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Last time, we talked about:

 How decoding is performed for 
Convolutional codes?

 What is a Maximum likelihood decoder?
 What are soft decisions and hard 

decisions?
 How does the Viterbi algorithm work? 
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Trellis of an example ½ Conv. code
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Block diagram of the DCS
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Soft and hard decision decoding

 In hard decision: 
 The demodulator makes a firm or hard decision 

whether one or zero was transmitted and provides 
no other information for the decoder such as how 
reliable the decision is.

 In Soft decision:
 The demodulator provides the decoder with some 

side information together with the decision. The 
side information provides the decoder with a 
measure of confidence for the decision.
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Soft and hard decision decoding …

 ML soft-decisions decoding rule:
 Choose the path in the trellis with minimum 

Euclidean distance from the received 
sequence 

 ML hard-decisions decoding rule:
 Choose the path in the trellis with minimum 

Hamming distance from the received 
sequence 
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The Viterbi algorithm

 The Viterbi algorithm performs Maximum 
likelihood decoding.

 It finds a path through trellis with the largest 
metric (maximum correlation or minimum 
distance).

 At each step in the trellis, it compares the partial 
metric of all paths entering each state, and keeps 
only the path with the largest metric, called the 
survivor, together with its metric.
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Example of hard-decision Viterbi decoding
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Example of soft-decision Viterbi decoding
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Today, we are going to talk about:

 The properties of Convolutional codes:
 Free distance
 Transfer function
 Systematic Conv. codes
 Catastrophic Conv. codes
 Error performance

 Interleaving
 Concatenated codes
 Error correction scheme in Compact disc
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Free distance of Convolutional codes

 Distance properties:
 Since a Convolutional encoder generates codewords with 

various sizes (as opposite to the block codes), the following 
approach is used to find the minimum distance between all 
pairs of codewords:

 Since the code is linear, the minimum distance of the code is 
the minimum distance between each of the codewords and the 
all-zero codeword.

 This is the minimum distance in the set of all arbitrary long 
paths along the trellis that diverge and re-merge to the all-zero 
path.

 It is called the minimum free distance or the free distance of 
the code, denoted by ffree dd or  
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Free distance … 
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Transfer function of Convolutional codes

 Transfer function:
 The transfer function of the generating function is a 

tool which provides information about the weight 
distribution of the codewords.

  The weight distribution specifies weights of different paths 
in the trellis (codewords) with their corresponding lengths 
and amount of information.
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 Transfer function …

 Example of transfer function for the rate ½ 
Convolutional code.

1. Redraw the state diagram such that the zero state is 
split into two nodes, the starting and ending nodes.
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 Transfer function …

 Write the state equations (            dummy variables)

 Solve 
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Systematic Convolutional codes

 A Conv. Coder at rate       is systematic if the 
k-input bits appear as part of the n-bits branch 
word.

 Systematic codes in general have smaller free 
distance than non-systematic codes.

Input Output

nk /
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Catastrophic Convolutional codes

 Catastrophic error propagations in Conv. code: 
 A finite number of errors in the coded bits cause an 

infinite number of errors in the decoded data bits. 
 A Convolutional code is catastrophic if there is a 

closed loop in the state diagram with zero 
weight.

 Systematic codes are not catastrophic:
 At  least one branch of output word is generated by 

input bits.
 Small fraction of non-systematic codes are 

catastrophic.
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Catastrophic Conv. …

 Example of a catastrophic Conv. code:
 Assume all-zero codeword is transmitted.
 Three errors happens on the coded bits such that the decoder 

takes the wrong path abdd…ddce. 
 This path has 6 ones, no matter how many times stays in the 

loop at node d.
 It results in many erroneous decoded data bits. 
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Performance bounds for Conv. codes

 Error performance of the Conv. codes is 
analyzed based on the average bit error 
probability (not the average codeword error 
probability), because
 Codewords have variable sizes due to different 

sizes of the input.
 For large blocks, codeword error probability may 

converge to one bit but the bit error probability 
may remain constant.

 ….
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Performance bounds … 
 Analysis is based on:

  Assuming the all-zero codeword is transmitted
 Evaluating the probability of an “error 

event”  (usually using bounds such as union 
bound).

 An “error event” occurs at a time instant in the trellis if a 
non-zero path leaves the all-zero path and re-merges to it 
at a later time.
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Performance bounds …

 Bounds on bit error probability for 
memoryless channels:
 Hard-decision decoding:

 Soft decision decoding on AWGN channels using 
BPSK
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Performance bounds … 
 Error correction capability of Convolutional codes, 

given by                 , depends on
 If the decoding is performed long enough (within 3 to 

5 times of the constraint length)
 How the errors are distributed (bursty or random)

 For a given code rate, increasing the constraint 
length, usually increases the free distance.

 For a given constraint length, decreasing the 
coding rate, usually increases the free distance.

 The coding gain is upper bounded
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Performance bounds …

 Basic coding gain (dB) for soft-decision 
Viterbi decoding
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Interleaving

 Convolutional codes are suitable for memoryless 
channels with random error events.

 Some errors have bursty nature:
 Statistical dependence among successive error events 

(time-correlation) due to the channel memory.
 Like errors in multipath fading channels in wireless 

communications, errors due to the switching noise, …

 “Interleaving” makes the channel looks like as a 
memoryless channel at the decoder.
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Interleaving …

 Interleaving is achieved by spreading the 
coded symbols in time (interleaving) before 
transmission.

 The reverse in done at the receiver by 
deinterleaving the received sequence.

 “Interleaving” makes bursty errors look like 
random. Hence, Conv. codes can be used.

 Types of interleaving:
 Block interleaving
 Convolutional or cross interleaving
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Interleaving …

 Consider a code with t=1 and 3 coded bits.
 A burst error of length 3 can not be corrected.

 Let us use a block interleaver 3X3

A1 A2 A3 B1 B2 B3 C1 C2 C3

2 errors

A1 A2 A3 B1 B2 B3 C1 C2 C3

Interleaver

A1 B1 C1 A2 B2 C2 A3 B3 C3

A1 B1 C1 A2 B2 C2 A3 B3 C3

Deinterleaver

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 errors 1 errors 1 errors
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Concatenated codes

 A concatenated code uses two levels on coding, an 
inner code and an outer code (higher rate).
 Popular concatenated codes: Convolutional codes with 

Viterbi decoding as the inner code and Reed-Solomon codes 
as the outer code

 The purpose is to reduce the overall complexity, yet 
achieving the required error performance.

Interleaver Modulate

Deinterleaver
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Practical example: Compact disc

 The channel in a CD playback system consists of a 
transmitting laser, a recorded disc and a photo-
detector.

 Sources of errors are manufacturing damages, 
fingerprints or scratches

 Errors have bursty like nature.
 Error correction and concealment is achieved by using 

a concatenated error control scheme, called cross-
interleaver Reed-Solomon code (CIRC). 

“Without error correcting codes, digital audio 
would not be technically feasible.”
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Compact disc – cont’d
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 CIRC encoder and decoder:


