). When ép(k) and Bq(k) are determined,

P, (e'?) is found.
Among these parametric spectral estimations, the AR egiimatthe most popular. This is because the

AR parameters can be found by solving a set of linear equations.ed¢hdor the ARMA and MA
parameters, a set of nonlinear equations need to be solved, which will be much maié diffic

Autoregressive spectrum estimation:

The autoregressive spectrum estimation is based on the AR modleis kcase, a random procegs) is
modeled as an AR) process. If the autocorrelationy (k) of a random process(n) is given, the AR
parametersa, (k) andb(0), can be determined from (k) using the AR model. Then the power spectrum

of the AR process is
b)*

P.(e)) = (49)

2

p «
1+ Zap(k)e‘”""
k=1

If a random procesgn) is given over a finite intervad< n< N -1, the autocorrelation of(n) must be
estimated, and it is denoted, (k). The AR parameters that are determined from the estimated

autocorrelationr, (k) are defined asip(k) and 6(0). The power spectrum that is estimated basexmn

for 0OsnsN-1is

. o]’
B (e) =

(50)

2

P
1+ Zép(k)e'”‘“’
k=1

Several approaches are available for findingk) from the finite data record of a proces®) for

0<n< N -1, such as autocorrelation method, covariance method, and modified covanethosl, which
are presented below. Whep(k) are found,ép(k) and 6(0) can be found using the MYWE method or the

EYWE method, which are studied extensively in the lectureSigmal Modeling.

A. The autocorrelation method
The AR parameterd (k) are found by solving the autocorrelation normal equation
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RO KO . R(P-D]&O| [LEO
fi(p-1) F(p-2) .. £©O J&®]| [K(p)
where the autocorrelation estimate is given by
r‘x(k):%kax(mk)x’*(n) k=0, 1, ...p. (52)
n=0
6| =7, 0+ 4, (0 (0. (53)
k=1

Substitutingép(k) and 6(0) into Eqg. (50) gives the estimate of the power spectrum of the prdoess

Note that Eqg. (51) is the same in form as the modified Yule-8valkuations, but the autocorrelation
values in Eqg. (51) are the estimated onegk) , from a finite data record, i.ex(n) for 0sn< N -1. The
autocorrelation estimate, (k) is biased. This method that estimates the power spectrum using the

autocorrelation method is also referred to asvihie-Walker metho(yWM).
Since Eq. (52) gives a biased estimate, a variation of Eq. (52) is of the followimg for

f, (k) :ﬁNgkx(n+k)x*(n) k20,1, ...p. (52)

which may give an unbiased estimate. However, this can not guardu@eutocorrelation matrix to be
positive definite and consequently, the variancePy{e'“) tends to be large when the matrix is ill-
conditioned or singular. Thus, the biased estimate in Eq. (52) is mdeeabte to the unbiased estimate in
Eq. (52).

Like in a periodogram, the autocorrelation method uses the windowed data saettierautocorrelation
and thus has window effect on the spectral estimate. Since the weftknw will become severe for short
data records, the autocorrelation method is not often used in the case of shedatdt An artifact, called
spectral line splitting that means the splitting of a singesal peak into two or more separate and distinct
peaks, may appear in the autocorrelation method wmris overmodeled, i.e., when the model orpés
too large, because a pole in the model, in general, may crgadeteaspeak. An example of such an artifact
is shown in Fig. 8.24.

Fig. 8.24. Spectral line splitting of an AR(2) procesén) = —0.%(n—2) +w(n). Two all-pole
spectrum estimates were computed using the autocorrelation mettiodrdérp = 4 (solid
line) andp = 12 (dashed-dot line)
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B. The covariance method
In the covariance method the AR parame@gsk) are determined by solving the normal equations,

A K@D .. R(pH]a® r, (01)
@D 72 . (p2)|8Q@|__| 702 )
where the autocorrelation estimate is given by
r (k1) = Nz_‘,lx(n—l)x*(n—k), (55)
n=p

which is different from the autocorrelation method in that no windowinth®fdata is required since the
values ofx(n) used for findingr, (k,I) in Eq. (55) are all in the intervddl<n< N -1 and thus no zero-

padding is needed. This means that there is no windowing effect in the vamiettnoel. Therefore, for short
data records the variance method generally gives higher resolgfiectrum estimates than the
autocorrelation method.

C. Madified covariance method
In the modified covariance method the AR parameﬁ;;ek) are also determined by solving the normal

equations in Eq. (54). But the autocorrelation estimate is found in a different wayas foll

r(kl)= NZ_:l[x(n DX (n=K)+x(n-p+)x (n—p+ k)] (56)
n=p
which is derived by minimizing the sum of the squares of the forwartasidvard prediction errors, that is,
N-1
e =e;mreym=) [esn] +[e;n)]”| (57)
n=p
where
e, (n) =x(n) + kZ:ap (K)x(n=k) (58)
e () =x(n =)+ Y2, ({1~ p+K) (59)

are the forward and backward prediction errors, respectively pjge8&22-324 in the Hayes’ book). In
contrast to the autocorrelation and covariance methods, the modifiethooeamethod is observed to give
statistically stable spectrum estimates with high resolution, and not to betgalgpectral line splitting.

Example 5. Estimation of the power spectrum of an AR(4) process.

Consider the AR(4) process generated by the difference equation

xX(n) =27377(n—-1) = 3.747&(n - 2) + 2.6293%(n —3) — 0.9224x(n — 1) + w(n)
where w(n) is unit variance white Gaussian noise. The filter generat{ny) has a pair of poles at
z=098*!%2" and a pair of poles at= 098*!%*" . Using the data records of lendth= 128, en ensemble
of 50 spectrum estimates were calculated using the Yule-Wailk#rod, the covariance method, and the
modified covariance method, and the Burg’s method. The overlay plote &0 estimates from the four
methods are shown in part (a) in 8.25 to 8.28, and the ensemble avethges0festimates and the true
power spectrum are shown in part (b) in 8.25 to 8.28.
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Figs. 8. 2510 8.28.
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E. Selection of the model order:
The selection of the model order in the AR spectral estimation is ciititta¢ parametric methods. Fig. 8.24
shows that spectral line splitting artifact appears in the awation method when the model orger
selected is too large, because each of the poles in the modeaighalgenay create one spectral peak. This
brings up the question of how to select an appropriate model pfdetan AR spectrum estimation. If the
model ordeip used is too small, then the resulting spectrum will be smoothed because the spadral ae
true power spectrum can not be represented with an enough number of poles. If, on tiendiitbe model
order p used is too large, then the power spectrum may contain more Epeetka than those in a true
power spectrum, and in this case the so-called spectral line spdittifegt is present, as the example in Fig.
8.24. This reveals a necessity to have some approaches to selecting anappnoplel order that gives the
parametric model a best fit of a given data record. A relddeatwould be to adjust the model order until a
certain modeling error becomes minimum. There are several appsoicselecting model order that were
established based on such an idea.

One of them is the Akaike Information Criterion expressed as

AIC(p)=Nloge, +2p (60)
and the other is the minimum description length
MDL(p)=Nloge, +(logN)p (61)
Two other often used criteria are Akaiker’s Final Prediction Error
N+p+1
FPEpP)=¢,——— 62
O =g (62)
and Parzen’s Criterion Autoregressive Transfer function
1E&N-k| N-p
CAT(p)=|— + 63
(P) {N kz=:1 Ne, } Ne, (63)

In Egs. (60) to (63)p is the model order to be selectédis the length of the data record, ang is the

prediction error. For short data records, none of the criteria tendrtoparticularly well, and thus, these

criteria should only be used as indicators of the model order. Eqso(683) show that all these criteria
depend ong,. Since different modeling techniques, e.g., the autocorrelation andarmeamethods, may

have different prediction errors, then the model order may be different even fomenelaia.
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Moving average spectrum estimation:

The moving average spectrum estimation is carried out based ddAhmodel that models a random
processx(n) as an MA process. The system function of the filter that gea®ethe MA process by filtering
unit variance white noise is of the form,

H(2)= Zq: by (K)z7™ . (64)
k=0

Thus, the power spectrum of the procgss is

P () =[S, 000 (65)
In terms of thke_(;utocorrelatiar;(k) the power spectrum can be written as

P (e'”) = Zq:rx(k)e'jk“’. (66)
wherer, (k) ;;l;]bq(k) are related with the Yule-Walker equations

(k) = o7, (K) Obg (k) = ql_Z:bq (1+ 1k )by (1) (67)

If a random procesg(n) is given over a finite intervaD<sn< N -1, we only have the estimate of the
autocorrelation ok(n), f, (k). The MA parameters that are determined from the estimatedaarglation

r, (k) are Bq(k) . The estimate of the power spectrunx(f) is

2

Pua(€/?) = (68)

9 . )
3 b, (K)e e
k=0

Equivalently, directly using the autocorrelation estimgték), we may have the alternative form of the

estimate of the power spectrum,

Bua(@/)= 36, (K)e | (69)
k=-q

Comparing the estimate in Eq. (69) with the Black-Tukey estinmE(q. (41), we can see that the MA
estimate is equivalent to the Black-Tukey estimate ifatmelow w(n) used extends fromgo g. However,
there is a subtle difference between the two estimateshdaviA spectral estimate in Eq. (69) the random

process(n) is modeled as an MA process of ordeand thus the autocorrelation sequence is zeré|foy. |
In this case, if the autocorrelation estimagék) is unbiased fofk |< g, then E{PMA (ej“’)}z P (') so that

P, (€'?) is unbiased.
In the Blackman-Tukey method, no assumption is made affpytand due to the windowing effect,
thus, the Blackman-Tukey spectral estimate will be biased ux(il@ss an MA process.

Autoregressive moving average spectrum estimation:
The ARMA spectrum estimation is performed based on the ARMA model that neodaldom procesgn)
as an ARMA process. This method has been dealt with in the eselidon,General consideration of

parametric model spectrum estimation.
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Minimum Variance Spectrum Estimation (a honparametric method):

In the minimum variance (MV) method the power spectrum is estimated bynfjli@riandom process with a
bank of narrowband bandpass filters. The bandpass filters are desigoedptimum by minimizing the
variance of the output of a narrowband filter that adapts to therapeanhtent of the input process at each
frequency of interest.

A. The relation of the variance with the power spectrum
Consider a zero mean WSS procgss. The variance oy(n) is

a2 (m =E{ym’}, (70)
which is the power of the proceg®). For a given autocorrelation, (k) we have

r, ©=E{ym[’}, (72)
and thenai(n) =r,(0) does not vary witim, and thus denote

o2 =gy}, (72)
Sincer, (0) = (1/277)[_"”Py(ej“’)da), the average power of such a WSS progégsis

2 1 7 o
E{y(m)|*}=o? = LT P, (e')dw, (73)

which shows the relation of the variance with the power spectrum.

B. FIR bandpass filter bank and the variances of the filters’ outputs:
Consider a bank of FIR bandpass filters (Fig. 3), all having gyderd the frequency responses (or the
system function) of the following form,

G (e'?) =Zp“gi (n)e” @ i=0, 1, ... L. (74)
n=0

—— Go(efw) —— )6 (n)

Y

1

G, (el®) =, (1)

x(n)

Y

G (el®) —= ¥, (1)

li

Fig. 3. A bank of bandpass filters in the minimum variance

jw)] spectrum estimation
G, (el)—=—y,(m) P

Y

The input to the filters ig(n), and the outputs of the bandpass filters yi@) fori=0, 1, ...,L. To use such

a filter bank to estimate the power spectrum(aj with a finite-length data record, we should constrain all
bandpass filters that, at their center frequenaleshave a unit gain,
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G () =Zp:gi (n)e "4 =1 (75)
n=0

so that the power spectra of the filters' outpy) are P, (e'“) :‘Gi (e )‘2 P.(e)=P (/).

Using the vector notations,

g=[00, g® . g (76)
and

e =[l e, .., eP ]T (77)
Eq. (75) can be written as

G(e)=¢l'g; =1 (782)

or equivalently as
[ ()] =g’ =1 (78b)
Since the autocorrelations of the output procesgds) and the input procesgn) are related in the

following manner (see Eq. (91) PISCRETE-TIME RANDOM PROCESS (3))
p P
ry, (K) =1, (k) Og; () Og; (=k) = > >~ gi (Dr, (m=1 +k)g; (m), (79)

1=0 m=0
then the variance of the output procesén), which is equal ta, (0), is of the form
p

p
a; =1, =) g ()r,(m=1)g (m), (80)

1=0
and its matrix form will be
o5, =97 R,9; . (81)
which shows the relation of the variance of the output oftthlter with the filter coefficientsg; (n), for a
given random process with the autocorrelation ma®rix

C. The FIR bandpass filters with minimum variance
Designing a filter is just determining the filter coeffitie based on a certain criterion. The criterion that we
use here is the minimum variance @f(n), which is obtained by minimizingfi in Eg. (81) under the
constraint given by Eg. (78). The approach to this constrained miniamizatoblem is given in Section
2.3.10 in the Hayes' textbook. Using this approach, the coefficients adptivaum filter in terms of
minimum variance are found as follows
_ Ry

“e'Re,

which obviously satisfiee'g, =1, and inserting Eq. (82) into Eq. (81) the minimum variance is, thus,

(82)

determined as follows

S T _ 1
rnln{a'y| } =0 R 9 = m (83)
which is the best estimate of the variance of the progagsat frequencyw in terms of minimum-variance,

that is, 2 (w) = min{ai } Since Egs. (82) and (83) are derived at an arbitrary frequendyen these two

equations hold for alke . Therefore, the optimum filter and the estimate of the variahogn) can be
written, respectively, as
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_ Rje
g_eHR;le (84)
and
52(@:; (85)
* e"R e
which is frequenq_/ dependent, and where i
@ @ .. r(p
L @ (-
R, =EX"}=r,@ r@ r(p-2) (86)
(P () . RO |
9=[90. 9@ .. a(P| (87)
and
e=fl ew, .. eref . (88)

Till now we have found the variance estimate of the praqesdut not the power spectrum estimate yet.

D. The minimum variance spectral estimate

To find the power spectrum estimate, let us look at the bandpasdfink again. Since the bandpass filters
are narrowband and the bandwidth of itefilter G, (ei“’) is assumed to bA , then in the bandwidti ,

that is, w -A/2<w<w +A/2, we may assumpi (ei‘")‘ =1 (due to the given constraint in Eq. (75)), and

out of the bandwidth , ‘Gi (ei‘")‘ =0. In this case, the relation of the varianceyp{n) with the power
spectrum ok(n) in Eq. (73) becomes
2 1 JqT jw 1" jw 2 jw 1 @+b/2 jw A jw;
o, =—| P, (¢ dwz—J G, (e')| P (e’ da)z—J P(e'“)dw=—P(e'*) (89
T o) Pu@dw= | e @ e dw= | R (e)dw= R (e)  (89)
Since the estimate of the variancexgf) is equal to the minimum variance gf(n), that is,52= min{aji }

then the (best) estimate of the power spectrurfrdfin terms of minimum variance can be expressed, from
Eq. (89), as
_2T .

PN 2 . 2 1
P.(e!“) ==—mino? |="-62 () =————. 90
(o) = minlo =T k@) = e (90)
In Eq. (90) the bandwidtiA is still unknown. To findA , we consider estimating the power spectrum of a
white noise process with a zero mean and a varianog orhe autocorrelation matrix of the white noise is
R,=02l, and then the bandpass filters with minimum variances are

R _ olle _ ole 1

= = = = e, 91
J e"Rle e'ollle ol%e"e p+1 O
which is frequency dependent, and the estimate of the variam(® of
2
s L (92)

“e"Re e'olle e'e p+l
which is independent of frequency. Substituting Eq. (92) into Eq. (90) yieldsitiiaum variance estimate
of the power spectrum,

26



2 277102

x(w) -

B.(e/°) :%”& (93)

Since the power spectrum of a white noise process is equal varigmce o2, then we set the power

spectrum of white noise to be equal to its estimate, i.e.,
P(e) =P (") =07, (94)

which is actuallyan assumption we impokere. The bandwidth can, thus, be determined,
21T

p+l

(95)

For a general WSS random procg8y, we adopt this bandwidth for the white noise case, and then
the estimate of the power spectrum of the general pra@@sisn Eg. (90) becomes

- . ~ . +1
P.(e!“)=P,, (“)=—P :
X( ) MV( ) eHR;le

(96)

Usually R, is unknown, and theR, may be replaced with an estimafex .
Since the optimum bandpass filters are established based on the rzieuaujonrliX whose values are

determined from the data, then the minimum variance spectrumatisth may be thought of as a data-
adaptive modification to the periodogram. Generally the minimumanegi spectrum estimation offers
higher resolution than the periodogram and Blackman-Tukey methods.

It should be noted that, although the MV method is established using afbfilitdrs, the MV spectral
estimate does not need to use the filters in the end. One of domsda that the bandwidth found for white
noise in Eqg. (95) is adopted to a general WSS random process so thHdl tlspectral estimate is
independent of the filters whose bandwidth should be determined from thhalgandom process. Since in
the MV spectral estimate no filter model and thus no model pagssneted to be found and used, then the
MV spectral estimation falls into the category of the nonparametric methods.

Note that the inverse transform of the MV estimate does ntmhntiae autocorrelation sequence that is
used to create the MV estimate, unlike the autoregressive spectrunmeghiaaoes match.

Example 5. MV estimate of the power spectrum of an AR(1) process (Example. 8.3.2)
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Maximum entropy method (an AR method):

The maximum entropy spectral estimation is established based aplait extrapolation of a finite length
sequence of a known autocorrelation of a random progessThe extrapolation should be chosen so that
the random process characterized by the extrapolated autocorrelgioence has maximum entropy. The
random process treated here is assumed to be Gaussian so that the concerned probleradieziiee

A. The concept of entropy

Entropy is a measure of randomness or uncertainty. For a Gaussdonr procesg(n) with power
spectrumP,(e'”), the entropy of the random variabi@) is expressed by

H(x) =%TDH P.(e*)dw 97)

B. Extrapolation of the autocorrelation
Given the autocorrelation (k) of a WSS process fdk |< p, we want to extrapolate, (k) for |[k|>p.

Supposing that the extrapolated autocorrelation)(is) , the power spectrum afn) can be written as

PE)= Yr,(0e ™ + Yr (ke (98)

k=-p KI>p

Now the question is how or what criterion should be used to determieetthpolated autocorrelation. As
the name of the method indicates, the maximum entropy is the amiferi performing the extrapolation. A
maximum entropy extrapolation is equivalent to finding the sequence @xtrapolated autocorrelations
that makex(n) as white (random) as possible. From the power spectrum pointwf thes maximum
entropy extrapolation makes the power spectrum as flat as possible.

C. The maximum entropy spectral estimate

If a random procesgn) is assumed to be a Gaussian process with a given segmieatanftocorrelation
r.(k) for |k< p, then the extrapolated autocorrelatiQk) that maximizes the entropy in Eq. (97) can be

found by settingoH (x)/are*(k) =0, specifically
m jow
aF!(x) _ 1 1 aPXSe ) dw=0, (K> p (99)
ore(k)  27)_ P (e") or.(K)
Using the conjugate symmetry (k) =r, (k) in Eq. (99), the derivative in the integral becomes
oP (e1”) P, (e'?) 0 0

. = ro(k)e ™ = ro(-k)e*” =ek 100
ore(k) oo (=K)  dre(-k) |k|§p “ or o(=k) u%p = (109
Inserting Eq. (100) into Eq. (99), we have
O N
o _”We dw=0, |k[>p (101)
Defining Q,(€'“) =1/P,(e'), Eq. (101) becomes
%I;Qx(ej“)e"‘"dwwx(k) =0, [kP>p (102)

which shows that the inverse Fourier transform@f(e’®), namely g, (k) , is equal to zero fotk|> p.
Therefore, the Fourier transform qf(k) is

28



1
P.(e'?)
From Eq. (103), we may define the maximum entropy (MEM) estimate of the poweusp&:(e'“) for a

Q. (e') =

= g, (e = 3, (ke ke (103)
k=—00

k=-p

Gaussian process, as follows

A " 1
Pren(€'“) = ———— (104)

3, (ke ke

k=-p

P ) p ) p :
Noting that q,(-k) =g (k) and Y g (k)e™ = q(k)e* +q,(0) +> q,(k)e’*, we can perform
k=1 k=1

k=-p
spectral factorization on Eq. (104) and may h@gn(ej‘”) in the following form

b(0)b"(0) _ o o)

p , P, e 27 A (eI9VA (g%
1+zap(k)e"k“’}{l+Zap(k)e”‘“’} 1+ia (ke ke p(E)A ()
k=1 k=1 =i

which is the same as the AR spectrum estimate. Sif(¢g are given for|k|< p, the coefficientsa, (k)

Pren(€') =[ . (105)

can be found by solving the following normal equations

@ r@® .. r(p 1 1
1 0 .. r(p-1| aE 0
@ ) n(p=-1) | a® —¢, (106)
r(p) r(p-) .. r© |a/(p) 0
and b(0) can be determined from
p
bO)* =1, ©) + > a, (K, (k) =£,| (107)
k=1
Defining apz[l a,®, .., ap(p)]T andez[], e’ .. eip’*’]T,the MEM may written as
- . £
Prem(€’?) =—"— (108)
‘eHap‘

The maximum entropy method is equivalent to the Yule-Walker metiédV(), an AR spectrum
estimation method. The difference between the two methods lies in thaMiEMehe random procesgn)
is assumed to be Gaussian, whereas in the Y4Wlis assumed to be an AR process.

Example 6. MEM estimation of the power spectrum of a complex exponential in noise (Example 8.4.1)
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Summary of spectral estimation methods:

Power spectrum of a WSS process:x®je’”) = >'r,(k)e *“, (note - <k < o) which is the Fourier

k=—c0
transform of the autocorrelation sequemggk) .
P.(e!”) can only be estimated when the data available for a random prgoease of finite-length or

the data are contaminated with noise.
Estimating the power spectrum is equivalent to estimating the autocamelati

Two classes of methods for power spectrum estimatanparametrianethodsandparametricmethods
each class there are a set of methods. Sie'”) is estimated with this or that method, the

performance of the estimating method must be evaluated by lookinthenexpected value (bias) and
the variance of the estimat (e/“) .

Spectrum Estimation
Rz => F(2

RN

Nonparametric Parametric
methods methods
Periodogram Max. enfropy
method
Modified AR Spectrum
periodogram ‘ estimation
Averaging Bartlett's MA. Spep’rrum
; estimation
periodograms Method y
Averaging modified] Welch's ARMA Spec’rrum
. estimation
periodograms Method

Periodogram}Blackman-Tukey'y
smoothing |Method

Minimum varioance
Method

Some useful MATLAB functions

>> Pxx = PYULEAR(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in

% the vector Pxx, using Yule-Walker's method.

>> Pxx = PCOV(X,0ORDER) % returns the PSD estimate of a discrete-time signal vector X in the

% vector Pxx, using the Covariance method.

>> Pxx = PBURG(X,ORDER) % returns the PSD estimate of a discrete-time signal vector X in the

% vector Pxx using Burg's method.

>> Pxx = PMCOV(X,0RDER) % returns the PSD estimate of a discrete-time signal vector X in the

% vector Pxx, using the Modified Covariance method.
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