# **SENSORS and TRANSDUCERS**

Tadeusz Stepinski, Signaler och system

#### The Magnetic Energy Domain

- Physics
  - » Magnetism
  - » Hall effect
  - » Superconductivity
  - » Magnetoresistivity
- Variable inductance sensors
- Variable reluctance sensors

- We are considering transduction information into and from the magnetic energy domain.
- **†** Basic mechanisms relevant for our discussion:
  - Hall effect in conductors
  - Hall effect in semiconductors
  - Superconductivity
  - Magnetoresistivity

- **†** Survey of types of magnetism and related forces
  - Lorentz force law

Charge carriers moving in magnetic field are exerted to forces described by

| $E = -q \cdot (\nu \times B)$ | where: | B - magnetic induction |
|-------------------------------|--------|------------------------|
|                               |        | v - electron velocity  |
|                               |        | q - elementary charge  |

| Type of magnetic<br>material | Examples                       | Resulting force as a function of<br>current in a magnetic field with<br>gradient<br>(N) | Resulting magnetic dipole<br>moment when<br>$H_{utw} = 0 \text{ A m}^{-1}$ |
|------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Diamagnetic                  | Cu, salt, water                | F quadratic ( $f$ ); repulsive                                                          | 0                                                                          |
| Paramagnetic                 | Al, Na, liquid oxygen          | F quadratic $(f)$                                                                       | ? 0                                                                        |
| Ferromagnetic                | Ni, Fe                         | F linear (I)                                                                            | >> 0                                                                       |
| Ferrimagnetic                | Fe <sub>3</sub> O <sub>4</sub> | F linear (I)                                                                            | >> 0                                                                       |



- The magnetic orbital moment due to the movement of the electrons in their orbitals
- The magnetic spin moment the electrons are spinning around their axes, so-called Bohr magnetons
- The magnetic core moment the core, with its positive charge also spins around an axis
- Diamagnetic materials net magnetic moment is zero and the force acting in a strong magnetic field is repulsive (it is quadratic with the current above certain field strength)

- Paramagnetic materials in materials with unpaired electrons (the orbital magnetic moments are not balanced) there is a net magnetic moment per atom.
- Langevin function (1905) defines how the magnetic moment depends on magnetic field and temperature

$$M = N \cdot p \cdot \left[ \coth\left(\frac{\mathsf{m}_0 pH}{kT}\right) - \frac{kT}{\mathsf{m}_0 pH} \right] = N \cdot p \cdot L\left(\frac{\mathsf{m}_0 pH}{kT}\right)$$

where: -1 < L (x) < 1 - Langevin function  $M (A m^{-1})$  - total magnetic moment per unit volume  $N (m^{-3})$  - total number of magnetic dipoles per unit volume  $p (A m^2)$  - magnetic dipole moment of the atom  $m_0 = 1.256 \ 637 \ 10^{-6} (A m^{-1})$  $k = 1.38 \ 10^{-23} (J K^{-1})$ 

- **†** Ferromagnetic materials
  - Remanent magnetism occurs
  - Weiss field  $H_{Weiss}$  is present in magnetic domains  $H_{weiss} = | M$

$$M = N \cdot p \cdot L\left(\frac{\mathsf{m}_{0}pH_{a} + \mathsf{I}M}{kT}\right)$$

where: -1 < L(x) < 1 Langevin function  $H_a$  (A m<sup>-1</sup>) - total external applied field

 $C = \frac{M}{H}$  magnetic susceptibility - represents magnetization caused by the external applied field strength, H<sub>a</sub>

**†** Summary - diamagnets, paramagnets and ferromagnets

 $M = \mathbf{c} \cdot H$  $B = \mathbf{m}_0 (1 + \mathbf{c}) H = \mathbf{m}_0 \mathbf{m}_1 H$ 

| Classification | Material                                           | Susceptibility                                         |
|----------------|----------------------------------------------------|--------------------------------------------------------|
|                |                                                    | χ                                                      |
| Diamagnets     | - copper, silver, gold, bismuth                    | Small and negative $\chi = -10^{-5}$                   |
|                | - superconductors                                  | $\chi = -1$                                            |
| Paramagnets    | Aluminum, platinum                                 | Small and positive $\chi = 10^{-3 \text{ to}} 10^{-5}$ |
| Ferromagnets   | Iron, cobalt, nickel and rare earth metals         | Large and positive $\chi = 50$ to $10^4$               |
| Ferrimagnets   | Magnetic ferrites, $Fe_3O_4$ , BaO 6( $Fe_2O_3$ ), | Large and positive                                     |

\* Curie temeprature  $T_C$  - the magnetic polarization is completely randomized and magnetism in ferromagnets vanishes

Curie-Weiss law

$$C = \frac{C}{T - T_C}$$
$$C = \frac{Nm_0m^2}{3k}$$

where: *m - atomic magnetic moment* 

N - number of moments per unit volume

Superconductivity - infinite conductivity below certain temperature  $T_C$ However, a critical field strength  $H_C$  also exists at which the magnetic polarization vanishes

$$H_C(T) = H_0 \left( 1 - \frac{T^2}{T_C^2} \right)$$

where:

 $H_0$  - critical field strength at T = 0 K

 $T_C$  - critical temperature at which superconductivity disappears



#### Hall effect

Discovered by Edwin Hall in 1879.

When a current is flowing in a (semi)conductor which is placed in magnetic field, not parallel with the current direction, an electric field will be generated perpendicular with respect to the current and the field direction



- Hall effect in conductors

Hall voltage can be described by

$$V_{H} = \frac{R_{H}I_{x}B_{z}}{d}$$

where:  $R_H (m^3 C^{-1})$  - Hall constant  $I_x (A)$  - current in x-direction

 $B_z$  (Vsm<sup>-2</sup>)- magnetic induction in z-direction

d (m) - plate thickness

| Material | Hall coefficient<br>(m <sup>3</sup> C <sup>-1</sup> ) |
|----------|-------------------------------------------------------|
| InSb     | -116 10 <sup>-6</sup>                                 |
| InAs     | -112 10 <sup>-6</sup>                                 |
| InP      | -1.4 10 <sup>-3</sup>                                 |

- Hall effect in semiconductors

Hall constant can be described by

$$R_{H} = \frac{p m_{p}^{2} - n m_{n}^{2}}{q \left( p m_{p} + n m_{n}^{2} \right)^{2}}$$

where: n,  $p(m^{-3})$  - electron and hole density per unit volume, respectively  $M_{n,p}(m^2V^{-1}s^{-1})$  -mobility of electron and holes, respectively

- » For n-type material n >> p and Hall coefficient becomes  $R_H = -1/nq$
- » For p-type material p >> n and Hall coefficient becomes  $R_H = 1/pq$
- » Product of Hall coefficient and the specific density defines Hall mobility

$$R_H S = m_H(n)$$
  $R_H S = m_H(p)$ 

- Magnetoresistivity
  - Increase of resistance due to magnetic field which exerts a force on the charge carriers

Magnetoresistivity in magnetic layers is much larger than in semiconductors.

Resistance of a magnetic resistor, when B is perpendicular to current

$$\mathsf{r} = \mathsf{r}_0(1 + k_m B^2)$$

where:  $\rho(\Omega m)$  -specific resistivity  $\rho_0(\Omega m)$  -specific resistivity when B=0 $k_m$  - magnetic resistivity factor

Example: for InSb  $k_m = 38 T^2 \Omega^{-1} m^{-1}$  at B=1T

Magnetoresistivity

Resistance of a magnetic film is a function of angle between magnetic field and current

$$R(\Theta) = R(0) - [R(0) - R(90)]\sin^{2}(\Theta)$$

where: R(0) - resistance of magnetic layer for field parallel to current

R(90) - resistance of magnetic layer for field perpendicular to current

Q - angle between field and current

Highest efficiency when the current and the field are perpendicular - *barberpole* structure



Magnetic sensors - a survey



Survey of magnetic sensors.

# Magnetic Field Sensors

**†** Hall element applications

Linear displacement measurements

Wattmeter





# Variable-inductance Sensors



**†** Coil with movable slug as linear motion inductor



Reluctance and inductance sound alike but refer to different physical variables.

Reluctance is the "opposite" of permeability

$$R = \frac{l}{mA}$$

where: R - reluctance

*l* - length of magnetic circuit

A - cross-sectional area



Linear Variable Differential Transformer (LVDT)



**†** LVDT - Applications



Rotary motion LVDT



- **†** Synchromechanism
  - Control synchros for indicating readings of position
  - Torque synchros for performing work using remotely transmitted signals



**†** Synchromechanism - control transmitter and receiver



TX -RX synchros in controlling positioning of an antenna

 Microsyn - rotary reluctance device used when the angular displacements being measured or controlled are very small (few degrees or so)



# **Review Questions**

- Explain what mechanism can be described by Langevin function.
- What role plays magnetic field in superconductivity ?
- Explain the Hall effect in a piece of material.
- Explain how the resistance of a magnetic film depends on the angle between the directions of the magnetic field and current.
- How would you use a Hall effect device to measure electricity consumed by an electrical installation ?
- How would you set up an inductive sensor for the purpose of detecting metal particles in copper wire ?
- How would you set up a circuit for the purpose of sensing variable inductance of an inductive sensor ?
- Explain the difference between reluctance and inductance.
- Explain how the LVDT works. Explain what the differential rectifier does in an LVDT signal-conditioning circuit.
- Explain the operation principle of the synchromechanism.
- Explain how microsyn is constructed.