# **SENSORS and TRANSDUCERS**

Klas Hjort, Materialvetenskap

#### (Bio)chemical microtransducers

- Basic considerations
- Principles of detection for (bio)chemical sensors:
  - Chemoresistors
  - Chemocapacitors
  - Chemotransistors
  - Thermal chemical sensors
  - Mass-sensitive chemical sensors
    - Biochemical principles
- Applications

## (Bio)chemical sensors

- Basic definitions
  - (Bio)chemical signals  $\implies$  Electrical signals  $X + M \underset{k_b}{\overset{k_f}{\Leftrightarrow}} (X.M)$
- Change of heat Calorimetric
- Change of charge Conductometric / Amperometric /

Potentiometric

## (Bio)chemical sensors

Typical sensor Measurand Principle Resistance/conductance Tin oxide gas sensor Conductometric Ion selective FET for pH Potentiometric Voltage/e.m.f. Polymeric humidity sensor Capacitive Capacitance/charge Electrochemical cell Amperometric Current Calorimetric Heat/temperature Pellistor gas sensor Piezoelectric or SAW sensors Mass Gravimetric Infra-red detector for methane gas Optical Path length/absorption Surface plasmon Resonant Frequency Fibre-optic Intensity Fluorescent

Table 9.1 Principles, measurands and typical examples of (bio)chemical sensors.

## **Classification of chemical sensors**



# (Bio)chemical sensor materials

| Active material            | Examples                                         | Sensing principles        | Measurands                            |
|----------------------------|--------------------------------------------------|---------------------------|---------------------------------------|
| Thin oxide layer           | SnO <sub>2</sub> , ZnO                           | Surface conductance       | Combustible gases                     |
| Thick porous oxide layers  | $\operatorname{SnO}_2$ , ZnO, TiO <sub>2</sub>   | Bulk conductance          | Combustible gases                     |
| Catalytic metals           | Pd-TiO <sub>2</sub> , Pd-MOS,                    | Surface potential         | Н <sub>2</sub> , СО                   |
| j                          | Pd-MOSFET                                        | Threshold voltage         | Н <sub>2</sub> , NH <sub>3</sub> , CO |
| Ion-selective<br>devices   | AgCl, AgBr                                       | Electrochemical potential | Cl <sup>-</sup> , Br <sup>-</sup>     |
| Catalytic coating          | ThO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> | Heat of combustion        | H <sub>2</sub> , CH <sub>4</sub>      |
| Organic films              | Substituted<br>phthalocyanines                   | Bulk conductance          | NO <sub>x</sub>                       |
| Langmuir-Blodgett<br>films | Steric acid                                      | Piezoelectric/SAW         | Various polar<br>molecules            |
| Conducting polymers        | Poly(pyrrole)                                    | Bulk conductance<br>/mass | Polar compounds,<br>NH <sub>3</sub>   |

Table 9.2 Some common materials used in (bio)chemical microsensors.

\_

-

 $\square$ 

### **Principles of biochemical sensors**



## Chemoresistors



## Tin oxide gas sensors



 Table 9.3 Commercial tin oxide gas sensors [9.3].

| Model   | Category          | Measurand         | Range (ppm)   |
|---------|-------------------|-------------------|---------------|
| TGS 815 | Combustible gases | Methane           | 500 to 10,000 |
| TGS 821 | Combustible gases | Hydrogen          | 50 to 1,000   |
| TGS 824 | Toxic gases       | Ammonia           | 30 to 300     |
| TGS 825 | Toxic gases       | Hydrogen sulphide | 5 to 100      |
| TGS 822 | Organic solvents  | Alcohol, toluene  | 50 to 500     |
| TGS 830 | CFCs              | R-113, R-22       | 100 to 3,000  |
| TGS 800 | Air quality       | Cigarette smoke   | < 10          |
| TGS 550 | Odour             | Sulphur compounds | 0.1 to 10     |

# Chemocapacitors



## Chemotransistors





## Chemotransistors





## **Thermal chemical sensors**



#### Thermistors

| Analyte                       | Enzymes               | $-\Delta E_{\rm h}$ (kJ/mol) |
|-------------------------------|-----------------------|------------------------------|
| Cholesterol                   | Cholesterol oxidase   | 52.9                         |
| Glucose                       | Glucose oxidase (GOx) | 80.0                         |
| H <sub>2</sub> O <sub>2</sub> | Catalase              | 100.4                        |
| Lactate                       | Lactate oxidase       | -                            |
| Urea                          | Urease                | 6.6                          |
| Lipids                        | Lipase                | -                            |
| Peptides                      | Trypsin               | -                            |
| ATP                           | ATPase                | -                            |

 Table 9.5 Molar enthalpies of some common biosensing reactions.

 $\beta$ -D-glucose + H<sub>2</sub>O + O<sub>2</sub>  $\xrightarrow{GOx}$  H<sub>2</sub>O<sub>2</sub> + D-gluconic acid;  $\Delta E_{h1}$ 

$$H_2O_2 \xrightarrow{Catalase} \frac{1}{2}O_2 + H_2O; \Delta E_{h2}$$
 (9.12)

#### **Resonant mass-sensitive sensors**

#### QCMs - quartz crystal microbalances

AT-cut thickness-shear resonators, typical at 10 MHz, m<sub>min</sub> 1 ng

#### SAW - surface acoustic wave devices

Y-cut SAW resonators, typical at 1 GHz, m<sub>min</sub> 1 pg

|                                                                   | Strychnine      |       | β-ionone        |       |
|-------------------------------------------------------------------|-----------------|-------|-----------------|-------|
| Coatings                                                          | $\Delta m$ (ng) | Р     | $\Delta m$ (ng) | Р     |
| Uncoated                                                          | <b>2</b> ± 10   | 10    | <b>2</b> ± 10   | 10    |
| 2C <sub>18</sub> N <sup>+</sup> 2C <sub>1</sub> /PSS <sup>-</sup> | 533 ± 10        | 2,700 | 610 ± 10        | 3,050 |
| DMPE <sup>2</sup>                                                 | $560 \pm 10$    | 2,800 | $540 \pm 10$    | 2,700 |
| Poly(vinyl alcohol)                                               | $4 \pm 10$      | 18    | <b>4</b> ± 10   | 19    |
| Poly(methyl glutamate)                                            | $5 \pm 10$      | 25    | $6 \pm 10$      | 30    |
| Poly(styrene)                                                     | $7 \pm 10$      | 35    | <b>7 ±</b> 10   | 35    |
| Bovine plasma albumin <sup>3</sup>                                | $5 \pm 10$      | 25    | 6 ± 10          | 30    |
| Keratin                                                           | $7 \pm 10$      | 35    | 6 ± 10          | 30    |

**Table 9.7** Adsorption masses and partition coefficients of 19.3 ppm strychnine or  $\beta$ -ionone for various active coatings on a QCM held at 45°C [9.22].

## **Applications of chemical sensors**

 $\square$ 

**Table 9.8** Typical applications of chemical sensors.

| Field of application     | Typical example                                |
|--------------------------|------------------------------------------------|
| Automotive               | Engine control, air quality in car, emission   |
| Aerospace                | Engine control, air quality in cabin, emission |
| Agriculture              | Fertiliser and pesticide control               |
| Chemical analysis        | Laboratory testing of materials                |
| Safety (fire)            | Fire warnings in mines, buildings, houses etc. |
| Process control          | Production of chemicals, foodstuffs, etc.      |
| Environmental monitoring | Detection of pollutants in air, water and soil |
| Medicine                 | Anaesthetic gases, diagnostics, biochemistry   |
| Customs                  | Illegal and dangerous substances (explosives)  |
| Quality control          | Smell/flavour of drinks, foodstuffs, tobacco   |

# BIACORE



## **BIACORE - Surface plasmon detection**



# **S-SENCE (Bio)chemical sensor center**



# Industrial Competence Center at Linköping University:

- High-T sensors on SiC
- New control methods for production quality
- Surveilance of chemical processes
  - Surface plasmon resonance



## **Nordic Sensor Technologies**



#### **Electronic Noses: Arrays of with different materials on the gate**







## **Telair Europe**



Model M-SENSE II: Integrated CO / CO<sub>2</sub> / Moisture / Temperature sensor & ventilation controller

