Solutions to the Exam Digital Communications I given on the 11th of June 2007

Question 1 (14p)
a) (2p) If X and Y are independent Gaussian variables, then $E[X Y]=0 \quad$ always. (Answer with TRUE or FALSE)
ANSWER: False. (Only if $\mathrm{E}(\mathrm{X})=0$ or $\mathrm{E}(\mathrm{Y})=0$.)
b) (3p) Consider a rate $1 / 2$ convolutional code with generator sequences $g_{1}=(111)$ and $g_{2}=(110)$. Assume that BPSK modulation is used to transmit the coded bits. Draw a shift register for the encoder.
ANSWER:

c) (2p) One advantage of non-coherent demodulation over coherent demodulation, is that the demodulator does not need to implement phase estimation.
(Answer with TRUE or FALSE)
ANSWER: True.
d) (3p) A receiver that implements the ML decision rule is always optimal in the sense of minimum symbol error probability.
(Answer with TRUE or FALSE)
ANSWER: False.
e) (2p) The MAP decision rule is a special case of the ML rule.
(Answer with TRUE or FALSE)
ANSWER: False. ML is a special case of MAP.
f) $(2 p)$ PSK is a special case of QAM.
(Answer with TRUE or FALSE)
ANSWER: True.
Question 2 (12p)
Here we study a binary system with signal two alternatives: $s_{1}(t)$ and $s_{2}(t)$. The bits are assumed to be statistically independent and of equal probability. The system is an AWGN channel with noise power spectral density given by $N_{0} / 2$.

a) Please express $\quad E_{b} \quad$ (the average energy per bit) as a function of A and T. (2p)

Solution: The energy for $s_{1}(t)$ is $E_{1}=\int_{0}^{T} s_{1}^{2}(t) d t=A^{2} T$ and the energy for $s_{2}(t)$ is $E_{2}=\int_{0}^{T} s_{2}^{2}(t) d t=A^{2} T$. Hence, the average energy per bit is $E_{b}=A^{2} T$.
b) Find a basis for the signal space and draw the signal constellation that is the vectors corresponding corresponding to $s_{1}(t)$ and $s_{2}(t)$. Please label the axis in terms of E_{b}. (4p) Solution: One possible basis is $\left\{\Psi_{1}(t), \Psi_{2}(t)\right\} \quad$ where $\quad \Psi_{i}(t)=s_{i}(t) / \sqrt{E_{b}}$. Hence, the signal constellation is: $\quad s_{1}(t)=\left[\sqrt{E_{b}}, 0\right]^{T} \quad$ and $s_{2}(t)=\left[0, \sqrt{E_{b}}\right]^{T}$
c) What is the smallest value of E_{b} / N_{0} in $d B$ required to reach a bit error probability of 10^{-3} if we assume that we are using the optimum receiver (which minimizes the bit error probability)?
(4p)
Solution: The maximum likelihood receiver will minimize the bit error probability since all signal
alternatives are equally likely. The distance between the signal alternatives is $d=\sqrt{2 E_{b}}$ and the bit error probability is $P_{b}=Q\left(\sqrt{d^{2} / 2 \mathrm{~N}_{0}}\right)=Q\left(\sqrt{E_{b} / N_{0}}\right)=10^{-3}$. The required E_{b} / N_{0} in dB is approximately 9.80 dB .
d) Please draw the decision regions for the receiver in part c).

Solution: The ML receiver is a minimum-distance receiver and the decision regions Z_{1} and Z_{2} are depicted below.

Question 3 (12p)
In this problem, we will consider a convolutional encoder. It is given in the figure below. The information bit b gives rise to three coded bits c_{1}, c_{2} and c_{3}, which are transmitted over an AWGN channel using binary PAM with root-raised cosine pulses with roll-off factor $\alpha=0.2$ The PAM pulses are transmitted at a rate of 1000 pulses/second. If the coded bit is 1 , then the transmitted amplitude is positive. Conversely, if the coded bit is 0 , then the transmitted amplitude is negative.

a) Draw the state diagram and a trellis section of the encoder. Please make sure to label the transitions.

State diagram

Trellis section

Solution: The state diagram and trellis are shown in the figure below.
c) Now suppose the sampled output of the receiver matched filter is $\{1.51$, $0.63,-0.04,-1.14,-0.56,-0.57,0.07,-1.53,0.9,-1.68,0.9,-0.98,1.99,0.04,0.76\}$
This sequence corresponds to the transmitted sequence $c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3,} . . \quad$ which is generated from a packet of three information bits. The encoder is assumed to be in the all-zero state at the beginning and ending of the transmission. The encoder is forced into the ending state by appending two zero bits to the information bit sequence. Use hard decision decoding to estimate the transmitted information bits.
($8 p$)
Solution: The hard decoded channel bits are $\{1,1,0,0,0,0,1,0,1,0,1,0,1,1,1\}$. The trellis with the decoded path (the path at minimum Hamming distance from the received channel bits) is show below.

We see that the decoded information bits are $\{0,0,1\}$.
Question 4 (12p)
In this problem, we are considering a binary PAM system. The pulse shape is given by $g_{T}(t)$ and the data rate is $R_{b}=1 / T_{b}$. We can thus conclude that the time between consecutive pulses equals $\quad T_{b}$ seconds. Furthermore, $\quad s(t)=\sum_{k=-\infty}^{\infty} b_{k} g_{T}\left(t-k T_{b}\right)$, where $b_{k} \in\{-1,+1\}$ is the
k th transmitted bit. The system is depicted in the block diagram below. Here, $\operatorname{sgn}\{q\}$ denotes the sign of q, that is if q is positive then $\operatorname{sgn}\{q\}=+1$ and if q is negative then $\operatorname{sgn}\{q\}=-1$. Furthermore, the sampling of the k th bit is performed at time $t=k T_{b}+T$ as indicated in the figure. The channel is an AWGN channel. The additive noise is denoted $n(t)$ and has noise power spectral density $N_{0} / 2$. The decision on the k th bit is given by the sign of $y\left(k T_{b}+T\right)$, where $y(t)$ is the output from the matched filter (which has impulse response $g_{R}(t)$). The target bit error rate is $P_{b}=10^{-4}$, and the energy per bit is denoted by E_{b}.

a) What is the maximum possible data rate if the transmission must be ISI-free? Answer with an expression in T.
(6p)
Solution: It follows from the block diagram that $y(t)=\sum_{l=-\infty}^{\infty} b_{l} x\left(t-l T_{b}\right)+v(t)$ where $x(t)=g_{T}(t) * g_{R}(t) \quad$ and $\quad v(t)=n(t) * g_{R}(t)$, and the sampled output from the matched filter is $y\left(k T_{b}+T\right)=\sum_{l=-\infty}^{\infty} b_{l} x\left(T+k T_{b}-l T_{b}\right)+v\left(k T_{b}+T\right)=b_{k} x(T)+\sum_{-\infty, l \neq k}^{\infty} b_{l} x\left(T+(k-l) T_{b}\right)+v\left(k T_{b}+T\right)$
There will be no ISI if $x\left(T+n T_{b}\right)=0$ for all nonzero n. From the figure, it is obvious that this is equivalent to $T+n T_{b} \geq 2 \mathrm{~T} \Rightarrow T_{b} \geq T$. Hence, the maximum data rate for ISI free transmission is $R_{b}=1 / T$.

b) What is the required $\quad E_{b} / N_{0}$ in $d B$ for the ISI-free system to meet the bit error target? ($6 p$)

Solution: The k th noise sample is $v\left(k T_{b}+T\right)=n(t) * g_{R}(t)_{t=k T_{b}}$. The noise sample will be a zeromean Gaussian random variable with variance $E_{g} N_{0} / 2$, where $\quad E_{g}$ is the energy of $g_{R}(t)$. $E_{g}=\int_{-\infty}^{\infty} g_{R}^{2}(t) d t=A^{2} T$. Clearly, E_{g} is also the energy of $g_{T}(t)$ and since $b_{k}= \pm 1$, we have that $E_{b}=E_{g}$. Conditioned on that $b_{k}=-1$, a bit error occurs with probability

$$
\begin{aligned}
& \operatorname{Pr}\left\{y\left(T+k T_{b}\right)>0 \mid b_{k}=-1\right\}=\operatorname{Pr}\left\{-A^{2} T+n\left(k T_{b}\right)>0\right\}=\operatorname{Pr}\left\{-E_{b}+n\left(k T_{b}\right)>0\right\} \\
& \operatorname{Pr}\left\{n\left(k T_{b}\right) / \sqrt{E_{b} N_{0} / 2}>\sqrt{\left.2 E_{b} / N_{0}\right\}}=Q\left(2 E_{b} / N_{0}\right)\right.
\end{aligned}
$$

Due to symmetry, $\quad P_{b}=\left(P_{b} \mid b_{k}=-1\right)=\left(P_{b} \mid b_{k}=+1\right) \quad$ and $\quad E_{b} / N_{0}=\ldots=8.39 \mathrm{~dB}$.

