
Digital Communications I: Modulation 
and Coding Course

Term 3 - 2008
Catharina Logothetis

Lecture 4



Lecture 4 2

Last time we talked about:
 Receiver structure
 Impact of AWGN and ISI on the transmitted 

signal
 Optimum filter to maximize SNR

 Matched filter receiver and Correlator receiver
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Receiver job
 Demodulation and sampling: 

 Waveform recovery and preparing the received 
signal for detection:

 Improving the signal power to the noise power (SNR) 
using matched filter

 Reducing ISI using equalizer 
 Sampling the recovered waveform 

 Detection:
 Estimate the transmitted symbol based on the 

received sample
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Receiver structure

Frequency
down-conversion

Receiving 
filter

Equalizing
filter

Threshold 
comparison

For bandpass signals Compensation for 
channel induced ISI

Baseband pulse
(possibly distored) Sample

 (test statistic)
Baseband pulseReceived waveform

Step 1 – waveform to sample transformation Step 2 – decision making
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Implementation of matched filter receiver
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Implementation of correlator receiver
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Today, we are going to talk about:

 Detection:
 Estimate the transmitted symbol based on the 

received sample
 Signal space used for detection

 Orthogonal N-dimensional space
 Signal to waveform transformation and vice versa
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Signal space
 What is a signal space?

 Vector representations of signals in an N-dimensional 
orthogonal space

 Why do we need a signal space?
 It is a means to convert signals to vectors and vice versa.
 It is a means to calculate signals energy and Euclidean 

distances between signals.
 Why are we interested in Euclidean distances between 

signals?
 For detection purposes: The received signal is transformed to 

a received vectors. The signal which has the minimum 
distance to the received signal is estimated as the transmitted 
signal.
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Schematic example of a signal space
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Signal space
 To form a signal space, first we need to know 

the inner product between two signals 
(functions):
 Inner (scalar) product:

 Properties of inner product:
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Signal space …
 The distance in signal space is measure by calculating 

the norm.
 What is norm?

 Norm of a signal:

 Norm between two signals:

 We refer to the norm between two signals as the 
Euclidean distance between two signals.
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Example of distances in signal space
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Orthogonal signal space

 N-dimensional orthogonal signal space is characterized by 
N linearly independent functions                called basis 
functions. The basis functions must satisfy the orthogonality 
condition

where

 If all          , the signal space is orthonormal. 
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Example of an orthonormal basis
 Example: 2-dimensional orthonormal signal space

 Example: 1-dimensional orthonormal signal space
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Signal space …
 Any arbitrary finite set of waveforms 
   where each member of the set is of duration T, can be 

expressed as a linear combination of N orthonogal 
waveforms               where           .
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Signal space …
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Example of projecting signals to an 
orthonormal signal space

),()()()(
),()()()(

),()()()(

323132321313

222122221212

121112121111

aatatats
aatatats

aatatats

=⇔+=
=⇔+=

=⇔+=

s
s
s

ψψ
ψψ
ψψ

)(1 tψ

)(2 tψ
),( 12111 aa=s

),( 22212 aa=s

),( 32313 aa=s

Transmitted signal 
alternatives

dtttsa
T

jiij )()(
0
∫= ψ Tt ≤≤0Mi ,...,1=Nj ,...,1=



Lecture 4 18

Signal space – cont’d
 To find an orthonormal basis functions for a given 

set of signals, the Gram-Schmidt procedure can be 
used.

 Gram-Schmidt procedure:
 Given a signal set              , compute an orthonormal basis

1. Define
2. For                   compute
        If               let

 If            , do not assign any basis function.
3. Renumber the basis functions such that basis is

 This is only necessary if             for any i in step 2. 
  Note that 
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Example of Gram-Schmidt procedure

 Find the basis functions and plot the signal space for the 
following transmitted signals:

 Using Gram-Schmidt procedure:
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Implementation of the matched filter receiver
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Implementation of the correlator receiver
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Example of matched filter receivers using 
basic functions

 Number of matched filters (or correlators) is reduced by 1 compared to using 
matched filters (correlators) to the transmitted signal.

 Reduced number of filters (or correlators)
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White noise in the orthonormal signal space

 AWGN, n(t), can be expressed as
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which impacts the detection process.
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