Digital communications I: Modulation and Coding Course

Period 3 - 2007
Catharina Logothetis
Lecture 6

Last time we talked about:

- Signal detection in AWGN channels
 - Minimum distance detector
 - Maximum likelihood

- Average probability of symbol error
 - Union bound on error probability
 - Upper bound on error probability based on the minimum distance

Today we are going to talk about:

- Another source of error:
 - Inter-symbol interference (ISI)
- Nyquist theorem
- The techniques to reduce ISI
 - Pulse shaping
 - Equalization

Lecture 6

Inter-Symbol Interference (ISI)

- ISI in the detection process due to the filtering effects of the system
- Overall equivalent system transfer function

$$H(f) = H_t(f)H_c(f)H_r(f)$$

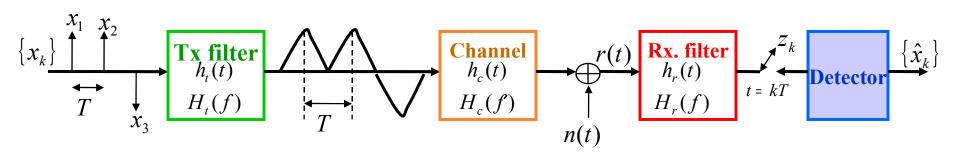
- creates echoes and hence time dispersion
- causes ISI at <u>sampling time</u>

$$Z_k = S_k + n_k + \sum_{i \neq k} \alpha_i S_i$$

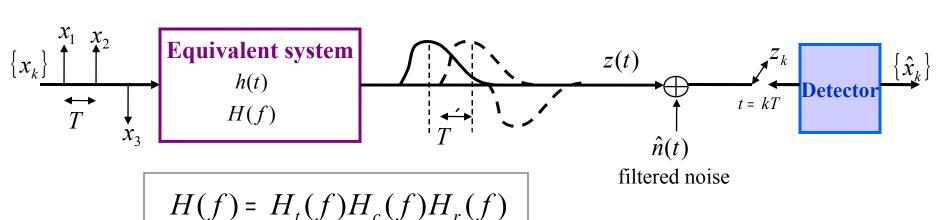
Lecture 6

Inter-symbol interference

Baseband system model



Equivalent model



Nyquist bandwidth constraint

- Nyquist bandwidth constraint:
 - The theoretical minimum required system bandwidth to detect Rs [symbols/s] without ISI is Rs/2 [Hz].
 - Equivalently, a system with bandwidth W=1/2T=Rs/2 [Hz] can support a maximum transmission rate of 2W=1/T=Rs [symbols/s] without ISI.

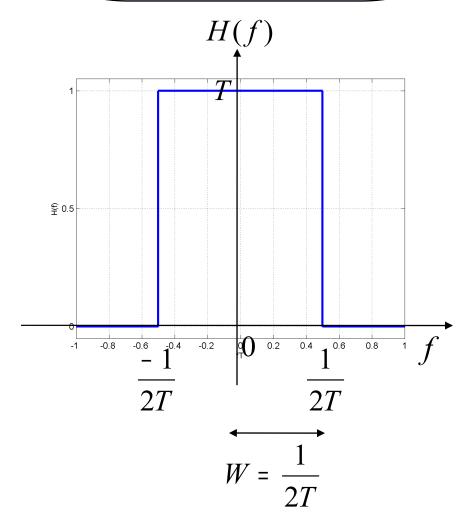
$$\frac{1}{2T} = \frac{R_s}{2} \le W \Rightarrow \frac{R_s}{W} \ge 2 \text{ [symbol/s/Hz]}$$

- Bandwidth efficiency, R/W [bits/s/Hz]:
 - An important measure in DCs representing data throughput per hertz of bandwidth.
 - Showing how efficiently the bandwidth resources are used by signaling techniques.

Lecture 6

Ideal Nyquist pulse (filter)

Ideal Nyquist filter



Ideal Nyquist pulse

Nyquist pulses (filters)

- Nyquist pulses (filters):
 - Pulses (filters) which results in no ISI at the sampling time.
- Nyquist filter:
 - Its transfer function in frequency domain is obtained by convolving a rectangular function with any real even-symmetric frequency function
- Nyquist pulse:
 - Its shape can be represented by a sinc(t/T) function multiply by another time function.
- Example of Nyquist filters: Raised-Cosine filter

Pulse shaping to reduce ISI

- Goals and trade-off in pulse-shaping
 - Reduce ISI
 - Efficient bandwidth utilization
 - Robustness to timing error (small side lobes)

The raised cosine filter

- Raised-Cosine Filter
 - A Nyquist pulse (No ISI at the sampling time)

$$H(f) = \begin{cases} 1 & \text{for } |f| < 2W_0 - W \\ \cos^2 \left[\frac{\pi}{4} \frac{|f| + W - 2W_0}{W - W_0} \right] & \text{for } 2W_0 - W < |f| < W \\ 0 & \text{for } |f| > W \end{cases}$$

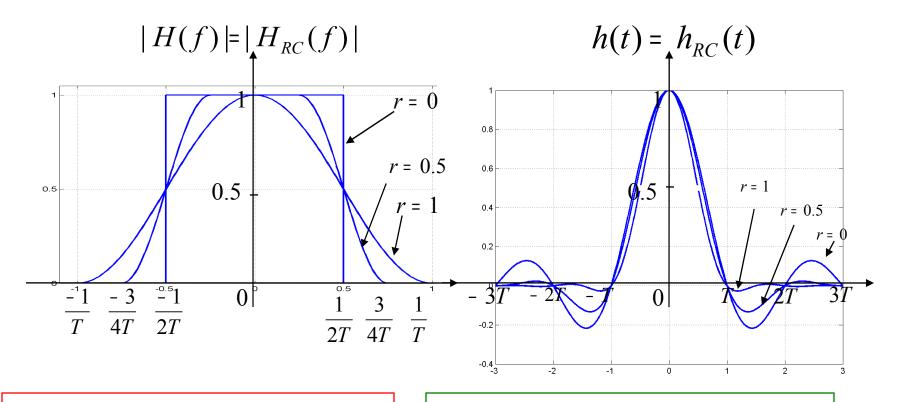
$$h(t) = 2W_0(\operatorname{sinc}(2W_0 t)) \frac{\cos[2\pi (W - W_0)t]}{1 - [4(W - W_0)t]^2}$$

Excess bandwidth: $W - W_0$

Roll-off factor
$$r = \frac{W - W_0}{W_0}$$

 $0 \le r \le 1$

The Raised cosine filter – cont'd



Baseband
$$W_{\text{sSB}} = (1+r)\frac{R_s}{2}$$

Passband
$$W_{DSB}$$
= $(1+r)R_s$

Pulse shaping and equalization to remove ISI

No ISI at the sampling time

$$H_{RC}(f) = H_t(f)H_c(f)H_r(f)H_e(f)$$

Square-Root Raised Cosine (SRRC) filter and Equalizer

$$H_{RC}(f) = H_t(f)H_r(f)$$

$$H_r(f) = H_t(f) = \sqrt{H_{RC}(f)} = H_{SRRC}(f)$$

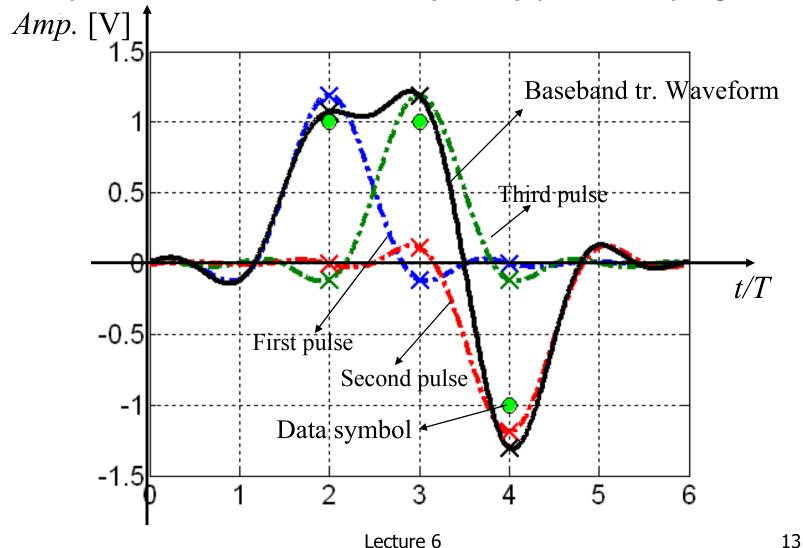
Taking care of ISI caused by tr. filter

$$H_e(f) = \frac{1}{H_c(f)}$$

Taking care of ISI caused by channel

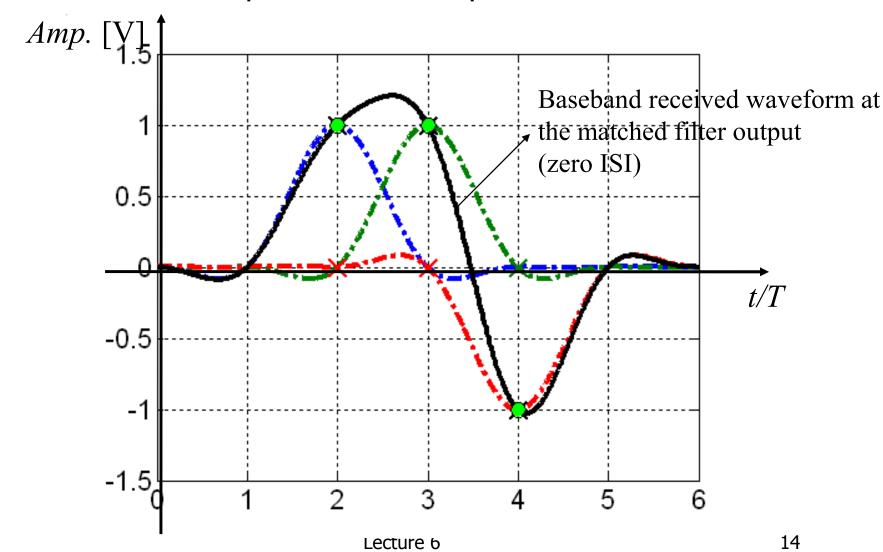
Example of pulse shaping

Square-root Raised-Cosine (SRRC) pulse shaping



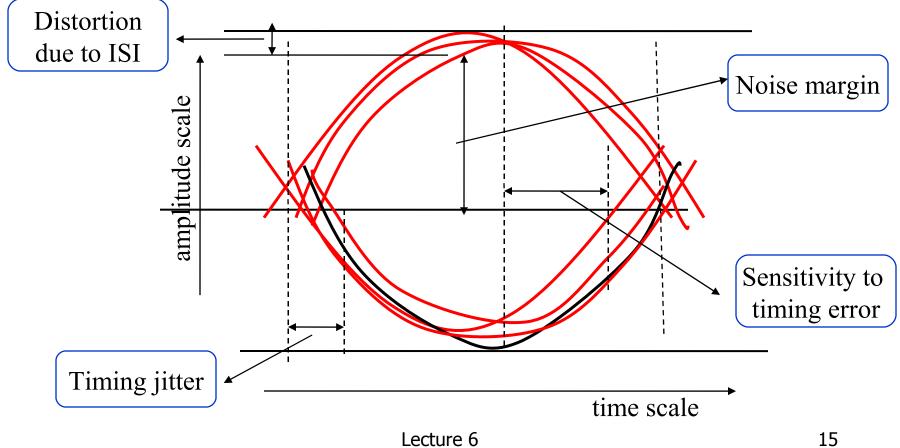
Example of pulse shaping ...

Raised Cosine pulse at the output of matched filter



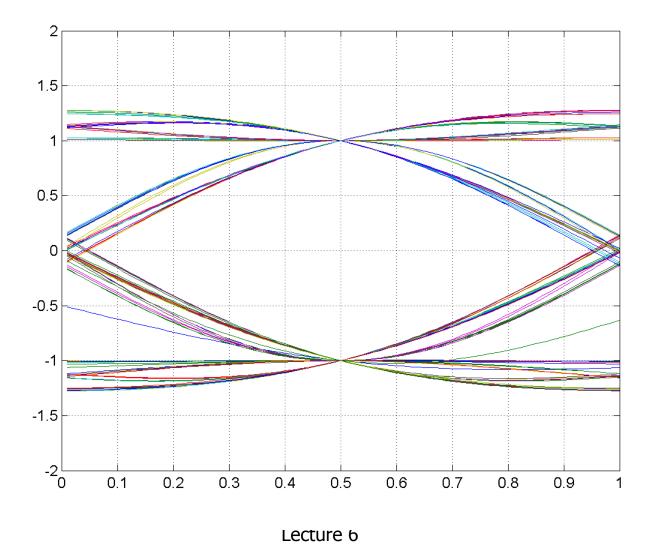
Eye pattern

Eye pattern: Display on an oscilloscope which sweeps the system response to a baseband signal at the rate 1/T (T symbol duration)



Example of eye pattern: Binary-PAM, SRRQ pulse

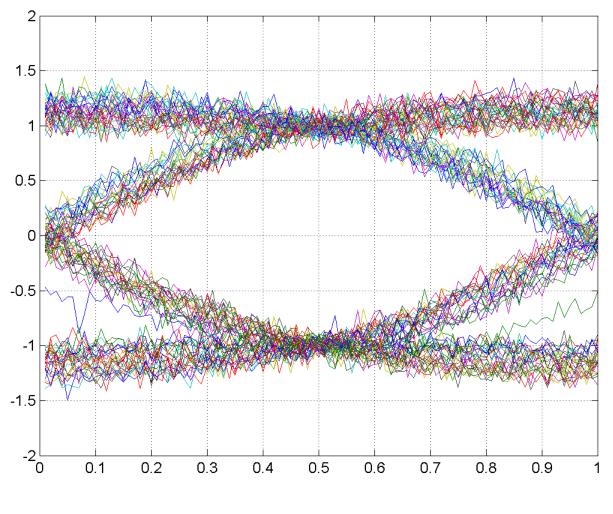
Perfect channel (no noise and no ISI)



16

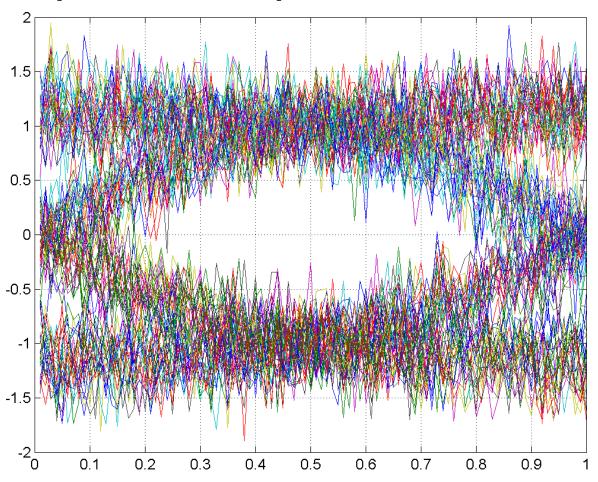
Example of eye pattern: Binary-PAM, SRRQ pulse ...

■ AWGN (Eb/N0=20 dB) and no ISI

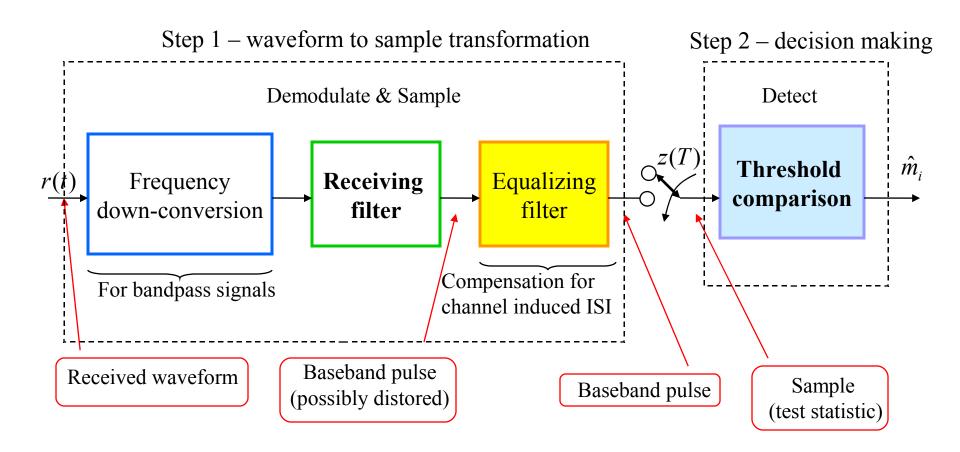


Example of eye pattern: Binary-PAM, SRRQ pulse ...

■ AWGN (Eb/N0=10 dB) and no ISI

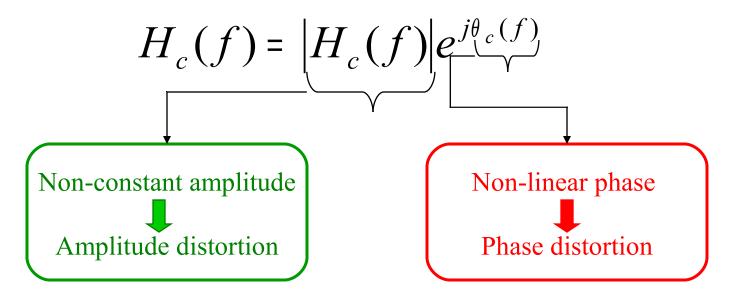


Equalization – cont'd



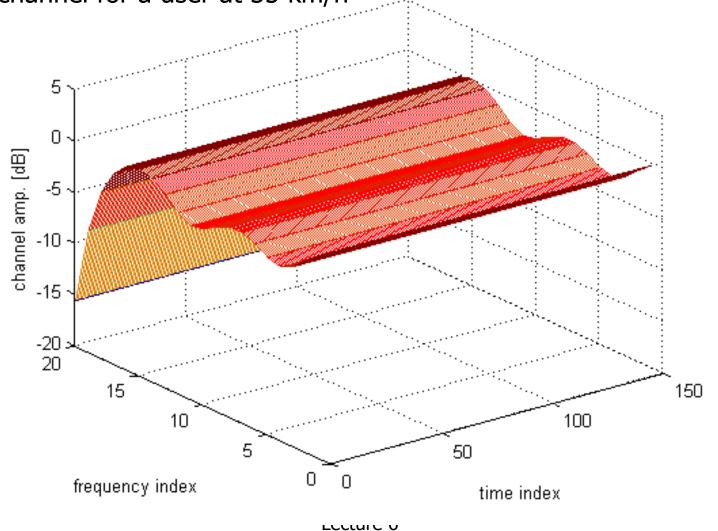
Equalization

- ISI due to filtering effect of the communications channel (e.g. wireless channels)
 - Channels behave like band-limited filters



Equalization: Channel examples

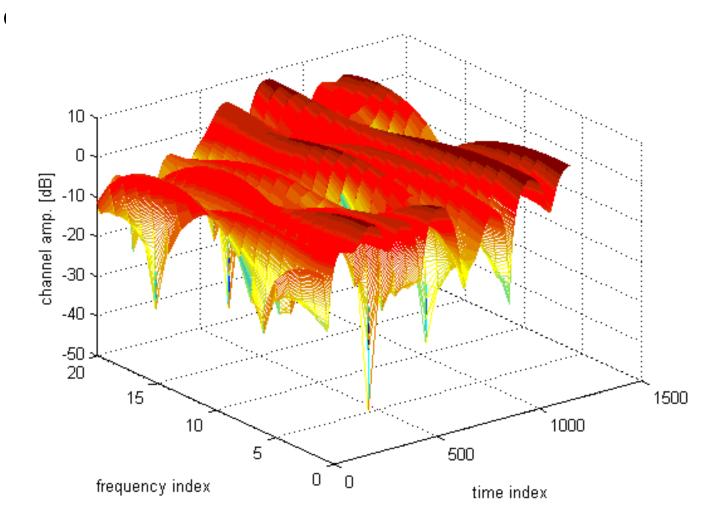
Example of a frequency selective, slowly changing (slow fading) channel for a user at 35 km/h



21

Equalization: Channel examples ...

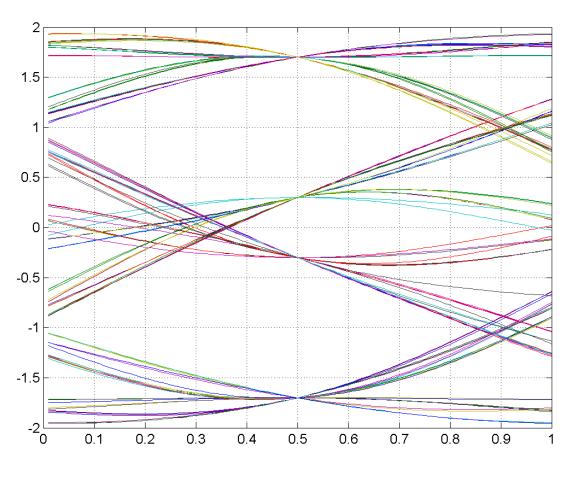
Example of a frequency selective, fast changing (fast fading)



Example of eye pattern with ISI: Binary-PAM, SRRQ pulse

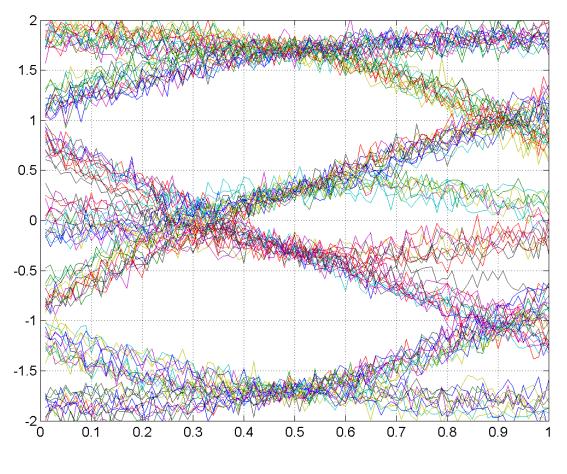
Non-ideal channel and no noise

$$h_c(t) = \delta(t) + 0.7\delta(t - T)$$



Example of eye pattern with ISI: Binary-PAM, SRRQ pulse ...

AWGN (Eb/N0=20 dB) and ISI $h_c(t) = \delta(t) + 0.7\delta(t-T)$



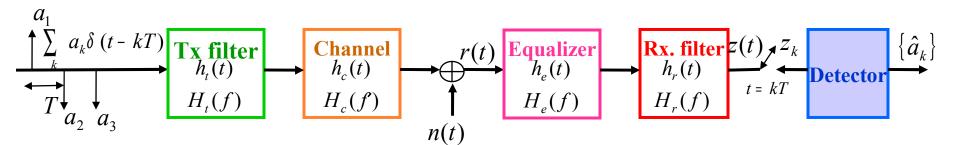
Example of eye pattern with ISI: Binary-PAM, SRRQ pulse ...

AWGN (Eb/N0=10 dB) and ISI $h_c(t) = \delta(t) + 0.7\delta(t-T)$



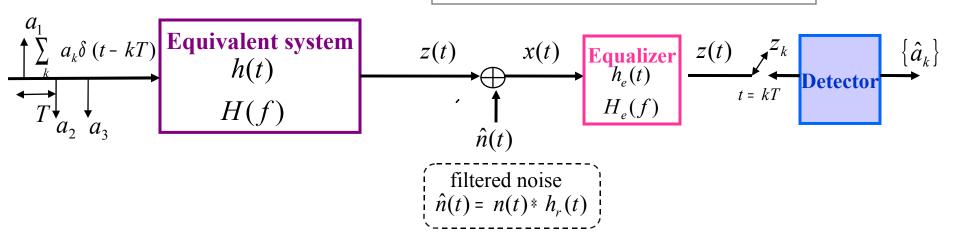
Equalizing filters ...

Baseband system model



Equivalent model

$$H(f) = H_t(f)H_c(f)H_r(f)$$



Equalization – cont'd

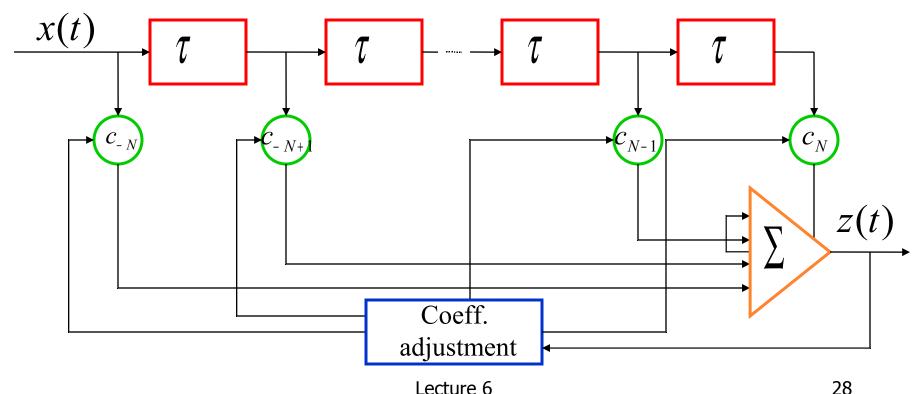
- Equalization using
 - MLSE (Maximum likelihood sequence estimation)
 - Filtering
 - Transversal filtering
 - Zero-forcing equalizer
 - Minimum mean square error (MSE) equalizer
 - Decision feedback
 - Using the past decisions to remove the ISI contributed by them
 - Adaptive equalizer

Equalization by transversal filtering

Transversal filter:

A weighted tap delayed line that reduces the effect of ISI by proper adjustment of the filter taps.

$$z(t) = \sum_{n=-N} c_n x(t-n\tau)$$
 $n = -N,...,N$ $k = -2N,...,2N$



Transversal equalizing filter ...

- Zero-forcing equalizer:
 - The filter taps are adjusted such that the equalizer output is forced to be zero at N sample points on each side:

Adjust
$$\{c_n\}_{n=-N}^{N}$$

$$z(k) = \begin{cases} 1 & k=0 \\ 0 & k=\pm 1,...,\pm N \end{cases}$$

- Mean Square Error (MSE) equalizer:
 - The filter taps are adjusted such that the MSE of ISI and noise power at the equalizer output is minimized.

Example of equalizer

