SENSORS and TRANSDUCERS

Klas Hjort, Materialvetenskap

† INTRODUCTION TO MICROSENSORS

- Microsensors presentation
- Reasons for miniaturization
- History and technology of microsensors
- Scaling laws numerical examples
- Application examples and markets

Reasons for miniaturization

The reasons for miniaturization of sensors are the same as for electronics:

- Cost
- Reliability
- Applicability
- Performance
- New functions

Transducer effects in silicon and other compatible materials

* Transducer effects in silicon - electrons are the information carrier

l/Out		Modulating			
Energy domain	Self-generating	Resistor, inductance, capacitive	Diode	Transistor	Examples of smart transducers
Radiation	Volta effect, solar cell	Photoconductor	Photodiode	Phototransistor	Photo-IC CCD
Mechanical	Not known	Piezoresistivity	Piezojunction	Piezotransistor	Accelerometer Piezo IC
Thermal	Seebeck effect, thermocouple	R = f(T)	Reverse biased I _{rev} = f(T)	Forward biased U _{BE} = f(T)	Temeperature IC
Electrical	Thermal energy, resistance	Electric field MOSFET	Electric field FET	Dual gate MOSFET	All types of IC
Magnetic	Maxwell diffused coil	Magnetoresistor	Magnetic diode	Hall effect	Hall IC
Chemical	Galvanic	lon concentration	Not known	ISFET	Smart nose

Scaling Laws

F	а	t	P/V
L^1	L^{-2}	L ^{3/2}	L ^{-5/2}
L^2	1 L		1 L
L ³	L	L ^{1/2}	L ^{1/2}
L		L	L^2
	$ \frac{F}{L^{1}} $ $ \frac{L^{2}}{L^{3}} $ $ \frac{L^{4}}{L^{4}} $	$ \begin{array}{c c} F & a \\ L^1 & L^{-2} \\ \hline L^2 & L^{-1} \\ \hline L^3 & L^0 \\ \hline L^4 & L^1 \end{array} $	F a t L ¹ L ⁻² L ^{3/2} L ² L ⁻¹ L ¹ L ³ L ⁰ L ^{1/2} L ⁴ L ¹ L ⁰

Scaling Laws

Scaling Laws

$$Q = -\lambda A(T_0 - T_{ext}) = \rho c_p V \frac{dT}{dt}$$
$$\frac{T - T_{ext}}{T_0 - T_{ext}} = e^{-\frac{\lambda A}{\rho c_p V}} t$$
1/time constant

Assuming equilibrium in t = 4 time constants: a Ø 50 µm Ni rod reaches equilibrium in 0.02 s and a Ø 2.5 mm rod in 5 s.

Keller et al. Transducers'95

Developed from the technology of microelectronics:

- Photolithography
- Etching and thin film deposition
- Batch production
- Materials: mostly <u>silicon</u>, metals, quartz, glass, and polymers
- Specialized testing and packaging

masking and etching on armor (fifteenth century)

first photolithography followed by etching (Lemîtres, 1827)

Bulk wet etch micromachining

Deep reactive ion etching

8.

7.

Examples of surface micromachining

Keller et al. Transducers'95

MST Transducer Market Projection

MST Sensor Market Projection

