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Last time, we talked about:

 The properties of Convolutional codes.
 We introduced interleaving as a means 

to combat bursty errors by making the 
channel seem uncorrelated. 

 We also studied “Concatenated codes” 
that simply consist of  inner and outer 
codes. They can provide the required 
performance at a lower complexity.
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Today, we are going to talk about:

 Shannon limit
 Comparison of different modulation 

schemes
 Trade-off between modulation and 

coding
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Goals in designing a DCS

 Goals:
 Maximizing the transmission bit rate
 Minimizing probability of bit error
 Minimizing the required power 
 Minimizing required system bandwidth
 Maximizing system utilization
 Minimize system complexity
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Error probability plane
(example for coherent MPSK and MFSK)
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Limitations in designing a DCS

 Limitations:
 The Nyquist theoretical minimum bandwidth 

requirement
 The Shannon-Hartley capacity theorem (and 

the Shannon limit)
 Government regulations
 Technological limitations
 Other system requirements (e.g satellite 

orbits)
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Nyquist minimum bandwidth requirement

 The theoretical minimum bandwidth 
needed for baseband transmission of Rs 
symbols per second is Rs/2 hertz.
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Shannon limit

 Channel capacity: The maximum data rate at 
which error-free communication over the channel is 
performed.

 Channel capacity of AWGV channel (Shannon-
Hartley capacity theorem):
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Shannon limit …
 The Shannon theorem puts a limit on the 

transmission data rate, not on the error 
probability:
 Theoretically possible to transmit 

information at any rate          , with an 
arbitrary small error probability by using a 
sufficiently complicated coding scheme 

 For an information rate           , it is not 
possible to find a code that can achieve an 
arbitrary small error probability.
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Shannon limit …
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Shannon limit …

 There exists a limiting value of           below which there can 
be no error-free communication at any information rate.

 By increasing the bandwidth alone, the capacity can not be 
increased to any desired value.
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Shannon limit …
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Bandwidth efficiency plane
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Power and bandwidth limited systems

 Two major communication resources:
 Transmit power and channel bandwidth

 In many communication systems, one of 
these resources is more precious than the 
other. Hence, systems can be classified as:
 Power-limited systems: 

 save power at the expense of bandwidth (for example by 
using coding schemes)

 Bandwidth-limited systems: 
 save bandwidth at the expense of power (for example by 

using spectrally efficient modulation schemes) 
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M-ary signaling

 Bandwidth efficiency:

 Assuming Nyquist (ideal rectangular) filtering at baseband, 
the required passband bandwidth is:

 M-PSK and M-QAM (bandwidth-limited systems)

 Bandwidth efficiency increases as M increases.

 MFSK (power-limited systems)

 Bandwidth efficiency decreases as M increases.
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Design example of uncoded systems

 Design goals:
1. The bit error probability at the modulator output must meet the 

system error requirement.
2. The transmission bandwidth must not exceed the available 

channel bandwidth.
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Design example of uncoded systems …

 Choose a modulation scheme that meets the following 
system requirements:
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 Choose a modulation scheme that meets the following 
system requirements:
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Design example of coded systems
 Design goals:

1. The bit error probability at the decoder output must meet the 
system error requirement.

2. The rate of the code must not expand the required transmission 
bandwidth beyond the available channel bandwidth.

3. The code should be as simple as possible. Generally, the shorter 
the code, the simpler will be its implementation.
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Design example of coded systems … 

 Choose a modulation/coding scheme that meets the following 
system requirements:

 The requirements are similar to the bandwidth-limited uncoded 
system, except that the target bit error probability is much lower.
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Design example of coded systems
 Using 8-PSK, satisfies the bandwidth constraint, but 

not the bit error probability constraint. Much higher 
power is required for uncoded 8-PSK.

 The solution is to use channel coding (block codes or 
convolutional codes) to save the power at the expense 
of bandwidth while meeting the target bit error 
probability.
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Design example of coded systems
 For simplicity, we use BCH codes.
 The required coding gain is:

 The maximum allowed bandwidth expansion due to coding is:

 The current bandwidth of uncoded 8-PSK can be expanded by 
still 25% to remain below the channel bandwidth. 

 Among the BCH codes, we choose the one which provides the 
required coding gain and bandwidth expansion with minimum 
amount of redundancy.
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Design example of coded systems …
 Bandwidth compatible BCH codes
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Design example of coded systems …
 Examine that the combination of 8-PSK and (63,51) 

BCH codes meets the requirements:
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Effects of error-correcting codes on error 
performance

 Error-correcting codes at fixed SNR influence 
the error performance in two ways:
1. Improving effect:

 The larger the redundancy, the greater the error-
correction capability

2. Degrading effect:
 Energy reduction per channel symbol or coded bits for 

real-time applications due to faster signaling.
 The degrading effect vanishes for non-real time 

applications when delay is tolerable, since the 
channel symbol energy is not reduced.
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Bandwidth efficient modulation schemes

 Offset QPSK (OQPSK) and Minimum shift keying
 Bandwidth efficient and constant envelope 

modulations, suitable for non-linear amplifier
 M-QAM

 Bandwidth efficient modulation
 Trellis coded modulation (TCM)

 Bandwidth efficient modulation which improves the 
performance without bandwidth expansion
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Course summary

 In a big picture, we studied:
 Fundamentals issues in designing a digital 

communication system (DSC)
 Basic techniques: formatting, coding, 

modulation
 Design goals:

 Probability of error and delay constraints
 Trade-off between parameters:

 Bandwidth and power limited systems
 Trading power with bandwidth and vise versa 
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Block diagram of a DCS
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Course summary – cont’d
 In details, we studies:

1. Basic definitions and concepts
 Signals classification and linear systems
 Random processes and their statistics

 WSS, cyclostationary and ergodic processes
 Autocorrelation and power spectral density

 Power and energy spectral density
 Noise in communication systems (AWGN)
 Bandwidth of signal

2. Formatting
 Continuous sources

 Nyquist sampling theorem and aliasing
 Uniform and non-uniform quantization
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Course summary – cont’d

1. Channel coding
 Linear block codes (cyclic codes and Hamming 

codes)
 Encoding and decoding structure

 Generator and parity-check matrices (or 
polynomials), syndrome, standard array 

 Codes properties:
 Linear property of the code, Hamming distance, 

minimum distance, error-correction capability, 
coding gain, bandwidth expansion due to 
redundant bits, systematic codes
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Course summary – cont’d
 Convolutional codes

 Encoder and decoder structure
 Encoder as a finite state machine, state diagram, 

trellis, transfer function
 Minimum free distance, catastrophic codes, systematic 

codes
 Maximum likelihood decoding:

 Viterbi decoding algorithm with soft and hard 
decisions

 Coding gain, Hamming distance, Euclidean distance, 
affects of free distance, code rate and encoder 
memory on the performance (probability of error and 
bandwidth)
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Course summary – cont’d

1. Modulation
 Baseband modulation

 Signal space, Euclidean distance
 Orthogonal basic function
 Matched filter to reduce ISI
 Equalization to reduce channel induced ISI 
 Pulse shaping to reduce ISI due to filtering at the 

transmitter and receiver
 Minimum Nyquist bandwidth, ideal Nyquist pulse 

shapes, raise cosine pulse shape
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Course summary – cont’d

 Baseband detection
 Structure of optimum receiver
 Optimum receiver structure

 Optimum detection (MAP)
 Maximum likelihood detection for equally likely symbols

 Average bit error probability
 Union bound on error probability
 Upper bound on error probability based on minimum 

distance
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Course summary – cont’d
 Passband modulation

 Modulation schemes
 One dimensional waveforms (ASK, M-PAM)
 Two dimensional waveforms (M-PSK, M-QAM)
 Multidimensional waveforms (M-FSK)

 Coherent and non-coherent detection
 Average symbol and bit error probabilities
 Average symbol energy, symbol rate, bandwidth
 Comparison of modulation schemes in terms of error 

performance and bandwidth occupation (power and 
bandwidth)
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Course summary – cont’d

1. Trade-off between modulation and coding
 Channel models 

 Discrete inputs, discrete outputs
 Memoryless channels : BSC 
 Channels with memory

 Discrete input, continuous output
 AWGN channels

 Shannon limits for information transmission rate
 Comparison between different modulation and coding 

schemes
 Probability of error, required bandwidth, delay

 Trade-offs between power and bandwidth
 Uncoded and coded systems
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Information about the exam:

 Exam date: 
 8th of March 2008 (Saturday)

 Allowed material:
 Any calculator (no computers)
 Mathematics handbook
 Swedish-English dictionary

 A list of formulae that will be available with 
the exam.


