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Last time we talked about:

Evaluating the average probability of
symbol error for different bandpass
modulation schemes

Comparing different modulation schemes
based on their error performances.
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Today, we are going to talk about:

Channel coding

Linear block codes
The error detection and correction capability
Encoding and decoding
Hamming codes
Cyclic codes
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What is channel coding?

Channel coding:

Transforming signals to improve
communications performance by increasing
the robustness against channel impairments
(noise, interference, fading, ...)

= Waveform coding: Transforming waveforms to
better waveforms

= Structured sequences: Transforming data
sequences into better sequences, having
structured redundancy.

-"Better” in the sense of making the decision process
less subject to errors.
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Error control techniques

Automatic Repeat reQuest (ARQ)

Full-duplex connection, error detection codes

The receiver sends feedback to the transmitter,
saying that if any error is detected in the received
packet or not (Not-Acknowledgement (NACK) and
Acknowledgement (ACK), respectively).

The transmitter retransmits the previously sent
packet if it receives NACK.

Forward Error Correction (FEC)
Simplex connection, error correction codes
The receiver tries to correct some errors

Hybrid ARQ (ARQ+FEC)
Full-duplex, error detection and correction codes
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Why using error correction coding?

e
Error performance vs. bandwidth

Power vs. bandwidth
Data rate vs. bandwidth
Capacity vs. bandwidth

PB“

Coding gain:

For a given bit-error probability,

the reduction in the Eb/NO that can be
realized through the use of code:

G[dB]- Eﬂ% [dB]- EQH [dB]

N N — >
0 0 Le E, /N, (dB)

i -— Uncoded
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Channel models

Discrete memory-less channels
Discrete input, discrete output

Binary Symmetric channels
Binary input, binary output
Gaussian channels
Discrete input, continuous output
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Linear block codes

Let us review some basic definitions first
that are useful in understanding Linear
block codes.
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Some definitions

Binary field :

The set {0,1}, under modulo 2 binary
addition and multiplication forms a field.

Addition Multiplication
00 0=0 00=20
00 1=1 otl=0
10 0=1 100=0
101=0 10=1

Binary field is also called Galois field, GF(2).
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Some definitions...

Fields :

Let F be a set of objects on which two
operations '+’ and *.” are defined.

F is said to be a field if and only if

1. F forms a commutative group under + operation.
The additive identity element is labeled ™0".

Ja,bU FU atb=>b+al F

3. F-{0} forms a commutative group under .
Operation. The multiplicative identity element is
labeled “1".

Ua,bl FU alb=blal F

5. The operations "+" and “.” are distributive:
allb+ c)= (alb)+ (allc)
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Some definitions...

Vector space:

Let V be a set of vectors and F a fields of
elements called scalars. V forms a vector space

over F if:
1. Commutative: Uu,vO VD utv=v+ul F
2.0q0 F,O0vOD VD allv=ul V

3. Distributive:
(at+ b)Uv=alv+ bllv and al(ut+ v)= alut allv

4, Associative: Ua, bl F,UvO VO (alb)lv= al(blv)
5.0v0V, 10v=v
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Some definitions...

Examples of vector spaces
= The set of binary n-tuples, denoted by V

v, = {(0000),(0001),(0010),(0011),(0100),(0101),(0111),
(1000),(1001),(1010),(1011),(1100),(1101),(1111)}

Vector subspace:

A subset S of the vector space V', is called a
subspace if:

= The all-zero vector is in S.

= The sum of any two vectors in Sis also in S.

Example:
{(0000),(0101),(1010),(1111)} 1sa subspace of V.
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Some definitions...

Spanning set:

A collection of vectors G = {v,,v,,...,v | , is said to
be a spanning set for Vor to span V if

linear combinations of the vectors in G include all
vectors in the vector space V,
= Example:

{(1000),(0110),(1100),(0011),(1001)} spans V,.
Bases:

The spanning set of V that has minimal cardinality is
called the basis for V.

= Cardinality of a set is the number of objects in the set.
= Example:

{(1000),(0100),(0010),(0001)} is a basis for V.
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Linear block codes

Linear block code (n,k)

A set CO Vv, with cardinality 2"is called a
linear block code if, and only if, it is a

subspace of the vector space V' .

V.- CUrV

=" Members of C are called coc

n

e-words.

= The all-zero codeword is a codeword.
= Any linear combination of code-words is a

codeword.
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Linear block codes — cont’'d

mappin V

' Bases of C |
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Linear block codes — cont’d

The information bit stream is chopped into blocks of k bits.
Each block is encoded to a larger block of n bits.
The coded bits are modulated and sent over the channel.
The reverse procedure is done at the receiver.

Channel
encoder

Data block EE—

Codeword

k bits

n-k Redundant bits

R, = K Code rate

n
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Linear block codes — cont’d

The Hamming weight of the vector U,
denoted by w(U), is the number of non-zero
elements in U.

The Hamming distance between two vectors
U and V, is the number of elements in which

they differ.
d(U, V)= w(UD V)

The minimum distance of a block code is
d . = ngind(Ui,Uj): min w(U,)
17 ] l

min
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Linear block codes — cont’d

e
Error detection capability is given by
€ - dmin B 1

Error correcting-capability t of a code is
defined as the maximum number of
guaranteed correctable errors per codeword,

that is
mm - ID

H2H
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Linear block codes — cont’d

For memory less channels, the probability
that the decoder commits an erroneous

decoding is P < Z En%pj(l_ oy

j=t+1 ]
P is the transition probab
over channel.

The decoded bit error probability is

1 & LUng . o
PB:_Z ]% .Epj(l‘p) ’
n e J

ity or bit error probability
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Linear block codes — cont’d

S
Discrete, memoryless, symmetric channel model

TX. bits { } Rx. bits

Note that for coded systems, the coded bits are
modulated and transmitted over the channel. For
example, for M-PSK modulation on AWGN channels
(M>2):

p= 2 QH\/ log, M smH HH H\/Z(logzM)EbRc sinHLHH
log, M N0 oM [ log, M N, OM [

where E_is energy per coded bit, given by E, = R.E,
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Linear block codes —cont’'d

- TR
mapping _ Vn
V, C
Bases of C

= A matrix G is constructed by taking as its J
rows the vectors of the basis, Vi, V...,

V. [ Evll Vi Vln%

G = [] ;ID_ 21 Y22 " Vau
U0 g: U
vV.B O []

(Vi1 Vi 7 Vi U
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Linear block codes — cont’d

Encoding in (n,k) block code

U=mG

VA
\Y%
(U, Uyy..su, )= (M,m,,..., mk)DD ,2D

(U, Uyyeostt,)= m UV, + my OV, + .+ m, [V,

The rows of G are linearly independent.
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Linear block codes — cont’d

Example: Block code (6,3)

Message vector Codeword

000 000000

OV, 0 1101000
G=33=%110102 o0 oo
gV:H HI01001Q 110 101110
001 101001
101 011101
011 110011

111 000111
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Linear block

codes — cont'd

Systematic block code (n,k)
For a systematic code, the first (or last) k

elements in the cod

eword are information bits.

G=[P:I]
I, = kxk ic
P = kx(n-

entity matrix

k) matrix

U= (u,u,,..,u,)-= (g?l

J/

y Doseees P s My s My e 1L, )

parity bits message bits
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Linear block codes — cont’d

For any linear code we can find a
matrix H,_ .., , such that its rows are
orthogonal to the rows of G :

GH =0
H is called the parity check matrix and
its rows are linearly independent.

For systematic linear block codes:
H - [In-k : PT]
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Linear block codes — cont’d

Channel

Data source ———  Format L .
encoding

Modulation 7

Channel
decoding

Data sink ™ Format |* R
m

channel

r=U+e

r = (,7,....,r,) received codeword or vector

e= (e,e,,....,e,) error pattern or vector

Syndrome testing:

emodulatim‘ £

Detection

S is the syndrome of r, corresponding to the error

pattern e. S: rH’ = eH’
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Linear block codes — cont’d

Standard array

Forrowi= 2.3,....2"* find a vector in ¥, of minimum
weight that is not already listed in the array.

Call this pattern e, and form the i:th row as the

corresponding coset
Z€1r0

codeword\\lj1 U 9 oo U ok
e2 e2 |:| U2 *°° e2 |:| Uzk \
- coset
_—le . le . 0U, - e..0U
coset leaders 2"k 2"k 2 2"k 2*
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Linear block codes — cont’d

Standard array and syndrome table decoding
Calculate S= rH"
Find the coset leader, é = e, , corresponding to S..
Calculate U= r+ ¢ and the corresponding .

Note that Uz r+ é= (U+ e)+ é= U+ (e+ &)
= If e= e, the error is corrected.
= If e¢ e, undetectable decoding error occurs.
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Linear block codes — cont’d

Example: Standard array for the (6,3) code

codewords

\

000000

110100

011010

101110

101001

011101

110011

000111

000001
000010
000100
001000
010000
100000
010001

~

110101
110111
110011
111100
100100
010100
100101

011011
011000
011100

Coset leaders

101111
101100
101010

101000
101011
101101
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011111
011010

110010
110001
110111

000110
000101
000110

N

coset

010110
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Error pattern Syndrome

Linear block codes — cont’d

000000
000001
000010
000100
001000
010000
100000
010001

000
101
011
110
001
010
100
111

U= (101110) transmitted.
r=(001110) 1sreceived.

m The syndrome of r is computed :
S=rH" = (001110)H" = (100)

m Error pattern corresponding to this syndromeis
e = (100000)

= The corrected vector is estimated

oY

U=r+é= (001110)+ (100000)= (101110)
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Hamming codes
N e
Hamming codes

Hamming codes are a subclass of linear block codes
and belong to the category of perfect codes.

Hamming codes are expressed as a function of a
single integer m > 2,

Code length : n=2"-1
Number of information bits: k= 2" - m- 1
Number of parity bits : n-k = m

Error correction capability: 7= 1

The columns of the parity-check matrix, H, consist of
all non-zero binary m-tuples.
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Hamming codes

Example Systematlc I-amming code (7,4)

[ by A BY [ BY
r F F

o O O

o e e Y
I
 —
=
e
£3
AN
I
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Cyclic block codes

Cyclic codes are a subclass of linear
block codes.

Encoding and syndrome calculation are

easily performed using feedback shift-
registers.

Hence, relatively long block codes can be
implemented with a reasonable complexity.

BCH and Reed-Solomon codes are cyclic
codes.
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Cyclic block codes

A linear (n,k) code is called a Cyclic code
if all cyclic shifts of a codeword are also
codewords.

(13

- i’ cyclic shifts of U
[ U - (uo,ul,uz,...,un_l) ]\

(1) -
U™ = (U, U e U U U Uy ey U, )

n-12
Example:
U= (1101)
u® = 11100 U¥=(0111) U® =011 UW=1101)=U
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Cyclic block codes

Algebraic structure of Cyclic codes, implies expressing
codewords in polynomial form

[U(X) = u,tu X+ u, X+ . 4tu, X" degree (n-l)]

Relationship between a codeword and its cyclic shifts:
XUX)=u X+uX+.ou X""+u X"

- 2 n-1 n
= U, t U Xt u X"+ ..tu_ X o ’(‘mX tu,,

J

U (x) ty (X"41)

U (X)+ u, (X" + 1)

Hence:
By extension

F U®(X)= XU(X)modulo (X" +1)

{ UY(X)= X'U(X)modulo (X" + 1) ]
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Cyclic block codes

Basic properties of Cyclic codes:

Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C, there
is @ unigue monic polynomial g(X) with
minimal degree r < n. g(X) is called the
generator polynomial.

g(X)= gt g X+..+t g X’

3. Every code polynomial U(X) in C can be
expressed uniquely as U(X)= m(X)g(X)

4. The generator polynomial g(X) is a factor of
X"+1

Lecture 9
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Cyclic block codes

B The orthogonality of G and H in polynomial
form is expressed as g(X)h(X)= X"+ 1. This
means h(X) is also a factor of X" +1

2. Therowi,i= 1.,k , of the generator matrix is
formed by the coefficients of the "i- 1" cyclic
shift of the generator polynomial.

0 g 0]

H a(X) H Dgo g \ g . ]

0 0o & 0

G-0 81 0. ]
1 ¢ 0 0

g g g

X g - v g
40 g & g0
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Cyclic block codes

Systematic encoding algorithm for an
(n,k) Cyclic code:
Multiply the message polynomial m(X) by X" *

Divide the result of Step 1 by the generator
polynomial g(X). Let p(X) be the reminder.

Add p(X) to X" *m(X)to form the codeword
U(X)
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Cyclic block codes

Example: For the systematic (7,4) Cyclic code
with generator polynomial g(X)= 1+ X + X’
Find the codeword for the message m = (1011)
m= (1010 m(X)=1+ X°+ X°
) X"'m(X): X’m(X)= X3+ X*+ X)= X°+ X7+ X°©
m=) Divide X" "m(X) by g(X):
X+ X+ X°= (1+ X'+ X+ X32g1+ X+ X32+ o1

J
' ' A4
quotient q(X) generator g(X) remainder p(X)

m=) Form the codeword polynomial:
UX)=p(X)+ X’m(X)=1+ X+ X°+ X°
U=(1001011)

%’_J

%f—/
parity bits message bits

Lecture 9
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Cyclic block codes

Find the generator and parity check matrices, G and H,
respectively.

g(X)= 1+ 10X + 00X + 10X° 0 (g0, 8,.€-8,) = (110D)

a1 001 00
01 170 1 0

G:1U |
0 0 1.1 0 1
Hoooillo
a1 1 011 0 0
01110 1 0

‘G:D |
11 1{0 0 1
10 110 0 0
P | Y

0r

3
Og
ol

17

(
Not in systematic form.

‘ ) We do the following:
® row(l)+ row(3) - row(3)

e row(1)+ row(2)+ row(4) - row(4)

\

[—

- H-

— O O

e

0 0:1 0
1 01 1
0 10 1

I o )
I I I By

r o O
\— O

J

~—

I3x3 P’
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Cyclic block codes

Syndrome decoding for Cyclic codes:
Received codeword in polynomial form is given by

Received /P(X) = U(X) + e(X) —, Error

codeword pattern

The syndrome is the remainder obtained by dividing the
received polynomial by the generator polynomial.

I‘(X) = q(X)g(X) t Syndrome

With syndrome and Standard array, the error is
estimated.

= In Cyclic codes, the size of standard array is considerably
reduced.
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10 -

0

Example of the block codes

= uncoded
Hamming(7,4)
Hamming(15,11)

0 5 10

E,/N,[dB]
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