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t+ The Magnetic Energy Domain
— Physics
» Magnetism
» Hall effect
» Superconductivity
» Magnetoresistivity

— Variable inductance sensors
— Variable reluctance sensors



Magnetic Energy Domain - Physics
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t We are considering transduction information into and from the magnetic
energy domain.

t Basic mechanisms relevant for our discussion:
— Hall effect in conductors
— Hall effect in semiconductors
— Superconductivity
— Magnetoresistivity
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t Survey of types of magnetism and related forces
Lorentz force law

Charge carriers moving in magnetic field are exerted to forces described by

=-q ><(y B) where: B - magnetic |ndect|on
v - electron velocity
g - elementary charge

Resulting force as a function of Resulting magnetic dipole
Type of magnetic current in a magnetic field with moment when
material Examples gradient Huw=0Am™
N
Diamagnetic Cu, salt, water F quadratic( (I)z); repulsive 0
Paramagnetic Al, Na, liquid oxygen F quadratic (I%) ?0
Ferromagnetic Ni, Fe F linear (I) >>0

Ferrimagnetic Fes04 F linear (1) >>0
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t In the microscopic (atomic) scale we distinguish three possible
contributions from the moving charges to the magnetic field:

— The magnetic orbital moment - due to the movement of the electrons in their
orbitals

— The magnetic spin moment - the electrons are spinning around their axes, so-called
Bohr magnetons

— The magnetic core moment - the core, with its positive charge also spins around an
axis

t Diamagnetic materials - net magnetic moment is zero and the force acting in a
strong magnetic field is repulsive (it is quadratic with the current above certain field
strength)
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t Paramagnetic materials - in materials with unpaired electrons (the orbital magnetic
moments are not balanced) there is a net magnetic moment per atom.

t Langevin function (1905) - defines how the magnetic moment depends on magnetic
field and temperature

é . u
M = N xp xacoth —pHQ- k—T =N xpﬂ_?i_?_H;

where: -1 <L (x) < 1-Langevin function
M (A m1) - total magnetic moment per unit volume
N (m-3) - total number of magnetic dipoles per unit volume
p (A m?) - magnetic dipole moment of the atom
my = 1.256 637 10° (A m%)
k=1.38102 (JK)
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t Ferromagnetic materials

— Remanent magnetism OoCccurs

— Weissfield H,\, IS present in magnetic domains H | M

weiss

FIME
M= NXpLgﬂ%pH;T Mg

where: -1< L (x) <1 Langevin function

H, (A m') - total external applied field

B M magnetic susceptibility - represents magnetization caused
¢= H by the external applied field strength, H,



Magnetic Energy Domain - Physics
e e I 0]

t Summary - diamagnets, paramagnets and ferromagnets

M= c xH
B:n‘b(l+C)H =mmH

Classification

Material

Susceptibility
X

Diamagnets

Paramagnets
Ferromagnets

Ferrimagnets

- copper, silver, gold, bismuth
- superconductors

Aluminum, platinum
Iron, cobalt, nickel and rare earth metals
Magnetic ferrites, Fe;0,, BaO 6(Fe,0s),

Small and negative y = -10”
x=-1
Small and positive y = 10°*°10°

Large and positive y = 50 to 10

Large and positive
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t Curie temeprature T, - the magnetic polarization is completely randomized
and magnetism in ferromagnets vanishes

Curie-Weiss law

_ C
C T e———
T- T,
2
C= Nmm
3K
where: m - atomic magnetic moment

N - number of moments per unit volume
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t Superconductivity - infinite conductivity below certain temperature T

However, a critical field strength H. also exists at which the magnetic
polarization vanishes

& T20
He(T) = Hogl- ===
Tco
where: H, - critical field strengthat T= 0K

T - critical temperature at which superconductivity disappears

Normal
conducting

Super-
conducting
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t Hall effect
Discovered by Edwin Hall in 1879.

When a current is flowing in a (semi)conductor which is placed in magnetic field, not
parallel with the current direction, an electric field will be generated perpendicular with
respect to the current and the field direction
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Magnetic Energy Domain - Physics

— Hall effect in conductors
Hall voltage can be described by
— RH Ix Bz

V, ==

where: Ry, (m3C) - Hall constant
I, (A) - current in x-direction
B, (Vsm2)- magnetic induction in z-direction

d (m) - plate thickness

Material Hall coefficient

(m°C™)
InSh -116 10°®
InAs -112 10°®

InP -1.410°

a0
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— Hall effect in semiconductors

Hall constant can be described by

pnt - nny;

R, = >
a(pm, +nm)

where:  n, p (m?®) - electron and hole density per unit volume, respectively
M, (m?V-1 s1) -mobility of electron and holes, respectively

» For n-type material n>>p and Hall coefficient becomes R, = -1/nq
» For p-type material p>>n and Hall coefficient becomes R, = 1/pq
» Product of Hall coefficient and the specific density defines Hall mobility

R.s =m,(n) R.s =m,(p)
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— Magnetoresistivity

Increase of resistance due to magnetic field which exerts a force on the
charge carriers

Magnetoresistivity in magnetic layers is much larger than in
semiconductors.

Resistance of a magnetic resistor, when B is perpendicular to current
— 2

where: I (Wm) -specific resistivity
I o (Wm) -specific resistivity when B=0

K., - magnetic resistivity factor

Example: for InSb k,, =38 T2Wim-! at B=1T
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t Magnetoresistivity

Resistance of a magnetic film is a function of angle between magnetic
field and current
R(Q) = R(0)- [R(0) - R(90)]sin"(Q)
where: R(0) - resistance of magnetic layer for field parallel to current
R(90) - resistance of magnetic layer for field perpendicular to current
Q - angle between field and current
Highest efficiency when the current and the field are perpendicular - barber-
pole structure
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t Magnetic sensors - a survey

Magnetic permeability

l

*

e

Fe, M1, Co
Permalloy

F
Magnetic resistive
Sensor

Hall devices
Bulk
Magfet
Heterojunction

p=1
Silicon, o
Compound, s
Semiconductors |
Optical fiber
magnetometer
Magneto transistors magnetodiode
carrier domain
magnetoresistor

Survey of magnetic sensors.

a0
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Magnetic Field Sensors

t Hall element applications

Linear displacement measurements Wattmeter
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V ariable-inductance Sensors

t Coil with movable slug as linear motion inductor
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Variable-reluctance Sensors
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t Reluctance and inductance sound alike but refer to different physical

variables.

Reluctance is the “opposite” of permeability

| where: R - reluctance

R =—
mA

| - length of magnetic circuit

A - cross-sectional area
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t Linear Variable Differential Transformer (LVDT)
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V ariable-reluctance Sensors
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Variable-reluctance Sensors

t+ LVDT - Applications
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Variable-reluctance Sensors

t Rotary motion LVDT
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t Synchromechanism

— Control synchros - for indicating readings of position

— Torque synchros - for performing work using remotely transmitted signals
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Variable-reluctance Sensors
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t Synchromechanism - control transmitter and receiver

Schematic of a synchro pair system
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TX -RX synchros in controlling positioning of an antenna
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Variable-reluctance Sensors
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Microsyn - rotary reluctance device used when the angular displacements being
measured or controlled are very small (few degrees or so)

Microsyn construction

Stator

EElt.

Microsyn used for positioning a mirror in a satellite camera
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CAMERA
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Review Questions
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— Explain what mechanism can be described by Langevin function.

— What role plays magnetic field in superconductivity ?
— Explain the Hall effect in a piece of material.

— Explain how the resistance of a magnetic film depends on the angle between the directions of the
magnetic field and current.

— How would you use a Hall effect device to measure electricity consumed by an electrical
installation ?

— How would you set up an inductive sensor for the purpose of detecting metal particles in copper
wire ?

— How would you set up a circuit for the purpose of sensing variable inductance of an inductive
sensor ?

— Explain the difference between reluctance and inductance.

— Explain how the LVDT works. Explain what the differential rectifier does in an LVDT signal-
conditioning circuit.

— Explain the operation principle of the synchromechanism.
— Explain how microsyn is constructed.
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