Digital Communications I: Modulation and Coding Course

Term 3-2008
Catharina Logothetis Lecture 4

Last time we talked about:

- Receiver structure
- Impact of AWGN and ISI on the transmitted signal
- Optimum filter to maximize SNR
- Matched filter receiver and Correlator receiver

Receiver job

- Demodulation and sampling:
- Waveform recovery and preparing the received signal for detection:
- Improving the signal power to the noise power (SNR) using matched filter
- Reducing ISI using equalizer
- Sampling the recovered waveform
- Detection:
- Estimate the transmitted symbol based on the received sample

Receiver structure

Implementation of matched filter receiver

Bank of M matched filters

Implementation of correlator receiver

Bank of M correlators

$$
\begin{aligned}
\mathbf{z} & =\left(z_{1}(T), z_{2}(T), \ldots, z_{M}(T)\right)=\left(z_{1}, z_{2}, \ldots, z_{M}\right) \\
z_{i} & =\int_{0}^{T} r(t) s_{i}(t) d t \quad i=1, \ldots, M
\end{aligned}
$$

Today, we are going to talk about:

- Detection:
- Estimate the transmitted symbol based on the received sample
- Signal space used for detection
- Orthogonal N-dimensional space
- Signal to waveform transformation and vice versa

Signal space

- What is a signal space?
- Vector representations of signals in an N-dimensional orthogonal space
- Why do we need a signal space?
- It is a means to convert signals to vectors and vice versa.
- It is a means to calculate signals energy and Euclidean distances between signals.
- Why are we interested in Euclidean distances between signals?
- For detection purposes: The received signal is transformed to a received vectors. The signal which has the minimum distance to the received signal is estimated as the transmitted signal.

Schematic example of a signal space

$\underset{\text { Transmitted signal }}{\text { alternatives }}\left\{\begin{array}{l}s_{1}(t)=a_{11} \psi_{1}(t)+a_{12} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{1}=\left(a_{11}, a_{12}\right) \\ s_{2}(t)=a_{21} \psi_{1}(t)+a_{22} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{2}=\left(a_{21}, a_{22}\right) \\ s_{3}(t)=a_{31} \psi_{1}(t)+a_{32} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{3}=\left(a_{31}, a_{32}\right)\end{array}\right.$
$\begin{aligned} \text { Received signal at } \\ \text { matched filter output }\end{aligned} z(t)=z_{1} \psi_{1}(t)+z_{2} \psi_{2}(t) \Leftrightarrow \quad \mathbf{Z}=\left(z_{1}, z_{2}\right)$
Lecture 4

Signal space

- To form a signal space, first we need to know the inner product between two signals (functions):
- Inner (scalar) product:

$$
\begin{aligned}
\langle x(t), y(t)\rangle & =\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \\
& =\text { cross-correlation between } \mathrm{x}(\mathrm{t}) \text { and } \mathrm{y}(\mathrm{t})
\end{aligned}
$$

- Properties of inner product:

$$
\begin{aligned}
\langle a x(t), y(t)\rangle & =a\langle x(t), y(t)\rangle \\
\langle x(t), a y(t)\rangle & =a^{*}\langle x(t), y(t)\rangle \\
\langle x(t)+y(t), z(t)\rangle & =\langle x(t), z(t)\rangle+\langle y(t), z(t)\rangle
\end{aligned}
$$

Signal space

- The distance in signal space is measure by calculating the norm.
- What is norm?
- Norm of a signal:

$$
\begin{aligned}
\|x(t)\| & =\sqrt{\langle x(t), x(t)\rangle}=\sqrt{\int_{-\infty}^{\infty}|x(t)|^{2} d t}=\sqrt{E_{x}} \\
& =\text { "length" of } \mathrm{x}(\mathrm{t}) \\
\|a x(t)\| & =\mid a\|x(t)\|
\end{aligned}
$$

- Norm between two signals:

$$
d_{x, y}=\|x(t)-y(t)\|
$$

- We refer to the norm between two signals as the Euclidean distance between two signals.

Example of distances in signal space

The Euclidean distance between signals $z(t)$ and $s(t)$:

$$
\begin{aligned}
d_{s_{i}, z} & =\left\|s_{i}(t)-z(t)\right\|=\sqrt{\left(a_{i 1}-z_{1}\right)^{2}+\left(a_{i 2}-z_{2}\right)^{2}} \\
i & =1,2,3
\end{aligned}
$$

Orthogonal signal space

- N-dimensional orthogonal signal space is characterized by N linearly independent functions $\left\{\psi_{j}(t)\right\}_{j=1}^{N}$ called basis functions. The basis functions must satisfy the orthogonality condition

$$
\left\langle\psi_{i}(t), \psi_{j}(t)\right\rangle=\int_{0}^{T} \psi_{i}(t) \psi_{j}^{*}(t) d t=K_{i} \delta_{j i} \quad \begin{array}{cc}
j \leq t \leq T \\
j, i=1, \ldots, N
\end{array}
$$

where

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \rightarrow i=j \\
0 \rightarrow i \neq j
\end{array}\right.
$$

- If all $K_{i}=1$, the signal space is orthonormal.

Example of an orthonormal basis

- Example: 2-dimensional orthonormal signal space

$$
\begin{aligned}
& \left\{\begin{array}{l}
\psi_{1}(t)=\sqrt{\frac{2}{T}} \cos (2 \pi t / T) \quad 0 \leq t<T \\
\psi_{2}(t)=\sqrt{\frac{2}{T}} \sin (2 \pi t / T) \quad 0 \leq t<T
\end{array}\right. \\
& <\psi_{1}(t), \psi_{2}(t)>=\int_{0}^{T} \psi_{1}(t) \psi_{2}(t) d t=0 \\
& \left\|\psi_{1}(t)\right\|=\left\|\psi_{2}(t)\right\|=1
\end{aligned}
$$

- Example: 1-dimensional orthonormal signal space

Signal space

- Any arbitrary finite set of waveforms $\left\{s_{i}(t)\right\}_{i=1}^{M}$ where each member of the set is of duration T, can be expressed as a linear combination of N orthonogal waveforms $\left\{\psi_{j}(t)\right\}_{j=1}^{N}$ where $N \leq M$.

$$
s_{i}(t)=\sum_{j=1}^{N} a_{i j} \|_{j}(t) \quad \begin{aligned}
& i=1, \ldots, M \\
& N \leq M
\end{aligned}
$$

where

$$
\begin{gathered}
\begin{array}{c}
\text { I- - - } \\
a_{i j}=\frac{1}{K_{j}}\left\langle s_{i}(t), \psi_{j}(t)\right\rangle=\frac{1}{K_{j}} \int_{0}^{T} s_{i}(t) \psi_{j}^{*}(t) d t \quad \begin{array}{c}
j=1, \ldots, N \quad 0 \leq t \leq T \\
i=1, \ldots, M
\end{array} \\
\mathbf{s}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i N}\right) \\
\text { Vector representation of waveform }
\end{array} \quad \begin{array}{c}
E_{i}=\sum_{j=1}^{N} K_{j}\left|a_{i j}\right|^{2} \\
\text { Waveform energy }
\end{array}
\end{gathered}
$$

Signal space

$$
s_{i}(t)=\sum^{N} a_{i j} \psi_{j}(t)
$$

$$
\mathbf{s}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i N}\right)
$$

Waveform to vector conversion

Example of projecting signals to an

 orthonormal signal space

Transmitted signal $\left\{s_{1}(t)=a_{11} \psi_{1}(t)+a_{12} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{1}=\left(a_{11}, a_{12}\right)\right.$ alternatives $\left\{\begin{array}{l}s_{2}(t)=a_{21} \psi_{1}(t)+a_{22} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{2}=\left(a_{21}, a_{22}\right)\end{array}\right.$
$s_{3}(t)=a_{31} \psi_{1}(t)+a_{32} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{3}=\left(a_{31}, a_{32}\right)$
$a_{i j}=\int_{0}^{T} s_{i}(t) \psi_{j}(t) d t \quad j=1, \ldots, N \quad i=1, \ldots, M \quad 0 \leq t \leq T$

Signal space - cont'd

To find an orthonormal basis functions for a given set of signals, the Gram-Schmidt procedure can be used.
Gram-Schmidt procedure:
Given a signal set $\left\{s_{i}(t)\right\}_{i=1}^{M}$, compute an orthonormal basis $\left\{w_{j}(t)\right\}_{j=1}^{N}$

1. Define $\psi_{1}(t)=s_{1}(t) / \sqrt{E_{1}}=s_{1}(t) /\left\|s_{1}(t)\right\|$
2. For $i=2, \ldots, M$ compute $d_{i}(t)=s_{i}(t)-\sum_{j=1}^{i-1}\left\langle s_{i}(t), \psi_{j}(t)\right\rangle \psi_{j}(t)$
\quad If $d_{i}(t) \neq 0$ let $\psi_{i}(t)=d_{i}(t) /\left\|d_{i}(t)\right\|$

If $\quad d_{i}(t)=0$ do not assign any basis function.
3. Renumber the basis functions such that basis is
$\left\{\psi_{1}(t), \psi_{2}(t), \ldots, \psi_{N}(t)\right\}$

- This is only necessary if $d_{i}(t)=0$ for any i in step 2.
- Note that $N \leq M$

Example of Gram-Schmidt procedure

Find the basis functions and plot the signal space for the following transmitted signals:

- Using Gram-Schmidt procedure:
(1) $E_{1}=\int_{0}^{T}\left|s_{1}(t)\right|^{2} d t=A^{2}$

$$
\psi_{1}(t)=s_{1}(t) / \sqrt{E_{1}}=s_{1}(t) / A
$$

(2) $\left\langle s_{2}(t), \psi_{1}(t)\right\rangle=\int_{0}^{T} s_{2}(t) \psi_{1}(t) d t=-A$

$$
d_{2}(t)=s_{2}(t)-(-A) \psi_{1}(t)=0
$$

Implementation of the matched filter receiver

Bank of N matched filters

$$
\begin{array}{ll}
s_{i}(t)=\sum_{j=1}^{N} a_{i j} \psi_{j}(t) & i=1, \ldots, M \\
\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{N}\right) & \\
z_{j}=r(t) * \psi_{j}(T-t) & j=1, \ldots, N
\end{array}
$$

Implementation of the correlator receiver

Bank of N correlators

Example of matched filter receivers using hasic functions

1 matched filter

- Number of matched filters (or correlators) is reduced by 1 compared to using matched filters (correlators) to the transmitted signal.

White noise in the orthonormal signal space

- AWGN, $n(t)$, can be expressed as

$$
n(t)=\hat{n}(t)+\widetilde{n}(t)
$$

Noise projected on the signal space which impacts the detection process.

Noise outside on the signal space

$$
\begin{cases}\hat{n}(t)=\sum_{j=1}^{N} n_{j} \psi_{j}(t) & \\ n_{j}=\left\langle n(t), \psi_{j}(t)\right\rangle & j=1, \ldots, N \\ \left\langle\widetilde{n}(t), \psi_{j}(t)\right\rangle=0 & j=1, \ldots, N\end{cases}
$$

Vector representation of $\hat{n}(t)$

$$
\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{N}\right)
$$

$\left\{n_{j}\right\}_{j=1}^{N}$ independent zero-mean Gaussain random variables with variance $\operatorname{var}\left(n_{j}\right)=N_{0} / 2$

