SENSORS and TRANSDUCERS

Tadeusz Stepinski, Signaler och system

- The Mechanical Energy Domain
 - Physics
 - Surface acoustic waves
 - Silicon microresonators
 - Variable resistance sensors
 - Piezoelectric sensors
 - Capacitive sensors

Mechanical Energy Domain

- * Mechanical transducers are used for determination of quantities such as :
 - Position and (angle) displacement
 - Speed, acceleration
 - Weight and pressure
 - Surface flatness
 - Torsion
 - Vibrations

- **†** Basic physical phenomena used for mechanical transducers :
 - Variable resistance
 - Variable inductance
 - Piezoresistivity effect
 - Piezojunction effect
 - Piezoelectric effect
 - Capacitive effect
 - Surface acoustic waves (SAWs)
 - Microresonators

Piezoresistivity

In 1954 it was discovered that Ge and Si have 100 times higher piezoresistivity than metals.

Resistivity change of a conductor

$$R'_{S} = \frac{l'r'}{S'} = \frac{l + \Delta l}{S + \Delta S} (r + \Delta r) \text{ where:} \qquad R' \text{ - resistance under pressure} \\ \frac{dR}{R} = \frac{dr}{r} + \frac{dl}{l} - \frac{dS}{S} \qquad \qquad P \text{ - resistivity} \\ S \text{ - cross section of the wire} \end{cases}$$

Piezoresistivity

Poisson ratio = (relative change of diameter)/(relative change in length)

$$n = \frac{dD'_D}{dl'_l} = \frac{e_D}{e_L}$$

Gauge factor for strain gauges

$$K = \frac{(dR/R)}{e_L} = 1 + 2n + \frac{dr/r}{e_L}$$

Can be understood as the ratio of relative change in resistance and the relative change in length. Often the resistivity, r, is considered a constant and the gauge factor

$$K = 1 + 2n$$

Piezoresistivity

-For metals the K factor is about 2

-For silicon K factor is much higher

Crystal orientation	n-type Si K factor	p-type Si K factor		
[111]	-13	173		
[110]	-89	121		
[100]	-153	5		

-Disadvantages of silicon as material for strain gauges:

- » Brittle material
- » High temperature coefficient

† Piezojunction effect

-A change in I-V characteristic when a p-n junction is subjected to mechanical strain

Piezoelectricity

-A reversible effect not found in Si and Ge

- » A voltage connected to the material a mechanical change can be observed
- » A mechanical force applied to the material an electrical tension can be observed

-When piezoelectricity is present in materials there is no centre of symmetry

Crystal structure	I	II	III	IV	V	VI	VII
Centrosymmetric				Si ⁴⁺			
Centrosymmetric				Ge ⁴⁺			
Acentric			Ga ³⁺		As ³⁻		
Acentric		Cd ²⁺				S ²⁻	
Acentric		Zn ²⁺				O ²⁻	
Centrosymmetric	Na⁺						Cl

Piezoelectricity

-Example: PI-DMOS

Layers of CdS or ZnO are deposited on silicon substrates to obtain pressure transducers

Capacitive effect

-A change of capacitance is measured as a function of stress

$$e_0 - 8.854 \ 10^{-12} \ F \ m^{-1}$$

d - distance between the plates *m*

A - area of the plates m^2

✤ Surface acoustic waves (SAW)

-Transducers that convert electric signal at the input to an acoustic signal and then again to an electrical signal at the output

Metal film deposed on the piezoelectric substrate

Surface Acoustic Waves

✤ Surface acoustic waves (SAW)

UPPSALA UNIVERSITY

Multiple electrodes tuned to the same frequency generate Reyleigh wave Substrate lithium niobiate

Surface Acoustic Waves

✤ Surface acoustic waves (SAW)

Standard **uniform transducer** has N fingers with constant length and uniform finger pair spacing. Its frequency response takes the form of sinc(x)

$$|H(x)| \approx 2gN \cdot \left|\frac{\sin x}{x}\right|$$
 where $x = \frac{Np(W - W_0)}{W_0}$

 W_0 - center frequency of the transducer

Apodized transducer - by tapering the length of fingers and their spacing, the spectral response of the transducer can be tailored to any given characteristic.

Microresonators

- **†** Silicon microresonators
 - Resonant microsensor (microresonator) a device with a mechanical element at resonating frequency which outputs the resonance frequency changes as a function of a physical or chemical parameter.
 - Microresonators take the form of cantilevers, micro tuning forks and diaphragms
 - Center frequency of cantilever

$$f = 0.16 \cdot \frac{t}{l^2} \cdot \sqrt{\frac{E}{r}}$$

where: *l, t* (m) - length respective thickness of the tongue *E* (Pa) - modulus of elasticity

 ρ (kgm⁻³) - specific mass

Mechanical Energy Domain - Microresonators

- Microresonator types
 - Vibrating strings
 - Vibrating beams
 - Vibrating capsules
- Excitation and detection in silicon microresonators can be performed in different ways:

»Electrostatic excitation - two electrodes in close proximity
»Piezoelectric excitation- built-in piezoelectric material
»Resistive heating excitation - integrated diffused resistor
»Optical heating excitation - periodically activated laser
»Magnetic excitation - electric current + magnetic current

Sensing position and angle

† Strain gauges

Sensing strain and pressure

Voltage divider rule:

$$E_{out} = r \cdot I_T = r \cdot \frac{E_s}{R+r}$$

Potentiometers

- **†** Strain gauges
 - Practical realization
 - Strain measurement 3 axes

Pressure measurement

Piezoelectric sensors

† Crystal Accelerometers

Piezoelectric sensors

† Piezoelectric microphone

Ceramic bender is made of piezoelectric material PZT (lead ziroconate titanate)

Piezoelectric sensors

† Piezoelectric ultrasonic transducers for nondestructive evaluation of materials

Normal contact transducer

UPPSALA UNIVERSITY

Angle transducer

† Principle

$$C = \frac{\mathbf{e} \cdot A}{d}$$

where:

- C capacitance (F)
- ϵ permitivity (F/m)
- A area $(m^{2)}$
- S separation distance of plates (m)

- **†** Applications
 - Seismic mass for detecting acceleration

- **†** Applications
 - Linear displacement detectors

- **†** Applications
 - Capacitor microphone

- Applications
 - Surface roughness detection

Review Questions

- Describe one application of piezojunction effect
- Explain in detail how SAW filter operates
- What is a strain gage? Explain how it works and give an example of an application
- Explain the function of a dummy gage in a strain gage setup
- Describe at least two types of mechanical construction techniques used in making linear capacitive sensors
- What advantage is there is using multiple-plate capacitive sensors rather than single-plate sensors?
- Explain in detail how a piezoelectric substance is used in conjunction with seismic mass to produce accelerometer
- If quartz and piezoelectric crystal are not electrically conductive, explain how it appears that a current is "conducted through" these substances at their resonant frequencies.

