Recommended names for the signals and the filter's system functions used in Task 1

x(n) is the noisy (voice) signal

d(n) is the desired signal

 $v_1(n)$ is the ambient noise received by the primary sensor.

 $v_2(n)$ is the ambient noise received by the secondary sensor,

 $\hat{v}_1(n)$ is the estimate of $v_1(n)$

 $\hat{d}(n)$ is the estimate of d(n), $\hat{d}(n) = x(n) - \hat{v}_1(n)$.

B(z) is the numerator of system function H(z)=B(z)/A(z)

Names for the stationary noise case,

x_st for x(n)**v2_st** for $v_2(n)$

B_st_wie for B(z) of the FIR Wiener filter **v1_st_wie** for $\hat{v}_1(n)$ from the Wiener filter **d_st_wie** (=**x_st - v1_st_wie**) for $\hat{d}(n)$ from the Wiener filter

B_st_lms for B(z) of the FIR adaptive filter (based on the LMS algorithm) **v1_st_lms** for $\hat{v}_1(n)$ from the adaptive filter **d_st_lms** (=**x_st - v1_st_lms**) for $\hat{d}(n)$ from the adaptive filter

Names for the non-stationary noise case,

x_nst for x(n), **v2_nst** for $v_2(n)$,

B_nst_wie for B(z) of the FIR Wiener filter **v1_nst_wie** for $\hat{v}_1(n)$ from the Wiener filter **d_nst_wie** (=**x_nst - v1_nst_wie**) for $\hat{d}(n)$ from the Wiener filter

B_nst_lms for B(z) of the FIR adaptive filter (based on the LMS algorithm) **v1_nst_lms** for $\hat{v}_1(n)$ from the adaptive filter

d_nst_lms (=**x_nst** – **v1_nst_lms**) for $\hat{d}(n)$ from the adaptive filter