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Last time we talked about:

 Evaluating the average probability of 
symbol error for different bandpass 
modulation schemes

 Comparing different modulation schemes 
based on their error performances.
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Today, we are going to talk about:

 Channel coding

 Linear block codes
 The error detection and correction capability
 Encoding and decoding
 Hamming codes
 Cyclic codes
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 Channel coding:
Transforming signals to improve 

communications performance by increasing 
the robustness against channel impairments 
(noise, interference, fading, ...)
 Waveform coding: Transforming waveforms to 

better waveforms
 Structured sequences: Transforming data 

sequences into better sequences, having 
structured redundancy.

-“Better” in the sense of making the decision process 
less subject to errors.

What is channel coding?
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Error control techniques
 Automatic Repeat reQuest (ARQ)

 Full-duplex connection, error detection codes
 The receiver sends feedback to the transmitter, 

saying that if any error is detected in the received 
packet or not (Not-Acknowledgement (NACK) and 
Acknowledgement (ACK), respectively).

 The transmitter retransmits the previously sent 
packet if it receives NACK.

 Forward Error Correction (FEC)
 Simplex connection, error correction codes
 The receiver tries to correct some errors 

 Hybrid ARQ (ARQ+FEC)
 Full-duplex, error detection and correction codes
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Why using error correction coding?

 Error performance vs. bandwidth
 Power vs. bandwidth
 Data rate vs. bandwidth
 Capacity vs. bandwidth 
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For a given bit-error probability, 
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Channel models

 Discrete memory-less channels
 Discrete input, discrete output

 Binary Symmetric channels
 Binary input, binary output

 Gaussian channels
 Discrete input, continuous output
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Linear block codes

 Let us review some basic definitions first 
that are useful in understanding Linear 
block codes.
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Some definitions

 Binary field : 
 The set {0,1}, under modulo 2 binary 

addition and multiplication forms a field. 

 Binary field is also called Galois field, GF(2).
011
101
110
000

=⊕
=⊕
=⊕
=⊕

111
001
010
000

=⋅
=⋅
=⋅
=⋅

Addition Multiplication
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Some definitions…

 Fields : 
 Let F be a set of objects on which two 

operations ‘+’ and ‘.’ are defined. 
 F is said to be a field if and only if

1. F forms a commutative group under + operation. 
The additive identity element is labeled “0”.

3. F-{0} forms a commutative group under . 
Operation. The multiplicative identity element is 
labeled “1”.

5. The operations “+” and “.” are distributive:

FabbaFba ∈+=+⇒∈∀ ,

FabbaFba ∈⋅=⋅⇒∈∀ ,

)()()( cabacba ⋅+⋅=+⋅
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Some definitions…

 Vector space:
 Let V be a set of vectors and F a fields of 

elements called scalars. V forms a vector space 
over F if:
1. Commutative:
2.  
3. Distributive: 

4. Associative:
5.  

VuvVv ∈=⋅⇒∈∀∈∀ aFa ,

vuvuvvv ⋅+⋅=+⋅⋅+⋅=⋅+ aaababa )(   and   )(

FV ∈+=+⇒∈∀ uvvuvu,

)()(,, vvv ⋅⋅=⋅⋅⇒∈∀∈∀ babaVFba
vvVv =⋅∈∀ 1  ,
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Some definitions…

 Examples of vector spaces
 The set of binary n-tuples, denoted by  

 Vector subspace:
 A subset S of the vector space     is called a 

subspace if:
 The all-zero vector is in S.
 The sum of any two vectors in S is also in S.
Example:

 .  of subspace a is   )}1111(),1010(),0101(),0000{( 4V

nV

nV

)}1111(),1101(),1100(),1011(),1010(),1001(),1000(         
),0111(),0101(),0100(),0011(),0010(),0001(),0000{(4 =V
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Some definitions…

 Spanning set:
 A collection of vectors                              , is said to 

be a spanning set for V or to span V  if 
   linear combinations of the vectors in G include all 

vectors in the vector space V, 
 Example:

 Bases:
 The spanning set of V that has minimal cardinality is 

called the basis for V.
 Cardinality of a set is the number of objects in the set.
 Example:

{ } .for   basis a is  )0001(),0010(),0100(),1000( 4V

{ } .  spans  )1001(),0011(),1100(),0110(),1000( 4V

{ }nG vvv ,,, 21 =
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Linear block codes

 Linear block code (n,k)
 A set            with cardinality     is called a 

linear block code if, and only if, it is a 
subspace of the vector space     .

 Members of C are called code-words.
 The all-zero codeword is a codeword.
 Any linear combination of code-words is a 

codeword.

nV

nVC ⊂ k2

   nk VCV ⊂→
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Linear block codes – cont’d

nV
kV

C

Bases of C

mapping
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Linear block codes – cont’d

 The information bit stream is chopped into blocks of k bits. 
 Each block is encoded to a larger block of n bits.
 The coded bits are modulated and sent over the channel.
 The reverse procedure is done at the receiver.

Data block
Channel
encoder Codeword

k bits  n bits

rate Code   

bits  Redundant        

n
kR

n-k

c =
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Linear block codes – cont’d

 The Hamming weight of the vector U, 
denoted by w(U), is the number of non-zero 
elements in U.

 The Hamming distance between two vectors 
U and V, is the number of elements in which 
they differ.  

 The minimum distance of a block code is 

)()( VUVU, ⊕= wd

)(min),(minmin iijiji
wdd UUU ==

≠
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Linear block codes – cont’d

 Error detection capability is given by

 Error correcting-capability t of a code is 
defined as the maximum number of 
guaranteed correctable errors per codeword, 
that is





 −=

2
1mindt

1min −= de
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Linear block codes – cont’d

 For memory less channels, the probability 
that the decoder commits an erroneous 
decoding is

    is the transition probability or bit error probability 
over channel. 

 The decoded bit error probability is 

jnj
n

tj
M pp

j
n

P −

+=

−





≤ ∑ )1(

1

jnj
n

tj
B pp

j
n

j
n

P −

+=

−





≈ ∑ )1(1

1

p
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Linear block codes – cont’d
 Discrete, memoryless, symmetric channel model

 Note that for coded systems, the coded bits are 
modulated and transmitted over the channel. For 
example, for M-PSK modulation on AWGN channels 
(M>2):

    where      is energy per coded bit, given by

Tx. bits Rx. bits

1-p

1-p

p

p

( ) ( )











=










≈

MN
REMQ

MMN
EMQ

M
p cbc ππ sinlog2

log
2sinlog2

log
2

0

2

20

2

2

cE bcc ERE =

1

0 0

1
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Linear block codes –cont’d

 A matrix G is constructed by taking as its 
rows the vectors of the basis,                .

nV
kV

C

Bases of C

mapping

},,,{ 21 kVVV 



















=















=

knkk

n

n

k vvv

vvv
vvv









21

22221

11211
1

V

V
G
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Linear block codes – cont’d

 Encoding in (n,k) block code

 The rows of G are linearly independent.

mGU =

kn

k

kn

mmmuuu

mmmuuu

VVV
V

V
V

⋅++⋅+⋅=



















⋅=

2221121

2

1

2121

),,,(

),,,(),,,(




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Linear block codes – cont’d

 Example: Block code (6,3)
















=






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
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




=

1
0
0

0
1
0

0
0
1

1
1
0

0
1
1

1
0
1

3

2

1

V
V
V

G

1
1

1
1

1
0

0
0

0
1

0
1
           1

1
1
1

1
0

1
1
0

0
0
1

1
0
1

1
1
1

1
0
0

0
1
1
           

1
1
0

0
0
1

1
0
1

  
0
0
0

1
0
0

0
1
0

1
0
0

1
1
0

0
1
0
           

0
0
0

1
0
0

0
1
0

Message vector Codeword
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Linear block codes – cont’d

 Systematic block code (n,k)
 For a systematic code, the first (or last) k 

elements in the codeword are information bits.

matrix   )(
matrixidentity   

][

knk
kk

k

k

k

−×=
×=

=

P
I

IPG

),...,,,,...,,(),...,,(
bits message

21

bitsparity 

2121  kknn mmmpppuuu −==U
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Linear block codes – cont’d

 For any linear code we can find a  
matrix               , such that its rows are 
orthogonal to the rows of     :

 H  is called the parity check matrix and 
its rows are linearly independent.

 For systematic linear block codes:

nkn ×− )(H
G

0GH =T

][ T
kn PIH −=
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Linear block codes – cont’d

 Syndrome testing:
 S is the syndrome of r, corresponding to the error 

pattern e.

Format Channel 
encoding Modulation

Channel
decodingFormat Demodulation

Detection

Data source

Data sink

U

r

m

m̂

channel

or vectorpattern error   ),....,,(
or vector codeword received  ),....,,(

21

21

n

n

eee
rrr

=
=

e
r

eUr +=

TT eHrHS ==
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Linear block codes – cont’d

 Standard array
 For row                       find a vector in       of minimum 

weight that is not already listed in the array.
 Call this pattern     and form the          row as the 

corresponding coset 

kknknkn

k

k

22222

22222

221

UeUee

UeUee
UUU

⊕⊕

⊕⊕

−−− 





zero 
codeword

coset

coset leaders

kni −= 2,...,3,2 nV

ie th:i
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Linear block codes – cont’d

 Standard array and syndrome table decoding
1. Calculate 
2. Find the coset leader,        , corresponding to   .
3. Calculate              and the corresponding    .

 Note that 
 If        , the error is corrected.
 If        , undetectable decoding error occurs.

TrHS =

iee =ˆ S
erU ˆˆ += m̂

)ˆˆ(ˆˆ e(eUee)UerU ++=++=+=
ee =ˆ
ee ≠ˆ
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Linear block codes – cont’d

 Example: Standard array for the (6,3) code

010110100101010001
010100100000
100100010000
111100001000

000110110111011010101101101010011100110011000100
000101110001011111101011101100011000110111000010
000110110010011100101000101111011011110101000001
000111110011011101101001101110011010110100000000






Coset leaders

coset

codewords
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Linear block codes – cont’d

111010001
100100000
010010000
001001000
110000100
011000010
101000001
000000000

(101110)(100000)(001110)ˆˆ
estimated is vector corrected The

(100000)ˆ
is syndrome  this toingcorrespondpattern Error 

(100)(001110)
:computed is  of syndrome The

received. is    (001110)
ted.  transmit(101110)

=+=+=

=

===

=
=

erU

e

HrHS
r

r
U

TT

Error pattern Syndrome
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 Hamming codes
  Hamming codes are a subclass of linear block codes 

and belong to the category of perfect codes.
 Hamming codes are expressed as a function of a 

single integer          . 

 The columns of the parity-check matrix, H, consist of 
all non-zero binary m-tuples.

Hamming codes

2≥m

 t
mn-k

mk
n

m

m

1    :capability correctionError 
            :bitsparity  ofNumber 

12   :bitsn informatio ofNumber 
12                           :length Code

=
=

−−=

−=
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Hamming codes

 Example: Systematic Hamming code (7,4)

][
1011100
1101010
1110001

33
TPIH ×=
















=

][

1000111
0100011
0010101
0001110

44×=



















= IPG
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Cyclic block codes

 Cyclic codes are a subclass of linear 
block codes.

 Encoding and syndrome calculation are 
easily performed using feedback shift-
registers.
 Hence, relatively long block codes can be 

implemented with a reasonable complexity.
 BCH and Reed-Solomon codes are cyclic 

codes. 
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Cyclic block codes

 A linear (n,k) code is called a Cyclic code 
if all cyclic shifts of a codeword are also  
codewords.

 Example:

),...,,,,,...,,(

),...,,,(

121011
)(

1210

−−−+−−

−

=

=

inninin
i

n

uuuuuuu
uuuu

U
U “i” cyclic shifts of U

UUUUU
U

=====
=

)1101(   )1011(   )0111(   )1110(
)1101(

)4()3()2()1(
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Cyclic block codes

 Algebraic structure of Cyclic codes, implies expressing 
codewords in polynomial form

 Relationship between a codeword and its cyclic shifts:

 Hence:

)1( degree     ...)( 1
1

2
210 n-XuXuXuuX n

n
−

−++++=U

)1()(

...

...,)(

1
)1(

)1(

11

)(

1
2

2
101

1
1

2
2

10

1
)1(

++=

++++++=

+++=

−

+

−−
−

−−

−
−

−

−

n
n

Xu

n
n

n

X

n
nn

n
n

n
n

XuX

uXuXuXuXuu
XuXuXuXuXX

n
n

U

U

U
  

)1( modulo )()()( += nii XXXX UUBy extension

)1( modulo )()()1( += nXXXX UU
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Cyclic block codes

 Basic properties of Cyclic codes:
 Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C, there 
is a unique monic polynomial          with 
minimal degree                   is called the 
generator polynomial.

3. Every code polynomial          in C can be 
expressed uniquely as 

4. The generator polynomial         is a factor of 
 

)(Xg
)(  . Xnr g<

r
r XgXggX +++= ...)( 10g

)(XU
)()()( XXX gmU =

)(Xg
1+nX
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Cyclic block codes

 The orthogonality of G and H in polynomial 
form is expressed as                            . This 
means          is also a factor of  

2. The row               , of the generator matrix is 
formed by the coefficients of the          cyclic 
shift of the generator polynomial.
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Cyclic block codes

 Systematic encoding algorithm for an 
(n,k) Cyclic code:

1. Multiply the message polynomial          by 

3. Divide the result of Step 1 by the generator 
polynomial         . Let          be the reminder.

5. Add         to                 to form the codeword     
       

)(Xm knX −

)(Xg )(Xp

)(Xp )(XX kn m−

)(XU
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Cyclic block codes

 Example: For the systematic (7,4) Cyclic code 
with generator polynomial 

1. Find the codeword for the message

)1  1  0  1  0  0  1(
1)()()(

:polynomial codeword  theForm

1)1()1(
:(by  )( Divide

)1()()(
1)()1011(
3   ,4   ,7

bits messagebitsparity 

6533

)(remainder generator 

3

quotient 

32653

6533233

32



  

=
+++=+=

++++++=++

++=++==
++=⇒=

=−==

−

−

U
mpU

gm
mm
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pgq

XXXXXXX

XXXXXXXX
X)XX

XXXXXXXXXX
XXX

knkn

X(X)(X)

kn

kn

)1011(=m

31)( XXX ++=g
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Cyclic block codes

 Find the generator and parity check matrices, G and H, 
respectively.



















=

=⇒⋅+⋅+⋅+=

1011000
0101100
0010110
0001011

)1101(),,,(1011)( 3210
32

G

g ggggXXXX

Not in systematic form.
We do the following:

row(4)row(4)row(2)row(1)
row(3)row(3)row(1)

→++
→+



















=

1000101
0100111
0010110
0001011

G















=

1110100
0111010
1101001

H

44×I
33×I TPP
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Cyclic block codes

 Syndrome decoding for Cyclic codes:
 Received codeword in polynomial form is given by

 The syndrome is the remainder obtained by dividing the 
received polynomial by the generator polynomial. 

 With syndrome and Standard array, the error is 
estimated.

 In Cyclic codes, the size of standard array is considerably 
reduced. 

)()()( XXX eUr +=Received 
codeword

Error 
pattern

)()()()( XXXX Sgqr += Syndrome



Lecture 9 43

Example of the block codes

8PSK

QPSK

[dB] / 0NEb

 BP


