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Last time, we talked aboJ

= Important features of digital communication
systems

= Some basic concepts and definitions such as
as signal classification, spectral density,
random process, linear systems and signal
bandwidth.
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|Today, we are going t$_

® The first important step in any DCS:

" Transforming the information source to a form
compatible with a digital system
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| Format analog signals -

®  To transform an analog waveform into a form
that is compatible with a digital
communication system, the following steps
are taken:
1. Sampling
2. Quantization and encoding
3. Baseband transmission
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Sampling

Time domain Frequency domain
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| Aliasing effect _
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|Samp|ing theorem -

Analog | Sampling _, Pulse amplitude
signal pProcess modulated (PAM) signal

Sampllng ‘heorem: A bandlimited signal

with no spectral components beyond ; , can
be uniquely determined by values sampled at

uniform intervals of

Ts < Q}m

The samplingrate, . _ 1 _,, IS
called Nyquist rate. "
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Quantization

“ Amplitude quantizing: Mapping samples of a continuous
amplitude waveform to a finite set of amplitudes.
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|Encoding (PCM) _

= A uniform linear quantizer is called Pulse Code
Modulation (PCM).

“ Pulse code modulation (PCM): Encoding the quantized
signals into a digital word (PCM word or codeword).

= Each quantized sample is digitally encoded into an / bits
codeword where L in the number of quantization levels and

[ = 1095 L
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Ii)uantization example
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|Quantization error _

" Quantizing error: The difference between the input and
output of a quantizer = e(f) = fc(t)- x(?)

Process of quantizing noise
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|Quantization error ... _

= Quantizing error:

= Granular or linear errors happen for inputs within the dynamic
range of quantizer

= Saturation errors happen for inputs outside the dynamic range
of quantizer
= Saturation errors are larger than linear errors
= Saturation errors can be avoided by proper tuning of AGC

® Quantization noise variance:

0= E{lx- q(F}= [ @ (p(dx= 0], + 03,
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|Uniform and non-uniform q_

Uniform (linear) quantizing:
No assumption about amplitude statistics and correlation
properties of the input.

Not using the user-related specifications

Robust to small changes in input statistic by not finely tuned to a
specific set of input parameters

Simple implementation
= Application of linear quantizer:
Signal processing, graphic and display applications, process
control applications
Non-uniform quantizing:
Using the input statistics to tune quantizer parameters
Larger SNR than uniform quantizing with same number of levels

Non-uniform intervals in the dynamic range with same quantization
noise variance

= Application of non-uniform quantizer:
Commonly used for speech
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| Non-uniform quantizati_

“ It is achieved by uniformly quantizing the “compressed” signal.

= At the receiver, an inverse compression characteristic, called
‘expansion” is employed to avoid signal distortion.
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“ In speech, weak signals are more frequent than strong ones.
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= Using equal step siSzes (uniform quantizer) gives low E%E for weak
signals and high @ﬁ@for strong signals. ‘

= Adjusting the step size of the quantizer by taking into account the speech statistics
improves the SNR for the input range.
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| Baseband transmission -

To transmit information through physical
channels, PCM sequences (codewords) are
transformed to pulses (waveforms).

Each waveform carries a symbol from a set of size M.

Each transmit symbol represents| & = log, M |bits of
the PCM words.

PCM waveforms (line codes) are used for binary
symbols (M=2).

M-ary pulse modulation are used for non-binary
symbols (M>2).
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|PCM waveforms -

= PCM waveforms category:

" Nonreturn-to-zero (NRZ)

" Phase encoded

= Return-to-zero (RZ) = Multilevel binary
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PCM waveforms ...

® Criteria for comparing and selecting PCM
waveforms:

Spectral characteristics (power spectral density and
bandwidth efficiency)

Bit synchronization capability

Error detection capability
Interference and noise immunity
Implementation cost and complexity
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Spectra of PCM waveforms
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| M-ary pulse modulation -

M-ary pulse modulations category:
= M-ary pulse-amplitude modulation (PAM)
= M-ary pulse-position modulation (PPM)
= M-ary pulse-duration modulation (PDM)

M-ary PAM is a multi-level signaling where each
symbol takes one of the M allowable amplitude levels,
each representing k = log, M bits of PCM words.

For a given data rate, M-ary PAM (M>2) requires less
bandwidth than binary PCM.

For a given average pulse power, binary PCM is
easier to detect than M-ary PAM (A1>2).
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PAM example
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