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|Last time we talked ab_

= Recelver structure

“ Impact of AWGN and IS| on the transmitted
signal

= Optimum filter to maximize SNR
" Matched filter receiver and Correlator receiver
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Receilver job

® Demodulation and sampling:

Waveform recovery and preparing the received
signal for detection:

= Improving the signal power to the noise power (SNR)
using matched filter

= Reducing ISI using equalizer
= Sampling the recovered waveform

% Detection:

Estimate the transmitted symbol based on the
received sample
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Recelver structure

~— —

Step 1 — waveform to sample transformation Step 2 — decision making
Demodulate & Sample i | Detect i
.- 1 E D Threshold | | i
Frequency Receiving Equalizing | ! O?é_’ ) |
down-conversion filter filter —C ! comparison

For band}?ass signals

Compensatign for !
channel induced ISI i

L - —— e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e = e

[ Received Waveform] Baseband pulse
(possibly distored)

(test statistic)

[Baseband pulse] [ Sample ]

Lecture 4 4



| Implementation of match-

Bank of M matched filters

__________________________________________________

Matched filter output:
Z  Observation
—_
vector

r(t)

z=r()0s (T-1) i= 1. M
2= (2,(T), 2, (T)sees 23y (1)) = (215255052 )
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| Implementation of corﬁ-

Bank of M correlators

P e e e e e e e e e e e e e e e e e e e e e e e e

Sul(t)
T |z,(T)
r(l‘) i . '[ 0 - Zl — i Correlators output:
' 5 : | « U _ _ ! Z Observation
| 0 - — e — =7 :——>
s m (1) I | vector
T i
o™
o iz, (1)

_______________________________________________

2= (z,(T),z,(T),... 2y, (I)) = (2,230, Zy)

zZ, = J'r(t)sl. ()dt i=1,..M

0
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|Today, we are going to t-

= Detection:

= Estimate the transmitted symbol based on the
received sample

= Signal space used for detection
= Orthogonal N-dimensional space
= Signal to waveform transformation and vice versa
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Signal space

What is a signal space?
Vector representations of signals in an N-dimensional
orthogonal space
Why do we need a signal space?
It is @ means to convert signals to vectors and vice versa.
It is @ means to calculate signals energy and Euclidean
distances between signals.
Why are we interested in Euclidean distances between
signals?
For detection purposes: The received signal is transformed to
a received vectors. The signal which has the minimum

distance to the received signal is estimated as the transmitted
signal.
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|Schematic example of_

b (1)

s, = (a,,,a,,)

s = a (Ot af @) - s = (a,a,)
$,(1) = ayl) (D)t ay) () = 8, = (ay,ay)

Transmitted signal

-

alternatives
R d ] S3(t) asf (Dt ay) (1) = 857 (ay,a3)
eceived signal at / )+ A -
matched filter output —— z() = zf) (D) 2 , () = 2= (2),2,)
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|Signal space -

® To form a signal space, first we need to know
the inner product between two signals
(functions):

" |nner (scalar) product:
< x(t), y(t)>= j x(t)y” (t)dt

= cross-correlation between x(t) and y(t)

“ Properties of inner product:
<ax(t), y(t)>= a< x(1), y(t)>

<x(0),ay(t)>= a < x(t),p(t)>
<x(0)+ y(0),2(2) >=< x(1),2(2) > + < y(1),2(¢) >
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|Signal space ... -

® The distance in signal space is measure by calculating
the norm.

= What is norm?
= Norm of a signal:

Hnka<nmnn>:ﬂ:h@ﬁﬁ:ﬁi

= “length” of x(t)
Jax(6)] = |allx()]
“ Norm between two signals:

d,, = |x@®- y@)

= We refer to the norm between two signals as the
Euclidean distance between two signals.
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|Example of distance-

b,(0)

S, = (ay,,a,,)

S; = (ay,0as,)

S, = (ay,a,)

The Euclidean distance between signals z(z) and s(%):

d, .= |s.(0- 20| = V(a, - 2)* + (a, - z,)°
=123
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|Orthogona| sighal space -

= N-dimensional orthogonal signal space is characterized by
N linearly independent functions Ttl/ (ti called basis
functions. The basis functions must satlsfy the orthogonality

condition

V04,0 [0, o j0d= K5, ST

0

where

LR,
0, =T l. J.
DO—» l#]

= If all K, =1, the signal space is orthonormal.
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|Example of an orthonor_

i Example 2- dimensional orthonormal signal space

H(,l/ (@)= = cos(2ﬂt/T) 0<t< T b (1)

El,l/ ,(1) = —sm(27Tt/T) 0< ¢t T

. 0 > 1 ,(0)
<YLY, (2)>= J;él' (Y ,(0)de = 0
b @f= b @)
= Example: 1-dimensional orthonormal signal space
b @),
+ bl : .
) Tt
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Signal space ...

= Any arbitrary finite set of waveforms {Si(t)}fl

where each member of the set is of duration T, can be
expressed as a linear combination of N orthonogal

waveforms {y j(t)]j_vz ‘where N< M.

N
Sz(t): z a;’#’ j(t) L= 1’ ’M
j=1 NS M
where
U T RN
I g = —<s.(O0 (0)>= — 5.tV (H)dt s <1<
I alj K Sl()w]() KJSZ(XUJ() ,,,,M O t Tl
T !
N 2
S, = (Ay Ay yenr ) E = z Kj‘al.j‘
-
Vector representation of waveform Wa\ieform energy
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|Signal space ... _

s.(2) = z aljl,l/ () S, = (@;,8,5, )

Waveform to Vector conversion Vector to waveform conversion

e o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = e e o e e e e e e — e e e e e e e e e e e e
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| Example of projecting si_

b (1)

-§, ()

| s = ay (Ot af,(@) = s = (a,a,)
$,(6) = ayl) (D)t ay ) ,(t) = 8, = (ay,ay,)
| S5 (D) = asl) (Ot a (@) 85 = (ay,a;,)

a,-,~=jsl-(t)w,~(t)dt jeLuuN i=1..M  0<t<T
0 Lecture 4 17

Transmitted signal
alternatives

-




Signal space — cont'd

To find an orthonormal basis functions for a given

set of signals, the Gram-Schmidt procedure can be
used.

Gram-Schmidt procedure:

Given a signal set {s,(0)} ", compute an orthonormal basis 0 j(l‘)}

1. Define ¥ (1) = 5, ()/\JE, = s,0)/|s, )| .,
2.For i=2,.,M compute d;(1)= s,(t)~ ) <s;(OW ;(O)>¥ ;1)
If d.(t)# 0 let ¥ .()=d®)/|d,@)
If d.(¢)= 0do not assign any basis function.
3. Renumber the basis functions such that basis is

{‘l’ 1(09‘// 2(t)9'“9‘/j N(t)}

This is only necessary ifd,(t) = Ofor any i in step 2.
Note that N< M
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Example of Gram-SChmi-

“ Find the basis functions and plot the signal space for the
following transmitted signals:

51(?) Sz(l‘)A
A
JT 0
O §
0 T t JT

= Using Gram-Schmidt procedure:

E, = [ @[ di= 2
V()= 5,/ E, = 5,(t)/ 4

@< $,(2),0 () >= JOTsz(t)ﬂ ()dt = —A 0 T ¢
d,(t)= s,(t)- (- AW ()= 0

01 ¢
1] l(t)A s (1) = Ay ((2)
1 ()= - Ay (¢
+ 8, (t) (@)

S = (A) S, - (- 4)

82 Sl
@ ; @ g/) 1(t)
A 0 A
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| Implementation of the matc-

Bank of N matched filters

i z :

1 ) Dl(T- 1) :\ L, . Observation

Z) i vector
r(t) _ iz

e e e e e e e e e e e e e e e e e e e e e e e e o]

Si(t): z %‘l’ j(t) l = 1,...,M

T
Z= (2,250 2y)

2,2 /)0y (T-1) j=L..N
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| Implementation of the co-

Bank of N correlators

_______________________________________________

b, ()

rz

E Al

: ,[0 i

r(t) 1 : Ua U, . Z Qbservation

. U (@) 0T - vector
U

IO ZN

ss@O=3 ap () i=l..M

i
Z= (Z),Zy5eer Zy) @
T

z, - Ir(t)ﬂ @dt j=1,.,N

0
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| Example of matched filter_

s, (O] s, ()] (@)
A 1
Jr ‘ Jr
> 0 T t7 >
0 T t -4 0 T ¢t
Jr
____________ 1 matched filter
NG §
r@ i | NN IZL
| Al T

= Number of matched filters (or correlators) is reduced by 1 compared to using
matched filters (correlators) to the transmitted signal.
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|White noise Iin the orthon-

= AWGN, n(?), can be expressed as
n(t) = n(t)+ n(t),

Noise projected on the signal space Noise outside on the signal space
which impacts the detection process.

————————————————————————————————————————

(1) = zmﬂ () .
n; =< n(t)(// (1)> j=1..,N ,:> n= (n,n,,..,ny)

< () > = = 1,.. { ] _ . independent zero-mean
\ " (t),lﬂ J (t) 0 J | Gaius]sam random variables with

variance var(n;)= N,/2

Vector representation of ﬁ(t)

A —

Lecture 4 23



