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RANDOM PROCESSES

Discrete-time random processes:
» A discrete-time random process x(n) is a collection, oensemble, of discrete-time signals¢, (n) wherek

is an integer.
» A discrete-time random process x(n) is an indexed sequence of random variables if we look at the process
at a certain ‘fixed’ time instamt (e.g.,n=n,).
It should be pointed out that in the Hayes' textbook the term 'didoretesignal’, instead 'discrete-time
single realization’, is used, and thus we keep using 'discrete-time signafartlds an equivalent to 'single
realization' (as we used in the previous section) or to 'singenai®on’. We should also note that the term

'discrete-time signal' is different from 'discrete-tim@dom signal' in the present case. A discrete-time
random signax(n) is associated with an ensemble of discrete-time sigdls) .

Example 10. A random process is of the form of sinusoigh) = Acosfiew,) where ADQ ={12,--- 6}, the

amplitude is a random variable that assumes any integer numkerebebne and six, each with equal

probability Pré=k)=1/6 k=1, 2, ..., 6). This random process consists of an ensemble of six different
discrete-time signals, (n) ,

X, (n) =cos(w,), X,(n) =2coshwy,), ... Xs(n) =6c0snwy),

each of which shows up with equal probability.

Question: Given a random procesgn) = A(n) cosfw,), where the amplitudé\(n) is a random variable

(at instantn) that assumes any integer number between one and six, each witpretpadility, how many
equally probable discrete-time signals are there in the ensemble?

Example 11. A random process shown in Fig. 1 has an ensemble of different ditanetsignals, each

occurring according to a certain probability. From a sample space @biiew, to each experimental
outcome w in the sample space, there is a corresponding discrete-tima sign) . If we look at the

random process at a certain ‘fixed’ time instane.g.,n=n,, the signal valuex(n,) is a random variable

that is defined on the sample space and has an underlying probability distribution and diectitysf
Fyny) (@) =Pr{x(ng)<a}, and f,, , (a) =dF,, , (a)/da

For a differentn,, x(n,) is a random variable at a different time instant. Therefodesceete-time random

process is an indexed sequence of random variak(esthat is an ensemble of elementary even{s) atn.

Since a discrete-time random process is an indexed sequence of randdmesthe statistical quantities
(mean, variance, correlation, covariangte,) and properties (independence, uncorrelatedness, orthogonality,
etc.) of random variables studied in the previous section apply to randomspesc For a random process,
therefore, we will have a sequence of mean values and variainitese indexed random variables, and the
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auto-relationship between the random variables. For multiple randomspesceve have the cross-
relationship between the processes.

Sample SpaceQ X (1) o
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x,(n)
lTl;’TTTl ’l;’TLTN’=” Fig. 1. Arandom process
consisting of an ensemble of
% {n) different discrete-time signals,
T T s I l I T ; T r ! ) T - N each occurring according to
l l a certain probability.

Mean and Variance:
Themean of a random procesgn) defined as

m, (n) = E{x()} = [__af,,, (@)da (44)

is adeterministic sequence with the same index as the sequence of random vasqiaples
If x(n) is a function of another random procedén) with a probability density functionf,,(a), i.e.,

x(n) = g[¢ ()], then the expected valuexth) is

m,(n) = E{x(m} = E{glc(m]} = [ g(a) T, (@)da (44))
Thevariance of each random variabin) in the sequence
o2 (n) = E{ x(n) - m, ()2} (45)

defines thevariance of the random process:Z (n) is also adeterministic sequence.
Note that thedeterministic’ is the consequence of ensemble average. Thus, we will E{mg(n)} =m,(n)
and E{Uf(n)}z oZ(n) . Themean andvariance of a random process are the first-order statistics and both, in

general, depend an

Autocorrelation and Autocovariance:

Theautocorrelation is defined as

r. (k1) = E{x(k)x* ()} (46)
Theautocovariance is expressed as

c, (k1) = E{[x(k) - m (0)][x(1) - m, ()] *}], orc, (k1) =1, (k1) =m, (K)m/(1) (47)
Note that ifk = | then the autocovariance reduces to the variance,

cy(k,K) =0 (k) (48)
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Auto-correlation andauto-covariance are termed because the correlation and the covabeinesen the
random variablex(k) andx(l) are derived from the same random procés$. The autocorrelation and
autocovariance sequences provide information about the degree ofilgpesudence between two variables
in the same process.

Relationship between random variables in a single random process:
As in the case of multiple random variables, two random variables in a single rarm@sspmay be related

in terms of independence, uncorrelatedness, and orthogonality. Thus, tioesdlat the multiple random
variables apply. For example,af, (k,l) =0 for k # |, then the random variabl&&) andx(l) are uncorrelated

and knowledge of one does not help in the estimation of the other using a linear estimator.

Example 12. The mean and autocorrelation of a harmonic process with random phase (Example 3.3.1)
(i) A real-valued harmonic random process is a random process with a form of a sinusoid
x(n) = Asin(naw, + ¢) , (49)
where w, is a fixed constant. Consider the case where the amphtigla fixed constant but the phages
a random variable. The phase random varigbis uniformly distributed over the interv[a& ), i.e.,
f,(a) ={]/(§_"); Trsasw
; otherwise

Find the mean and the autocorrelation of the harmonic process.

(50)

Solution. The mean of the process is by definition

m, (n) = E{x(n)} = J_Z Asin(na, +a) f,(a)da = .[_’;Asin(nc«)O + a)%rda =0 (51)

Thus, the random phase harmonic process is a zero mean process.
The autocorrelation of the process is determined by
r (k1) = E{x(0)x" (1)} = E{Asin(kaw, + @) Asin( o, + @)}

- % AZE{cos{(k—|)wo]}—%A2E{cog{(k+|)a)o +24]) (52)

:%A2 cod(k - ]

where the trigonometric identitgin(A)sin(B) = [cos(A— B) —cos(A+ B)]/2 and the integral relation
E{cod(k +1)a, + 24} = (271)[" cod(k +1)a, +2alda =0 are used.
(if) A complex-valued harmonic random process is of the form
x(n) = Aexpw, + @), (53)
where w, andA are fixed constants and the phgsas a uniformly-distribute random variable defined in
Eqg. (50). Find the mean and the autocorrelation of the complex harmonic process.
Solution. The mean is
m, (n) = E{x(n)} = E{ Aexp(co, + ¢} = E{Acosiw, + @) + Aj sin(naw, + @)} =0 (54)
The autocorrelation is
r (k1) = E{x(k)x" (1)} = E{Aexd j (kay, + D]A” exd- j(w, + 9]} 55
= AN Efexdj (k= Nay ]} =1 AP exdj (k = 1)a]
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From Egs. (51), (52), (54) and (55), it follows that both the real- and crimpleed harmonic processes

have a zero mean and an autocorrelation that only depends on the difference baivdten

Cross-covariance and Cross-correlation of two random processes:

Thecross-correlation of two random processeg) andy(n) is

ry (K1) = E(x(K)y* (1)} (56)
Thecross-covariance is
¢y (k1) = E{[x(K) - m, ()]ly() - m, ()]*]], or [c,, (k,1) =1, (k) -, ()M (1) (57)

Cross-correlation anccross-covariance are named because the correlation and the covarianeerbéhe
random variables are derived from the different random processo@byi the autocorrelation and
autocovariance are the special cases of the cross-correlatiotr@ss-covariance, respectively, fn) =
y(n). Cross-correlation is very useful in signal detection in whiehissue of interest is to find whether or
not a desired signal exists in an observed (noisy) signal.

Example 13. Cross-correlation
Consider two random processés) andy(n), wherex(n) is known with mearmm, (n) and autocorrelation

r.(k,1), andy(n) is the convolution ok(n) with a deterministic sequenbé), as follows
y(n)= > h(m)x(n-m). (58)
Find (i) the cross-correlation betwexim) andy(n) and (ii) the cross-correlation betwegn) andx(n).

r,, (k.1) = Efx)y ()} = E{x(k) S h(m)x(l - m)} = S hmE{xKx1 - m) = > hemr, (k.1 - m)

m=-—oo m=-o0 m=-o0

(59)
r (k1) = Elyoxt()) = E{ ih(m)x(k - m)}x* (|)} - ih(m) Efx(k - m)x’ ()} = ih(m)rx(k “ml)

(60)

Ny (KD Zr, (K1) (61)
Relationship between multiple random processes:
Two random processeaén) andy(n) are said to bancorrelated if

Cy(k,1)=0 (62)
for all k andl or, equivalently, if

ry (K1) =m, (K)m,(1) (63)
Two random processeaén) andy(n) are said to berthogonal if

ry(k,)=0 (64)

Note that two orthogonal random processes are not necessarily uateokréut the uncorrelated processes
of which one has a zero mean are orthogonal sig¢k, ) =mx(k)m5(l) =0.
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If two random processegn) andy(n) are uncorrelated and one or both of them has/have a zero mean,

then the autocorrelation of the surfn) = x(n) + y(n), is
r (k1) =r. (k1) +r (k1) (65)

Stationary Random Processes

From Example 12, it is known that for a real-valued harmonic progéss= Asin(nw, + @) with
random phaseg that is uniformly distributed over the inter\,{aHT,n) , the mearmm, (n) =0 is independent
of time, and the autocorrelatian) (k,1) = (1/2) A? cos{(k —I)a)o] only depends on the difference betwéden

and|. This actually brings up a class of commonly-encountered random prscésat is, a wide sense
stationary process. That a random process is stationary meatisetistatistics or ensemble averages of a
random process are independent of time, igatistical time-invariant’. Several different types of
stationarity are defined either in terms of density functions of differeletr @r in terms of ensemble average
operations.

Stationarity in terms of density functions of different order and strict-sense stationarity:

A random procesg(n) is said to bdirst-order stationary if the first-order density function of the process
is independent of time, i.ef, (@) =f ,.(a), for allk.

For a first-order stationary process, thus, we have has timpeindent statistics. For example, the mean
of the process is constant), (n) =m, becausem,(n) = Iw af X(,Hk)(o/)dcr:J‘oo af yekf@)da =m,(n+Kk)
for all k, and this is true for the variance, i.e.2(n)=0o?.

A random procesz(n) is said to besecond-order stationary if the second-order joint density function
f xxn,)(01,@2) depends on the difference,—n,, and not on individual times; and n,, which is

equivalent tof , ., ) v (@1:02) =F 4w, xn, +k( A1, O2) -

If a random process is second-order stationary, then it will be first-ortienats.

A second-order stationary process has second-order time-shift-invaatsiics, e.g., the autocorrelation
sequence has the property,(k,l) =r (k + n,I + n), which depends only on the differenke; |, separating

the two variablex(k) andx(l) in time, r (k1) =r ,(k=1,I =1)=r ,(k =1,0). Thus, r (k,I) is often simply
written asr ,(k —1) in this case. The differende;- 1, is calledag.

A random process(n) is said to bestationary of order L if the random procesgn) andx(n+k) have the

samelth-order joint density functions. A random process is said sbatienary in the strict sense (or strict-

sense stationary) if it is stationary for all orderk.

Stationarity in terms of ensemble average and wide sense stationarity:

The stationarity is defined in terms of ensemble averagetaperauch as the mean and autocorrelation
and autocovariance since they are often given.

Wide Sense Stationarity. A random procesgn) is said to be wie-sense stationary (WSS) if the following

three conditions are satisfied:
1. The mean of the process is a constani,n) =m,,.
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2. The autocorrelation,(k,l) depends only on the differende], i.e., r (k,1)=r (k-1).
3. The variance of the process is finitg (0) <.

The harmonic process with random phase (see Example 12) is a Wi8&rprocess because, (n) =0,

r, (k1) = (1/2) A? cos{(k —I)a)o] that depends only ded, andc, (0) =r,(0) = (1/2) A% is bounded by noting

G, (k) =1 (k1) =m, (K)m (1) =, (k,I) .

The wide sense stationarity is a weaker condition than secondstatienarity because the constraints are
placed on ensemble averages rather than on density functions. Faussidd process, wide-sense
stationarity is equivalent to strict-sense stationarity becafithe fact that a Gaussian process is completely

defined in terms of the mean and covariance.
Note that if an autocorrelation of a random process is of the fQfikn—1) or r,(k), the process is not

necessarily WSS. For exampleg,(k) = 2¢ is not a valid autocorrelation for a WSS random process. Why?

Example 14. Wide sense stationarity of a harmonic process with random amplitude
Consider a real-valued harmonic random process
x(n) = Asin(nw, + @), (66)
where the frequency, and the phase are fixed constants, but the amplitidles a random variable that is
uniformly distributed over the intervab,[c] with c>b. Determine the stationarity of the random process.

Solution. The mean of the process is by definition

m,(n) = E{x(n)} = E{Asin(ha, + )} = E{ A} sin(hew, + ¢) =%sin(na)O +¢) (67)

which depends on. Therefore, a harmonic process with random amplitude is not WSS.

Properties of the autocorrelation sequence of a WSS process:

Property 1 — Symmetry. The autocorrelation sequence of a WSS random progesds a conjugate
symmetric function ok, |r (k) =r, (—K)|.

For a real process, the autocorrelation sequence is symmig(g,=r, (—k)|.

This property follows from the definition, i.ex, (k) = E{x(n + k)x' (n)} = E{x (mx(n + k)} =/ (k).

Property 2 — Mean-sguare value. The autocorrelation sequence of a WSS random prag@sat lagk = 0 is
equal to the mean-square value of the proce$d) = E{| x(n)J?} 20|,

Property 3 — Maximum value. The magnitude of the autocorrelation sequence of a WSS random pi(ogess
at lagk is upper bounded by its valuekat 0,|r , (0) 2|rx(k)| )

This property may be explained in such a way that the correlatioe®etive same variablegn), is always
equal to or greater than the correlation between different variatihe) andx(n) for k #0.

Property 4 — Periodicity. If the autocorrelation sequence of a WSS random prode$ss such that
r.(ky) =r,(0) for somek,, thenr (k) is periodic with periodk, . Furthermore,E{| x(n) = x(n - ko)|2}:0,

andx(n) is said to benean-sgquare periodic.
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For exampler (k) = 05A% coskrr) is periodic with a period of 2.

Questions (1): Which one(s) of the following autocorrelations is valid for WSS random processes?
(i) (k)= 2K (i) 1 (k) = (/2" (i) 1, (k) = [1/2); (v) (k) = @2)+ (2
(V) r (k) ==29(k) +(k—=1) + S(k +1) ; (vi) r,(k) =12d(k) +I(k-1) +5(k +1).

Joint wide sense stationarity of two random processes:

Two random processeén) andy(n) are said to bgintly wide-sense stationary if x(n) andy(n) are wide-
sense stationary (i.ex (k1) =r,(k=1) and r (k,1)=r (k-1)) and if the cross-correlatiom,, (k)

depends only on the differende+|, i.e.,
Ny (KD =rg(k+nl+n)=r, (k-1) (68)

which is a function only of the lay,—1. This implies that two WSS random procesg@e$ andy(n) are not
jointly WSS if r, (k,1) #r , (k=1).

The Autocorrelation and Autocovariance Matrices

Definition of autocorrelation and autocovariance matrices:
An autocorrelation matribR , is the matrix form of an autocorrelation sequence of a random prx{(cgss

and it is defined aR, = E{xx"} wherex= [x((),x(l),~--,x( p)]T is the vector op+1 values of a random
proces(n), and x™ =(x")" =b<*((),x* (1),~--,x*(p)] is the Hermitian transpose (the Hermitian transpose
of A, denoted byA" , is the complex conjugate of the transposa dfe., A" =(A")T =(AT)").
The autocorrelation matriR , is a compact, convenient form that is often used in the following alsapte
as well as in MATLAB programming. It is explicitly written as
X0 @) xOx @ .. xOX(p)] [0 r,OY .. r,Op

XHXx 0) x@Ox @ .. x@Ox(p) [[_| @O r@) .. r@&p)

R, =E{xx"}=E (69)

x(P)X (0) x(P)X @ ... x(P)X (p) n(p0) rn(pl) .. r(p.p)
wherer (k,1) = E{x(k)X (1)} is the autocorrelation. Note that thg(k,k) = E{] x(k)|*} are always real !
If a random procesgn) is WSS, thenr (k) =r, (—k) , and thus the autocorrelation matfx,_ becomes

O O .. () ]
n® 1,0 .. r(p-D

R, =E{xx"}=|r 2 r,@ r(p-2) (70)
(P (P-D) . O

The autocorrelation matriR, isa(p+21) x(p+1) square matrix.

Similarly, the autocovariance matrix of a random progéssis defined as

C,=E{x-m)(x-m,)"} (71)
and the relationship betwedt, andC, is
C,=R,-m,m," (72)
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wherem  =[m,,m_,---,m,|" is a vector of lengthp-1) containing the mean value of the WSS process. For

Properties of autocorrelation matrix:

Property 1. The autocorrelation matrix of a WSS random progégsis a Hermitian Toeplitz matrix,
R,=Toedr (0), r. @, ... r,(p)}.

Note that not all Hermitian Toeplitz matrices (see p. 38) represent a valimberetation matrix.

Property 2. The autocorrelation matrix of a WSS random progégsis nonnegative definiteR ,>0.

Property 2 is a necessary condition that a given sequep@g for k=0, 1, ..., p represents the

autocorrelation values of a WSS random process (see p. 40 for ‘nonnegative definite’).

Property 3. The eigenvaluesd,, of the autocorrelation matrix of a WSS random proo#sp are real-

valued and nonnegative.

This property is a result of the fact that the autocorrelation matrix is Henraitd nonnegative definite.

Example 15. Determine whether or not the following matrices are valid autocorrelatiaicesat

3 -1 1 4i 1 1 4 1-j
()R,=|1 5 -1 (i) R,=[1 5 1 (i) Ry=|1+] 4 1-]
-1 1 3 1 1 3j —j 1+j 4

(i) R, is not a valid autocorrelation matrix since it is real-valued and not symmetric
(i) R, is not a valid autocorrelation matrix either since the entries along the diagocéireal-valued.
(i) R4 is avalid autocorrelation matrix since it is a Hermitian Toeplitz maRiys Toer{4 1+ - j}

and nonnegative definite.
Ergodicity

It has been seen that the mean and autocorrelation of a random arecdssermined from the ensemble
averages of all possible discrete-time signals in the enseirdblvever in practice when only one single
realization of a random process is available to us and we wartetondee the mean and the autocorrelation
from the single realization, then we need to consider the ergodititije process. When the mean or
autocorrelation of a random process can be found from approfpnetaver ages of one single realization of
the process, the process is mean-ergodic or autocorrelation-erfiogliergodicity of a random process, as
will be seen later, is important in estimating its autocorrelation and powerispen practice.
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Mean Ergodicity

Definition. If the sample meamn, (N) of awide-sense stationary process converges tm, in the mean-
square sensell\ljm E{|th(N) -m, |2}= 0, then the process is said todsgodic in the mean and we write

’Lim m,(N)=m,.

In order for the sample mean to converge in the mean-square sense it is nendssafficeent that
the sample mean be asymptotically unbiager, E{f, (N)} =m_, and

the variance of the sample mean goes to zefd aso, i.e.,'!‘im Var{rﬁX(N)} =0.

Mean Ergodic Theorem 1. Let x(n) to be a WSS random process with autocovariance seqee(ice A

necessary and sufficient condition forx(n) to be ergodic in the mean is

1N—1
lim—>» c,(k)=0.
fim 2,009

Mean Ergodic Theorem 2. Let x(n) to be a WSS random process with autocovariance sequefice

Sufficient conditions forx(n) to be ergodic in the mean are tltg{0) <
lI(im c.(k)=0

Example 16. Stationarity and ergodicity of a random process

Consider a random proces@)=A whereA is a random variable that is uniformly distributed over the
interval b, c] with c>b. Determine the stationarity and the mean ergodicity of the random process.
Solution. The mean of the process is

b+c

m, (n) = E{x(n)} = E{A} = (73)

which is a constant. The autocorrelation is
" c 1 (° c®-b® c?+chb+b?

r. (k,1) = E{x(kK)x (1)t = E{A? =Iazf a)da=——|a?da = = 74

() =EXX (O} =Ela%} = | a?f(@yda =~ | o-b) : (74)
which is a constant either.

0, =1, ~m, ()m; (k) = E{a°}- E%{4} = var{ A} = o -b) (75)

Eqg. (75) shows that, (k) , which is equal to the variance, is a constant fok,alnd c, (0) <o . Thus, the
process is WSS. From Eq. (75), it follows that

N-1

1 1,
lim D", (k)= (c=b)*

k=0

is not zero sincd # ¢. Thus, the process is not ergodic in the mean.

Autocorrelation Ergodicity
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N-1
Definition. If the sample autocorrelatiorﬁx(k,N)z(1/N)Z x(N)x (n—-k) of a wide-sense stationary
n=0

process converges to (k) in the mean-square sens&m E{|fx(k, N) —rx(k)|2}=0, then the process

7]

said to beautocorrelation ergodic and we write
,Lim (K, N)=r,(K).

The autocorrelation ergodicity is useful in the following chapter concerning speestimation.
White Noise

White noise v(n) is a WSS process that has the autocovariance function,

¢, (k) = o7o(K). (76)
It is simply a sequence ahcorrelated random variables, each having a variancerpf In other wordsy(n)
andv(n+k) are uncorrelated fok #0 sincec,(k) =0, or r, (k) =|m,|2, for k #0. Thus, knowledge of one

does not help in the estimation of the other using a linear estitfrater to the sectiohinear Mean-

Square Estimation in the first lecture).
Note that white noise is often assumed to have zero mean, and,tkps r, (k) . Also note that there is an

infinite variety of white noise random processes because the untedredadom variables can be an infinite
variety of different distribution and density functiors., white Gaussian noise and white Bernoulli noise.

The Power Spectrum

Definition:
The power spectrum or power spectral density of a random procesg(n) is the discrete-time Fourier
transform of the random process autocorrelation seque{ge (that is a deterministic sequence),

P(e9)= Yr (ke ke (77)
k=—co

The autocorrelation sequence may be determined by taking the inverse dis@dtettrier transform of the
power spectrun®, (e'“)

F(K) = j P, (e')e“daw (78)
2l
The power spectrum or power spectral density can be obtained usmgahsform ofr (k) as follows,
P2 =2{r (K} = S,z (79)
k=—c0

which, in some cases, is more convenient.

The power spectrum is the spectrum of power that is relatedheitinean square values of random signals,
eg., 1,(0)=E{ x(n)[*}.

Note that since a random process is an ensemble of discretsigimaés, we can compute the FourierZgr
transform of each discrete-time signal in the process, but we can not compuiarike (6rz-) transform of
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the random process itself. Instead, we calculate the power speatramandom procesgn), Px(ej“’),
which is the discrete-time Fourier transform of the deterministic autéatoresequence , (k) .

Properties of the power spectrum of a WSS random process:

Property 1-Symmetry. The power spectrum of a WSS random procefy is a real-valued
P (e!”)=P; (e/¥), andP,(2) satisfies the symmetry condition

P.(2) =P, U/ Z)
In addition, ifx(n) is real then the power is eveR,(e!”) = P, (€'“), which implies that

P.(2) =P ()

Property 2—Positivity. The power spectrum of a WSS random progé®dsis nonnegative
P (e/*)20

Property 3-Total power. The power in a zero mean WSS random progéygsis proportional to the area
under the power spectral density curve

e x}=r 0= [P

Property 4-Eigenvalue Extremal Property. The eigenvalues of thex n autocorrelation matrix of a zero
mean WSS random process are upper and lower bounded by the maximum andnmiratoes,

respectively, of the power spectrum,
min P, (e'“) < A, < maxP, (e'“)
w w

Questions (2): Which one(s) of the following power spectrum is (are) valid for WSS random prdagesses

_ ~ o . _2+z . _ 1
(i) P.(2)=5+(z" +2), (i) P, (2 ey (iii) P,(2) GrrH)(3+2)
. o\ _ jwy — 1 i jo ——1
(iv) P, (€’ )—m, (V) P(¢’ )_—1—0.80050) , and (vi) B (e’”) = 1-0.8sin

Example 17. The power spectrum
() The power spectrum of a harmonic process with random phase in Example 12.

Solution. From Example 12 it follows that the autocorrelation of the random phase harmonic process is
r (k) = @/2) A% coskw,) (80)

and the power spectrum is
P, (el?) = irx(k)e'”‘“’ =A7zicoskwo)e‘ik“ :A?zi%-ikw
k=—co k=0 k=00 (81)
=”%2[5(w—w0) +8(w+ )]
where the DTFT relatiorx(n) = e/"™® _, X(e!¥) = 2/m0(w-w,) is used. ObviouslyP, (') is real, even

and nonnegative.
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(i) The power spectrum of a random process that has an autocorrelation serqu(lle)reer'k' where|a |<1.

Solution. From the definition of the power spectrum in Eq. (77), it follows that

Px(eja)) — zrx(k)e—]kw — Za—ke—ka + zake—]kw — zakejkw -1+ Zake—Jka)
k=-c0 k=-c0 k=0 k=0 k=0 82
, (82)

S S 1-a

1-ge“ 1-gel® T 1-2a cosw+a’
Obviously, P, (e!“) is real and nonnegative, and it is even siRg@!”) =P, (e7'%).

Answers to questions (1): (i) Na,, (0) <r (k) for k| > O; (ii) Yes; (iii) No, since it is not symmetric, i.e.,
r(k) zr, (-k); (iv) No, sincer,(0)=1<r,(1)=r,(-1) =1.25 althoughr (k) is symmetric; (v) No, since
r.(0)=-2 is negative, and, (0) =-2<r, (1) =r, (-1 =1, (vi) Yes.

Answers to questions (2): (i) Yes; (i) No, sinBg(z) is not symmetric, i.e.P (2) # P,(z) ; (iii) Yes; (iv)
No, since P(e'”)<0 for |aj>27/3; (v) Yes; (vi) No, since P (e'”) is not symmetric,
P (e") % P (7).

Some useful MATLAB functions for studying random processes
>> rand() % creates uniformly distributed random processes.

>> randn() % creates Gaussian (normal) random processes.

>> toeplitz (R) % produces a Toeplitz matrix.

>> xcorr() % auto- and cross-correlation function estimates.

>> xcov() % auto- and cross-covariance function estimates.

The MATLAB functions for studying random variables are also useful for random pescess
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