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DISCRETE-TIME RANDOM PROCESS (2) 
 

RANDOM PROCESSES 

 

Random Processes 

• Discrete-time random processes:  

• Mean and variance: 

• Autocorrelation and autocovariance:  

• Relationship between random variables in a single random process:  

• Cross-covariance and cross-correlation of two random processes:  

• Relationship between multiple random processes:  

 

Stationary Random Processes 

• Strict-sense stationarity − stationarity in terms of density functions of different order:  

• Wide sense stationarity − stationarity in terms of ensemble average:  

• Properties of the autocorrelation sequence of a WSS process: 

 Symmetry, Mean-square value, Maximum value, Periodicity 

• Joint wide sense stationarity of two random processes: 

 

Autocorrelation and Autocovariance Matrices 

• Definition of autocorrelation and autocovariance matrices:  

• Properties of autocorrelation matrix: 

 

Ergodicity of Random Processes 

• Mean ergodicity 

• Autocorrelation ergodicity 

 

White Noise 

 

The Power Spectrum 

Definition:  

Properties of the power spectrum of a WSS random process: 

 Symmetry, Positivity, Total power 

 

Some useful MATLAB functions for studying random processes 
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RANDOM PROCESSES 

 

Discrete-time random processes:  
• A discrete-time random process x(n) is a collection, or ensemble, of discrete-time signals, )(nxk  where k 

is an integer.  

• A discrete-time random process x(n) is an indexed sequence of random variables if we look at the process 

at a certain ‘fixed’ time instant n (e.g., 0nn = ).  

It should be pointed out that in the Hayes' textbook the term 'discrete-time signal', instead 'discrete-time 

single realization', is used, and thus we keep using 'discrete-time signal' and treat it as an equivalent to 'single 

realization' (as we used in the previous section) or to 'single observation'. We should also note that the term 

'discrete-time signal' is different from 'discrete-time random signal' in the present case. A discrete-time 

random signal x(n) is associated with an ensemble of discrete-time signals )(nxk .  

 

Example 10. A random process is of the form of sinusoid )cos()( 0ωnAnx =  where { }6,,2,1 �=Ω∈A , the 

amplitude is a random variable that assumes any integer number between one and six, each with equal 

probability Pr(A=k)=1/6 (k=1, 2, …, 6). This random process consists of an ensemble of six different 

discrete-time signals )(nxk ,  

 )cos()( 01 ωnnx = , )cos(2)( 02 ωnnx = , … )cos(6)( 06 ωnnx = ,  

each of which shows up with equal probability.  

 

Question: Given a random process )cos()()( 0ωnnAnx = , where the amplitude )(nA  is a random variable 

(at instant n) that assumes any integer number between one and six, each with equal probability, how many 

equally probable discrete-time signals are there in the ensemble?  

 

Example 11. A random process shown in Fig. 1 has an ensemble of different discrete-time signals, each 

occurring according to a certain probability. From a sample space point of view, to each experimental 

outcome iω  in the sample space, there is a corresponding discrete-time signal )(nxi . If we look at the 

random process at a certain ‘fixed’ time instant n, e.g., 0nn = , the signal value )( 0nx  is a random variable 

that is defined on the sample space and has an underlying probability distribution and density functions  
 })(Pr{)( 0)( 0

αα ≤= nxF nx , and ααα ddFf nxnx )()( )()( 00
=   

For a different 0n , )( 0nx  is a random variable at a different time instant. Therefore, a discrete-time random 

process is an indexed sequence of random variables x(n) that is an ensemble of elementary events )(nxi  at n. 

 

 Since a discrete-time random process is an indexed sequence of random variables, the statistical quantities 

(mean, variance, correlation, covariance, etc.) and properties (independence, uncorrelatedness, orthogonality, 

etc.) of random variables studied in the previous section apply to random processes. For a random process, 

therefore, we will have a sequence of mean values and variances of these indexed random variables, and the 
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auto-relationship between the random variables. For multiple random processes we have the cross-

relationship between the processes.   

 

 

 

 

 

 

 

 

 

 Fig. 1.   A random process  

 consisting of an ensemble of  

 different discrete-time signals,  

 each occurring according to  

 a certain probability. 

 

Mean and Variance: 

The mean of a random process x(n) defined as 

 { } ααα dfnxEnm nxx )()()( )(�
∞

∞−
==  (44)  

is a deterministic sequence with the same index as the sequence of random variables x(n).  
If x(n) is a function of another random process )(nζ  with a probability density function )()( αζ nf , i.e., 

[ ])()( ngnx ζ= , then the expected value of x(n) is  

 { } [ ]{ } αααζ ζ dfgngEnxEnm nx )()()()()( )(�
∞

∞−
===  (44’)  

The variance of each random variable x(n) in the sequence  

 { }22 |)()(|)( nmnxEn xx −=σ  (45)  

defines the variance of the random process. )(2 nxσ  is also a deterministic sequence.  

Note that the ‘deterministic’ is the consequence of ensemble average. Thus, we will have { } )()( nmnmE xx =  

and { } )()( 22 nnE xx σσ = . The mean and variance of a random process are the first-order statistics and both, in 

general, depend on n.  

 

Autocorrelation and Autocovariance:  

The autocorrelation is defined as  

 { })(*)(),( lxkxElkrx =  (46)  

The autocovariance is expressed as 

 [ ][ ]{ }*)()()()(),( lmlxkmkxElkc xxx −−= , or )()(),(),( lmkmlkrlkc xxxx
∗−=  (47) 

Note that if k = l then the autocovariance reduces to the variance, 

 ),( kkcx = )(2 kxσ  (48) 
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Auto-correlation and auto-covariance are termed because the correlation and the covariance between the 

random variables x(k) and x(l) are derived from the same random process x(n). The autocorrelation and 

autocovariance sequences provide information about the degree of linear dependence between two variables 

in the same process.  

 

Relationship between random variables in a single random process:  

As in the case of multiple random variables, two random variables in a single random process may be related 

in terms of independence, uncorrelatedness, and orthogonality. Thus, the relations for the multiple random 

variables apply. For example, if ),( lkcx =0 for lk ≠ , then the random variables x(k) and x(l) are uncorrelated 

and knowledge of one does not help in the estimation of the other using a linear estimator. 

 

Example 12. The mean and autocorrelation of a harmonic process with random phase (Example 3.3.1) 

(i) A real-valued harmonic random process is a random process with a form of a sinusoid  

 )sin()( 0 φω += nAnx ,  (49) 

where 0ω  is a fixed constant. Consider the case where the amplitude A is a fixed constant but the phase φ  is 

a random variable. The phase random variable φ  is uniformly distributed over the interval [ ),ππ− , i.e.,  

 
�
�
� <≤−

=
otherwise0;

);2(1
)(

παππ
αφf  (50) 

Find the mean and the autocorrelation of the harmonic process. 

Solution. The mean of the process is by definition 

 { } 0
2

1
)sin()()sin()()( 00 =+=+== �� −

∞

∞−

π

π
φ α

π
αωαααω dnAdfnAnxEnmx  (51) 

Thus, the random phase harmonic process is a zero mean process.  

The autocorrelation of the process is determined by 

 

{ } { }
[ ]{ } [ ]{ }

[ ]0
2

0
2

0
2

00
*

)(cos
2

1

2)(cos
2

1
)(cos

2

1

)sin()sin()()(),(

ω

φωω

φωφω

lkA

lkEAlkEA

lAkAElxkxElkrx

−=

++−−=

++==

 (52) 

where the trigonometric identity [ ] 2)cos()cos()sin()sin( BABABA +−−=  and the integral relation 

[ ]{ } ( ) [ ] 02)(cos212)(cos 00 =++=++ �−
π
π ααωπφω dlklkE  are used. 

(ii) A complex-valued harmonic random process is of the form  

 )exp()( 0 φω += nAnx ,  (53) 

where 0ω  and A are fixed constants and the phase φ  is a uniformly-distribute random variable defined in 

Eq. (50). Find the mean and the autocorrelation of the complex harmonic process. 

Solution. The mean is  

 { } { } { } 0)sin()cos()exp()()( 000 =+++=+== φωφωφω nAjnAEnAEnxEnmx  (54) 

The autocorrelation is  

 
{ } [ ] [ ]{ }

[ ]{ } [ ]0
2

0
*

0
*

0
*

)(exp||)(exp

)(exp)(exp)()(),(

ωω
φωφω

lkjAlkjEAA

ljAkjAElxkxElkrx

−=−=

+−+==
 (55) 
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From Eqs. (51), (52), (54) and (55), it follows that both the real- and complex-valued harmonic processes 

have a zero mean and an autocorrelation that only depends on the difference between k and l.   

 

Cross-covariance and Cross-correlation of two random processes:  

The cross-correlation of two random processes x(n) and y(n) is  
 { })(*)(),( lykxElkrxy =  (56)  

The cross-covariance is  

 [ ][ ]{ }*)()()()(),( lmlykmkxElkc yxxy −−= , or  )()(),(),( lmkmlkrlkc yxxyxy
∗−=  (57) 

Cross-correlation and cross-covariance are named because the correlation and the covariance between the 

random variables are derived from the different random process. Obviously, the autocorrelation and 

autocovariance are the special cases of the cross-correlation and cross-covariance, respectively, for x(n) = 

y(n). Cross-correlation is very useful in signal detection in which the issue of interest is to find whether or 

not a desired signal exists in an observed (noisy) signal. 

 

Example 13. Cross-correlation  
Consider two random processes x(n) and y(n), where x(n) is known with mean )(nmx  and autocorrelation 

),( lkrx , and y(n) is the convolution of x(n) with a deterministic sequence h(n), as follows 

 �
∞

−∞=

−=
m

mnxmhny )()()( .  (58) 

Find (i) the cross-correlation between x(n) and y(n) and (ii) the cross-correlation between y(n) and x(n). 

{ } { } ���
∞

−∞=

∗
∞

−∞=

∗∗
∞

−∞=

∗∗∗ −=−=
�
�
�

�
�
�

−==
m

x
mm

xy mlkrmhmlxkxEmhmlxmhkxElykxElkr ),()()()()()()()()()(),(  

  (59) 
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�
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�
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m
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yx lmkrmhlxmkxEmhlxmkxmhElxkyElkr ),()()()()()()()()()(),( **  

  (60) 

 ),(),( lkrlkr yxxy ≠  (61) 

 

Relationship between multiple random processes:  

Two random processes x(n) and y(n) are said to be uncorrelated if  
 0),( =lkcxy   (62) 

for all k and l or, equivalently, if  

 )()(),( lmkmlkr yxxy
∗=  (63) 

Two random processes x(n) and y(n) are said to be orthogonal if  
 0),( =lkrxy   (64) 

Note that two orthogonal random processes are not necessarily uncorrelated, but the uncorrelated processes 

of which one has a zero mean are orthogonal since )()(),( lmkmlkr yxxy
∗= =0.  
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 If two random processes x(n) and y(n) are uncorrelated and one or both of them has/have a zero mean, 

then the autocorrelation of the sum, z(n) = x(n) + y(n), is  
 ),(),(),( lkrlkrlkr yxz +=  (65) 

 

Stationary Random Processes 

 

 From Example 12, it is known that for a real-valued harmonic process )sin()( 0 φω += nAnx  with 

random phase φ  that is uniformly distributed over the interval [ ),ππ− , the mean 0)( =nmx  is independent 

of time, and the autocorrelation [ ]0
2 )(cos)2/1(),( ωlkAlkrx −=  only depends on the difference between k 

and l. This actually brings up a class of commonly-encountered random processes, that is, a wide sense 

stationary process. That a random process is stationary means that the statistics or ensemble averages of a 

random process are independent of time, i.e., ‘statistical time-invariant’. Several different types of 

stationarity are defined either in terms of density functions of different order or in terms of ensemble average 

operations.  

 

Stationarity in terms of density functions of different order and strict-sense stationarity:  

 A random process x(n) is said to be first-order stationary if the first-order density function of the process 
is independent of time, i.e., )()( )()( αα knxnx ff += , for all k.  

 For a first-order stationary process, thus, we have has time-independent statistics. For example, the mean 

of the process is constant, xx mnm =)(  because =)(nm x ��
∞

∞− +

∞

∞− + = αααααα dfdf knxknx )()( )()(  )( knm x +=  

for all k, and this is true for the variance, i.e., 22 )( xx n σσ = .  

 A random process x(n) is said to be second-order stationary if the second-order joint density function 
),( 21)(),( 21

ααnxnxf  depends on the difference, 21 nn − , and not on individual times 1n  and 2n , which is 

equivalent to ),(),( 21)(),(21)(),( 2121
αααα knxknxnxnx ff ++= .  

 If a random process is second-order stationary, then it will be first-order stationary.  

 A second-order stationary process has second-order time-shift-invariant statistics, e.g., the autocorrelation 

sequence has the property, ),(),( nlnkrlkr xx ++= , which depends only on the difference, k – l, separating 

the two variables x(k) and x(l) in time, )0,(),(),( lkrlllkrlkr xxx −=−−= . Thus, ),( lkr x  is often simply 

written as )( lkr x −  in this case. The difference, k − l, is called lag.  

 A random process x(n) is said to be stationary of order L if the random process x(n) and x(n+k) have the 

same Lth-order joint density functions. A random process is said to be stationary in the strict sense (or strict-

sense stationary) if it is stationary for all orders L. 

 

Stationarity in terms of ensemble average and wide sense stationarity:  

 The stationarity is defined in terms of ensemble average operations such as the mean and autocorrelation 

and autocovariance since they are often given.  

Wide Sense Stationarity. A random process x(n) is said to be wide-sense stationary (WSS) if the following 

three conditions are satisfied:  

 1. The mean of the process is a constant, xx mnm =)( . 
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 2. The autocorrelation ),( lkr x  depends only on the difference, k–l, i.e., ),( lkr x = )( lkr x − . 

 3. The variance of the process is finite, ∞<)0(xc .  

The harmonic process with random phase (see Example 12) is a WSS random process because 0)( =nmx , 

[ ]0
2 )(cos)2/1(),( ωlkAlkrx −=  that depends only on k–l, and 2)2/1()0()0( Arc xx ==  is bounded by noting 

),()()(),(),( * lkrlmkmlkrlkc xxxxx =−= .  

The wide sense stationarity is a weaker condition than second-order stationarity because the constraints are 

placed on ensemble averages rather than on density functions. For a Gaussian process, wide-sense 

stationarity is equivalent to strict-sense stationarity because of the fact that a Gaussian process is completely 

defined in terms of the mean and covariance.  

 Note that if an autocorrelation of a random process is of the form )( lkr x −  or )(kr x , the process is not 

necessarily WSS. For example, k
x kr 2)( =  is not a valid autocorrelation for a WSS random process. Why? 

 

Example 14. Wide sense stationarity of a harmonic process with random amplitude  

Consider a real-valued harmonic random process  

 )sin()( 0 φω += nAnx ,  (66) 

where the frequency 0ω  and the phase φ  are fixed constants, but the amplitude A is a random variable that is 

uniformly distributed over the interval [b, c] with c>b. Determine the stationarity of the random process.  

Solution. The mean of the process is by definition 

 { } { } { } )sin(
2

)sin()sin()()( 000 φωφωφω ++=+=+== n
cb

nAEnAEnxEnmx  (67) 

which depends on n. Therefore, a harmonic process with random amplitude is not WSS. 

 

Properties of the autocorrelation sequence of a WSS process:  

Property 1 – Symmetry. The autocorrelation sequence of a WSS random process x(n) is a conjugate 

symmetric function of k,  )()( * krkr xx −= . 

For a real process, the autocorrelation sequence is symmetric, )()( krkr xx −= . 

This property follows from the definition, i.e., { } { } )()()()()()( *** krknxnxEnxknxEkr xx −=+=+= . 

 

Property 2 – Mean-square value. The autocorrelation sequence of a WSS random process x(n) at lag k = 0 is 

equal to the mean-square value of the process 0}|)({|)0( 2 ≥= nxEr x . 

 

Property 3 – Maximum value. The magnitude of the autocorrelation sequence of a WSS random process x(n) 

at lag k is upper bounded by its value at k = 0, )()0( krr xx ≥ . 

This property may be explained in such a way that the correlation between the same variables, x(n), is always 

equal to or greater than the correlation between different variables, x(n+k) and x(n) for 0≠k .  

 

Property 4 – Periodicity. If the autocorrelation sequence of a WSS random process x(n) is such that 

)0()( 0 xx rkr =  for some 0k , then )(kr x  is periodic with period 0k . Furthermore, { }2
0 |)()(| knxnxE −− =0, 

and x(n) is said to be mean-square periodic. 
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For example )cos(5.0)( 2 πkAkr x =  is periodic with a period of 2.  

 

Questions (1): Which one(s) of the following autocorrelations is valid for WSS random processes?  

(i) ||2)( k
x kr = ; (ii) ( ) ||21)( k

x kr = ; (iii) ( )k
x kr 21)( = ; (iv) ( ) ( ) |1||1| 2121)( −+ += kk

x kr ;  

(v) )1()1()(2)( ++−+−= kkkkr x δδδ ; (vi) )1()1()(2.1)( ++−+= kkkkr x δδδ .  

 

Joint wide sense stationarity of two random processes: 

 Two random processes x(n) and y(n) are said to be jointly wide-sense stationary if x(n) and y(n) are wide-
sense stationary (i.e., )(),( lkrlkr xx −=  and )(),( lkrlkr yy −= ) and if the cross-correlation ),( lkr xy  

depends only on the difference, k – l, i.e., 
 ),(),( nlnkrlkr xyxy ++= = )( lkr xy −  (68) 

which is a function only of the lag, k – l. This implies that two WSS random processes x(n) and y(n) are not 
jointly WSS if )(),( lkrlkr xyxy −≠ .  

 

The Autocorrelation and Autocovariance Matrices 

 

Definition of autocorrelation and autocovariance matrices:  
An autocorrelation matrix xR  is the matrix form of an autocorrelation sequence of a random process x(n), 

and it is defined as }{ H
x E xxR =  where [ ]Tpxxx )(,),1(,)0( �=x  is the vector of p+1 values of a random 

process x(n), and [ ])(,),1(,)0()( **** pxxxTH
�== xx  is the Hermitian transpose (the Hermitian transpose 

of A, denoted by HA , is the complex conjugate of the transpose of A, i.e., ** )()( TTH AAA == ).  

 The autocorrelation matrix xR  is a compact, convenient form that is often used in the following chapters 

as well as in MATLAB programming. It is explicitly written as  
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where )}()({),( * lxkxElkr x =  is the autocorrelation. Note that the }|)({|),( 2kxEkkr x =  are always real ! 

 If a random process x(n) is WSS, then )()( * krkr xx −= , and thus the autocorrelation matrix xR  becomes  
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The autocorrelation matrix xR  is a )1()1( +×+ pp  square matrix.  

Similarly, the autocovariance matrix of a random process x(n) is defined as  

 { }H
xxx E ))(( mxmxC −−=   (71) 

and the relationship between xR  and xC  is  

 H
xxxx mmRC −=  (72) 
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where [ ]T
xxxx mmm ,,, �=m  is a vector of length (p+1) containing the mean value of the WSS process. For 

0m =x , xx RC = .  

 

Properties of autocorrelation matrix:  

 

Property 1. The autocorrelation matrix of a WSS random process x(n) is a Hermitian Toeplitz matrix, 

  { })(...,),1(),0(Toep prrr xxxx =R . 

Note that not all Hermitian Toeplitz matrices (see p. 38) represent a valid autocorrelation matrix.  

 

Property 2. The autocorrelation matrix of a WSS random process x(n) is nonnegative definite, 0>xR . 

Property 2 is a necessary condition that a given sequence )(krx  for k=0, 1, …, p represents the 

autocorrelation values of a WSS random process  (see p. 40 for ‘nonnegative definite’).  

 

Property 3. The eigenvalues, kλ , of the autocorrelation matrix of a WSS random process x(n) are real-

valued and nonnegative. 

This property is a result of the fact that the autocorrelation matrix is Hermitian and nonnegative definite.   

 

Example 15. Determine whether or not the following matrices are valid autocorrelation matrices: 

 (i) 
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R  

(i) 1R  is not a valid autocorrelation matrix since it is real-valued and not symmetric. 

(ii) 2R  is not a valid autocorrelation matrix either since the entries along the diagonal is not real-valued. 

(iii) 3R  is a valid autocorrelation matrix since it is a Hermitian Toeplitz matrix, { }jj −+= 14Toep3R  

and nonnegative definite. 

 

Ergodicity 

 

It has been seen that the mean and autocorrelation of a random process are determined from the ensemble 

averages of all possible discrete-time signals in the ensemble. However in practice when only one single 

realization of a random process is available to us and we want to determine the mean and the autocorrelation 

from the single realization, then we need to consider the ergodicity of the process. When the mean or 

autocorrelation of a random process can be found from appropriate time averages of one single realization of 

the process, the process is mean-ergodic or autocorrelation-ergodic. The ergodicity of a random process, as 

will be seen later, is important in estimating its autocorrelation and power spectrum in practice.  
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Mean Ergodicity 

 

Definition. If the sample mean )(ˆ Nm x  of a wide-sense stationary process converges to xm  in the mean-

square sense, { } ,0|)(ˆ|lim 2 =−
∞→ xx

N
mNmE  then the process is said to be ergodic in the mean and we write  

  xx
N

mNm =
∞→

)(ˆlim . 

In order for the sample mean to converge in the mean-square sense it is necessary and sufficient that  
 the sample mean be asymptotically unbiased, { } xx

N
mNmE =

∞→
)(ˆlim , and  

 the variance of the sample mean goes to zero as ∞→N , i.e., { } 0)(ˆVarlim =
∞→

Nmx
N

. 

Mean Ergodic Theorem 1. Let x(n) to be a WSS random process with autocovariance sequence )(kc x . A 

necessary and sufficient condition for x(n) to be ergodic in the mean is  

 0)(
1

lim
1

0

=�
−

=
∞→

N

k
x

N
kc

N
. 

 

Mean Ergodic Theorem 2. Let x(n) to be a WSS random process with autocovariance sequence )(kc x . 

Sufficient conditions for x(n) to be ergodic in the mean are that ∞<)0(xc   

 0)(lim =
∞→

kc x
k

 

 

Example 16. Stationarity and ergodicity of a random process 

Consider a random process x(n)=A where A is a random variable that is uniformly distributed over the 

interval [b, c] with c>b. Determine the stationarity and the mean ergodicity of the random process.  

Solution. The mean of the process is  

 { } { }
2

)()(
cb

AEnxEnmx

+===  (73) 

which is a constant. The autocorrelation is  

 { } { }2* )()(),( AElxkxElkrx ==
3)(3

1
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2233
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−
== �� ααααα  (74) 

which is a constant either.  

 { } { }AEAEkmkmkrkc xxxx
22* )()()()( −=−= { } ( )2

12

1
Var bcA −==  (75) 

Eq. (75) shows that )(kcx , which is equal to the variance, is a constant for all k, and ∞<)0(xc . Thus, the 

process is WSS. From Eq. (75), it follows that  
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is not zero since cb ≠ . Thus, the process is not ergodic in the mean. 

 

Autocorrelation Ergodicity 
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Definition. If the sample autocorrelation �
−

=
−=

1

0

* )()()/1(),(ˆ
N

n
x knxnxNNkr  of a wide-sense stationary 

process converges to )(kr x  in the mean-square sense, { } ,0|)(),(ˆ|lim 2 =−
∞→

krNkrE xx
N

 then the process is 

said to be autocorrelation ergodic and we write  
  )(),(ˆlim krNkr xx

N
=

∞→
. 

The autocorrelation ergodicity is useful in the following chapter concerning spectrum estimation.  

 

White Noise 

 

White noise v(n) is a WSS process that has the autocovariance function,  

 )()( 2 kkc vv δσ= .  (76) 

It is simply a sequence of uncorrelated random variables, each having a variance of 2
vσ . In other words, v(n) 

and v(n+k) are uncorrelated for 0≠k  since 0)( =kcv , or 
2

)( vv mkr = , for 0≠k . Thus, knowledge of one 

does not help in the estimation of the other using a linear estimator (refer to the section Linear Mean-

Square Estimation in the first lecture).  

Note that white noise is often assumed to have zero mean, and thus )()( krkc vv = . Also note that there is an 

infinite variety of white noise random processes because the uncorrelated random variables can be an infinite 

variety of different distribution and density functions, e.g., white Gaussian noise and white Bernoulli noise.  

 

The Power Spectrum 

 

Definition:  

The power spectrum or power spectral density of a random process x(n) is the discrete-time Fourier 

transform of the random process autocorrelation sequence )(kr x  (that is a deterministic sequence),  
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j
x ekreP ωω )()(  (77) 

The autocorrelation sequence may be determined by taking the inverse discrete-time Fourier transform of the 

power spectrum )( ωj
x eP  
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The power spectrum or power spectral density can be obtained using the z-transform of )(kr x as follows,  
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�
zP )()()(  (79) 

which, in some cases, is more convenient.  

The power spectrum is the spectrum of power that is related with the mean square values of random signals, 

e.g., }|)({|)0( 2nxEr x = . 

Note that since a random process is an ensemble of discrete-time signals, we can compute the Fourier (or z-) 

transform of each discrete-time signal in the process, but we can not compute the Fourier (or z-) transform of 
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the random process itself. Instead, we calculate the power spectrum of a random process x(n), )( ωj
x eP , 

which is the discrete-time Fourier transform of the deterministic autocorrelation sequence )(kr x .   
 
Properties of the power spectrum of a WSS random process:  
 

Property 1–Symmetry. The power spectrum of a WSS random process x(n) is a real-valued, 

)()( * ωω j
x

j
x ePeP = , and )(zPx  satisfies the symmetry condition  

 *)/1()( * zPzP xx =  

In addition, if x(n) is real then the power is even, )()( ωω j
x

j
x ePeP −= , which implies that  

 *)()( * zPzP xx =  

 

Property 2–Positivity. The power spectrum of a WSS random process x(n) is nonnegative  

 0)( ≥ωj
x eP  

Property 3–Total power. The power in a zero mean WSS random process x(n) is proportional to the area 

under the power spectral density curve  

 { } �−==
π

π

ω ω
π

dePrnxE j
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Property 4–Eigenvalue Extremal Property. The eigenvalues of the nn ×  autocorrelation matrix of a zero 

mean WSS random process are upper and lower bounded by the maximum and minimum values, 

respectively, of the power spectrum, 

 )(max)(min ω

ω

ω
ω

λ j
xi

j
x ePeP ≤≤  

 

Questions (2): Which one(s) of the following power spectrum is (are) valid for WSS random processes?  

 (i) )(5)( 1 zzzP x ++= − , (ii) 
12

2
)( −+

+=
z

z
zP x , (iii) 

)3)(3(

1
)(

1 zz
zP x ++

= − ,  

 (iv) 
ω

ω

cos21

1
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+
=j

x eP , (v) 
ω

ω

cos8.01

1
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−
=j

x eP , and (vi) 
ω

ω

sin8.01

1
)(

−
=j

x eP .  

 

Example 17. The power spectrum 

(i) The power spectrum of a harmonic process with random phase in Example 12. 

Solution. From Example 12 it follows that the autocorrelation of the random phase harmonic process is 

 )cos()2/1()( 0
2 ωkAkrx =  (80) 

and the power spectrum is  
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 (81) 

where the DTFT relation )(2)()( 0
0 ωωπδωω −=→= jjn eXenx  is used. Obviously, )( ωj

x eP  is real, even 

and nonnegative. 
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(ii) The power spectrum of a random process that has an autocorrelation sequence ||)( k
x kr α=  where 1|| <α .  

Solution. From the definition of the power spectrum in Eq. (77), it follows that  
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Obviously, )( ωj
x eP  is real and nonnegative, and it is even since )( ωj

x eP = )( ωj
x eP − .  

 

Answers to questions (1): (i) No, )()0( krr xx <  for |k| > 0; (ii) Yes; (iii) No, since it is not symmetric, i.e., 

)()( krkr xx −≠ ; (iv) No, since )0(xr =1< )1(xr = )1(−xr =1.25 although )(kr x  is symmetric; (v) No, since 

2)0( −=xr  is negative, and 2)0( −=xr < )1(xr = )1(−xr =1; (vi) Yes. 

Answers to questions (2): (i) Yes; (ii) No, since )(zPx  is not symmetric, i.e., )()( 1−≠ zPzP xx ; (iii) Yes; (iv) 

No, since 0)( <ωj
x eP  for 3/2πω > ; (v) Yes; (vi) No, since )( ωj

x eP  is not symmetric, 

)()( ωω j
x

j
x ePeP −≠ .  

 

Some useful MATLAB functions for studying random processes 

 

>> rand() % creates uniformly distributed random processes.  

>> randn() % creates Gaussian (normal) random processes.  

>> toeplitz (R) % produces a Toeplitz matrix. 

>> xcorr() % auto- and cross-correlation function estimates. 

>> xcov() % auto- and cross-covariance function estimates. 

 

The MATLAB functions for studying random variables are also useful for random processes. 


